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Preface

This is the companion book to Functional Analysis. It consists of my answers to
all exercises. There are compelling reasons both to publish an answer book, and
to not publish an answer book. A strong reason from the “not publish” camp is
that the only way to really learn mathematics is by trying hard on your own, and
getting stuck often. The same way one needs lots of hours and repetition to excel
at sports, arts, or other human activities. There is also an elation that needs
to be experienced, when one sees the light after being trying and trying on a
problem for hours; or, sometimes, after apparently fruitless hours on a problem,
the solution will come while on the shower, or on a walk, or another activity very
far from mathematics. All those efforts train our minds, and prepare us better
to appreciate a certain trick that makes things work, and the emotions involved
will make it easier to remember the idea or at least part of it. The “for publish”
reasons are varied. There is a risk that the student will give up early on a problem
due to the availability of a full answer to the problem. This is unavoidable these
days since for common problems it is simple to find a solution online (a number
of them will likely be mine, if the problem is related to the topics in this book).
This means that these days the student has a stronger responsibility, compared
to days past, to be a shepherd of their own mathematical path. The temptation
to quickly go read an answer should be fought if progress is to be made. We
have all experienced reading someone else’s ideas and saying “I could have done
that!” but if our knowledge is put to the test, we might not be able to recreate
the idea we have just read.

The headlines of the few sections from the book without exercises have been
also included here so that the chapter/section numbering stays coherent with
the book. The equations in the answers have a different numbering scheme than
that in the book, so that both are recognizable and coherent. Namely, equations
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vi PREFACE

in the book are of the form (12.3) (meaning equation 3 in chapter 12), while
equations in the answers are numbered in the form (AB.2.3) (meaning the third
equation in the answers to chapter 2).

While care has been put in checking the answers for correctness and typos,
most certainly some mistakes are still there. This, or any other feedback, is very
welcome! 1 can be reached at my email address below.

Martin Argerami
Regina, SK, Canada
argerami@uregina.ca
November 2025
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CHAPTER

|

Prerequisites

1.1. Set Theory

(1.1.1) Let {A;},cs be a collection of subsets of a set A. Show that

Yal'= 0 (0T-Y

jeJ jeJ

Answer. If a & U Aj, then a € A; for all j; this means that a € ﬂjeJA§.
jeJ
Conversely, if a € ﬂ Aj, then a g A; for all j, so a ¢ U Aj.
jeJ jeJ
The second equality is obtained from the first one by taking comple-
ments, since (B¢)¢ = B for any set B.

(1.1.2) For sets A, B, C, show that
AU(BNC)=(AUB)N(AUC)
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and
AN(BUC)=(ANB)U(ANCQO).

Answer. If a € A and a € BN C, we have that a € ANBanda € ANC,
soa € (AUB)N (AUC); and the converse also holds: if a € AN B and
a € NANC, we have that either a € A, or otherwise a € B and a € C, so
a€ AU (BNCQC).

The second equality can be proven in a similar manner, or we can use
Exercise 1.1.1 to get

AN(BUC) = [A°U(B°NC%)]° = [(A°UB°) N (A°UC9)]
= (A°UB°)° U (A°UC°)° = (ANB)U(ANC).

(1.1.3) Let {A;},cs,{Bj}jes be collections of subsets of a set A. Are
the equalities

[UA}H{UB} U@, nB))

JjeJ jedJ jedJ

and
{ﬂAJ} U [ﬂBJ} = [(4;UB))
JjeJ JjeJ JjeJ

true? Prove them, or find a counterexample.

Answer. Let Ay = {1}, Ay = {2}, By = {2}, Bo = {1}. Then
(A1 U A2) N (B UBy) ={1,2},

while A1 N By = A2 N By = @. What is true is the inclusion

Uanmic[Unln[Us]

jedJ
for if a € Ay, N By, for some k, then a € Uj A and a € Uj B;.

The second equality is the complement of the first one, so it cannot be

true either. We have

[ﬂA} [N B8] c N, UB).

jed jedJ

because if a is in every A; and a is in every Bj, then a € A; N B; for all j.
The inclusion is proper in general; consider the same set A; = {1}, Ay = {2},
B; = {2}, By = {1} from before. Then A; N Ay = By N By = &, but
Ay UB; = A2 U By = {1,2} and the intersection is nonempty.



1. SET THEORY 3

(1.1.4) Prove Proposition 1.1.1. Show that the inclusion f( ﬂ Bj) C
J
ﬂ f(Bj) can be strict.
J

Answer. We can have f : {1,2} — {1} be the only possible function, f(z) =
1. If By = {1} and B2 = {2}, then f(By N B2) = f(@) = @, while f(B1) N
f(B2) = {1} n{1} = {1}.

If the empty set makes the example above look unconvincing, we can
tweak it slightly. Let f{1,2,3} — {1,2} be given by f(3) =2, f(1) = f(2) =
1. Then we have as above, f(By N B2) = f(@) = @, while f(B1) N f(B2) =
yn{ = {1

(1.1.5) Let f: A — B. For any By C B and Ay C A, show that

f(f71(Bo)) C By, Ao C f7H(f(Ao))-
Show that equality does not always hold, but that

f(f7(Bo)) = By

whenever f is surjective or, more generally, if By C f(A).

Answer. If a € f~1(By), it means that f(a) € By. Hence

F(f71(Bo)) € Bo.
I £ 5 {1,2} — {1,2} is given by f(z) = 1, then £/~ ({1,2})) = F({1,2}) =
{1} € {1,2}. When By C f(A), given any b € By there exists a € A
with f(a) = b. Then a € f~1(By) and b = f(a) € f(f1(By)), so By C
(1 (Bo)).

As for the second inclusion, if a € Ap, then f(a) € f(Ap), so a €
F71(f(Ap)). Thus Ag C f~1(f(Ap)). To see that the inclusion can be strict,
let A={1,2}, B=1{1,2}, f: A— B given by f(z) = 1. Put 49 = {1}.
Then f~1(f(Ao)) = f1({1}) = {1,2} 2 Ao.

(1.1.6) Let f : A — B be a function. Show that
(a) f is injective if and only if there exists g : B — A with
go f=idy;
(b) f is surjective if and only if there exists h : B — A with
f oh= idB;
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(c) f is bijective if and only if it is invertible. J

Answer.

(a) Suppose that f is injective. Fix ag € A. Define g : B — A by g(f(a)) =a
on f(A), and g(b) = ag for b € B\ f(A). Then g(f(a)) = a for alla € A by
construction. Conversely, if g exists with go f =id4 and f(a1) = f(a2),
then

a1 = g(f(a1)) = g(f(az)) = az,
and f is injective. Conversely, if f is invertible then we can take g = h =
f~1 and then the arguments above show that f is bijective.

(b) Suppose that f is surjective. Given b € B, choose one element a, €
FL({b}); these always exist because f is surjective. Let h(b) = ap. Then
f(R(b)) = f(ap) = b. Conversely, if h exists with f o h =idp, given b € B
we have b = f(h(D)), and so f is surjective.

(c) If f is bijective, by the previous part there exist g: B — Aand h: B — A
with go f =id4 and foh =idp. Then

g=goidgp=go(foh)=(gof)oh=idaoh=h,

so g = h and hence f is invertible.

(1.1.7) Let A be a set with an associative operation (a,b) — ab and
with a unit e € A (that is, ae = ea = a for all a € A). Show
that the unit is unique. Show also that if a € A is invertible
(that is there exists b € A with ab = ba = e) then b is unique
with that property. More generally, show that if a has a left
inverse b and a right inverse ¢, then b = c.

Answer. If e and f are units, then e = ef = f.
Now suppose that ba = ac = e. Then

b = be = b(ac) = (ba)c = ec = c.

(1.1.8) Let R be a relation on Z defined by:
aRb < 3 divides (a — b).
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Show that R is an equivalence relation. Determine its equiva-
lence classes. This quotient is often denoted by Zs.

Answer. The relation is reflexive, because 3 divides 0. It is symmetric, for
if @ — b is a multiple of 3, so is b—a = —(a — b). And it is transitive, because
if a—b=3nand b— c = 3m, then

a—c=(a—0)+ (b—c)=3n+3m=23(n+m).

If m € Z then m = 3q + r (via the Division Algorithm) for unique gn,r € Z
and 0 <7 < 3. As m —r = 3¢ € 3Z, we have that m ~ r. So {0, 1,2} for a
set of representatives. The classes are 3Z, 3Z + 1 and 3Z + 2.

(1.1.9) Let f: X — Y be a function. Define a relation ~ on X by:
xr1 ~ Ty < f(l‘l) = f(l‘g)
(a) Prove that ~ is an equivalence relation.

(b) Show that the equivalence classes are the “fibers” of f (i.e.,
sets of the form f~1({y}) for y € V).

Answer. We have f(z) = f(z) so x ~ z. If  ~ y then f(x) = f(y), so
y~z. And if f(x) = f(y) and f(y) = f(2), then z ~ z.

(1.1.10) Consider the relation ~ on R? defined by:
(mlvyl) ~ (532792) — "E% + y% = .’E% + y%
(a) Prove that ~ is an equivalence relation.

(b) Describe the equivalence classes geometrically.

Answer.

(a) This is a relation of the form considered in (1.1.9), so it is an equivalence
relation.

(b) Two points in R? are equivalent if their distance to the origin is the same.
So the classes are the distinct circles centered at the origin.
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(1.1.11) Let S ={1,2,3,4,5} and define R as:
R={(1,1),(2,2),(3,3),(4,4),(5,5), (1,2),(2,1),(3,4), (4,3) }-
(a) Show that R is an equivalence relation.

(b) Find the partition (quotient set) S/R.

Answer.

(a) The relation is reflexive because (z,z) € R for all x € S. It is symmetric
because for every pair (z,y) € R the corresponding pair (y,x) is in R.
And it is transitive: the only way to have pairs (z,y) and (y, z) in R is
the constant pairs (z,z) and (1,2), (2,1) and (3,4), (4, 3), all of the form
(z,y) and (y, ), where in all cases we also have (z,z) € R.

(b) The classes are {1,2}, {3,4}, and {5}.

(1.1.12) Prove that any partition P of a set .S induces an equivalence
relation ~ on S where:

a~b <= a and b belong to the same subset in P.

Conversely, show that any equivalence relation on S induces a
partition of S.

Answer. Suppose that P = {S; : j € J} is a partition of S. Let ~ be given
by a ~ b if there exists j € J with a,b € J. This is reflexive and symmetric
by definition, and transitivity is also automatic: if a,b € S; and b,c € Sy,
then b € S; NS;, which implies that £ = j since the sets in the partition are
disjoint; so a ~ c.

Conversely, if ~ is an equivalence relation, let P be the sets of classes
for ~. For any a € S there exists P € P with a € P = [a] since every element
belongs to its own class. Therefore the union of all the classes is equal to S.
It remains to show that they are pairwise disjoint. Suppose that a € [b] N [c].
Then a ~ b and a ~ ¢, so b ~ ¢ by the transitivity. If d ~ b then d ~ ¢ by
the transitivity, so [b] C [c]; exchanging roles we get that [b] = [c]. We have
shown that if [b] N [c] # @ then [b] = [¢], so the classes are pairwise disjoint.
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(1.1.13) Let ~ be an equivalence relation on N x N defined by:
(a,b) ~ (¢,d) <= a+d=b+c
Attention: the set R here consists of pairs of ordered pairs!
(a) Prove that ~ is an equivalence relation.
(b) Show that addition defined as:
[(a;0)] + [(¢,d)] = [(a + ¢, b + d)]

is well-defined (i.e., independent of the choice of represen-
tatives).

(¢) Show that multiplication defined as
[(a,b)][(c,d)] = [ac + bd, ad + bc]

is well-defined, and it is distributive with respect to addi-
tion.

Answer.

(a) From a + b = b+ a we get that the relation is reflexive. If a+b=5b+ ¢
then ¢+ b = d + a, so the relation is symmetric. And if a +d = b+ ¢ and
c+ f=d+e, then

(a+f)+d=(a+d)+f=b+c+f=b+d+e=(b+e)+d.

As we can cancel d, we get that a + f = b+ e and so (a,b) ~ (e, f);
therefore the relation is transitive.

(b) If (a/,b') € [(a,b)] and (', d") € [(c,d)], then using that «’ +b = a+b" and
d+d=c+d,
d+d+b+d=(+b)+(+d)=(a+V)+(c+d)=a+c+V +d,
showing that [(a + ¢, b+ d)] = [(a' +, 0 + d')].

(c) If (a/,b) € [(a,b)] and (¢/,d’) € [(¢,d)], then ¢’ +b=a+V and ¢ +d =
¢+ d'. We need to show that

(ac+ bd,ad + bc) ~ (a'c +V'd,a'd +V').
That is, we need to show that
ac+bd+add +bcd =ad+bec+add +Vd.
From a +b =b+d and ¢+ d = d + ¢/, multiplying by ¢/,
a'd +bd =ad +0'¢. (AB.1.1)
Multiplying ¢/ +d = ¢+ d’ by a:
ac +ad = ac+ ad'. (AB.1.2)
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Multiplying a + b =a’ + b by d’:

ad +bd = d'd +bd'. (AB.1.3)

Multiplying ¢ +d’ = d + ¢’ by b:
be + bd' = bc’ + bd. (AB.1.4)
Adding the four equalities and cancelling ac’, ad’, bd’, and bc’ from both

sides,
ac+bd+dd +Vc =ad+bc+add +bd.
Which is exactly what we needed to show; thus, multiplication is well-
defined.
It remains to check the distributivity. Since the operations are well-
defined, we can work with representatives without concern. We have

[(@,0)]([(c, d)] + [(e. ))]) = [(a.b)][(c +e,d + f)]

[(a(c+€) +b(d+ f),a(d+ f) + b(c +e)]
[(ac+ bd + ae +bf,ad + bc + af + be))
[(
[(a,

ac + bd,ad + be)] + [(ae + bf,af + be))
b)][(¢, d)] + [(a; b)l[(e, f)]-

(1.1.14) Let ~ be an equivalence relation on Z x Z* (where Z* = Z\ {0})
defined by:
(a,b) ~ (¢,d) < ad = be.
(a) Prove that ~ is an equivalence relation.
(b) Show that addition defined as:
[(a,0)] + [(¢, )] = [(ad + be, bd)]

is well-defined (i.e., independent of the choice of represen-
tatives).

(¢) Show that multiplication defined as
[(a,b)][(c, d)] = [ab, cd]

is well-defined, and it is distributive with respect to addi-
tion.

Answer.

(a) We have ab = ba, so (a,b) ~ (a,b) and the relation is reflexive. If (a,b) ~
(¢,d) then ad = be; written as ¢b = da this says that (¢, d) ~ (a,b) and the



1. THE AXIOM OF CHOICE 9

relation is symmetric. Finally, if (a,b) ~ (¢,d) and (¢,d) ~ (e, f), then
ad = bc and cf = de. If ¢ = 0, then from b,d # 0 we get a = e = 0 and
af = be holds. Otherwise, if ¢ # 0, then

afed = (ad)(cf) = (be)(de) = becd.

As ed # 0 we can cancel and get af = be; that is, (a,b) ~ (e, f).

(b) If (a/,b") ~ (a,b) and (¢, d') ~ (c,d), then a’b = ab’ and ¢’d = cd’. Then
(ad + be)b'd = adb'd' + beb'd = (ab')d'd + (cd')b'b
=a'd'bd+b'cbd = (a'd + ' )bd.

So [(a’,0)] + [(<', d)] = [(a,b)] + [(c, d)].

(¢) We have
ach'd = a'c'bd,
so [(a/,0)][(¢,d")] = [(a,b)][(c,d)] and the multiplication is well-defined.
For the distributivity,
[(a7 b)] ([(Cv d)] + [(ev f)]) = [(a7 b)][(cf + de, df)] = [((ch + ade, bdf)]

= [(a,0)][(c, d)] + [(a, b)][(e, F)]-

1.2. The Axiom of Choice

(1.2.1) Let R be a nonzero unital commutative ring and « € R non-
invertible. Show that there exists a proper maximal ideal J of
R with z € J.

Answer. The ideal zR generated by = cannot be all of R because if it were
then  would be invertible. Let

J ={J C R: proper ideal with z € J},

ordered by inclusion. If {J;} is a chain in J, let Joo = J;, Jx. As the union
is monotone, J, is an ideal. And it is proper, for if 1 € J,, then there exists
k with 1 € Jg, a contradiction. So J, is an upper bound for the chain in 7,
and by Zorn’s Lemma there exists J € J, maximal proper ideal with =z € J.
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(1.2.2) Let X be a set. Prove that Zorn’s Lemma implies the Well
Ordering Principle by applying Zorn’s Lemma to the collection
P={(A,<4): AC X, <4 isa well-ordering on A},

where the order is given by saying that (A4,<4) =< (B, <p) if
A C B, <p extends <4, and every element of A is less (in the
<p order) than every element of B\ A.

Answer. We have that P is nonempty because it contains singletons with
the only possible order on each. Suppose that {(A;, <4, } is a chain in P. Let
U= Uj Aj; with the order <y defined as follows: if u,v € U there exists j
such that u,v € A;, and we say that u <y v if u <a; v. This is well-defined
because if u,v € A with k > j, the order in A; is the restriction of the order
in Ay and so u <4, v <= u <4, v. We claim that U is well-ordered.
Let S C U be nonempty. Then there exists j with SN A; # @. As A; is
well-ordered by < Ajs there exists a least element s € SN A;. Because <y
restricts to <4;, the element s is also least for <yy. Thus U € P and it is an
upper bound for the chain. By Zorn’s Lemma, P admits a maximal element
(M, <pp).

If we had M C X, pick z € X \ M and let M’ = M U {z} with the
order <p;s defined to be <j,; for all elements of M, and m <j;; x for all
m € M. Then (M',<p;/) € P and (M, <jp;) = (M’,<ps), contradicting the
maximality.

1.3. Real Numbers and Calculus

(1.3.1) Let F C R. Show that inf £ = —sup(—FE) and

lim inf a,, = —lim sup(—ay,).
n n

Answer. Let ¢ be a lower bound for E. Then —c is an upper bound for
—FE, which gives us sup(—FE) < —¢, and so ¢ < —sup(—FE). As this occurs
for every lower bound of E, we get inf E < —sup(—F). Conversely, if ¢ is
an upper bound for —F, then —c is a lower bound for F, which means that
—c < inf E, which we can write as —inf £ < ¢. So —inf F is below every
upper bound for —FE, and so —inf E < sup(—F), which is sup(—F) < inf E.
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Now, using the above,

—limsup(—a,) = —inf sup (—a,,) = sup(— sup (—a,))

m n>m m n>m

=sup inf a, = liminf a,.
m n>m n

(1.3.2) Let {a,} C R be a sequence. Allowing 00 to be cluster points
for unbounded sequences, show that
lim sup a,, = max{cluster points of {a,}},
n
and
lim inf a,, = min{cluster points of {a,}}.
n

Answer. Assume first that the set of cluster points is bounded (this is equiv-
alent to {a, } being bounded).

Let A = limsup,, a,, and B the maximum cluster point of {a,}. Since
B is a cluster point, there exists a subsequence {a,,} with a,, — B. Then
for any m there exists j with n; > m, and so

B = lim Ap; < SUD Q.
J n>m
Then B is a lower bound for sup,,~.,,{an} for all m, and thus B < A. Con-
versely, since A = inf,, sup,,>,, a,, there exists a subsequence {m;} such that
SUD,, >, @n i A. For each j we can find n; such that [an; —sup,>,,, | < %
Then a,; — A, that is A is a cluster point for {a,}; this immediately gives
us A < B. We also have
limninf an, = — limsup(—ay,). (AB.1.5)
n

By the first part of the answer, the right hand side is —C, where C' is the
largest cluster point of {—a,}. Then —C is the smallest cluster point of
—{—an} ={an}.

If {ay} is unbounded above, then B = co. If {a,,} is a subsequence of
{an} such that a,; > j, then sup,,, a, = oo for all m, and so A = oo = B.
This also gives the result when {a,} is unbounded below, via (AB.1.5).

(1.38.3) Let {an} C R be a sequence. Show that lim, a,, exists and is
equal to L € R if and only if limsup,, a,, = liminf,, a,, = L.
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Answer. 1If lim, a, = L, then L is the only cluster point of the sequence.
By Exercise 1.3.2 we have that liminf, a, = L = limsup,, a,. Exercise 1.3.2
also provides the converse, for if liminf,, a,, = L = limsup,, a,, then L is the
only cluster point of {a,} and hence lim,, a,, = L.

(1.3.4) Prove (1.3).

Answer. We start, from the Fundamental Theorem of Calculus, with

f(x) = F(0) + / " Ps)ds= f(0) +a / F(t) dt.

Now we proceed by induction. If (1.3) holds for n and f(*+1) exists,

= 1 o o L
(n%l)'/o (1- t)n—lf(n) (tz)dt = T |:_ (1 nt) f(n)(tx)

n

0

1
x _ 4\n flnt1)
+ ”/o (1 —t)" D (¢ dt

n+1

n! n!

/1(1 — )" f D) (¢ dit.
0

(1.3.5) Let f : [0,00) — R be continuously differentiable, with f(x) >
0 for all z, and such that f(z) < ¢ for all z.
(a) Show that lim,_,~ f(x) exists and it is equal to sup{f(x) :
x > 0};
(b) show that there exists f as above and such that lim f(x)

Tr—r0o0
does not necessarily exist;

(c) show that if in addition f’ is differentiable and f”(x) < 0
for all sufficiently large z, then li_>m f(z)=0.
T o

Answer.

(a) Let s = sup{f(x): = > 0}. By hypothesis, s < oco. Fix ¢ > 0. Then there
exists zg such that s — f(xg) < €. Suppose that x > 9. Then

@) = )+ | "ty de > fxo)
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since f’ > 0. We have

ls— f(z)|=s— f(z) >s— f(xg) <&,

showing that lim, . f(z) = s.

(b) Let
_ 1 1 1 2 ! 1
o0 =2 T+ (1= ==
n—0 ’ n?2
and

)= [ ato)a.

The idea is that g has bumps so it has no limit, but the bumps shrink in
width so that the integral is bounded. The first term of the sum guarantees
that g(x) > 0 for all z, and the second provides the bumps. The function
g is continuous and positive by construction, so f'(x) = g(x) > 0 for all
x> 0. And

> =1 1 2
< = —_— PR —
f@ < [ o Sty

so f is bounded. And g(n + %) =1 and f(n) = 5 for all n, so the limit

of g at infinity does not existil

(c) We have that f’(x) > 0 for all , and since f”(z) < 0 for all z we have
that f’ is decreasing. Let ¢y = inf{f’(x) : x > 0}; this exists for the
set is bounded below by 0. Now the function — f’ satisfies the condition
of the original question, so by part a we have that ¢y = lim,_, f/(2).
Write so = lim, o0 f(z). If ¢g > 0, we can choose zy > 0 such that for
all z > xy we have f(z) > so — <. Then we would have

To+1 ro+1

f’(t)dtzso—%o—&—/ codt:so—i—%o,

Zo

f(9€0+1)=f($0)+/

Zo

a contradiction since sg > f(x) for all z. It follows that ¢ = 0, as desired.

(1.3.6) Let [a,b] C R and P, P’ partitions with P C P’. Show that
L(f,P) < L(f,P) <U(f,P) <U(f, P).
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Answer. That L(f,P") < U(f,P’) follows from m,(f) < M;(f). Consider
the partition P U {y}. Suppose that z; < y < z;4+1. Then

U(f,PU{y}) =D M;(f) (zr — zr—1) + Mg, 4 (f) (y — 75)
k=1

+ M[y7$j+1](f) (mj+1 - y) + Z M](f) (xk - xk—l)
k=j+2

< M) (ke — w1) + Mi(f) (y — )

m

+ M;(f) (@gr—y) + Y My(f) (wx — zp1)

k=j+2
=U(f, P).

Tterating this we get that U(f, P’) < U(f, P). The corresponding inequalities
for the lower sums follow from L(f, P) = -U(—f, P).

(1.3.7) Let f : [a,b] — R be bounded. Show that f is Riemann inte-
grable if and only if for each € > 0 there exists a partition P
of [a,b] such that U(f,P) — L(f,P) < e.

Answer. Suppose first that f is Riemann integrable and fix ¢ > 0. By
definition of supremum and infimum there exist partitions P, Q of [a,b] such
that |U(f, P) — L(f, Q)| < €. Using Exercise 1.3.6,
U(fuqu) _L(fv—PUQ) < U(f7P) _L(fﬂQ) <e.
Conversely, assuming that for each € > 0 there exists a partition P with
U(f,P)— L(f,P) < e, we have U(f, P) < L(f, P) + . This gives
U(f, P) <e+sup{L(f,Q): Q}.

As e was arbitrary, this shows that sup{L(f,Q) : @} is an upper bound for
{U(f,P) : P}. In particular inf{U(f, P) : P} < sup{L(f,P): P}. The
reverse inequality is trivial by Exercise 1.3.6, and therefore f is integrable.

(1.3.8) Show that a bounded function f is continuous at x if and only
if o(f,z) =0.
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Answer. By definition of sup and inf, the numbers m(f, x, ) increase with
0 and the numbers M (f, z,d) decrease with §.

Suppose that f is continuous at z. Given € > 0, there exists § > 0 such
that |f(z) — f(y)| <eforall y € (x — §, 2+ 0). Then M(f,z,0) < f(z) +e.
As f(y) > f(z) — e we also have m(f,z,d) > f(z) —e. Then

M(f,x,(s) —m(f,x,5) < 2e.
As e was arbitrary, o(f, x) = 0.
Conversely, suppose that o(f,z) = 0 and fix € > 0. Then there exists

§ with M(f,z,0) — m(f,z,8) < e. This says that |f(z) — f(y)] < € on
(x — 9,z + ), so f is continuous.

1.4. Trigonometric Functions

(1.4.1) Find exact formulas for sin £ and cos .

Answer. Write s = sin T, ¢ = cos T, t = £. We have that sin 3¢ = sin(r —

3t) = sin 2¢. This we can rewrite as
sin 2t cost + cos 2t sint = sin 2t.
Using that
sin 2t = 2sint cost, cos2t = cos®t —sin®t = 1 — 2sin? ¢,
the first equality becomes
25¢? 4 (1 — 25%)s = 2sc.
After dividing both sides by s (which is nonzero since 0 < ¥ < 7), using that
s2 =1 —c?, and simplifying, we get
4 —2c—1=0.
Knowing that ¢ > 0, from the quadratic equation we get

us 1++5

Cos— =c= .
5 4

And then
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(1.4.2) Write formulas to express the sine and the cosine in terms of
the tangent for = € [0, g) Explain how to adapt the formulas
for arbitrary x.

Answer. When 0 < z < 7, both the sine and the cosine are non-negative.

Then
sin“ x sin® x

2. _
tan“x = 5

cos2z  1—sin?z’
and solving (we can happily take square roots because everything is non-
negative)

. tan
sing = ————.
V14 tan?z
In an analogous way we get
1
COST = ———.
V1+tan®z
For z € (%, 7] we have sinz = sin(r — z) and cosz = — cos(m — z). Then
sinz = sin(r — x) = _tanlr—x) ___ tenz
1+ tan?(7 — x) V1+tanlz
and
1 tanx
cosx = —cos(m —x) = — > =— .
V1 + tan?(m — ) V1+tan?z
In the third quadrant the tangent is again non-negative, so we get
. tanx
sine = ———
V1+tan?x
and
1
cosx =

V14 tan? '
And in the fourth quadrant the sine and cosine have opposite signs, so the
formulas will be the same as inthe second quadrant.

(1.4.3) Find an addition formula for the tangent; that is, express
tan(xz + y) as a formula on tanz and tany.

Answer. We have, factoring cos x cos y out from numerator and denominator

when they are nonzero,
sin(z +y)  sinxcosy+ coszsiny

tan(x = =
(@+y) cos(x +y) coswcosy —sinzsiny

_ tanz +tany
o 1 —tanztany
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If cosz = 0 and cosy # 0 we have

sin x cosy 1

tan(x = -
(@ +y) sin x sin y tany’

which actually agrees with the limit as  — 7 of the full expression for the
sum. When cosy = 0 and cosz # 0 we get a similar expression. And when
cosx = cosy = 0, then x = 2’“2—+17T, Yy = %W, and z +y = (2k+2j + 1),
so tan(z +y) = 0.

(1.4.4) For each z, let

T(z) = [cos:c sinx} _

sinx cosz

Show that T'(z +y) = T(x)T(y).

Answer. We have

CcOS T cosy — sin x sin —sinx cosy — cos x sin
T(z+y) = [ y y y y}

sinzcosy + cosrsiny cosxcosy — sinzsiny

_ [cosz  —sinz]| [cosy —siny|
o [sinx cosx} [siny cosy} = T()T(y).

(1.4.5) Find formulas for sin(2z) and cos(2z) in terms of tan x. ]
Answer. We have, from Exercise 1.4.2
sin2z = 2sinzcosx = Mimg.
14 tan®x

And
2tan® . 1—tan?z
1+ tan’z - 1+ tan?z’

cos2r = cos’z —sinzx=1—2sin’z=1—

(1.4.6) Show that
sinx + siny = 2sin (IT—H/) cos (%)
Show that

cosx + cosy = 2cos (%) cos (%)
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. (T . (T—
cosT — cosy = —2sin (J) sm( y)
2 2
Answer. With r = % and s = “5¥, we have
sinz 4 siny = sin(r + s) + sin(r — s)
=sinrcoss + cosrsin s + sinrcoss — cosrsin s
= 2sinrcoss
= 2sin (L—i_y) cos (ﬂ)
2 2
Also,
cosx + cosy = cos(r + s) + cos(r — s)
= COST COSS —sinrsins 4+ cosrcoss + sinrsin s
T+ T —
= 2cosrcoss = 2cos (Ty) cos (Ty)
Similarly,

cosx — cosy = cos(r + s) — cos(r — s)

= COSTCOSS — sSinrsins — cosrcoss — sinrsin s

= —2sinrsins = —2sin (%) sin (%)

(1.4.7) Show that
tan T4y _ sinx + siny
2 cosx + cosy

whenever the denominator is nonzero.

Answer. Ifr = (x +y)/2 and s = (z — y)/2, then

sinz +siny _ sin(r+s) + sin(r — s)

cosz +cosy  cos(r+s)+ cos(r —s)

sinr cos s + cosrsin s + sinrcoss — cosrsin s

COST COsS S — sinrsin s + cosr cos s + sinrsin s

2sinrcoss sinr r+y

2cosrcos s cosT 2
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(1.4.8) Show that

sin? z — sin? y -1
cos?x — cos?y
whenever the denominator is nonzero.
Answer. The denominator is
cos?z —cos’y =1 —sin®z — (1 —sin?y) = —(sin? 2 — sin?y).
(1.4.9) Show that
sinx +siny _ cosx —cosy
COS T + COs Y sinx —siny
whenever the denominator is nonzero.
Answer. Cross multiplying the denominators,
(sinz 4 siny)(sinz — siny) = sin® z — sin® y = —(cos® z — cos y)

= (cosx — cosy)(cosx + cosy).

(1.4.10) Show that
{Asin(z +7): A\,reR} ={acosz+ fsinz: a,f € R}.

Answer. We have

Asin(xz 4+ r) = Asinr cosz + A cosr sinz.
Conversely, given «, 8 € R let

o = o TTE,  § =T

Then we have o/23'2 = 1 and so there exists € R with o/ = sinr, 8/ = cosr.
Then

acost+ fBsinr = /a2 + (2 [sinrcosx—l—cosrsinx] =+/a?+ 8?2 sin(x+71).

(1.4.11) Use the idea in the proof of Lemma 1.4.1 to show that the
initial problem 3’ = y, y(0) = 1 has at most one solution.
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Answer. Having two solutions y,y2 means that y; — yo is a solution of the
initial problem y' = y, y(0) = 0. So it is enough to show that this latter
problem has the only solution y = 0. We have, since y = v, y(”)(O) ==
y'(0) = y(0) = 0. Also, working on the interval [—a, a], say, by continuity we
have that there exists ¢ > 0 with |y(z)| < ¢. Then the Taylor polynomial of
y is just the error term, that is for each n € N

y(x) _ y(n) (¢(2)) a"t

e x € [—a,al,
with £(z) between 0 and z. As ™) =y and |y| < ¢, we have
C
< .
)l <

As this is true for all n € N, we get that y(z) = 0 on [—a, a]. But this can be
done for all a > 0, so y = 0.

1.5. Complex Numbers

(1.5.1) Without using series, show that a nonzero complex number z
can be written in a unique way as z = r(cos@ + isinf) with
r>0and 6 € [0,2m).

Answer. If z € C is nonzero, then z = a+1ib with at least one of a, b nonzero.
Then

a b
—_— and —
1/042_’_1)2 1/012_’_62

are two real numbers such that their squares add to 1. That is, they form the
coordinates of a point in the unit circle. As shown on page 17 of the Book,
there exists 6 € [0, 27) such that

a . 9 d b —sind

If r = va? + b2, then a = rcos@ and b = rsin 6.

(1.5.2) Still without using series, follow up from Exercise 1.5.1 by
showing that if we formally use the notation e? for the complex
number cos @ + isin 6, then e*(?1102) = ¢i1i02
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Answer.  Using the addition formulas and the multiplication of complex
numbers,

(cos 01 + isin 91)(008 0y + isin 92) = cos 81 cos By — sin 67 sin Oy
+ i(sin 01 cos 65 + cos 0, sin 92)
= COS(91 + 92) + Z'sin(¢91 + 92)

(1.5.3) Let z € C be nonzero. Show that if z = r(cosf + isin ), then

2™ =7r"(cosnb + isinnb).

Answer. We have z = 7€, Then 2" = r"(e?)" = "¢, The last equality
is obtained inductively from (e?)? = /¢ = ¢i20,

(1.5.4) Show that the equation 2™ = 1 has precisely n distinct solu-
tions, that can be written as

wy, = e2iTk/m k=0,...,n—1.

Answer. Suppose that z™ = 1. From Exercise 1.5.3 we know that if z =
r(cos @ + i) the equality can be written as

r"(cosnb + isinnf) = 1.
This means, by the uniqueness of the polar form, that /™ =1 (so 7 = 1) and

cosnf = 1, sinnh = 0. Thus nb = 2kn for k € Z. As e?7k/n = g2in(k—mn)/n
for all m € Z, the unique solutions can be parametrized by

wy, = 2Tk k=0,...,n—1.

(1.5.5) Solve the equation (z + 1)® = 2°.

Answer. Dividing both sides by 2° (note that z # 0, since for z = 0 we get

0=1) we get
(1+1) =1
z
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The expression in brackets cannot be 1, so we are left with the four non-trivial
fifth roots of unity:

141 —e2mik/s 1934,
V4

So we get four solutions, namely

1
e2mik/5 _ 1’

z = k=1,234.

(1.5.6) Show that e*t™ = e*ev. ]

Answer.

k=0 k=0j=0
oo k 1 1
-y 3yl Sk (1.2)
ik — i)
k=0j=0"7" (k=3)
- 33 et 03
Nk — )
par A G
DD IEE =
!
7=01r=0
= Z ,l'zj eV = e"e® (1.5)
— J:
j=0

(1.5.7) Show that e*T* = e?e” by showing that e*t™ is the unique
solution of the initial value problem y'(z) = y(2), y(0) = e*.

Answer. Let g(z) = e*t*. Then ¢(0) = €v, ¢’(z) = g(z). Then g(z) = ce*
with ¢ = ¢g(0) = e®.
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1.6. Cardinality

(1.6.1) Show that equipotency is an equivalence relation.

Answer. We define the relation A ~ B if there exists a bijection f : A — B.
Given a set A, the identity id4 :— A is a bijection, so the relation is reflexive.
If A~ Band f: A— Bisa bijection, then f~' : B — A is a bijection, and so
B ~ A, making the relation symmetric. Finally, if f: A —- Bandg: B — C
are bijections, then go f: A — C' is also a bijection by Exercise 1.1.6.

(1.6.2) Let n < m be positive integers. Show by induction that there
is no bijection between {1,...,n} and {1,...,m}.

Answer. We proceed by induction on m. When m = 2, any function = :
{1} — {1,2} will clearly not be surjective. Assume as inductive hypothesis
that there is no bijection between {1,...,n} and {1,...,m} for all n < m.
Suppose that v : {1,...,n+ 1} = {1,...,m + 1} is bijective, where n < m.
Because reordering is a bijection, we may assume without loss of generality
that y(n+1) = m+1. This means that v restricts to a bijection {1,...,n} —
{1,...,m} a contradiction.

(1.6.3) Write an explicit bijection «y : (0,1) — (0,1) U (1, 2).

Answer. We can map (0,1) to (0,2) and then use the countable shift idea
to hide the middle point 1. So v : (0,1) — (0,1) U (0,2) given by

1 _ 1
o n+io t—%,nGN
(t) = L
2t, t¢{lL,3.3,...}

is a bijection as desired.

(1.6.4) Write v~ 1 explicitly for Example 1.6.5.
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Answer. We need to identify whether the positive rational ¢ is in an interval
of the form (2n,2n + 1] or (2n + 1,2n + 2]. Let m(q) = |g|. Then we put

@ {q — %, m(q) even
n(q) =3 o
%—l—l—q, m(q) g odd

(1.6.5) Write in detail the proof of Proposition 1.6.27. ]

Answer. Let v : P(A) — {0,1}# be given by v(B) = 1. If v(B) = v(C),
then 15 = 1¢. Soif b € B then 1¢(b) = 15(b) =1, so b € C; and, similarly,
C C B. So B =C and # is injective. Let g : A — {0,1} be a function, and
let B={aec A: g(a) =1}. Then v(B) = 1p = ¢ and hence 7 is surjective.
Thus 7 is bijective and [{0,1}4| = |P(4)].

(1.6.6) Let A be a set and A = (J,;
pairwise disjoint. Fix sets {Bg}aca. Show that

| TI Bal =11 11 Bul-

acA jEJ acA;

Aj, with {A;} nonempty and

Answer.  Let g € [[;c;Ilsea, Ba- Then, for each j € J, g(j) : 4; —
UaeAj B, with g(j)(a) € B,. Define g € [[,c4 Ba by g(a) = g(j)(a) where
j is the unique index such that a € A;. If § = h, then g(j)(a) = h(j)(a)
for a € Aj, and so g(j) = h(j), and so g = h. That is, the assignment
g +— § is injective. And given h € [],c 4 Ba, define ho € ;¢ HaeAj B,
by ho(j)(a) = h(a). Then h = hg and the assignment is surjective, thus

|HaEABa‘ = ‘HjGJHaeAj Ba‘-

(1.6.7) Let Ay, As, ... be countable (finite or not), with |A,| > 2 for

all n. Show that
114~ = ]]{o. 1}‘-
N N

Answer. Since each A, has at least two elements, we have injections =, :
{0,1} — A,,. Then we can map each g € [[{0,1} to g € [[yA4» by g(n) =
Yn(g(n)). The assignment g — § is clearly injective, and so |[[{0,1}| <



1. CARDINALITY 25

|TIy An|- Conversely, let {B,}nen be a pairwise disjoint family of subsets
of N with |B,,| = |N| for each n; for instance we can fix the sequence of
prime numbers {p,} and define B,, = {p* : k € N}. Then |4,| = |N| <

| T15{0, 1} = | TTjep, {0,1}. And

[T 4| <| IT IT 0.1} -

neN neNkeB,

<

[To.)
n
Having shown both injections, Schroder—Bernstein gives us the equality

14 =|]]{0. 1}

N

(1.6.8) Show that, in the proof of Proposition 1.6.32, g : X x {0,1} —
X is a bijection.

Answer. Let (x,t),(y,s) € X x {0,1} with g(z,t) = ¢g(y, s). Because X =
Uj X, there exists j such that =,y € X, (find a j for each of x and y and
then choose the largest of both). Then g;(z,t) = g(z,t) = g(y,s) = g;(y, s)
and then x = y and t = s by the injectivity of g;. Given z € X, there exists
J with z € X;. As g, is surjective, there exist z € X and t € {0,1} with
gj(z,t) = z. Then g(z,t) = g;j(z,t) = z and g is surjective. Being both
injective and surjective, g is bijective.

(1.6.9) Show that, in the proof of Proposition 1.6.33, g : X x X — X
is a bijection.

Answer.  If g(z1,22) = g(21,292) for x1,x9,21,20 € X, by construction of
X there exists j such that x1, 29, 21,22 € X; (choose a j for each, and then
keep the largest). Then g;(z1,z2) = g(x1,22) = g(21,22) = g;(21,22) and
(x1,x2) = (21, 22) by the injectivity of g;. Hence g is injective. Given z € X,
there exists j with z € X;. By the surjectivity of g; there exists (z1,22) €
X xX with gj(z1,22) = 2. Then g(z1,z2) = g;(x1,x2) = z and g is surjective.
Being both injective and surjective, g is bijective.
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1.7. Linear Algebra

(1.7.1) Let F be a field. Show that O = 0 for all & € F.

Answer. We have
O0a = (0 + 0)a = Ocx + Ocv.
If we now add —(0«) to both sides, we get 0 = Oc.

(1.7.2) Let F be a field, «, 8 € F. Show that
(i) ()8 = a(=B) = —(ap);
(i) (=) = o;
(iii) (—1)a = —a.

Answer.
(i) We have (—a)8+af = (—a+a)8 = 08 = 0. As additive inverses are
unique, (—a)f = —(af). Now a(—8) = (—F)a = —(Ba) = —(af).

(ii) This is just the definition of —a. We can see the equality a+(—a) =
0 as saying that —a is the additive inverse of «, but also as saying
that « is the additive inverse of —a.

(iii) This follows from the above: (—1)a = —(la) = —«a.

(1.7.3) Prove Proposition 1.7.5.

Answer.

(i) If W is a subspace, then av +w € W for all @ € F and v,w € W.
Conversely, taking a = 1 we get that v+w € W for all v,w € W, so
the operation of addition is defined on W. We have 0 = (—1)v+v €
W, and —v = (—1)v + 0 € W; as associativity and commutativity
are inherited from V', (W, +) is an abelian group, hence a subspace.
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(if) If W; C V is a subspace for all j € J, then given o € F and v,w €
N ;W by the first part of the exercise we have that av +w € W;
for each j, and so av + w € ﬂj W;; hence ﬂj W is a subspace of
V. In particular when W is a subset we can take the family of all
subspaces of V' that contain W (this family is non-empty, because
it contains V') and so the intersection is the smallest subspace that
contains W.

(iii) Let Wy = span W, that is

m
Wy = {Zajwj :meN ag,...,am €EF, wy,...,wny GW}.
j=1
A linear combination of linear combinations is a linear combination,
so Wy is a subspace. So span W C Wy by definition. At the same
time, the elements of Wy belong to any subspace that contains W,
so Wy C span W and hence span W = Wj,.

(1.7.4) Let {p,}>2, C Flz] such that degp, = n for all n. Show that
{pn} is a basis for F[z].

Answer.  Since degp, = 0, we have pg = a € F\ {0}. Then Fpy = F.
Assume for induction that span{po,...,px} = span{l,z,...,z"}. We have
pre1 = axktt 4+ g(x), where degq < k. By the inductive hypothesis ¢ €
span{po, ..., p}; so #¥*1 = a~Y(pyi1 — q) € span{po, ..., pr+1}. By induc-
tion, span{po, p1, ...} = Flz].

It remains to show that {p,} is linearly independent. Suppose that
Q1Pn, +- -+ agpn, =0, where ny > ng > --- > ng. The monomial of highest
degree in the expression is a1x™'; so a; = 0. But then the monomial of high-
est degree is aax™2, forcing ap = 0. This can be repeated until obtaining that
aj = 0 for all j, and so py,,...,pn, are linearly independent. As they were
arbitrary elements in {p, }, we have shown that {p,} is linearly independent.

(1.7.5) Show that if V, W are vector spaces and ¢ : V' — W is bijective
and linear, then ¢~ is linear.

Answer. Let a € F, w1, wy € W. Since ¢ is surjective, there exist vi,v9 € V
such that ¢(vy) = wy, ¢(ve) = wa. As ¢lavy + v2) = ad(vy) + ¢(v2) =
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awi + wg, we have that
¢~ Hawr +ws) = avy + vz = g H(w1) + ¢ (wo)

and so ¢! is linear.

(1.7.6) Prove Proposition 1.7.11.

Answer.  If 1,00 : V. — F are linear and a € F, then (ap; + p2)(v) =
ap1(v) + 2(v), so V* is a vector space. Given a basis {ej,...,e,} of V,

define
n
"
€k( E Cj@j) = Ck-
=1

Then ej € V*. Given any ¢ € V*, we have

@) = o(Pcies) =Y wle) e =D ples) (@),
j=1 j=1 j=1
Sop =37, ¢(e;) €}, showing that V* = span{ef,..., e} }. Andif )5 ajef =
0, evaluating at e, we get ar, = 0. So ef,...,e*} are linearly independent
and hence a basis for V*. Which also shows that dim V* = dim V = n.

(1.7.7) Prove Proposition 1.7.10. ]

Answer. If ¢ : V — W is an isomorphism and X is a basis for V', then
¢(X) is a basis for W. Indeed, if v = > . a;jz; then ¢(v) = >, a;¢(x;),
so W = span¢(X). And if 0 = > ; ao(z;), then 0 = ¢(3°; ajz;); the
injectivity of ¢ gives 0 = > SRS and the linear independence of X gives
a; =0 for all j. So ¢(X) spans W and is linearly independent: a basis. And
¢ is a bijection, so dim W = |¢(X)| = |X| =dim V.

Conversely, if dim V' = dim W, fix bases X = {z;};cs of X and {y;};cs
of Y. Define ¢ : V. — W by

¢(Zajffj) = Zajyj.

This is well-defined because the o are uniquely determined for each element
of V. The fact that {y;} is spans W makes ¢ surjective. Andif ¢(3_; ajz;) =
0, then Zj a;y; = 0and a; = 0 for all j since {y;} is a basis. So ¢ is bijective.
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It remains to show that ¢ is linear. Given v1,ve € V, by using zeros if
. n n
necessary we may write vi = > ., ajx;, va = > i, Bjx;. Then

p(avy +v2) = ¢(Zn:(a%‘ + 5;‘)%‘) = zn:(wj +5)y;

Jj=1 Jj=1

=aY ayi+ Y By = ag(vr) + ¢(v2)
j=1

Jj=1

and ¢ is linear.

(1.7.8) Let V, W be a finite-dimensional vector spaces with dim W =
dimV and ¢ : V — V linear. Show that ¢ is injective if and
only if it is surjective.

Answer. Suppose that ¢ is injective, and let {e1,...,e,} be a basis for V.
It 0‘1@5(61) + e+ a7z¢(6n) = 0, then

0= 061¢(€1) + -+ an¢(6n) = (15((1161 + -+ anen)-

As ¢ is injective, we get a1e; + -+ + ane, = 0 and then by the linear
independence we get ay = -+ = a,, = 0. Thus ¢(e1),...,¢(en) are linearly
independent. Being a linearly independent set with the same cardinality as
a basis, it is a basis for W. Then for any w € W there exist ay,...,a, € F
with w = a1¢(er) +- -+ and(e,) = d(arer +- - -+ ane,) and ¢ is surjective.

Conversely, suppose that ¢ is surjective. Then ¢(e1),...,¢(e,) span
W as the dimension of W is n, necessarily ¢(e1),...,¢(e,) are linearly in-
dependent (otherwise we could choose a proper linearly independent subset
and then dimW < dim V| a contradiction). If 0 = ¢(aze; + -+ + anen)
then 0 = ay¢(e1) + -+ + and(e,) and so a1 = - -+ ay, = 0, showing that ¢ is
injective.

(1.7.9) Prove Proposition 1.7.13.

Answer. If ¢(v) = v for nonzero v, then (¢ — A\I)(v) = ¢(v) — Av = 0, so
v € ker(¢—AI). These implications also work the other way: if v € ker(¢—\I)
is nonzero, then ¢(v) = Av.

When ker(¢ — AI) # {0}, this means that ¢ — AI is not injective, hence
not invertible. Conversely, if ker(¢ — AI) = {0}, then ¢ — Al is injective. By
Exercise 1.7.8, ¢ — Al is invertible.

That ¢ — AI is invertible if and only if det(¢ — AI) # 0 is proven in
Theorem A.3.3.
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(1.7.10) Let V, W be vector spaces over F and ¢1,¢2 : V — W linear.
Fix bases F, F for V and W respectively, and show that

(61 + d2lEF = [01]EF + [02)E,F-

Answer. We have that [¢1]g, F is the matrix {og;} with

m
€j) = Zakjfk~
k=1

Similarly, [¢2]g,F is the matrix {8y, } with

m

ej) = Zﬁkjfk-
k=1

m

(&1 + d2)(es) = Y (ks + Brj) fi-

k=1

Then

Thus
(01 + d2)eF = [onj + Bijl = a+ B = [d1]e,r + [d2]EF

(1.7.11) Let V, W, Z be vectors spaces over Fand ¢ : V — W, ¢ : W —
Z linear maps. Fix bases {ej,...,e,} for V, {f1,..., fm} for
W, and {g1,...,gp} for Z. Show that

[¢ o #lg,c = [W]|FrcldlE,F-

Answer. We have that [¢]g, F is the matrix {ay;} with

j) = Zakjfk-
k=1

Similarly, [¢]F ¢ is the matrix {8,,} with

m

= Z ﬁ’r'sgr .
r=1

Then

m

m P y4 m
(1 0 §)(e)) Zam 50 =Y s Y Brvgr = 3 (Y Bracwns) g
k=1 r=1

r=1 k=1
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Thus if v = [¢ 0 ¢]g.¢, then v = Ba, where

m

Yrj = Z BriQ;.

k=1

(1.7.12) Let V be a finite-dimensional vector space and ¢ : V. — V
linear. Let Aq,...,\, be distinct eigenvalues for ¢. Show that
if v1,...,v, are eigenvectors for Aq,...,\, respectively, then
v1,...,U, are linearly independent.

Answer. We proceed by induction. A single eigenvector is linearly indepen-
dent, so this is our base case. Suppose as inductive hypothesis that n — 1
eigenvectors corresponding to distinct eigenvalues are linearly independent.
If
oa1v1 + -+ apv, =0, (AB.1.6)
applying ¢ we get
a1 Avy + o+ apAv, =0 (AB.1.7)
Multiplying (AB.1.6) by A, and subtracting from (AB.1.7),
011()\1 — )\n)’l)l + -+ an71(>\1 — )\n)’l}n,1 =0.
As vq,...,v,_1 are linearly independent we get (A, — A,) = 0 for j =
1,...,n—1. And A\; # A, 50 a1 = -+ = a1 = 0. Going back to (AB.1.6)
we get o, = 0 and so vy, ...,v, are linearly independent.
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(1.8.1) Let X be a metric space, z € X and r > 0. Show that B, (z)
is open.

Answer. Fix y € By(x). Let s = %(y@)' If z € Bs(y), then

d(x,2) < d(x,y) + d(y, 2) = d(z,y) + — df”’) = d(z“? LS

so z € B,.(z), showing that B,(y) C B,(z).

(1.8.2) Let X be a metric space. Let {A4;} be a collection of open sets,
and let {Bx} be a collection of closed sets. Show that (J; A; is

open, and that (1), By, is closed.

Answer. Let a € |J; Aj. Then there exists j such that a € A;. Since A; is
open, there exists r > 0 with B,(a) C A;. Then B, (a) C J; 4; and, as this
can be done for any a € (J; A;, we conclude that (J; A; is open.

We have .
X\ﬂBk:(mBk> =B,
k k k

a union of open sets. That is, the complement of ), By, is open, which proves
that (), By is closed.

(1.8.3) Find an example of a metric space X and a collection {A;} of
open sets such that [ ; Aj is not open. Find also an example of
a collection {By} of closed sets such that J, By is not closed.

Answer. This can be easily done in the real line. Let X = R and A, =
(= 1,1). Then each A, is open, but [, A, = {0}, which is not open. With

a similar idea, let B,, = [%, 1]. Each B, is closed, but |J,, B, = (0,1], which
is not closed.
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(1.8.4) Let X be a topological space and V, W C X open and disjoint.
Show that VNW = @.

Answer. If x € W, as W is open and V N W = @, this means that ¢ V
(because z has a neighbourhood that does not touch V).

(1.8.5) Show that a metric space is normal.

Answer. Let X be a metric space and C7,Cy C X be closed and disjoint.
Since C7 C X \ Cy and this latter set is open, for each = € C; there exists
ry > 0 such that B, () C X \ Cy. Similarly, for each y € Cy there exists
ry > 0 such that B, (y) C X \ C;. Consider the open sets

Vi= | B2, Va=J B.,2(0)-
zeCy yeCa
Then Vi, V5 are open, and C; C Vi, Co C Vo, We will be done if we show
that V1 NV, = @. Let z € V1 N V,. Then there exist z € C; and y € C5 such
that z € B, 2(%) N B, /2(y). Suppose that r, <7, (otherwise, we exchange
roles). We have
A(r,y) < d(r,2) +dzy) < 242 <o

Thus y € B, (z) C X \ Cy, contradicting the fact that y € Cs.

(1.8.6) Let X be a topological space. Show that the following state-
ments are equivalent:

(a) X is normal;

(b) given K C V with K closed and V' open, there exists W C
X, open, with K cW cCcW CV.

Answer. If X is normal and K C V with K compact and V' open, consider
the disjoint closed sets K and X \ V. By hypothesis there exist disjoint
open sets W and W’ with K € W and X \ V C W’. By Exercise 1.8.4,
WNX\V=g,soWcCV. ThusKCWcWcV.

Conversely, suppose that for all K C V with K closed and V open,
there exists W C X, open, with K ¢ W ¢ W C V. Given Cy,C5 closed and
disjoint, we have C; C X \ C3. Then there exists W open with C; C W C
W C X\ Cy. Hence C; C W and Cy C X \ W, which are disjoint open sets.
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(1.8.7) Prove Proposition 1.8.6.

Answer.

(a) A is closed if and only if C(A) C A. Assume first that A is closed. Then
A€ is open. For any b € A€ there exists a neighbourhood N such that
be N C A% then (N\{b})NA=@. Thus C(A) C (A°)° = A.

Conversely, if C(A) C A, then for any b € A° we have that b ¢ C(A),
so there exists a neighbourhood N with b € N C A°. So A€ is open, which
shows that A is closed.

(b) A= AUC(A). First, we want to show that AU C(A) is closed. Indeed,
consider its complement A° N C(A)¢. If b € A°N C(A)°, then for any
neighbourhood N of b we have NN A = @. This shows that A°NC(A)° is
open, and thus AU C(A) is closed. It follows that A C AUC/(A). As the
complement of A is open, for any b € (@)¢ there exists a neighbourhood

N with b € N C (A)° C A°. So NN A = @. This shows that (4)¢ C
(AN C(A))¢, implying that AU C(A) C A.
(c) AUB = AU B. Using that C(A U B) = C(A) U C(B) and the previous

item, (AUB)=AUBUC(A)UC(B)=AUB.

(d) AN B C AN B. Using that C(AN B) C C(A) N C(B), we have AN B =
(ANB)U(C(A)NC(B)) = (AUC(A) U (BUC(B)) = AN B. The
inclusion can be strict; this is easy to see if AN B = @. For example, in
the real line, let A C R be the rationals, and B C R the irrationals. Then
ANB =@, while ANB =R.

(1.8.8) Let M be a separable metric space and X C M be uncountable.
Show that X has infinitely many accumulation points.

Answer. Let D be a countable dense subset of M, and let B() = {By(s) :
s€ D, g € QT} be a countable base for the topology. Form the set

E={xeX: 3B e B(), B)NX countable}.
For each x € F, denote by B, the corresponding ball with B, N X countable.
As there are only countable many balls available in B(), the set Ey = {B,, :
x € E} is countable. Thus

X, = U (B, N X)
B.€Ey
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is countable. The set X is uncountable, and for every = € X, every ball
around it contains uncountably many points in X, so it is an accumulation
point.

(1.8.9) Let X = R and 7 = Top{[a,b) : a,b € R, a < b}. The
topological space (R,7T) is called the Sorgenfrey Line, and
T is called the lower limit topology.

(a) Show that T is finer than the usual topology on R.

(b) Show that [a,b) is both open and closed for all a < b.

(c) Show that (R,7) is normal.
)

(d) Show that z,, — x if and only if there exists ny such that
x, > x for all n > ng, and x,, — x in the usual topology.

(e) Show that if K C R is compact then K is countable.

Answer.
(a) Any interval (a,b) can be written (a,b) = |, [a + ,b) € T.
(b) The interval [a,b) is open by definition of 7. To see that it is closed, its

complement
R\ [a,b) = (—00,a) U [b,0) = U[a—ma— %] UU[b,b—i—n)
is open.

(c) Let A,B C R be disjoint closed sets. For each a € A, since it is in
the complement of B there exists a such that [a,a) N B = &. Let V =
U.cala,a@). Then V is open, A C V, and V N B = @. Similarly, for each
b € B there exists b with [b,b) N A = @ and W = UbeB[b,?)) is an open
set with B C W, and WNA =g. Forany a € A, b € B, if a < b then
@ < band so [a,d) N [b,b) = @, and the same happens if b < a. It follows
that VNW = 2.

(d) Suppose that x, — z. Then for each y > = we have that eventually
Zn € [x,y), so 2, > x for all big enough n. Conversely, if z,, — = in the
usual topology and x,, > x for all n (which we may assume after discarding
finitely many elements in the sequence if necessary) given V' € T open with
x € V, there exists y such that [x,y) C V. Then =, € [z,y) C V for all
big enough n, and so z,, — x.

(e) Suppose that K is compact. Fix k € K. Then
{(—oo,k—l) : nEN}U[k,oo)
n
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is an open cover for K; so it admits a finite subcover. So there exists ng
such that [k — 1, k)N K = & for all n > ng. Fix a rational g, € [k— 1, k).
Then the map g : K — Q, g(k) = qi is injective, and so K is countable.
(1.8.10) Let (R, T) be the Sorgenfrey Line and consider the topological
space (R?,7 x T). This is called the Sorgenfrey Plane.
(a) Show that the Sorgenfrey Plane is separable.
(b) Consider the set Y = {(z,—x) : = € R} C R?. Show that
Y is not separable.
(¢) Conclude that the Sorgenfrey Plane is not metric.
(d) Show that Yy = {(z,—z) : = € Q} and Y \ Y are closed,
and use this information to show that (R, 7) is not normal.
Answer.

(a) Since (zy,yn) — (z,y) if and only if z,, — x and y,, — y in the usual
topology together with x,, > x and y,, > y eventually, the countable subset
Q2 is dense.

(b) Given (z,—z) let V,, = [z,2 + 1) x [z, —x + 1). Then V, is open, and
Ve NY = {z}; indeed, if (y,—y) € V., NY, then y > x and —y > —x, so
y =x. If {g;};ecs is dense in Y, then for each x there exists j, such that
qj, € Vy; it follows that g;, # g, for all y # x, and so |J| > |R|. That is,
Y admits no countable dense subset.

(c) In a separable metric space its subsets are separable Proposition 1.8.5, so
(R, 7T) cannot be metric as Y is not separable.

(d) Let x,y € R such that (z,y) € Yy. Suppose first that y # —x. This means
that the Euclidean distance from (z,y) to Yp is positive. That is, there
exists § > 0 such that \/(z —¢)2+ (y+¢q)2 > forallg € Q. Let V =
[z, 2+ %) X ly,y+ %) Then (z,y) € V and VNYy = @, for if (¢, —¢q) € V,
then |z —q| < g and |y+q| < g and so (x—q)2+(y+q)? < %. The second
possibility is that y = —x. In such case we put V = [z, z+1) X [—z, —z+1)
and V is open, (z,y) € V and V NYy = @. We have shown that R? \ Yy
is open, so Y is closed. The same proof shows that Y\ Y is closed.

The closed subsets Y; and Y\ Yy cannot be separated. Fix (¢, —¢) € Yj
and V open with (¢, —¢) € V. Then there exists a sequence {r,} such
that r,, € R\ Q, r,, > ¢ for all n, and r, — q. Then (r,, —r,) — (¢, —q),
so eventually (r,,—r,) € V. That is, VNY \Yy &. SoYpand Y\ V)
cannot be separated, and (R, 7) is not normal.
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(1.8.11) Show that a discrete compact topological space is finite.

Answer. Suppose that T is discrete and compact. Since T is discrete, the
family {{t}} (e 1S an open cover for T, and it does not admit any proper
subcover, as removing any {¢} will leave that ¢ uncovered. The compactness
of T then implies that T is finite.

(1.8.12) Show that completeness is actually required in Lemma 1.8.25.

Answer. Let X = (0,1) with the usual topology. Then X is not compact,

but given any £ > 0 it is possible to cover X with finitely many balls of radius

e. Namely, let x = ke/2, k = 1,...,m with m the smallest integer greater
m

than 2/e. Then X C U B (z).
k=1

(1.8.13) Using the e-¢ definition of continuity in a metric space, show
that everywhere continuity of f : X — Y is equivalent to saying
that f~1(F) is open in X for every open set E C Y.

Answer. Assume that f satisfies the e-§ definition of continuity at every
point. Let E C Y be open, and consider z € f~!(E). Since f(r) € E and
E is open, there exists a ball surrounding f(z) and inside F; that is, there
exists € > 0 such that B.(f(z)) C E. The continuity of f gives us a ¢ such
that |y — x| < § implies |f(y) — f(x)| < e. This means that if y € Bs(x), then
f(y) € Bo(f(x)) C E; that is, y € f~1(E) and so Bs(z) C E, showing that
f~Y(E) is open since z was arbitrary.

Conversely, suppose that f~*(FE) is open for all E open. Fix z € X and
e > 0. Consider the open ball B.(f(x)) C Y; by hypothesis, f~*(B:(f(x)))
is open. Since z is a point in this open set, this means that there exists § > 0
such that Bs(z) C f~1(B.(f(z))). So, if |y — z| < §, then y € Bs(x) and so
y € f7Y(Be(f(z))), which is to say that f(y) € B:(f(x)). This is precisely
) — Fo)] < e
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(1.8.14) Show that f : X — Y is continuous if and only if f~(E) is
open for every E in a subbase for X.

Answer. If f is continuous, then f~1(FE) is open for every open set E C
Y, in particular for those in a subbase. Conversely, if B is a subbase for
Y, then the set B’ of finite intersections of sets in B is a base for X. As
fYEIN---NE,) = fY(E)N---N fYE,) is open, we may assume
without loss of generality that B is a base. Then any V C Y open can be
written as V = Uj E;, with E; € B, and

vy = (UE) = Uy,

which is open in X.

(1.8.15) Let X be a topological space and H C X a subset. Show that
1y is continuous if and only if H is clopen.

Answer. Assume first that 1y is continuous. Then H = (1g)~({1}) is
closed. We can also write

(Pl Y
A =(n) (72’1+2
so H is open.
Conversely, suppose that H is clopen. We have, for B C C open,

X, {0,1}c B
H, 1eB,0¢B
(1m)~'(B) = g
X\H, 1¢B,0€B
oz, {0,1}NnB=g

In all four cases the preimage is open (even if B is not open, though we don’t
need that), so 1 is continuous.

(1.8.16) Let (X,d) be a metric space and {f,} a sequence of contin-
uous functions such that f,, — f uniformly. Show that f is
continuous.

Answer. Let € > 0. By definition of uniform convergence, there exists ng
such that d(f,(z), f(x)) < e for all n > ng and all z € X. Fix x € X and
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n > ng. Then
d(f(z), f(y)) < d(f(2), fu(2)) + d(fu(2), fu(y) + d(fn(y), f(y))
< 2e +d(fu(x), fu(y))-

As f, is continuous, there exists d > 0 such that d(x,y) < § implies that
d(fn(2), fn(y)) < e. Then, for all y such that d(z,y) < §, we have

d(f(x), f(y)) < 3e,

and so f is continuous.

(1.8.17) Let (M, d) and (N, d') be metric spaces and f : M — N a func-
tion. As mentioned, f is continuous at x € M if for every € > 0
there exists 6 > 0 such that d(y,z) < d = d'(f(y), f(z)) <e.
When § does not depend on X, we say that f is uniformly
continuous. Show that if M is compact then f is uniformly
continuous.

Answer. Fixe > 0. By the continuity of f, for each x € M there exists §, > 0
such that d(y,z) < 6, = d'(f(y), f(z)) < &/2. The balls Bs_ 5(x) form an
open cover for M; so there is a finite subcover, given by say z1,...,z,,. Let
§ = 3 min{dy,,...,0,}. If d(y,z) < 4, choose j so that d(z,z;) < 0z, /2.
Then ) )
dly,z;) <d(y,z)+d(z,z;) < 55% + 55% = 0z,

and so d'(f(y), f(z;)) <e/2 and d’(f( ), f(z;)) < €/2. The triangle inequal-
ity then gives d(f(y), f(2)) <

(1.8.18) Let X = {1,2,3} with the topology {@, X, {1}, {2,3}}. Show
that f: X — R is continuous if and only if f(2) = f(3).

Answer. Suppose first that f(2) # f(3). Then f~'({2}) is either {1,2} or
{2}, neither of which is open; so f is not continuous.

Now assume that f(2) = f(3); name this number r. By Exercise 1.8.14
we may test continuity only on open intervals. If r € (a,b), then f~1(a,b) is
either {2,3} (when f(1) & (a,b)) or X (when f(1) € (a,b)); in either case,
f~(a,b) is open, and so f is continuous.
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(1.8.19) Let a,b € R and f : (a,b) — R be continuously differentiable.
Show that f is piecewise monotonic, i.e., there exists disjoint
intervals (ax, by) such that [a, b] = | J, [ax, bx] and f is monotone
on each [ay, by], and there exist intervals (a}, b},) C (ax, bi) such
that f is strictly monotone on (aj, b)) and constant on (ay, aj,)
and on (b}, bg).

Answer. Theset {t: f'(t) >0} = f~1(R\{0}) is open. By Proposition 1.8.1,
there exist disjoint intervals such that

{t: f'(t) >0} = J(ar, bx).
k

Since f’ is continuous and nonzero on each of (ag,bx), we conclude that f’
does not change sign there and so f is monotone on each (ak,bx). On any
interval contained in the complement of V' = | J, (ax, bx) we have f’ =0 and
so f is constant on such intervals. If we replace each a; and b, with

aj, = inf{t : (t,ar) C V°}, by, = sup{t: (bg,t) C V°}
(and we left them unchanged if the corresponding set is empty), we get that
Uglax, bi] = [a,b] and f is monotone on each [ay, by].

(1.8.20) Let X ={1,2,3}. Show that 7 = {@, X, {1,2},{2},{2,3}} is
a topology, and that it is not Hausdorff.

Answer. 7 is closed under taking unions and under taking intersections, and
has X and &, so it is a topology, It is not Hausdorff, because the topology
cannot separate 1 and 2 (or 2 and 3).

(1.8.21) Let X = {1,2,3} with the topology {@, X, {1,2},{2},{2,3}}.
Show that f : X — R is continuous if and only if f is constant.

Answer. 1If f is constant, then f~1(V) is either X or &, so open. Conversely,
if f is continuous, fix any § > 0; then V = f=1(f(1) — 6, f(1) + 6) is open
and contains 1, so either V= X or V = {1,2}. The case V = X forces
f(2) = f(3) = f(1), for otherwise we get a contradiction by taking § small
enough. And when V' = {1,2} we get that f(2) = f(1). A similar argument
then shows that f(2) = f(3). In either case, f is constant.
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(1.8.22) Prove Proposition 1.8.10.

Answer. (i) = (ii) Trivial.

(ii) = (iii) Let a € A. Then there exists a net {a;} C A such that
a; — a. As f is continuous at a we have f(a) = lim; f(a;) € f(A).

(ili) = (iv) Let C C Y be closed, with f=1(C) not closed. Then
A\ f71(C) is not open. So there exists z € A that is not interior, meaning
that there is a net {a;} C f~1(C) with a; — 2. Then

f2) e F(F7HO) C fF(f7HC)) cC=C,
giving us z € f~1(C), a contradiction. It follows that f~1(C) is closed.

(iv) = (i) If B C Y is open, then f~1(B)¢ = f~1(B°) is closed by
hypothesis, so f~1(B) is open. That is, f is continuous.

(v) = (i) Suppose that f is not continuous. Then there exists V C Y
open with f~1(V) not open. This implies that there exists a € f~1(V) and a
net {z;} C X\ f~(V)and z; — a. Asz; & f~1(V), we have that f(z;) ¢ V
for all j. Then f(z;) cannot converge to f(a), for V is a neighbourhood of
f(a) with not points from the net.

(i) = (v) Suppose that z; — =. Let V' C Y be an open neighbourhood
of f(z). As f~1(V) is an open neighbourhood of z, there exists jo such that
z; € f7Y(V) for all j > jo. Then f(z;) € V for all j > jo. As this can be
done for any open neighbourhood of f(z), this shows that f(zr) — f(x).

(1.8.23) Show that an interval (a,b) C R is connected.

Answer. Suppose that (a,b) =V UW, with V, W open and disjoint. Define
f:(a,b) > Rby f(x)=1ifx eV, f(x) =0if x € W. Using Exercise 1.8.13
it is easy to see that f is continuous. Indeed, given any Z C R open, we have

2, 0,1¢ 2
B W, 0ecZ 1¢7Z
f74(2) =
v, 0¢Z, 1eZ
(a,b), 0,1€Z

In all cases the preimage of Z is open, so f is continuous. But this contradicts
the Intermediate Value Theorem. Thus necessarily one of V' and W is empty,
and (a,b) is connected.

Next is a different argument. Again suppose that (a,b) = VU W,
with V, W open and disjoint. Fix v € V and w € W. Assume without
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loss of generality that v < w (otherwise, exchange roles). Let ¢ = sup{t €
R : (a,b) N[v,t) C V; it exists because v € V. Note that ¢ < w; for
otherwise there would exist ¢ > w with b € [v,t) C V, a contradiction. Then
a < v <c<w < b, which means that ¢ € (a,b). We cannot have ¢ € V,
because if it were there would exist § > 0 with ¢+ € V since V is open.
But we cannot have ¢ € W either; we would have § > 0 with ¢ — 2§ € W, so
[v,e —8) NW # &, giving us the contradiction ¢ < ¢ — 4.

(1.8.24) Let (X,d) be a metric space. Show the reverse triangle in-
equality

‘d(xay)id(va” Sd(x,w), .I,y,U)GX.

Answer. We have, using the triangle inequality,
d(z,y) < d(z,w) +d(y,w),  d(y,w) <d(z,y)+d(z,w).
We can rewrite these as
—d(z,w) < d(z,y) - d(y, w) < d(z,w),

which in turn is

(1.8.25) Let X be a complete topological space and C C X a closed
subset. Show that C' is complete.

Answer. Let {c;} C C be a Cauchy net. Because X is complete, there
exists € X such that ¢; -+ . Then z € 9C, and so by Proposition 1.8.6
reCuoC=C=C.

(1.8.26) Let (X, d) be a metric space. Construct a completion for X in
the following way. Let X be the set of Cauchy sequences in X,
and R the equivalence relation

(#n) R(yn) <= d(zn,yn) =0.
On X = X/R one defines the metric
d'((xn), (yn)) = hTan d(@n, Yn)-

(i) Show that d’ is well-defined.
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(ii) Show that the map p : X — X that maps = to the
constant sequence (x) is isometric.

(iii) Show that p(X) is dense in X.
(iv) Show that X is complete.

Answer.
(i) First, if (z,,) and (y,) are Cauchy, then
|d(@m, Yym) = d(@ns yn)| < |d(@ms Ym) = d(Ym, Tn)| + |d(Ym, 2n) = d(2n, ya))|
< d(@m; wn) + d(Ym; yn) =0

since each sequence is Cauchy. So the number sequence (d(zn, yn))
is Cauchy and so its limit d’' = lim,, d(z,, y,) exists.
If d(xp, zn) — 0 and d(yy, w,) — 0, then

|d(@n, yn) = d(zn, wn)| < |d(@n;yn) = d(Yn, 20)| + [d(Yn, 2n) — d(zn, wn)]|
< d(Xp,y 2n) + d)Yn, wy) — 0.
Thus d'( (n), (yn) ) = d'((2n), (wn) ).
(ii) This is
d'(p(z), ply)) = d'((2), (y)) = limd(z,y) = d(z,y)-
(iii) Let (x,) be a representative in X. By definition, the sequence is
Cauchy. Let A, be the constant sequence (z,Zy,...). Then
d' (Am, (z,)) = lim d(zpm, Tp)
(note that the limit exists, as we proved above that d’ always exists).
Because (z,) is Cauchy, for m big enough the limit can be made

as small as we want. Thus lim,, A,, = (z,,), showing that p(X) is
dense in X.

(iv) This one is a bit cumbersome to write because we need to deal with
sequences of sequences. If (4,,) is a Cauchy sequence in X, then
each A,, is the class of a Cauchy sequence (A,un)n C X. So, for
every r € N, there exists n, such that

& (A, Ay) < % for all m, £ > n,.

In turn, using the definition of d’, this means that there exists m, €
N, with m,. > m,._1, such that

A(Ap o Ans o) < % for all & > m,., and for all £, (AB.L8)
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and such that
d(Ap y An, ) < % for all ,j > m,. (AB.1.9)
(this, because the sequence A,, is Cauchy).

Now consider the sequence (A, m,.)r C X. This sequence is
Cauchy, since for any s > r

d(A"hwmw\’ A”sﬂ”s) S d(Anmmr’ Anmms) + d(Anr;ms ? Ansams)

1
< d(Anr,mwAnmms) + "
_1,1 2

T T T

(this first estimate by (AB.1.8), and the second one by (AB.1.9).
So the sequence (A, m,)r is Cauchy, and it is not hard to check
that its class in X is the limit of (A,,)m.-

(1.8.27) Let (X,d) be a metric space and {z,} a Cauchy sequence.
Show that {x,} is bounded; that is, there exists z € X and a
ball B centered at x such that {z,} C B.

Answer. Let € = 1. Then there exists ng such that d(z,, z,,) < 1 whenever
n,m > ng. Put x = z,,, and r = 1 + max{1,d(z1,2),...,d(zn,—1,2)}. Then
d(xn,z) < r for all n.

(1.8.28) Let X,Y be complete metric spaces with dense subset Xj, Yy
respectively. Let v : Xo — Y{ be an isometric surjection. Show
that there exists a unique 4 : X — Y, bijective and isometric.

Answer. If x € X, there exists {z,} C Xo with z,, — x. The sequence (z,)
is Cauchy. As dy (v(zn),v(@m)) = dx(n, Tm ), the sequence (v(z,)) is also
Cauchy. We want to define 4(z) = limy(z,,). To see that this is well-defined,
if 2}, — x, then dy (y(zy),v(2))) = dx(zn,x},), so y(z]) — F(x).

Next we see that v is isometric. If x,, - x, 2, — 2z, then

dY(’?(l‘)f?(z)) = IITILn dY(rY(xn)”y(Zn)) = h};ﬂdx(.l?n, Zn) = dx(l‘, Z)

Thus 4 is isometric, and in particular it is injective. Finally, if y € Y, there
exists (y,) C Yo with y, — y. Put 2, = v~ !(y,). Since v is isometric, ()
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is Cauchy and so there exists € X with x,, — x. Then
dy (3(x),y) = limdy (y(24),y) = limdy (ya,y) = 0,

so ¥(x) =y, and ¥ is surjective.

(1.8.29) Let X = Q and define
d(x,y) = | arctan x — arctan y|.

Show that d is a distance, and find the completion of (X, d).

Answer. We have d(x,z) = 0 for all , and d(x,y) > 0 by definition. The
absolute value and the difference also give us that d(z,y) = d(y,z). And

d(x, z) = |arctan x — arctan z| < | arctan z — arctan y| + |arctan y — arctan z|
= d(z,y) + d(y, 2).
As for the completion, let X = R U {00}, where
d(z,+00) = ’g — arctan x|, d(z,—o0) = ’arctanx + g|

The arctan is uniformly continuous, so |g, —z| — 0 if and only if d(g,, ) — 0.
This, together with the fact that lim,_,4 ., arctanxz = +7 guarantees that d
is still a distance and that X is dense in X. So it remains to show that X is
complete. Let {g,} C X be Cauchy. If there exists ¢ > 0 with |g,| < ¢ by
the Mean Value Theorem there exists £(z,y) € [—c, ¢] with

| arctan x — arctan y| = | arctan’ £(x, y)| |x —y| = E |z —y| < |z —yl

1
1+&(z,y
Thus

|qn - Qm| < d(QTQO)
and so {g,} is Cauchy in the usual sense and converges to some z € R. The
same estimate as above shows that d(¢,,z) — 0.

When {g¢,} is Cauchy for the metric d but unbounded for the usual
metric, the above does not work. If {g,} has a limit point € R, we could
apply the above to said subsequence and also to a subsequence that increases
to infinity (or decreases to minus infinity). This would have z and +oo as
accumulation points for the sequence on (X,d), a contradiction. If follows
that ¢, — oo or ¢, — —oo. In both cases, the fact that arctan converges to
+7 at infinity implies that ¢, — £o00 in (X, d). Hence (X,d) is complete.
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(1.8.30) Let X =R\ Q, with the metric
‘$—1|+‘y—1‘, $7éy
d(w,y) = {
0, r=y
Show that d is a metric, and find the completion of (X, d).

Answer. The expression of d is symmetric on x and y. And
lz =1+ ]z =1 <|z—1+[y -1+ |z =1+ [y — 1| = d(z,y) + d(y, 2).

We claim that 1 is the only accumulation point in (X,d). Let {z,} be a
Cauchy sequence. Then

[T — 1| 4+ |2 — 1| = d(Tpn, Tm) — 0,

80 &, — 1 in the usual topology and also in the d topology, and d(xn,1) = 0.
So (X,d) = (X U{1},d), where d is defined with the same formula as d.

(1.8.31) Let X be a complete metric space, and F; D Fy D --- a
decreasing sequence of closed sets, such that lim,, diam(FE,,) =
0. Show that (), E, is nonempty and it consists of a single
point. Can the “closed” condition be removed?

Answer. Fix z,, € E,, for each n € N. Given € > 0 there exists m such that
diam(E,,) < €/2. Then for k,n > m we have z,,zr € E,, so d(x,,xr) <
£/2 < g; which shows that the sequence {z,,} is Cauchy. By the completeness,
there exists = lim, x,. For any m, since x,, € E,, for all n > m (from
E, C E,,), we get by the closedness of E,, that x € E,,. Thus z € (), Ey.
If y is another element in the intersection, then d(zx,y) < diam(FE,,) for all n,
so d(z,y) =0and x = y.

The closedness of the E,, is necessary. For instance consider X = R
with the usual topology and let E,, = (O7 %) Then F1 D Ey D --- but
N, En =2.

(1.8.32) Let X be a topological space, and let VW C X be disjoint
open subsets. Show that U N W = &.

Answer. Let 2 € UNW. Since W is open, it is an open neighbourhood N of
z, disjoint with U. Then z € OU. As we also have x ¢ U, we get that z ¢ U,
a contradiction. So UNV = @.
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(1.8.33) Let X be a topological space, E C X. Show that if E is
connected, then F is also connected.

Answer. Write E = (ENV)U(ENW), with V, W open. Taking intersection
with F, we get that E = (ENV)U(ENW). As E is connected, one of the
two sets is empty, say FNW = &. That is, E C W€, which is closed. Thus
E c W¢, which we may write as ENW = @. As we can do this for any pair
of open sets V, W, we get that E is connected.

(1.8.34) Let X be a topological space and E, F C X connected. Show
that if ENF # &, then £ U F is connected.

Answer. Suppose that FEUF = AUB, with A = (EUF )NV, B = (EUF)NW
disjoint, and V, W open. Fix x € ENF. As ANB = &, eitherx € Aor z € B.
Without loss of generality, assume that x € A. So x € V. We may write
E = (ENV)U(ENW). These two sets are relatively open; as E is connected,
one of them is empty; and as z € V', we get that E = ENV, ENW = @. We
may do the same for F', so FNW =@. Thus B=(ENW)U(FNW) =g,
and F U F is connected.

(1.8.35) Let X be a topological space. For each z, denote by E, a
maximal connected set with € FE,. Define a relation by
x ~yif y € E,;. Show that ~ is an equivalence relation.

Answer. Reflexive: =z € E, by definition, so = ~ .

Symmetric:  Suppose that x ~ y. Then y € E,. We also have
y € E,. By Exercise 1.8.34, the set E, U E, is connected; the maximality of
E, then shows that £, U E, = F,, so I/, C E,;. Now the maximality of F,
gives us that £, = Ey. So z € E, = E,, showing that y ~ x.

Transitive: If z ~ y and y ~ 2, then by the above £, = E, = E;
and so x ~ z.

(1.8.36) Show that a path-connected space is connected.

Answer. Suppose that X is not connected. Then X =V U W, with V,W
open, nonempty, and VNW = @. Let v € V, w € W. Let f:1[0,1] = X be
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continuous, with f(0) = v and f(1) = w. We get

0,1] = f7H(X) = fH(VUW) = fHV)U f7HW).
As [0,1] is connected, we get that either f=1(V) or f~1(W) is empty; but
this contradicts the fact that f(0) = v (so v € f~1(V)) and f(1) = w (so
we fHW)),

(1.8.37) Let X,Y be topological spaces, f : X — Y continuous, and
K C X compact. Show that f(K) is compact.

Answer. Let {V;} be an open cover of f(K). Then
ke e (Uv) =Ur o,
J J
As f is continuous, each f~!(V}) is open, so we have an open cover of K. By

the compactness of K, there exist ji, ..., jm such that K C f~1(V;,)U---U
f~Y(Vin). Then, as images preserve unions (Proposition 1.1.1),

F(K) c |J Vi,
k=1

Hence f(K) admits a finite subcover and so it is compact.

(1.8.38) Let X be compact Hausdorff, Y a Hausdorff topological space,
and ¥ : X — Y continuous. Show that if v is injective, then
1) is a homeomorphism onto ¥ (X).

Answer. By hypothesis ¢ : X — ¢(X) is a continuous bijection. So all
we need to address is the continuity of ¥~!. Let Xy C X be closed. As
X is compact, Xg is compact (Lemma 1.8.16). By Exercise 1.8.37, f(Xp) is
compact, and by Lemma 1.8.16 f(Xj) is closed. We have shown that f maps
closed sets to closed sets, which means that the pre-images of closed sets by
f~! are closed. Then f~! is continuous by Proposition 1.8.10.

(1.8.39) Use Exercise 1.8.38 to show that if X is compact Hausdorff,
any weaker topology on X is not Hausdorff, and any stronger
topology on X is Hausdorff but not compact.
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Answer. Let T1 be the topology on X, and T2 C 77. If T3 is Hausdorff, then
Exercise 1.8.38 implies that 7o = 77. It follows that if 7o C 77, then 73 is not
Hausdorff. Similarly, if 73 D 77 it is necessarily Hausdorff by the fact that it
contains 77; and if it is compact, then by Exercise 1.8.38 it is equal to 7;.

(1.8.40) Let X, Y be topological spaces and f : X — Y continuous. If

Xo C X is such that X is compact, show that f(Xo) = f(Xo).

Answer.  We have f(Xo) C f(Xo) by Proposition 1.8.10. Conversely, let
y € f(Xo). Then there exists a net {z,;} C X, with f(x;) — y. By the
compact ness of X, and Proposition 1.8.19, there exists a convergent subnet
{x;, }, say zj, — x € Xy. Then

Y= h]ICIlf(xjk) = f(hinxjk) = f(x),

so f(Xo) C f(Xo).

(1.8.41) Show that the set R U {—o00, 00} can be given a topology such
that it is a compactification of R.

Answer. We mimic the proof of Proposition 1.8.27. On T4 = RU{—00,00}
we consider the topology

’T:Top{{VCR, open} U{(R\ K)UN :

K CR compact, N C {oo,—o0}\ {@}}}

The open sets that do not contain +oo are precisely the open sets in R, so this
topology restrict to the usual topology on R. Given an open cover of Ry,
since oo is covered there has to exist an open set of the form (R\ K;) U {o0}
on the cover; and similarly there exists Ko compact with (R\ K3) U {—o00}
in the cover. If we now let {V;} consist of all open sets in the cover with the
two points oo removed, we have that {V;} is an open cover for Ky N Ko.
Hence there exist j1, ..., Jm such that K1 NKy C UZLI Vi.- This implies that
Rico =V;,U---UV; U((R\ K1) U{oo}((R\ K1) U{—00}, and this gives

us a finite subcover. Thus R, is compact.
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(1.8.42) Let S, T be homeomorphic topological spaces such that both
are locally compact Hausdorff . Show that S,, is homeomor-
phic to Ti.

Answer. We have a homeomorphism v : S — T. We extend it as (o0) =
0o, and we need to show that the extension is still a homeomorphism. We
already have that it is bijective, and as the codomain T, is compact, by
Exercise 1.8.38 we just need to show that ¥ is continuous. We take V' C T,
open. By definition, we have two possibilities. The first possibility is that
V C T is open. In that case, ¥~1(V) = v~ 1(V) is open by the continuity
of v. The second possibility is that V' = (T'\ K) U {co} for some K C T
compact. Then, since preimages preserve all set operations and 4(o0) = oo,

F7HV) = (S\ 7y K) U {oo}.
Since « is a homeomorphism, y~1(K) is compact, and then 571(V) is open
in So. Thus # is continuous and hence a homeomorphism.

(1.8.43) Let T be a locally compact Hausdorff space. Let R and S be
one-point compactifications of T, that is R = T U {oog} is a
compact Hausdorff space such that the restriction to T agrees
with the topology of T', and similarly for S. Show that R and
S are homeomorphic; that is, the one-point compactification is
unique.

Answer. Since R = TU{ocog and S = TU{cog }, we have an obvious bijection
v between the two sets, that is the identity on 7. Since the codomain is
compact, it is enough to show that ~ is continuous. Let V' C S be open. If
V C T, then v~ 1(V) =V is open in R. If V ¢ T, then cog € V. Because
points are closed (due to S being Hausdorff), T'= R\ {cog} is open on S.
Let Vo = VNT, which is open in S; we have K = T\ V = S\ V is closed, and
hence compact in S; but K is entirely inside T', where both topologies agree,
so K is compact in T. Then V = (S\ K) U {oog}, and as v }(K) = K,

71 (V) = (T'\ K) U{oor}.
The same reasoning we used above show that this set is open in R. Hence vy
is continuous, and thus a homeomorphism.

(1.8.44) Show that the one-point compactification R, of R is homeo-
morphic to the unit circle T.
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Answer. By Exercise 1.8.42 it is enough to show that R is homeomorphic to
T\ {1}. The set T \ {1} is homeomorphic to T \ {—1}. We have

T\ {-1} = {e: t € (—m,m)}.
So the exponential provides a homeomorphism between T\ {—1} and (—m, 7).
We showed in Example 1.6.8 that R is homeomorphic (the inverse tangent
function is bicontinuous) to the interval ( -5 g) Then, with ~ denoting
homeomorphism, we have

R~ (7;%) ~ (—m,m) =T\ {-1} =~ T\ {1}.

By Exercise 1.8.43 the one-point compactification of T \ {1} is T, and hence
Ro ~ T by Exercise 1.8.42.

(1.8.45) Let S, T be topological spaces and f : S — T be surjective
and such that f is not surjective when restricted to any proper
closed subset of S. Let U C S be open. Show that f(U) C

T\ f(S\U).

Answer. Fix t € f(U) and let V' C T be an open neighbourhood of t.
Since W = U n f~1(V) is open and nonempty, its complement S \ W is
a proper closed subset of S; by hypothesis there exists z € T\ f(S\ W).
As f is surjective we have T = f(W) U f(S\ W), so z = f(w) for some
w € W. Then z = f(w) € f(U)NV. Hence z € VN (T\ f(S\U)) (since
T\ f(S\W)cCT\ f(S\U)). We have shown that any neighbourhood of ¢
touches T'\ f(S\U), and so f(U) C T\ f(S\U).
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Measure and Integration

(2.1.1) Show that the integral in (2.1) exists if f is continuous with
the possible exception of finitely many jump discontinuities.

Answer. Because f has finitely many discontinuities, it is bounded. Let
t1,...,t, be the points where f has discontinuities. For each n, let

k) = [ 152

Then t(m. Wb oy )
a-+ (nvj),rf _a) §t3<a+( (TL’])—;/]-)( _a’).
As f is continuous on (t;_1,t;), we get
t ! k(b - a)
3 f(tydt = lim > f(a + T)A’“'
i-1 k=k(n,j—1)+1

53
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Then we get

b R k(b —a) e j(b—a)
/af(t)dtnhf;o;f(a+n )Ak nz,f<a+7n )

N kb—a)y
Jm 3o ) o

2.2. The Cantor Set

(2.2.1) Show that foralln € Nand k € {1,...,2"" !}, the interval C,,

is of the form (L r+1), with neither r nor r + 1 multiples of

3ny 3n
3.

Answer. We proceed by induction on the following assertion: for all n € N
and k € {1,...,2""1} the interval C,, j is of the form (%, %), with
neither r(n, k) nor r(n, k) + 1 multiples of 3.

We have C11 = (%, %), and neither 1 nor 2 are multiples of 3. Assume
inductively that for all & we have Cn,k(g%, T;nl), with neither r nor » + 1
multiples of 3. The interval C), 11 1 is the middle third an interval of the form
(%, ";;1), with a € N. Thus

rln+1,k) _ a 1
gt 3n gt

and so
r(n+1,k)=3a+1,
not a multiple of 3. And neither is r(n 4+ 1,k) + 1 = 3a + 2.

(2.2.2) Let t € [0,2].
(a) Show that there exist a,b € C such that t = a + b.
(b) Find a,b € C, expressed as fractions, such that a + b = 1.

(c) Are such a, b unique? If they are not, find another suitable
pair a, b.
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Answer.
(a) Since t is 2 times an element of [0, 1], we may write

Q(J,k
t = ?,
k=1

with ay, € {0,1,2} for all k. Let U = {k: a, = 1}, and put
N Qak _ ag
A= D g b=>_ 5
keUu kgU kgU
Then a + b = t, and by Proposition 2.2.1 we have that a,b € C.

(b) In ternary, 1 =0.2---3. So we may take for instance
a = 0.20202020 - - -3, b =0.020202- - -3,

which are in C by Proposition 2.2.1. Noting that a = 3b (since in base 3 it
is multiplication by 3 that “moves the period to the right”) and a+b = 1,
we immediately determine that a = %, b= i. Or we can go the hard way
and calculate

(c) There are infinitely many suitable a,b. We can “pass” any part of the
expansion to the other. For instance we can take % off a (that would be
the first 2 in the expansion) and put it in b: we get

a’ = 00202020 - - -3, b = 22020202 - -3
That is,
A . et L, L7
CTOTET I3 T w b=br3= + 12
An even simpler observation is that in this particular case g + % =1,

and both numbers are in C; so that’s another possible choice. There are
infinitely many choices, as there are infinitely many ways to shift some
ternary digit from a to b.

(2.2.3) Complete the details the proof of Proposition 2.2.2. That is,

justify why if
by,
ls =t/ = ‘23 zn:?

with a,,b, € {0,2}, then a; =b; for j=1,...,m—1.

3m
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Answer. By hypothesis we have that |a; — b;| < 2 for all j. Suppose that
a; =b; for j =1, ...,kfl |ar — br| =2, and k < m. Then

’Zdn_ k_bk+za,L_ n |ak—bk\ ’Z a,L— n
371

n>k
2 \a" —ba| _ 2 2
> - — /s Z Il
— 3k Z 3n — 3k 3n
n>k n>k
2 1
— < _9 3 -
1
3* —IT
N 1
3m’
a contradiction.
(2.2.4) Show that the dyadic numbers in [0, 1] are dense.
Answer. Let t € [0,1]. If we write ¢ in binary, we have t = Y7 | 2. Since

the series converges, given € > 0 there exists kg such that Z,:';ko 41 ;% <e.
k
Ifs=)" 4 5k, then

3
s = XO: b _ >y 2Rk,
= 2

is dyadic and [t —s| = [ Y272, 4 b <e.

(2.2.5) Consider the function 8 from Proposition 2.2.2, and recall the
notation C,, j, for the removed intervals in the construction of

C.

(a) Show that the right endpoints of all the removed intervals
C', i are those numbers in [0, 1] such that their ternary ex-
pansion is finite and ends in 2.

(b) Show that for any two endpoints of a removed interval
Ch.k = (a,b), we have S(a) = §(b) and that this is a dyadic
number.

(c) Show that if a,b € C are distinct and S(a) = 5(b), then
there exist n, k such that C, j, = (a,b).

(d) Conclude that if F is the set of endpoints of the removed
intervals, then § is injective on C \ E.
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(e) Conclude that 3=1({t}) is a singleton if ¢ is not dyadic, and
that it consists of two points when ¢ is dyadic.

Answer.

(a) We proceed by induction on n. When n =1, Cy; = (%, %), and % =
0.23. Now assume that the right endpoint of C,, j is of the form b, =
0.b1 - - - b,—123. When we remove a middle third C,, 41 ; = (s,?) in the step
n + 1, then length of this middle third is 37"~!, and it will be situated
2 x 37771 to the right of some endpoint 0.b; - - - by 23 for some k < n — 1.
Thus

5 n n—k—1
t=0.by--bg23+ —— =0.by---bp23+0.0---023 =0.by ---b20---0 23,

3n+1

which completes the induction. For each n there are precisely 2"~ ! inter-
vals Cj, ;. And that’s also the precise amount of numbers in C that finish
with a 2 in the n'® position. So every such number has to be an endpoint.

(b) We know that the right endpoint of C, = (a,b) is b = 0.by - - - by,_123.
The left endpoint is 3~" units to the left, that is
n—1
a=0by - by_123—3""=0.by---b,-123—0.0---013
=0.by---by_113=0.by---b,_1022-- 3.
Now, using b to denote b;/2,
Bla) = 0.7 -+ by, 1011+ -2 = 0.6 -+ by, 1o,
and
B(b) = 0.by -+~ b, 112 = B(a).
Since dyadic numbers are those with a finite expansion in base 2, 5(a) =
B(b) is dyadic.

(c) Write @ = S50 %, b= Y70, %, with ax, b € {0,2} for all k. Assume
a <b. By hypothesis we have that

o0 a/ oo b/
ko k
D=2
k=r k=r
(still using the notation a; = a;/2), where r is the smallest index such
that a, # b.. We may assume without loss of generality that a, = 0,

b, = 1. Then
1 — a, — 1,
or Z ok °

k=r+1
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The right-hand-side is at most

ok~ or’
k=r+1
which forces aj, — bj, = 1 for all k > r. That is, aj, = 1, b}, = 0 for all
k > r. Thus
a=0.ay-a,_10222- 3. b=0.ay---ar_12s.
By part (a), the interval (a,b) is one of the C,, .

(d) By part (c), 8 has to be injective on C \ E, for the equality 8(a) = 5(b)
implies that a,b € E.

(e) In base 2, dyadic numbers are those with a finite binary expansion, which
in our convention translates to those that finish with 0111---. So if ¢t =
0.ty ---¢.0111- -9, then t = B(a), where a = 0.ty ---£,0222-- -3 (and still
denoting t; = 2t;). By (a), this means that a € £. Combined with (b),
this gives us that ¢ is dyadic if and only if 371({t}) consists of the two
endpoints of a C,, . By part (c), 8 is injective on C \ E.

(2.2.6) Show that C has no isolated points.

Answer. Fix t € C. If we denote the removed middle thirds by C, j, with
k=1,...,2" 1 and m(C,, 1) = 3™, then for each n there exists k(n) such
that t is in between C,, () and Cy, j(n)41- As the endpoints of each C,, . are
in C, this guarantees that there exists ¢, € C with |t —t,| < 3—n. That is,
there exists {t,} C C with ¢, — ¢.

(2.2.7) Let s,t € C with s < t. Show that there exists b € [0,1] \ C
with s < b < t. This shows that C is totally disconnected.

Answer. We may write

oo (oo}

a bn
S:Z o t: §7
k

=1 k=1

3

w

with a,,b, € {0,2} for all n. Since s < t, there exists a minimum index r
such that a, =0, b, =2 and ap, = by for k =1,...,r — 1. Let
r—1 1 1
N %
b_;37+37+3r+1'
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Then b ¢ C because its ternary expansion has a non-terminating 1, and
s < t < b by construction.

(2.2.8) Suppose that you create a set with a similar idea as the Cantor
set, you start with the unit interval [0, 1] but instead of remov-
ing, in each step, middle intervals of measure 37", you remove
middle intervals of measure 4~". Discuss the set D you ob-
tained. Does it contain any intervals? What properties are the
same as in the Cantor set, and what properties are different?

Answer. The intervals we remove are

35 5 7 25 27
535 Gos) G )

etc. In each step we are removing 2"~ ! intervals, each of length 4=". Thus

oo 2n 1

D=0\ J U D

n=1 k=1

where each D,, j, is an interval of length 4=". Thus

0o 9n—1 0o 9n—1
m(D)*]‘*ZZm(Dn,k)Zlfz 4%
n=1 k=1 n=1 k=1
21 1 o= n
linzl an :175’;2 75

This is the main difference between D and C, that D has some “mass”. Other
than that,

e the set D is uncountable for the same reasons as C, just working
with expansions in base 4;
e it is also compact, being the complement of an open set inside [0, 1];

e it has no isolated points, since in each step we are removing a middle
interval, so the length of the remaining closed intervals after each
step decreases by a factor of more than 2.

e D cannot contain an interval since we can do an analog of the ar-
gument from Exercise 2.2.6.
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(2.2.9) Define a function f : [0,1] — [0,1] in the following way. Write
the complement of D (as in Exercise 2.2.8) as J,, Uill Dy, 1,
and the complement of C as (J,, Uiil Cyp k- For each n, k let
fn,k be the natural increasing bijection D,,  — C), . That is,
if Dy, = (a,) and Cy, j, = (c,d), then f,, 4 (z) = e+ E=1E=a),
Patch them together so that

f(@) = far(x), T € Dy g.
As the complement of the union of the D, ;, is nowhere dense,
we can extend f by continuity to get f : [0,1] — [0,1]. Show
that f is continuous, monotone non-decreasing, and fails the
property that the preimage of a nullset is a nullset.

Answer. The function f is continuous by construction. It is monotone
because it respects the order of the intervals Dy, ,,. And f~1(C) = D, so there
is a nullset whose preimage has positive measure.

(2.2.10) Show that the sequence {f,} defined on page 86 of the Book
converges uniformly to a. This gives an alternative proof that
a is continuous (and other properties, to0o).

Answer. We first show the uniform convergence by induction. We have
|fo(x) — fi(x)] <1 for all z, since 0 < fo(z), fi(x) <1 for all z. Now assume
for induction that |f,(z) — fa_1(x)| < 27"F! for all . The trivial case is
x € [3, 2], since then f,11(x) = fy (). For z € [0, 3],

Fns1(2) = Ja(@)] = |3 fal32) = 3 faca(32)] < 2774 =20,

And for z € [%, 1],
1

fus1(@) = fal@)| = |5 + 5 fal32 = 2) = 5 = 2 fa1(32 = 2)

= |5 aBe—2) — L faa(Br-2)| < 2 = 2n,

So by induction we have shown that |f,1, () — fn(z)] < 27" for all « and
all n. This implies that the sequence is (uniformly) Cauchy. Indeed, by
telescoping we get

k— k—1
| frotn(z) Z | frtjr1(@) = fari(@)] < ZQ_H_] <27
=0 )
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Let f(z) = lim, f,(x). Since the convergence is uniform, f(x) is con-
tinuous. The function f satisfies

1 f(3z), z € [0, 5]
f(x) =143, zeli
1+1fBz-2), ze[d1]
And « also satisfies the relations

3 a(3x), z € [0, 5]

afz) = 1 3, v €[5 3]

i+iaBz—2), =zel31]

Indeed, when z € [O, %), we have x = 0.0R3, where R denotes the rest of the
expansion. Then 3z = 0.R3. Now «a(3x) = 0.R/5, where R’ is obtained from

R by truncating at the first 1 and replacing all remaining 2 with 1. And then

3 a(3z) = 0.0R’3, which is precisely a(z). When z € [3, 2], we have that
z = 0.1Rs, and then a(z) =0.15 = % And when x € (%, 1}, now x = 0.2Rs.
Then 3z —2 = 2.R3 — 2 = 0.R3; so a(3z — 2) = 0.R/3 and

% + %a(?ux —2)=0.12 + 0.0R'y = 0.1R'3 = a(x).

Let us now show that o = f. Since 0 < a(z), f(z) <1 for all z € [0,1],
we have |a(z) — f(z)| < 1 for all z. If z € [0, 5],

(@) = ()] = 5 |a(3x) - 1(32)]. (AB2.1)
If z € [5, 2], then a(z) = f(z) = 5. And if z € (3,1],
1 1 1 1
la(z) = @) = |5+ 5B -2) -5 -5 fBr-2)
|12 2 2 2 | (AB.2.2)
=3 |a(3x — 2) — f(3x — 2)].
Tterating the inequalities (AB.2.1) and (AB.2.2) we obtain
a(@) = f@)] < 5. ze0,1]

for arbitrary n, and hence o = f.

(2.2.11) Consider the metric space
X ={f:[0,1]—10,1], continuous, f(0) =0, f(1) =1},
with the metric
d(f,9) = max{[f(z) — g(z)| : = €[0,1]}.
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Define @ : X — X by
1 f(32), z € [0,31]
(@f)(@) =1 3 v € [33]
1+3fBz-2), ze€[i1]
We use ®" to denote composition of ® with itself n times.
(a) Show that d(®f, ®g) < L d(f,g) for all f,g € X.
(b) Show that, for any f € X, the sequence {®" f} converges.
(c) Show that, for any f,¢ € X, lim,, ®"f = lim,, ®"g.
(d) Deduce that, for any f € X, lim,, ®"f = «.

Answer.

(a) When z € [%, %], we have @ f(x) = ®g(z). For the other two cases,
1
2

f(x) ~ Bg(w)| = 3 |£(32) — g(32)| < 3 d(f.g), ref0,3),
and
Bf(2) — Bg(a)| = 3|1+ fBr—2) — 1~ g3z ~2)|
= 5 1f(Bz—2) - g3z —2)|
< %d(f,g)

for z € [2,1). Hence d(®f, ®g) < 1 d(f,9).

(b) The proof is the typical proof of the fixed point theorem. Note that
d(f,g) <1forall f,g € X. We have

n n 1 n— n 1
@7 f(x) = " ()| < 5 {Phi" f(z) = @"f(2)| < - < o
So d(®™ f,d" T f) < 2% Then by the triangle inequality

k—1 k-1
; ; 1 1
n+k n n+j gnti—1
A@" TR O ) < d(@", P )gzmgﬁ
Jj=1 J=1
Thus the sequence {®"f} is Cauchy on X. The space X is complete
because a uniform limit of continuous functions is continuous, and the
values at the endpoints will be unchanged. It follows that lim, ®"f € X
exists.
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(¢) This is the uniqueness in the fixed point theorem. Note that we proved
above that

A(®f,®g) < d(f,9).
This means that ¢ is continuous. Let f = lim, ®"f, g = lim, ®"g. Then
Of = f, &g = g. Iterating,
s = 1 ~ 1 P 1 s 1
As this can be done for any n € N, it follows that f =g.

(d) Let v = lim,, " f (it doesn’t matter which f € X). Then ®v = ~. This
guarantees that v satisfies the relations

3 7(3), z € [0, 3]
v z € [3,3]
$+3v08x-2), =ze[i1]

The computation in the answer to Exercise 2.2.10 shows that any f € X
satisfying the recursive relation above equals a. Thus v = «.

Wl

v(z) =

N[
Wi

(2.2.12) Consider « as the fixed point in Exercise 2.2.11, i.e., do not
use the other equivalent definitions.

(a) Show that if x =77, %, with ax € {0, 1,2} for all k and

a1 # 1, then
a(z) = 3 (B +a(3z - ar)),
and that if a; = 1 then a(z) = %
(b) Let m = min{k : ax = 1}, and put m = oo when z € C.
Show that
() mzl o+ g zel0,1]. (21

This works even when m = oo, if we interpret 2%,0 =0.

(c) Show that a(1 — ) =1 — a(z) for all z € [0, 1].

Answer.
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(a)If a; = 1, then z € [3,2] and so a(z) = 5. When a; = 0, we have
T € [0, %], and then

1 1 ay
alz) = 3 a(3z) = 3 (Z + a3z — a1)).
And when a; = 2 we have z € [%7 1}, and then
1,1 1 ,a
a(z) = 3 (5 + a3z —2)) = 3 (Zl + a3z — a1)).

(b) Note that 3z —a; = Y~ “#*. We proceed by induction on m. When
m = 1, we have a(z) = % and the formula holds. Assume as inductive
hypothesis that (2.1) holds for m. If & = Y% | % + ook + 3700 ) %,

then
1 1 m 1 (o ]
_ ay _m Ak+1 Ak+41
a(z) = 5(?+a(3x—a1)) = Z+§a(z s Tgm T Z T )
k=1 k=m+1
1, 1 1w~ 1
_a Af41 _m ag
=Tt Gt =7 5 (D5t am)
k=1 k=2
m
o ag 1
- Z 2k+1 + 2m+1’
k=1
which completes the induction. When m = oo, that is when =z € C, we
may write
. ag 1
=1 — 4+ —.
v mgnoo i 3k + 3m+l

As « is continuous,

m

(oo}
. ag 1 2 : ag
a(x) = 77113}(1)0 E : 2k+1 + om+1 = 2k‘+1 .

k=1 k=1
oo oo
(c) We write z = »_ =& Si 1—22 have that
C e write r = 37k mece = 37,We ave a
k=1 pt
=2
_ — ax
lfxfz T
k=1

If m is the least index such that ay = 1 when x & C, it is clear that m is
also the least index such that 2 — a; = 1.
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Then
m—1 1 m—1 9 1
ay — ag
a@) +al=)= > sir+om+ D Tmr Tom
k=1 k=1
-1
E L1 -
- 2k+1 + om—1 - 1— 1 + om—1
k=1 2
1 1
—1- + ~ 1

(2.2.13) Let « : [0,1] — [0,1] be the Cantor function. We saw that
« is surjective and continuous. By Exercise 1.1.6 it admits a
right-inverse. Show that such right-inverse cannot possibly be
continuous.

Answer. Let h :[0,1] — [0,1] such that awo h = id. By Exercise 1.1.6, h is
injective. Also, from a non-decreasing we get that h is non-decreasing, for if
h(s) > h(t) then

s=a(h(s)) > a(h(t)) =t;

hence if s < ¢ then h(s) < h(t). As h is bounded and monotone, its side
limits exist. Let v = sup{h(t) : ¢t < 3} and w = inf{h(t) : ¢t > 1} be
the left and right limits at §. If ¢ < %, then h(t) < %, for if h(t) >  then
t = a(h(t)) > a(3) = L. Tt follows that v < L. Similarly, if ¢ > 3, then
h(t) > 2, for if h(t) < 2, then t = a(h(t)) < a(3) = 3; then w = 2. As the
side limits do not agree, h is not continuous at t = % Although not needed,
the same argument shows that h fails to be continuous at every dyadic number
in [0, 1.

2.3. Measures and Lebesgue Measure
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(2.3.1) Let X be a set. Show that (X,P(X),u) is a measure space,
where p is the counting measure, given by

|S], if S is finite
wS) = DR
00, if S is infinite

and |S| denotes the number of elements in S.

Answer. Since P(X) contains all subsets of X, it is a o-algebra. We have
(=) = 0 since |@| = 0. And if {A,} are pairwise disjoint subsets of X, we
first remove empty sets from the list—so possibly the list becomes finite, and
we write Aq,..., A; with s € N or s = co—and we consider two cases:

o if |A,,| = oo for some m, then ||J,, An| = co and
u(UAn) =00 = p(Apn) =Y u(An);

e When all A,, are finite, since we have countably many finite disjoint
sets, we may consider them as disjoint subsets of N. Establish bi-

jections py, : A, — {1,...,|A,|}, and put k1 =0, k,, = Z;le |A,,|.
Write A, = {an1,...,0nr, }- S0 Ty, =|A,|. Put
Y(ank) = kn + k.
Then v : U, An = {1,...,),, ra} is a bijection, since
kn <Alang) < kn+rn = knta, ne{l,....s}, ke{l,...,m}.
This shows that

,u(LgAn) = zn:rn = Xn:,u(An).

(2.3.2) Let X be a set and let
A={ACX: Aiscountable or A° is countable}.
(a) Show that A is a o-algebra.

(b) Show that A is the o-algebra generated by the singletons
(the family of all subsets of A consisting of a single element).

(c) Show that A = P(X) if and only if X is countable.

Answer. The empty set is countable, so @ € A. The definition of A is sym-
metric on A and A€, so A contains complements. If {A;} C A is countable,
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we want to show that | J, Ay, is either countable or has countable complement.
If Ay, is countable for all k, then J, Ay is countable and thus in A. If at least
one of the Ay is not countable, say A;, then A7 is countable and

(Uar) =45 c 45
k k

is countable.

Let S be the o-algebra generated by the singletons. As {z} is obviously
countable for all x € X, we have S C A. Conversely, if A € A is countable,
then A = J,c4{a} € S; and similarly, if A° is countable then A° € A and so
A € S. This shows that A C S, and so § = A.

If X is countable, then every A € P(X) is countable, and so it is
in A. Conversely, if X is uncountable then it can be partitioned into two
uncountable disjoint subsets, X = XqU X3, XgN X; = @. Then Xy € A,
and so A C P(X).

(2.3.3) Consider a set X and A as in Exercise 2.3.2. Let
{0, A countable

1,  otherwise

w(A) =

Show that (X, A, i) is a measure space.

Answer. Since @ is countable, p(2@) = 0. Now suppose that {Ar} C A are
pairwise disjoint. If all Ay are countable, then J, Ay is countable and

M(UAJ) =0=> n(Ap).
K K

If at least one A; is uncountable with A¢ countable, then J, Ay is uncount-
able, and {Jj ,; Ax C Af is countable. So u(Ag) = 0 if k # j. Thus

M(UAj) —1=> n(Ap).

(2.3.4) Let A be a o-algebra. Show |A| # |N|. (Hint: if A is countably
infinite, consider for each x € X the smallest set in A that
contains x)

Answer. Assume that A is countable. For each x € X, let

Sw:ﬂ{AE.A: x € A}
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Because A is countable, each intersection uses at most countably many sets,
and so S, € A.

Given z,y € A, suppose that ¢ Sy. Then z € S, \ S, € A. Because
Sy is the smallest set in A that contains z, this implies that S, \ S, = Sy;
this in turn is equivalent to S; NS, = @. And if x € Sy, then x € S, NSy,
which by the minimality of S, implies that S; NS, = S;; this means that
Sy = 8y. We have shown that either S, = S, or S, NS, = @.

As A is infinite, the family {S, : = € X} has to be infinite (otherwise,
A would be finite, as the S, are minimal in A and so every element of A is
a union of some S,;). Let {z,} C X be chosen so that {S,, : n} is infinite.
Now consider the map ® : P(N) — A, given by

(I)(N) = U Sa:n'
neN

Because the sets {S;, }» are pairwise disjoint, the function @ is injective.
Thus |A| > |P(N)| > |N|, a contradiction.

(2.3.5) Let (X, .A) be a measurable space. Define
(A) 0, A finite
,LL =
oo, A infinite

Show that p is always additive, and discuss when it is o-
additive.

Answer. Let Aq,..., A, € A. If all m sets are finite, then so is Uj A; and

m m

u( U Aj) =0=" u(4)).

j=1 j=1

If at least one of the sets is infinite, then so is the union and we have

M( QAJ) =00 = iM(Aj)-

The problem with o-additivity is this: if A has infinitely many finite sets then
we can, as in Exercise 2.3.4, obtain countably many pairwise disjoint finite
sets {A,} C A. Then |J,, 4, is infinite, and if we had o-additivity then

oo =p(JAn) = Y n(4n) =0,

a contradiction. So A has to have finitely many finite sets (this is possible
even when A is infinite, for instance write N\ {1} = J,, A, with {4,} all
infinite and pairwise disjoint, and put A = {&,N,{1}} UX(A1, Az,...)).
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(2.3.6) Complete the details in Example 2.3.7. That is, show that § is
a measure, and that zg is an atom.

Answer. Since xo € @, 6(@) = 0.

Let {Er} C X be a disjoint countable family. If zy ¢ U, Ek, then
0(Ug Bx) =0=">",0(Ex), since zg & E}, for all k. If zy € |J,, Ex, then there
exists a single ko with zg € Ey,. Then 6(U, Ex) =1 = 0(Ek,) = D1 6(Ex).

Finally, §({zo}) = 1 by definition, so z is an atom.

(2.8.7) Let (X, A, 1) be a measure space, and E € A. Show that
A ={ANE: Ac A}

is a o-algebra on E, and that ug(A) = u(A) defines a measure
on Ag.

Answer. Since @ =@NFE and E = XNE, wehave @, F € Ag. If A1, A, ...
are sets in Ag, then A, = A,, N E for all n; then

Uan=UawnE= () nE.

And if A € Ag, then E\ A = EN A° € Ag. As for ug, we clearly have
up (@) =pu(@NE)=0,and if {A,} C Ag are pairwise disjoint, then

(U2 -o(F0U) - (UFn) - (U
=3 w(An) = uw(AnNE) = ug(An).

(2.3.8) Let (X, A, ) be a measure space and Y a set with X C Y.
Show that there exists a measure space (Y, A’, ') such that
WY \X)=0, A=A, and p = ps.

Answer. Let A/ = AU{AU (Y \X): A€ A}. Then A’ is a o-algebra:

e we have @, Y = X U (Y \ X) € A" by construction.

o If B € A’, then either B € A, in which case Y\B = BU(Y\X) € A/,
or B=ByU (Y \ X), in which case Y\ B= B, € A'.
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oIf {B,} C A, suppose first that B, € A for all n. Then B =
U, Bn € A, so B € A'. Otherwise, there exists m with B, =
B/ U(Y\ X)and B!, € A. Then

5= B, = U 0 005,001\ X)) = (Ue.n 30 ) o\ e 4,

n

since the first union is in A by definition of A’.
Now we define ;' (AU(Y'\ X)) = p(A). Then (@) = 0. Suppose
that {B,} C A’ are pairwise disjoint. Then

i (UBn) = n(x0UBa) = n(UBNX)) = D u(BanX) = 3 ' (Bo).

Hence p' is a measure on A" and py = p.

(2.3.9) Let M be an infinite o-algebra. Show that there exists non-
empty E € M such that Mge is infinite.

Answer. Suppose that such E does not exist. This means that for any
nonempty E € M the o-algebra Mpg. is finite. If we fix any nonempty
E € M, then Mge and Mg are finite (because E€ is also an element of M
and so the negation of the statement does apply to it. This gives us that

M= MgUMEge,

finite. The contradiction implies that the desired E exists.

(2.3.10) Let M be an infinite o-algebra. Show that M contains a pair-
wise disjoint sequence of sets. (Hint: the naive approach does
not work; instead, use Ezxercise 2.3.9)

Answer.  Let E) as in Exercise 2.3.9. As Mg is infinite, we can apply
Exercise 2.3.9 again to obtain Es € M, nonempty, disjoint with F;, and such
that (Mpe)pe = Mpenpg is infinite. Continuing inductively we produce a
pairwise disjoint sequence of nonempty sets {E,} C M.
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(2-3.11) Sh()W lhal lhe e(]uahly
) — X

can fail if {E}} is non-increasing but u(Ey) = oo for all k.
Examples can be found in the measure space (N, P(N), u) with
1 the counting measure.

Answer. Let
En:{mGNI mzn}

Then F,+1 C Eyn, p(E,) = co for all n, and ﬂEn =g, so u(ﬂEn) =0.

Here is another example, using Lebesgue measure. For each n, let
1 1
E, = U (m ——m + E)' Then E,, D E, 1 for all n, and m(E,) = co. But

m

ﬂ E, =N, and m(N) = 0 with the same proof we used for Q in Section 2.1.

Thus m(E,,) = oo for all n, and m(ﬂEn) =0.

(2.3.12) Let X be a set and p* : P(X) — [0, 00] be given by

oo F=2
W) = 1, E+02

Show that p* is an outer measure and find M(X).

J

Answer. We have p*(@) = 0 by definition. For any A € P(X), A° = @ if
and only if A = &, which shows that p*(A°) = p*(A).

If E e M(X), then p*(S) = p*(SNE) +p*(SNE®) for all S € P(X).
If FC X and F # @, then E° # &. Let S = X. Then p*(S) = 1,
pw(SNE)=p*(E)=1and p*(SNE°) = p*(E°) =1. As 1 #2, E ¢ M(X).

Hence M(X) = {2, X}.
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(2.3.13) Let v* : P(N) — [0, 0] be given by

0, E=g
* E .
Vv*(E) = 1_|'_|JE‘, E finite
1, FE infinite

Show that v* is an outer measure and find M(X).

Answer. The function f(t) =
end) on [0, 00).

We have v*(@) = 0 by definition. If A C B and |A| = oo, then |B| =
and v*(A) =1 =v*(B). If |A] < oo and |B| = oo, then

_ A
v (A) =g

When both A, B are finite, v * (A) = f(|A|) < f(|B|) = v*(B). So v*(A) <
v*(B) every time we have A C B.

Let E1,..., E, C N. If any of these sets is infinite, then their union is
infinite and we have

V*(E1U~'UE,L):oogoo:ZV*(Ek)

i is increasing and subadditive (proof at the

<1=v"(B).

since at least one term on the right is infinite. If instead all of F1, ..., E, are
finite, then their union is finite. We have, since

n n
’ U Ek’ <Y |E|
k=1 k=1

and the function f(t) = %th is increasing and subadditive,
n ‘UZ: Ek‘ n E n E n
(U B =l c B oy B S ),
k=1 1+‘Uk:1Ek‘ o B T IR o

Now consider infinitely many FE7, Fs,... C N with infinitely many of them

nonempty, then
oo [e.e]
LIRS S
k=1 k=1

V*( [j Ek) < iV*(Ek)
k=1 k=1

regardless. Hence v* is an outer measure.

w\»—‘

So we have
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As for M(X), if E C N is a proper subset then E° is nonempty and at
least one of them is infinite. Then v*(E) + v*(E°) > 1. Therefore
Vi(N) =1 < v*(E) + v (EY),

showing that F ¢ M(X). Hence M(X) = {@, X }.
Let us now finish the answer by proving that f is increasing and sub-
additive. We have
t 1 1

/ li
/ = _— = — =
f(t)_(1+t) (1 1+t) (1+t)2>0
for all t € R. So f is increasing. As for the subadditivity, if ,s > 0

1 I 1 < 2 <2+t+s: 1 .
1+t 14s — 1+t+s ~ 1+t+s 14+t+s
Then
fl4s)=1-—1 <o L 1 iy g,
14+t+s — 14+t 1+s

(2.3.14) Suppose that in Definition 2.3.11 we replace “countable cover”
with “finite cover”. Show that this would give m*(QnN[0,1]) =
1, and that this would imply that m™* is not an outer measure.

Answer. Let Iy, ..., I, be open intervals such that QN[0, 1] C I;U- - -UI,,. By
removing any interval entirely contained in another and reordering if needed,
we may assume that I = (ag, bg), where by > agy1 > ay for all k (the second
inequality by prescription, and the first one because there can be no gaps
between the intervals), a; < 0, b,, > 1. Then

m—1
S UI) = bp—ax =bm —ar+ Y bg — ax1 > by —ar > 1.
k k k=1

Therefore m*(Q N [0,1]) > 1. As (—¢,1+ ¢) is also a cover for each € > 0,
m*(QnNI0,1]) =1.
We would then have
> omah=o<t=m'( |J {a}),
q€QNI0,1] q€QNIo,1]

contradicting the definition of outer measure.

(2.3.15) Let E C Rsuch that m*(E) > 0. Show that there exist a,b € E
such that a — b is irrational.
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Answer. Fix a € E. Suppose that a — b € Q for all b € E. If we enumerate
Q = {qx}, this means that b = a — gi for some k. Thus E C {a —qr : k €
N} C a — Q. As m* is translation invariant,

m*(E) <m*(a— Q) =m"(Q) =0.
This means that if m*(E) > 0, there has to exist b € F with a — b ¢ Q.

(2.3.16) Let E C R be the set of all numbers in [0, 1] that do not have a
1 anywhere in their decimal expansion. Is ' measurable? Find
m*(E).

Answer. We assume the same convention as we did when dealing with the
Cantor set, which is that we consider 0.199--- instead of 0.2. This is im-
portant because it means that 0.2 has a 1 in its expansion! For each k € N,
let

Ey, :{leao,; €[0,1]: ax =1, a1,...,a5-1 # 1}.
Each Ej, is a finite ITIHOH of intervals, so measurable. To see this, note that
E, =10.1,0.2], E, =[0.01,0.02)U[0.21,0.22]U[0.31, 0.32]U- - -U[0.91, 0.92],
and
Br=|J [0a1--ak11,0.01-ar 2],

a1,...,ap_17#1
That is, the Ej are pairwise disjoint and each is made of 9*~! (because we
have 9 choices for each of the ay,...,ax_1) intervals of length 10~%. Then
E=1[0,1]\ U E, is measurable, and

(2.3.17) Let A, B C R be Lebesgue measurable with m(A) < co. Show
that the function f: R — [0, 00) given by f(z) = m((A+z)N
B) is continuous. (Hint: the assertion is easier to prove for
intervals)
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Answer. Let € > 0. Then there exists V open with V> A and m(V \ 4) <
e/4. Note that this implies that m(V') < oo since m(A4) < co. Now
m(V+z)NB)—m((A+z)NB)=m(V\A) +z)NB) <m(V\A).
Then, for any z, ¥,
() — F@)| < /2 4+ m((V +3) 0 B) = m((V +2) (1 B).
Now since V is an open subset of R, we may write it as a disjoint union of

open intervals, V = U(an, b,). The finite measure of V' gives > (b, —a,) =

m(V) < co. For anynE,FCIR{, from FUF =FEU(F\E)=(E\F)UF we
obtain
m(E)—m(F)=m(E\F)—m(F\E).
Then, for x < y, with I, = (an, by),
im((In +y) 0 B) —m((In + 2) N B)| < m((an + z,an +y))
+m((bn + 2,bn +y))
=2(y — z).

So, we choose ng such that 3, . (b, —a,) < e/4. Then if |y —z| < /(2no),

|f(y) = f ()] §%+m(V+y)ﬂB)*m(V+$)ﬁ3)

=S+ > ml(an,ba) +y) N B) = m((an, bn) +2) N B)

e €
<€, ¢ _
ST T ) )0 B) = (o) + )1 5)
nsno
e € 2npely — x|
< — —
-2 + 4 + 2ng ©

2.3.18) Show that the relation z ~ if x — € Q is an equivalence
Yy Y
relation in R.

Answer. Reflexive: x—x =0 € Q. Symmetric: if z—y € Q, then y—z(—(x—
y) € Q. Transitive: ifx—y € Qand y—z € Q, then z—z = (x—y)+(y—=z) € Q.

(2.3.19) Fix ¢ € (0,1). Construct an open set V' C [0, 1], dense in [0, 1]
and with m(V) = ¢ (Hint: in Exercise 2.2.8 this was done for
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c = %; an entirely different approach is possible with an idea

similar—>but not equal—to Ezercise 2.3.17) .

Answer. When we consider middle thirds (length of the interval is a power
of 3) for the Cantor set, all the intervals together form a dense open set of
measure 1. So we need to remove smaller intervals; this guarantees that there
will be no overlaps, as the intervals we will consider are subintervals of those
middle thirds removed for the Cantor set.

Fix a € [O, %] On the n*® step we “remove” (in the end, in this case,

we want to “keep” them) 2"~! middle lopen intervals V, 1, ..., Vi,2n—1 each
of length a™. Then we put
oo 2n7 1
V= U Var
n=1 k=1

This set is open, being a union of open intervals, and it is dense because in
each step, when we consider the middle interval of length o™ inside (¢, d), this
latter interval gets divided into two intervals each of length less than dgc.
This means that for € > 0 and ¢ € [0, 1] either ¢ € V or there exist n, k such
that dist(t, Vi) < €.

Finally,
< 2 1S 12
. n_ 1 n_1 20 _ a
m(V)=2_ > a"=3> (20" =575 = 15
n=1 k=1 n=1
Solving for a in =%5; = ¢, we get a = 15;. This works as expected: when

c=0we get a =0, and when ¢ = 1 we get a = % So by continuity any value
c € [0,1] can be achieved by an appropriate a € [0, 1].

For the second approach, let {gx} be an enumeration of Q N[0, 1], and
put

AZ(O,l)ﬁU(Qk_%%vq}’c'i_%%)'
k

Then A C [0,1] is open, dense, and

oo

& c

m(A) <Y =g
k=1

Let f(z) = m(AU(0,z)). Then f(0) =m(A) <c¢, f(1) =m((0,1)) =1. The
function f is continuous by an argument similar to Exercise 2.3.17). By the
Intermediate Value Theorem, there exists  such that f(x) =e¢. So AU(0, z)
is a dense open set of measure c.
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Here is yet another approach, related to the first one. Write ¢ in base
oo

3,c= Z an 37", with a,, € {0,1,2} for all n. Let {r(n)} be the increasing
n=1
sequence of indices such that a,(,) # 0. So

_ Z ar(n)

n=1

Define numbers b,, = ’;ZL(_nl). Now we remove middle thirds as with

the Cantor set, but in each step the length of the removed intervals will
be b,37"(" instead of 37". Explicitly, if {(ank,bnk)}nen, 1<k<on-1 are the
intervals removed from the usual Cantor ternary set, we can define

6_1(1 _QGT(n))
n 5 3r(n) ongr(n) )’

and let

oo 21

V= U U (ar(”)’k + On, br(n),k - 571)

n=1 k=1
By construction, V' is open. Also,
%) 272 1
2" Ar(n)
Z Z (3r(n) 26 ) Z Qngr(n)
n=1 k=1
Finally, if t € V¢, then t ¢ Uk:1 (@n.k+06n, bk —0,). These are 271 disjoint
intervals inside [0,1]. Thus dist(t, V) < zz=r. This can be done for any n, so
dist(t, V) = 0, which shows that V = [0, 1].

(2.3.20) Let (X, A, 1) be a measure space with p(X) < co. Show that
u is outer regular if and only if it is inner regular by closed
sets.

Answer. Fix e > 0. If u is outer regular and E € A, then X \ E € A and by
hypothesis there exists V open such that X\ E C V and u(V\(X\ E)) <e
Let K =X \V. Then K is closed, K =X \V C X\ (X \E) =F, and

WEN\NK) =p(EN(X\K))=pENV
=(X\N(X\NE)NV) =p(V\(X\E)) <e
As this can be done for any e > 0, we get that
p(E) =sup{u(K): K CE, K closed}.

The converse is proven in an entirely similar way.
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(2.3.21) Show that Lebesgue measure is not outer regular by closed sets,
nor inner regular by open sets.

Answer. Let A be the open set from Exercise 2.3.19, where ¢ = 1/2. If C is
closed and C' D A then C D [0, 1], forcing m(C) > 1. This shows that outer
regularity by closed sets fails.

If we consider the complement of A in [0, 1] we get a closed set that
has no open subsets; for any open V C [0,1] \ A would give us A C V¢ and
so m(V¢) =1, giving us mu(V) = 0. So m is not inner regular by open sets
either.

(2.3.22) Show that a Borel measure on a locally compact Hausdorff
space is locally finite if and only if it is finite on compact sets.

Answer. Suppose that p is locally finite. Fix E compact. For each =z € E,
there exists V, open with z € V,, and p(V,) < co. By compactness, there exist
T1,...,T, € E such that E C V,, U---UV, . Then u(E) <> 7, u(Vy,) <
0.

Conversely, if p is not locally finite, then there exists x € X such
that every open set V with x € V satisfies u(V) = oco. Since X is locally
compact, there exists an open set W with z € W and W compact. Then

w(W) > (W) = oo. That is, there exists a compact set of infinite measure.

(2.3.23) Show that if X is a Hausdorff topological space, the Dirac
delta is a Radon measure on B(X). Show an example that the
assertion can fail if X is not Hausdorff.

Answer. Denote by 0 € X the distinguished element such that 6(F) = 1
if and only if 0 € E. For any F C X, if 0 € F and V O E with V open,
then §(V) = 1; and if 0 ¢ E, by X being Hausdorff X \ {0} is open, and
E c X\ {0} with (X \ {0}) = 0. We have shown that ¢ is outer regular. For
inner regularity, if 0 € E then K = {0} is compact that 6(K) = 1 = §(E);
and if 0 € E, then any K C E does not have 0, and hence §(K) = 0.

Let X = {0,1,2} with the topology {@, X, {0}, {0,2},{0,1}}. Then 0
and 1 cannot be separated, and X is not Hausdorff. The set E = {1} is Borel,
as it is closed: {1} = X \ {0,2}. We have §(E) = 0, while §(V) = 1 for all
V' DO FE open. Thus d is not outer regular.
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(2.3.24) Let X be a Polish space (separable, metric, compact, com-
plete). Show that any finite measure on B(X) is Radon.

Answer. Fix zo € X. Being a metric space, we have xg = (,, B1/n(70). By
continuity of the measure (Proposition 2.3.8, we use here that the measure is
finite) we have

p({zo}) = lim u(By/n(20))- (AB.2.3)

Now fix E € B(X) and € > 0. Because X is separable and metric, every
subset is separable (Proposition 1.8.5) so there exists Xg = {x}, C E such
that £ = Xj. Using (AB.2.3), choose numbers {r,} such that u(B,, (x,)) <
p({zn}) +¢e/2™. Then

EcV =B, ().

The set V is open and

p(V) <3 ulBr, (@) <Y nl{wn}) +2/2" =+ p({za})

=+ u(Xo) < e+ p(E).
Then
(VN E) = (V) — p(E) <e.
Thus p is outer regular. As p is finite, it is inner regular by closed sets
by Exercise 2.3.20. As X is compact and Hausdorff, every closed subset is
compact, so u is inner regular. And p is Radon as p is finite everywhere and
in particular on compact sets.

(2.3.25) Show that the counting measure on R” is not Radon. ]

Answer. Any open set on R™ is uncountable, so u(V) = oo for all open
V. Hence no finite set can be approximated in measure from above by open
sets. The counting measure is inner regular: if E is finite, then it is compact
and can be approximated; and if E is infinite, it can be approximated by
finite sets of arbitrary size, and hence of arbitrary large measure. Finally, the
counting measure also fails to be locally finite, and infinite compact sets will
have infinite measure.

(2.3.26) Let (X, A, 1) be a measure space. The measure p is semifinite
if whenever p(E) = oo for some E € A, there exists F' € A
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with F' C E and 0 < p(F') < oo. Show that for such p,

w(E) =sup{u(F): FeA FCE, u(F)< oo}, EcA
(2.2)

Show also that the equality above fails for a measure that is

not semifinite.

Answer. Let o =sup{u(F): Fe A, F C E, u(F) < oo}. It is immediate
that o < p(FE) since pu(F) is an upper bound. So if @« = oo we are done.
When a < oo, choose {F,} C A with F,, C E, of finite measure, and such
that a = lim, u(F,). Let FF = J, F,, € A. For each n, |J,_,, Frx C E and
has finite measure, so by continuity of the measure

w(F) = ligglu( U Fn) < a <sup p(Fy,) < p(F).
k<n "

Thus u(F) = a. If G C E'\ F is measurable and p(G) < oo, then FUG C E
and a = p(F) < p(F) + w(G) = w(FUG) = a, so u(G) = 0. This prevents
w(E\F) = oo, for in such case it would have subsets of positive measure. Then
p(E\ F) < oo but now the argument we just did implies that u(E \ F') = 0.
Therefore u(E) = u(F) = a.

When g is not semifinite, there exists E € A with u(F) = oo and
w(F) = 0 for every measurable subset of E with finite measure. Thus the
supremum in (2.2) is zero.

(2.3.27) Let K be a topological space and {yu;} a collection of Borel
measures on K. Let X = (J; K x {j}. We write m; for the

coordinate function 71 (a,b) = a.
(a) Show that
S={BCX: m(Bn(K x{j})) € B(K) forall j}
is a g-algebra.
(b) Show that p given by u(B) = Zuj (m (BN (K x {j})) is

J
a measure on ..

Answer.

(a) We have X € X3, since K is a Borel subset of itself. Given B € X, we have
B =J; Bj x {j} with B; C K Borel. Then

m((X\B)N (K x {j})) = m ((K\ B)) x {j}) = K\ B
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is Borel for each j. So X \ B € X. If now {Bp}nen C X, we have
B, =, Bn,; x {j} with B, ; C K Borel for all j. Then

(U B0 (0 {5) = (UUBur x 0 (K 0 {51)
n n J
= Wl(UBn,j x {]}) =JBn;

which is Borel in K. So X is a o-algebra.

(b) All we need to check is the o-additivity. If {B,}nen C X are pairwise
disjoint, we have

By 0By = (| B x 133) 0 (U Buk x (6}) = \J(Bus 0 Buy) x {3}
J k J
So {By, ;}» are pairwise disjoint for each j. Then (using Tonelli)

w(UB) = 3w (U0 (5 x 1) = Y (U )
= ZZNJ(BM) = ZZNj(Bn,j) = Zu(Bn).

2.4. Measurable Functions

(2.4.1) Let (X, .A) be a measurable spaces and f : X — Y a function.
Show that

F={ECY: fY(E)ec A}
is a o-algebra.

Answer. We have @ € F,since f~1(@) =2 € A. If E € F, then f~}(E°) =
(f7Y(E))¢ € A. And if {E,} is a countable family with E,, € F for all n,

then
5 (UB) =UF () e A

since A is a o-algebra and f~1(E,) € A for all n.
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(2.4.2) Let (X,.A) and (Y, B) be measurable spaces and f: X - Y a
function. Show that

Ao ={f"Y(B): BeB}

is a o-algebra. What is the relation between A4y and A?

Answer. We have @ = f~1(@) € Ay. If A € Ay, then A= f~(B) for some
B € B; hence, since preimages preserve all set operations, A° = f~1(B¢) € Ay
since B¢ € B. If {E,} C Ay is a countable family with E,, € Aj for all n,
there exist {B,} C B with E,, = f~1(B,,) for each n. Then

U =Usr B = (UBa) € 4

since the countable unions of sets in B stays in B. Therefore A is a o-algebra.

In general there is not much relation between Ay and A. For instance
take X = R, A= MR Y =R, B=P([R), f =id. Then 4o =R 2 A. If
we reverse the roles of A and B we get A D Ag. There need be no inclusion
either. For instance fix some A, B C R such that AN B # @ and A C AU B,
B C AU B; and let

A={@ A A° R}, B ={2,B, B R}.
Then, with f = id we have Ayg = B and AN B = {o,R}.

(2.4.3) Let f : R — R be non-decreasing. Show that f is Borel-
measurable (that is, pre-image of open is Borel).

Answer. We need to show that A = f~!(a, o) is Borel for all a € R. So fix
a € R and consider the corresponding A. If A = &, then it is Borel. Now we
assume that A # @.

We have A = {a : f(x) > a}. If z € A, we have f(z) > a; for any
y >z, f(y) > f(z) > a. So [z,00) C A.

Let b = inf A. If b = —o0, then for any z € R there exists 2z’ € A with
2’ < z; by the above [z,00) C A for all z € R. So A D U [z,00) = R, giving

z€R

us A = R. Otherwise, if b > —oco, for any n € N thereE exists z, € A with

b<z,<b+ % By the above, [b+ %,oo) CA Ifbg A, then

AS U[b—i—%,oo) — (b, 00);
neN
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as b = inf A it follows that A = (b, c0), so Borel. The other possibility is that
b € A; in that case we can repeat what we did and obtain A = [b, 00). In all
cases, A is Borel.

(2.4.4) Let f : R — R be non-decreasing. Show that f is continuous
almost everywhere, by showing that the set of discontinuity
points of f is at most countable.

Answer. Fix an interval [-m,m|, m € N. Fix zg € [-m,m]|. By the
monotonicity we have that f([—m,m]) C [f(—m), f(m)].
Since f(x) < f(xp) for all © < xq, I(xg) = limw_m,g f
ilarly, r(zo) = lim f(x) also exists. Since a function is continuous at a
CE*)CE
point if and only if Dthe lateral limits exist and are equal, we have that f is
continuous at x¢ if and only if I(xg) = r(xo).
If we let X be the set of discontinuity points of f and we write X, =
{z: r(z) = U(z) > %}, then X =J,, Xn. Suppose that 1 < --- <z, € X,,.
Then

(x) exists. Sim-

r(e1) = Uey) + rlz) = Uao) + -+ r(2a) = Uzw) > =
We also have
D r(@y) = Uay) = =Uwr) + r(ww) Z r(z;) = Uzj41)) < f(m) = f(=m).

From the two inequalities we obtain w < n(f(m) — f(—m)); so X,, is finite.
Then X is countable.

For the general case, R = |J,,[-m,m| and each [—m,m] contains at
most countably many discontinuity points of f, so R contains at most count-
ably many discontinuity points of f.

(2.4.5) Let f : R — C be Lebesgue-measurable. Show that there exists
g : R — C, Borel-measurable, with f = g a.e. (Hint: do it first

for f=0)

Answer. By the usual trick of writing a complex valued function as a linear
combination of four nonnegative functions, we may assume without loss of
generality that f > 0. Let {s,} be an nondecreasing sequence of Lebesgue-
measurable simple functions with 0 <'s,, /* f. As in Theorem 2.4.13 we may
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write
n2’7L

k—l
Sp = n]-f ([n,00]) +Z on Ek,n’

where Ej, ,, = f! ( [%, zﬁn)) By Proposition 2.3.25 there exist sets F}, ,, €
B(R) with Fy,, C E, and m(F,,) = m(Ey ) for all k,n. Define

n2™

k—1
t, = nlffl([n,oo]) + Z on 1Fk,n7
k=1

Then each t,, is Borel-measurable and so is g = lim,, ¢,, (this converges for
every point because t,, = s, on each F}, ,,). The set {f # ¢} is contained in
the countable union U [Ekn \ Fk|, a nullset.

k,n

(2.4.6) Let (X,.A) be a measurable space. If f : E — R is a mea-
surable function relative to the measurable space (E, Ag) (cfr.
Exercise 2.3.7), show that the extension f:X = Rof f given
by f = f1g is measurable with respect to A.

Answer. Given a € R, we consider
fla,00)={zeX: fx)lg(x) > a}.
We have
f~H(a,00) = [f(a,00) NE]U [ (a,00) N E°]
={zxeE: f(x)lg(x) >a}U{z € E°: f(z)lg(z) > a}
={zxecE: f(r) >atU{z € E°: 0>a}
= fHa,00)U{z € E°: 0>a}.

The first set is in Ag C A by hypothesis, while the second is either £ or &,
and in both cases it is in 4. The union is then in A.

(2.4.7) If f : X — R is a measurable function with respect to A, and
if f = f|g (the restriction of f to E), show that f: E — R is
measurable with respect Ag.

Answer. We have, for any a € R, and using that f is measurable,
fHa,00)={z € E: fx)>a} =ENfa,0) € Ag.
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(2.4.8) Let (X, A) be a measurable space and f : X — [0,00] mea-
surable. Show that if s, is as in Theorem 2.4.13, then for
z € f710,n) we have

12 ()]

Sn (m) = on

Answer. By definition, s,(z) = kQ_nl when % < f(z) < 2% These in-

equalities can be written as k — 1 < 2" f(z) < k, which in turn are precisely
|27 f(z)| = k — 1. Thus

su(a) = ot =

(2.4.9) Let (X, A, ) be a measure space and f : X — C measurable.
Show that essran f is closed.

Answer. Let a € essran f. Fix ¢ > 0. Then there exists 8 € essran f such
that |a — 8| < /2. If |y — B] < £/2, then

=yl <la=Bl+18-7l<5+5=¢
This means that B, /5(f) C B:(a). Thus
p(f7H(Be(@)) = u(f 1 (Bey2(8)) > 0

since B € essran f. So o € essran f and essran f is closed.

(2.4.10) Show an example of a measure space, g measurable, and f = g
a.e. with f not measurable.

Answer. Consider ([0,1], B(R),m), and let g = 1 — 1¢, the characteristic of
the complement of the Cantor set. We know that there exists V' C C that is
not in B(R), as in the proof of Proposition 2.3.24. Let f = g + 1. Then
f = g outside of C, but f is not measurable, since V = f~1({1}) NC ¢ B(R).

(2.4.11) Let (X, A, ) be a measure space with u(X) = 1. Show that
the following statements are equivalent:
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(a) u(E) € {0,1} for all E € A,;

(b) if f : X — R is measurable, there exists ¢ € R with f = ¢
a.e.

Answer. Suppose that u(A) = {0,1} and let f be measurable. We may
assume without loss of generality that f maps into the interval [0, 1], for
we might replace it by composition with a continuous bijection, say g o f
where g(t) = 3 4+ L arctant. Write Iy; = [0,1] and consider disjoint dyadic

partitions
2TL
1] = In;.
j=1

Then, for each n, the 2" disjoint sets X, ; = f~ (I ), j = 1,...,2", form
a partition of X. Since 1 = pu(X) = >, (X, ;), for each n there exists a
single j, with p(X, ;,) = 1. Then f = flx,, a.e. Necessarily (by the
fact that they are either disjoint or one inside the other, and looking at their
measures) we have X, 11, ., C X, ;, for all n. Let Xo = (), Xy, ;,; by
continuity of the measure, ;(Xo) = 1. We also have I,, ;1 j11 C I, ; for all n.
Then (), 1,5, = {s} for some s € [a,b] by Proposition 1.8.19 (or by forming
s in base 2). We have

= ) = (- (ﬂf,gn>)u<ﬂf o)) =00 =1

Thus f = s a.e.
Conversely, if every measurable function is constant a.e., let £ € A.
If 1g = 0 a.e., then u(F) = 0; otherwise 1z = 1 a.e., which means that

w(E)=1.

2.5. The Lebesgue Integral

(2.5.1) Show, without using the convergence theorems, that if u is the
counting measure on N, for a non-negative sequence {a,} we
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have

dp = e
/Nau nzz:la

Answer.
We can do it by working just with the definition. For any k € N,

k
Zan—/zanl{n}dﬂg/adﬂw
1 N

n=1

since s,, = Zﬁ:l an lipy is a simple function that satisfies 0 < s,, < a.
For the converse, fix € > 0 and let s be a non-negative simple function

with 0 < s < a and
/adu<5+/sd/¢‘
N N

Writing the inequality this way allows us to deal both with the case where the

integral is finite and the case where it is infinite. We have s = Z; 1A g,

with A; > 0 for all j. If |E;| = oo for some j, this would imply Y7 | a,, = 0o,

contradlctlng our assumption. So each Ej is finite; by writing each FE; as
m

a finite union of points, we can write s = Zan 1(ny. From s < a we
n=1

immediately get o, < ay, for n =1,...,m. Then

/adu<5+/sdu:€+2an§5+2an.
N N n=1 n=1

oo
As this can be done for all € > 0, we obtain / adyp < Z an, which shows
N n=1

the equality.

(2.5.2) Show, using the convergence theorems, that if u is the counting
measure on N, for a non-negative sequence {a, } we have

/adu Zan

Answer. We can write

a = i A, l{n}
n=1
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Note that for each k € N the series a(k) has only one nonzero term, so there
is no issue with convergence. Then Corollary 2.5.8 gives directly

oo oo oo
/ad,u:/Zanl{n}du=Z/anl{n}du:Zan.
N N,=1 n=1"N n=1

(2.5.3) Show that if f > 0 a.e. and / fdu = 0, then f = 0 a.e.
X

Conclude that if f is measurable and / |f|dp =0, then f =0
X

a.e.

Answer. Let E={f >0}, E, ={f > 1}, ne€N. Then E =J,, E,. Since
the union is increasing, by continuity of the measure (Proposition 2.3.8) there
exists m with u(E,,) > 0. Then

/fd,u>/ fdu>f/ ldp =" ) >0,

a contradiction. So p(E) =0, that is f =0 a.e.
This can also be proven by definition, in the following way. Let s =
Zj s;j 1g; be simple, with 0 < s < f. Then

OSijsMEj):/Xsdus/deu:o.

So, for each j, either s; = 0 or u(E;) = 0. It follows that s = 0 a.e. Now, as f
is measurable, there exists a monotone sequence {s,} of nonnegative simple
functions with 0 < s, < f and s,, — f. By the above, s, = 0 a.e. for all n,
so f=lims, =0 a.e.

For arbitrary measurable f, we apply the above to |f| to conclude that
|f|=0a.e., and so f =0 a.e.

(2.5.4) Let (X, A, i) be a measure space, and f : X — R. Let {E,} C
A be a pairwise disjoint sequence. Let E = J,, E,,. Show that,
if the integral on the left exists,

[ran=3 [ fau
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Answer. We have that 1z = > 1p, and the limit is monotone. Suppose
f > 0. By Monotone Convergence and linearity,

Jrdn= [ vspin=3 [ tnpan=3 [ rau

For general f, if the integral exists, the equality follows by linearity.

(2.5.5) Let X be any set, ¥ = P(X), o € X. Consider the Dirac
measure (cfr. Exercise 2.3.6) ¢ : ¥ — [0, 00] by

1, 0 €A
6(A) =
07 o Q A
Show that for any f: X — R,

Afw=ﬂ%)

Answer.
If xg € F we have

/deéz/Efch

since §(X \ F) = 0. In particular

/de(i: {Io}fd(S—/Xfl{zo} d(S:/Xf(LZJO) 1{10}61(;
= f(z0)d({z0}) = f(20).

(2.5.6) Let f : [0,00) — C be integrable with respect to Lebesgue
measure, and such that

x
/fdsz, x> 0.
0

Show that f = 0 a.e. (This can be certainly done with the
techniques from this chapter, but the argument might not be all
that direct)

Answer. For any 0 < a < b,

b a
/ fdm:/fdmf/ fdm=0—-0=0.
(a,b] 0 0
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By Dominated convergence
fdm = lim fdm=0.
{b} " J(b-1/n.b]
So we also have f(a b) fdm = 0 for all 0 < a < b. Given any open set

V C [0,00), by Proposition 1.8.1 we can write V = J,,(an,b,) as a disjoint
union. Then, by Exercise 2.5.4 (or, by Dominated Convergence),

/Vfdm: Z/(Mbn)fdm = 0.

For any E € M([0,00)), by Proposition 2.3.25 we can find a decreasing
sequence {V,} of open sets with £ = (), V,, a.e. Then 1g = lim, 1y, a.e.
and by Dominated Convergence

/fdm:/flEdm:Iim/flvndm:Iim/ fdm =0.
E n n v,

Now we provide two different arguments for the rest of the proof.

(a) As any simple function is a linear combination of characteristic functions
of measurable set, linearity of the integral implies that

/ fgdm =0
[0,00)

for all g simple. Let K, = {|f| < n}. On K, the function f is bounded,
so by Theorem 2.4.13 we have a uniform limit f = lim,, g,, with g,, simple.
Then

/ |f2dm—‘/ 12 dm— | fgndm‘i/ 11T = gl dm
K, K, K, K,

< sup{|F() - gu ()|} /[ Ulam.

n

As ||f — gnlloo can be made arbitrarily small, we get that

/ P dm =0,
K

and hence f = 0 a.e. on K,, by Proposition 2.5.2. As this can be done for
any n, f =0 a.e.

(b) Let E = {Re f > 0}. As f is measurable, so is E. Then

O:Re/Efdm:/ERefdm.

By Proposition 2.5.2, m(E) = 0. In a similar way we can prove that
m({Ref < 0}) =0, m({Im f > 0}) =0, and m({Im f < 0}) = 0. This
implies that m({f # 0}) =0, so f =0 a.e.
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With more tools available, a very straightforward proof is available, see
Exercise 2.11.2.

(2.5.7) (Change of variable) Let (X, A, ;1) be a measure space and Y
a topological space. Let g : X — Y measurable. Let v(F) =
u(g~Y(E)). Show that v is a measure on B(Y) and that

/dey:/Xfogdu (2.3)

for all f:Y — R which are Borel measurable and such that
either integral exists.

Answer. Assume first that f > 0.
Because g is measurable and E is Borel, g~ *(E) € A (Proposition 2.4.3);
as preimages preserve all set operations and pu is a measure, v is a measure.
IfEeBY)and f =1,

/ lpdv =v(E) = (g (E)) :/ lg-1(m) dp :/ 1gogdp.
Y X X

By linearity of the integral the equality holds for all simple functions. Theo-
rem 2.4.13 and Monotone Convergence then give us the equality (2.3) for all
non-negative measurable f.

Finally, for arbitrary f we write f = fT—f~ and, because by hypothesis
either the integral for f* or f~ is finite (on both sides!) the equality holds.

(2.5.8) Consider the interval [0,1] with Lebesgue measure. Let ¢ :
[0,1] — C measurable and such that f[o 1 lg] < 0. Prove that

the function s
Y8 / |9l
0

is continuous.

Answer. Since |g| > 0, the function ~ is monotone non-decreasing. Let
s €10,1] and {s,} a sequence with s,, — s. We denote by (s, s,,) the interval
between these two numbers which could be (s,,s) if s, < s. The functions
L(s,,s) lg| converge pointwise to 0. By Dominated Convergence (since |g| is
integrable and 15, 5) [g] < |g]) we have

n— oo n—oo

1 1
iy (5.) =29 = tim [ 10 lol = [ 0=0.
0 0

So ¥(sn) — 7(s) for any such sequence, and thus «y is continuous at s.
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(2.5.9) (Change of variable, II) Let (X, A, ) be a measure space and
f X — [0, 00] measurable. Define v : A — [0, c0] by

Z/(E):/Efdp.

(a) Show that v is a measure on (X,.A) and that v(E) = 0
whenever E € A with u(E) = 0.

(b) Show that for any measurable function g : X — R,

/ngV=/ngdu (2.4)

if the left integral exists.

Answer.

(a) If / flgdu = v(E) > 0, then by Exercise 2.5.3 we have the fact that

,u({j"(lE > 0}) > 0. As {f1g > 0} C E, we get that u(E) > 0. Thus
p(E) = 0 forces v(F) = 0, showing the last part. Also, v(@) = 0.

Now let {E)} be a countable family of pairwise disjoint measurable
sets. We have

1Uk By — Z ey
k=1

The equality is easily checked by evaluating at each x € X. Note that,
for all x, terms in the series are all zero with the exception of at most one
term. Then, by Monotone Convergence (in the second to last equality),

u<LkJEk)=/kadu=/Xfluk_Ekdu:/X;flEkdu
:zk:/XflEkduzzk:y(Ek).

(b) When g = 1g,

/ngl/:V(E):/Efdu:/XlEfdu:/ngdu-

Since integrals are linear and simple functions are linear combinations of
characteristic functions, this implies that

/Xst:/Xsfd,u

for all s simple. Now if g > 0, by Theorem 2.4.13 there exists a sequence
{sn} of simple functions such that 0 < s,, /* g. By Monotone Convergence
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(twice, and note that since f > 0 we also have 0 < s,,.f " gf),

/gdz/zlim/ snduzlim/ snfduz/gfd,u.
X noJX nJx X

For arbitrary g, the equality (2.4) holds for g* and ¢, and so it holds for
g if the integral exists; note that since f >0, (¢9f)" =g+ f, (9f)" =g~ f.

(2.5.10) (Change of variable, IIT) Use Exercises 2.5.7, 2.5.9 and 1.8.19 to
show that if g : [a,b] — [c, d] is continuously differentiable then
(2.3) gives the usual calculus change of variable (substitution)
formula

g(b) b
/ ﬂﬂﬁ:i/f@@ndwdt
g(a) a

Answer. Take (ax,by) and (a}, b)) as in Exercise 1.8.19 applied to the func-
tion g. Since g’ = 0 on each (ay, a},) and each (b}, by) we have

| ta@rgma=Y [ remgwa
a k a

and
g(b) by bl
/ ft)dt = Z/ ft)dt = Z/ f(t)dt.
g(a) L Jak r Jay,
The above equalities show that we can assume, without loss of generality, that
g is strictly monotone on [a, b], which makes it invertible by Exercise 1.8.38.
Assume first that ¢’ > 0. Take X = [a,b], Y = [¢,d], and p the measure
given by

u(e) = [ g dm.
E
Let v be the measure v(E) = u(g~1(E)). For any [¢/,d’] C [c,d],
/gl —1 /gl gil(d/) /
v(ld,d]) = pulg~ (¢, d]) = » g'(t)dt
g—l c!
=g9(g7(d)) —9(g7 () =d — ' =m(,d)).
As they agree on intervals, ¥ = m on Borel sets. Then, using first (2.3) and
then (2.4),
9 (d)

d
/1f@ﬁﬁ= fdv = fogw“=/ Fla(t) d'(¢) dt.
c [e,d] [a,b] 9~ 1(c)

As ¢ =g(a) and d = g(b), we are done.
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When ¢’ < 0, we can replace g’ with —¢’ in the definition of y, and all
that this does is to account for the reverse the order of g=!(c’) and g=(d').

(2.5.11) Use Monotone Convergence to show that if f : R — [0,00)
is piecewise continuous with jump discontinuities, then with
respect to Lebesgue measure

/[a,b] Fdm = /abf(t) dt.

\. J

Answer. If {aj} are the discontinuity points of f, then f is continuous on
each s

(2.5.12) Show that a linear combination of integrable functions is inte-
grable.

Answer. If f, g are integrable and A € C, then

gl d A du = A .
/le+ gl MS/X(\fIJrI gl du /le\+| \/X|g|<oo

(2.5.13) Compute / o dm, where o is Cantor’s ternary function.
[0.1]

Answer. Since the Cantor set is a nullset, we can simply calculate the integral
on its complement. So we use that « is equal a.e. to

00 27@'71
27 —1 1

Z Z Tok bk, /3%, (bk,+1)/3%)>

k=1 j=1
where the numbers by, ; are the left endpoints of the ternary intervals Cy ;
of length 3% that are removed in the k*® step. Note that we don’t need to
know the by, ; since, because « is constant on the interval, all that matters for
the integral is the length of the interval times the value of the function. On
the interval (by ;/3%, (b j+1)/3%), the function « takes the value (25 —1)/2*.
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Then
) 2k—1 oo 2k—1
2j—1 1 1
JARZEEDSDIE = TS DIETE
[0.1] k=1 j=1 k=1 j=1
0 1 2k71(2k71+1) k1
:27 2 2
6k 2
k=1
N 6k 3k 1-1/3
k=1 k=1
_1
=3

A simpler possibility is to notice that a(1—x) = 1—a(x) (this is obvious
visually, and not too hard to show by looking at the intervals symmetric with
respect to = 1/2; see Exercise 2.2.12). Then

[awir= [ att-aw=[a-awya=1- [ awa

and the result follows.
Yet another way, if we know that the sequence {f,} as in Section 2.2
converges to «, is to notice that

1 1/3 1 .
[ = [y b [ B dpee-aja= Lok [

2/3

L

So Dominated Convergence gives us the relation L = % + 3, from where

— 1
L=1

(2.5.14) Consider the function f : [0, 1] — R given by the series

oo

f(x):Zﬁ-

n=0
(a) Show that f(z) =z + 1 if = € (0,1], and that f(0) = 0.
(b) Does the series converge uniformly on [0, 1]?

(¢) Is is true that

1 [/ o0 0 a1
/0 <;(1+w)"> dx_nz;o/o Trap

Answer.
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(a) Tt is clear that f(0) = 0. When z > 0,

oo
E x = x =x+1

n 1 :
n=0 (1+l‘) 1= 1tz

(b) The series does not converge uniformly on [0, 1]. If it did, its limit would
be continuous.
One can also check this explicitly:

N oo 1 1
€ x (14a)N+1
€T) — _— = = = .
f() Z(l_‘_x)n Z (1+2) 1— -1 (14 z)N
n=0 n=N+1 1+

For fixed N, taking x very close to 0 allows us to have the difference as
close to 1 as we want.

(¢) Yes. The series has positive terms, so Monotone Convergence (more specif-
ically, Corollary 2.5.8) applies. Let us verify:

1 0 1
x 3
J (Zm)> o= o=}

=0
while (applying dominated convergence to exchange the integral with the
series, and noting that the series is telescopic)

o0 1 1 1 1
,;)/0 (ljilx)ndx:/o rdr + ; 11—’366195—1—/0 (1571)2
1 D A
= Jo (1+ax)m
1 Lo~ (' =
2+(1—log2)+(log2—2)+nzg/o mdaz
— [ 1 1
1+nz_:3/0 ((1+x)"1_(1+m)") du
' & 1 1
:1+/0 nzz;((l-i-x)”—l_(l-i-x)”) de
1

1
71+/0 7(1+x)2dx

1 3
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(2.5.15) Prove that

(oo}
k
-ty S (e heoe)
S kgr;oX:lexp n—l—ne
n=

exists and find its value.

Answer. We have
exp (—n + %eik/") = exp (—n) exp (% eik/”) .
This function is always positive, and
exp (% eik/”) <max{ze *: z€[0,00)} =e .
Then L
exp (—n + - e_k/"> <explel)e™™ <2,

which is integrable, and so by Dominated Convergence we get

i S (o £et) < S (o Bere)
n=1 n=1

i -1
_n e 1
= g e = = .
1—e ! e—1
n=1

(2.5.16) Find

lim /" e 7 da.
n— oo 0

Answer. We have

n o0
/ 2V e T dy = / /e Ljo,n dz
0 0

0<at/me 1y, < lj ) +we™®,

which is integrable. By Dominated Convergence we get

We also have

n

lim /" e " dx = lim /e ® Lig,n) dx = / e dx =1.
0
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(2.5.17) Fix a, 3 > 0.
(a) Show that

(b) Show that

(¢) Show that

Answer.

(a) We have

(]
Q |~
+L
=4
I
3
gt
i
L
SN—
3
o\
J
K
Q
|
L
+
3
™
QU
5

1
= 1 E —1)" tx—l-‘rnﬁd
Mlinoc _O( ) A CL’ v

1 M
= lim ot Z(—l)’”x”ﬂ dx
0 n=0

1 y
. 1— (-1 1U+1unﬂ(]\4+1)
= lim ot (=1) a dx
M—oo [ 1428

1 xafl
= — dx.
/0 1+ 8 x
The last equality is justified using Dominated Convergence, using as upper
: 2271
bound the function g(z) = 5.
An alternative proof that does not use measure theory is as follows.
Consider the power series

oo

—1)" gotnB
f) =3 L

n=0
One can check that the radius of convergence is 1, so for 0 < z < 1 we
can differentiate term by term. As f(0) = 0 (since a, 8 > 0) and f' is
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continuous,

oo

Z ()([113; =fQ1 / f(z)de = / )t gy

n=0 n= ()

= /01 o1 2(

1 xlvfl
= ——dzx
o 1+af

(b) Taking o = § = 1 above, we get

n+1 o

(G _
Z 7;)1+n _/0 (1+x)dx—log2.

(c) Taking a« =1 and 8 = 2, we get

i(—l)”_ P o
2n+1  Jo 1+a22 " 47

n=0

(2.5.18) If apm > 0 for all n,m € N, use Monotone Convergence to

show that
0o o co o0
Z Z Apm = Z Z Anm -

n=1m=1 m=1n=1
Show by example that the equality can fail in general.

Answer. Because each a,,,, > 0, the series Z 1 Qn,m always exists (even if

it is infinite) as a non-negative function of n. By Monotone Convergence and

seeing the sum over n as an integral with respect to the counting measure,
oo M

ZZanmthmZanmfhmZZanm

n=1m=1 n=1 n=1m=1

—hmz Zanm— i ian,m.

m=1n=1 m=1n=1

As for the example, consider
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Since asn—1,m + a2n,m = 0 and ay, ,, — 0 with n, we have that ) ay m = 0.

Then -
22

ﬁMg

Meanwhile,
o0 o0 o0 o0 1
n,m — -1 —_—
22 o = 2" 0 e

does not exist, as the inner series is infinite and so the alternating series on
n is not defined.
Another more or less canonical example is to take

1, n=m
Gpm =14 —1, n=m+1
0, otherwise

For fixed m, we have a,, ,, =0,0,---,0,1,—1,0,--- with the 1 and —1 in the
m and m + 1 positions. Thus

o0 oo
Z Z Qn,m = 0.

m=1n=1
Meanwhile, when n is fixed the same happens, but there is an exception for
n = 1. In that case, we have ay, =1,0,.... Therefore

o0 o0

Z Z Gn,m = 1.

n=1m=1

(2.5.19) Let (X, A, 1) be a measure space and {X,} C A a non-de-
creasing sequence such that X = UX"' Show that, for any

n
f > 0 measurable,

fdu= lim/ fdu.
A H n—00 X, H

Answer. The sequence {f 1x,} is increasing, since f > 0 and 1x,., > 1x,.
Then, by Monotone Convergence,

lim fdu= lim le du = / lim lend,u:/ fdu.
X'I’L-}OO X

n— oo X n— oo
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(2.5.20) Let (X, A, 1) be a measure space and f : X — C integrable

and such that
| [ rau] = [ 11
X X

Show that there exists a € C, with |a| =1 and g : X — [0, c0)
integrable such that f = ag a.e.

Answer. If/ fdu =0, then / |f|dp =0 and so f =0 a.e. Otherwise, let
b's b's

o
B=IX
deu
Then
Jstau=| [ sal = [ sau= [ s1an
So

Jar1- 51 du=o.
Looking at the real part,

0= /X(Ifl — ReBf) du.

As |ReBf| < |8f] = |f], we get from Exercise 2.5.3 that |f| = Reff a.e. As
|Bf| = |f], this forces Sf = |f| a.e. Because if Im f # 0, then |f| = Re5f <

1Bf1 =11
Now |f| = 8 f, and we can define g = |f| and take the scalar to be

a=p"%

(2.5.21) Let (X, A, 1) be a measure space. If f: X — C is measurable
and F € A with 0 < u(F) < oo, show that

1
du € convf(FE),
5 | Fn e (B
the closed convex hull of f(FE); that is, the average is a limit
of convex combinations of values of f.

Answer. Assume first that f > 0. We will construct a sequence of simple
functions that increase to f. The only difference with the simple functions

from Theorem 2.4.13 will be that instead of taking the coefficients to be k{nl,
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we will take some value of f inside the interval [k’g_"l , 2%] So we can write

k(n)

Sn—Z/\ G En s

where {E, ;}, is a partition of E and A, ; € f(E). Since E' = |J; E; is a
disjoint union, we have

k(n)
3 w(E;) _
= k)
so the numbers p(E;)/pu(E) are convex coefficients and
k(n)

M(% / ,u n; € conv f(E).

Then, using Monotone Convergence,

%/Efdu:h}lnﬁ/Esnduemf(E).

Now if f : X — R, by as above we construct sequences of simple functions
{s} and {s; } such that s} ~ f* and s;;  f~ and choosing the coefficients
so that s} (z) — s, (z) € f( ); this is achleved by using the same z in each
interval [kQ,Ll, 2,L] Then
/f o= lim —— /(sj{—s;)duemf(E).
n pu(E)

When f : X — C, again we may arrange the simple functions so that

when we take the averages we get elements in conv f(E).

(2.5.22) Let (X, A, ) be a measure space such that u(X) < oo. Let
f X — C be integrable, and S C C closed, and such that

/ fdues, whenever F € A, u(E) > 0.

Showthatf (x) € S ae.

J

Answer. As S¢is open, S¢ = J,, Dy, a countable union of disks. Fix n and
D C D, be a closed disk. If u(f~1(D)) > 0, we would have

1
u(f=H(D)) /fl(D) Jaues

a contradiction since an average as above is a limit of convex combinations of
values of f and so it is in D C S°¢. As this can be done for any disk D C D,,,
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we conclude that pu(D,) = 0. Then p(S¢) = 0 (countable union of nullsets),
and so f(z) € S a.e.

(2.5.23) Let (X, A, p) be a measure space, and { f,,} a sequence of mea-
surable functions such that f,, — 0 uniformly. Does this imply

that / fndu—07?
X

Answer. In a finite measure space, yes. If u(X) < oo, given € < 0 there
exists ng such that |f,| < e/u(X) for all n > ng. Then, for such n,

\/andu]g/x|fn\du<a

When ;(X) = oo, the assertion can fail. On the real line, let f, = +

n'

Then f, — 0 uniformly, but / | fn] dm = oo for all n.
R

(2.5.24) Let f : X — [0, 00] measurable, with ¢ = / fdp < oo, and
a > 0. Show that *
o, O0<ax<l
lim n log {l—i-(f)a] dp =< ¢, a=1

0, l<a<oo

Answer. As a preliminary task, let us establish some basic calculus inequal-
ities. If g(z) = e* — 1 — x, then ¢g(0) = 0 and ¢’'(z) = e® — 1. So the critical
point is = 0. As ¢”(z) = e > 0, the only critical point is a local mini-
mum, has to be a global minimum since the function is smooth everywhere.
It follows that

14z <e, z eR.
When z > —1, taking logarithm we get
log(1+2z) <z, z € (—1,00).

x

For x > —1, n € N and applying the above inequality to %, we get nlog(1+
2) < x. Exponentiating, we obtain

(1+ %)" < et € (~1,00). (AB.2.4)

We will also need the well known limit, obtained either by the Mean Value
Theorem, by using Taylor approximations, or by L’Ho6pital’s Rule. With the
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Mean Value Theorem, of h(z) = log(1 + x) we have
log(1+z) _ g(x) —g(1) _ g'(©z _ €)= L

T h T T T 1+
for & between 1 and 14 z. As z — 0 we have £ — 0, and so the limit is 1. A

by-product of this is

- log(1+ %)

. z\" . 1 1 T
lim (1+ 7) = lim "'°80+%) = lim ¢ n =e".
n— o0 n n— o0 n—oo

Back to our original problem, we note that the integrand is zero when
f is zero. So by restricting to the appropriate set, we may assume that f > 0
everywhere. We also assume that (1(X) > 0; otherwise, all integrals are zero.
Assume first that 0 < a < 1. We have, for ¢ > 0,

lim n log [1 + (E) } =t* lim n'™® (E)i log [1 + (E) } =0
n—00 n n—o0 n n
(AB.2.5)
(using that lim,_,o 7' log(1 + ) = 1). By Fatou’s Lemma,

1inrgi£f/xnlog [1+(£)a} duz/)(nlinéonlog [1+(f> }du:oo.

When a = 1, by our Calculus homework above we have
n log {1 + } < f.

By Dominated Convergence,

lim anog{14—%}du:/xliynlog[l+ﬂdu:/xf:c.

n—oo

And when a > 1, from log(1 + z) < z we obtain a log(1 + z) < ax; applying
the exponential,
(14 xz)* <e*.
Then
1+2% < (142)* <e*,
which gives
log(1 + z%) < ax, x> 0.

@
v+ ()] < (£) ot
Then, Dominated Convergence applies. We can use (AB.2.5), where now
a > 1 gives us that the limit is 0. Thus

lim n log {1 + / limn log 1 + ( )a] du

n— 00 X

Thus

=0.
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(2.5.25) Let (X, A, p) be a measure space, and f : X — [0, 1] integrable.
Find
lim frdu.
X

Answer. Let A = {f = 1}. Since f is measurable, A € A. Because
f(X) C [0,1], we have that |f"| < |f|, and so Dominated convergence applies.
We can then write

[ [ e [ 5 [ rimsin
X A X\A oo JA

(2.5.26) Let (X,.A) be a measurable space and f : X — [0, 0], mea-
surable. Show that

/0 1f*1[t,oo)(s) dt = f(S), s e X. (25)

This is sometimes called the layer-cake representation of f.

Answer. Let g(t) = 15-1[,50)(s). We have

9(t) = 1511100 (8) = Lr,00) (£ () = 10,5 (1)-
Now we can see that g is measurable, since

., r>1
g Ht,oo) = {r: g(t)>r}=q ft,00), O0<r<1
[0, c0), r=0

Knowing that g is measurable and nonnegative, the integral exists and

o0 00 f(s)
/ 1 1p0o (5) dt = / Lio.poy (£) dt = / Ldt = f(s).
0 0 0

(2.5.27) Find a sequence {f,} of continuous functions f, : [0,1] — R
such that

e 0 fr <1

o for each x € [0, 1], lim,, f,(z) does not exist;
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1
olim [ f,=0.
n 0

Answer. We are going to construct a “travelling bump” that goes along [0, 1]
over and over again (to make the limit fail to exist) while getting thinner
(to make the integrals go to zero). Initially we index our sequence with two
positive integers m,n, with 1 < m < 27+1 — 3.

So we define, for m > 2,

0, nt<z< 52y
2z —m, o < < B

Imn = 1, ;’iﬂ <z< ;'Zt?
—ontlg 4 m42, 2 <gp < mdd
0, mid <r<1

and for m =1,
1—2nflyg, 0<z< 5ty
9gin = 07 27114_1 <z<l1l- 2n1+1
1

iy p1—2ntl 1ol <y

By construction each gy, , is continuous, 0 < g, , < 1. We have

! < m +3 m 3
/0 Imm = on+1 - on+1 — 9on+l

so the sequence of integrals go to zero as the indices increase. Finally, given
any x € (0,1), we can choose a subsequence {my} such that ”;,’:fll <z <
?ﬁ—i}z; then gpm, »(x) = 1 for all z, so the limit of the subsequence at z is
1. But we can also choose my, such that, for large enough n, x < 374+, and
we get another subsequence with g,,, »(x) = 0 for all k and all n sufficiently
large. For the cases £ = 0 and x = 1 we can consider the subsequence g; ,,
with g1 »,(z) = 1 for all n; and the subsequence gan ,, with gan () = 0. So
the limit doesn’t exist either at 0 nor 1.

(2.5.28) Find a sequence of continuous functions f,, : [0,1] — [0,00)
such that

o lim f,,(z) = 0 for all z;
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1
OIim/ fn=20;
n Jo

1
olim/ sup fn = 00.
" Jo

(note that these functions fail the hypotheses of DCT but they
do satisfy the conclusion)

Answer. In this case we want functions that grow higher while losing area.
We may choose

<z<

SN

vn—n??z -1 0
0, %gx

Then max{f,(z) : = € [0,1]} = n, so fol sup fn, = v/n. We have f,(0) =0
for all n, and if > 0, we get f,(z) =0 for all n > 2/x; so lim,, f,(x) = 0.
Finally,

1 1/n 2/n
U/n fn:: fﬁ‘+ fn
0 0

1/n

:/01/" (ﬁ—n?’/z(%—x)) dx—i—/l

2/n

(\f— n3/?(z — %)) dx

/n

5~

2.6. Some More Topology

(2.6.1) Show that If X is a Hausdorff topological space and K1, Ky C
X are disjoint compact sets, there exist disjoint open sets Vi, V5
with K1 C V7 and K5 C V5. Conclude that a compact Haus-
dorff space is normal.

Answer. By Lemma 2.6.3, for each x € K5 there exists V,, open with C; C V,,
and W, open with x € W, and V, "W, = &. We have K; C UxeK2 V., so by
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compactness there exist x1,...,x, with K3 C U?Zl Vi, Let V = U?:1 Ve,
and W = ()'_, W,,. These two sets are open, disjoint, with K, C V and
Ky cW.

When X is compact Hausdorff and C7,Cy C X are closed and disjoint,
they are compact by Lemma 1.8.16, so the above applies.

(2.6.2) Let T be a Hausdorff topological space and f : T — C contin-
uous. Show that the following statements are equivalent:

(a) f vanishes at infinity;
(b) for each € > 0, the set {|f| > €} is compact.

Answer. Suppose first that f vanishes at infinity and fix € > 0. By definition
there exists K C T', compact, with |f| < e outside of K. This means that the
closed set {|f| > ¢} lies inside K. Being a closed subset of a compact set, it
is compact.

Conversely, suppose that {|f| > €} is compact for all ¢ > 0. If we fix
one such € > 0, we can take K = {|f| > €}, and then |f| < € outside of K.

(2.6.3) Show that if X = [0, 1] with the usual topology, A = P(X), and
1 is the counting measure, there exists measurable f: X — C
such that the locally compact version of Lusin’s Theorem fails.
Discuss which hypothesis of the theorem is not satisfied in this
example.

Answer. Take f = 1g. For any € < 1, if u(B) < € then B = &. So we need
f = g everywhere, but f is not continuous anywhere. The hypothesis that is
not satisfied is that 4 is not outer regular: a singleton {zo} has pu({zo}) =1,
but any open set that contains {zo} has infinite measure.

(2.6.4) Show that if X = R with the usual topology, A = B(X) is the
Borel o-algebra, and p is the Lebesgue measure, there exists
measurable f : X — C (taking nonzero values in a set of infinite
measure) such that Lusin’s Theorem fails.

Answer. Take f = 1. If g has compact support, then the set where f # g
has infinite measure.
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(2.6.5) In the proof of Theorem 2.6.9, write the details of the argument
that the inequalities in (2.29) show that the series converges to
fon K, and that it converges uniformly on 7'

Answer. We can rewrite the first inequality as

SN HER
k=1

This shows that f = )" f,, uniformly, on K. For the everywhere uniform
convergence, the tails of the series satisfy

1 2061 1 ()" 2\n
T h X T =50 =6)"

So the sequence of partial sums is uniformly Cauchy, thus showing that the
series converges uniformly everywhere on 7.

wir

(2.6.6) Let K C R be compact. Is K the support of a continuous real
or complex-valued function? If it is, show how to construct
such a function; if it isn’t, describe which compact sets are
supports of continuous functions. Does your answer apply to
other topological spaces?

Answer. In general, no. The following reasoning applies to any metric space.
If K = supp f, then by definition K = {|f| > 0}, so K is the closure of its
interior (the set {|f| > 0} is open by continuity of f). Conversely, if V' is an
open set with compact closure K, define
flz) =d(z,V°) = inf{d(z,y): ye V]
We have for any y € V¢ and any 2
dz,y) +d(z,2) = dy, 2) = f(z), d(z,2)+d(zy) = d(z,y) = f(z)
As we can do this for any y € V¢, we obtain
f@)+d(x,2) > f(2), d(z,2)+ f(z) = f(2),
which combine into
[f(z) = f(2)] < d(z, 2).
So f is continuous. For any z € V, since V is open, f(z) > 0. So V C supp f.
As flye = 0, we get that supp f = V.
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(2.6.7) Let X be compact Hausdorff, and f € C(X). Suppose that
f(z) #0 for all z € X. Show that 1/f € C(X).

Answer. Let g = |f|, and fix € X. Since g(z) > 0, there exists a neigh-
bourhood V. of z such that g(y) > @ for all y € V. We have X C |, Vz,
so by compactness there exist x1,...,xz, € X with X C U?zl Vi;. This
means that if ¢ = L min{g(z;),...,g(z,)}, then g(x) > ¢ for all z. That is,

2
|f(x)| >c>0forall z € X. Now

LU W) F@] L
7wl = e S W - SE
As f is continuous, given € > 0 there exists a neighbourhood V' of x such
that | f(y) — f(z)| < ce for all y € V. Then

ol <L) - @) <

7@ -

for all y € V, and so 1/f is continuous.

(2.6.8) Let X be a locally compact Hausdorff space. Show that the
following statements are equivalent:

(a) every f € Cp(X) is constant;
(b) X is a singleton.

Answer. If X = {xp}, then f = f(xo) for all x € X. Conversely, suppose
that z1,29 € X with x1 # z2. Applying Urysohn’s Lemma to K = {1} and
V open with z; € V and x2 ¢ V, there exists f € Co(X) with f(x1) =1 and
f(xo) = 0; hence f is not constant.

(2.6.9) The goal of this exercise is to consider an alternative proof
of Lusin’s Corollary 2.6.13 in the case where X is a metric
space. Concretely, we want to show that if f : X — C is
measurable then for every ¢ > 0 there exists K C X compact,
with (X \ K) < ¢, and g € C(X) such that g|x = f|x and
1flloo = llglloo-

(a) Assume that f is real-valued. Show that because p is inner
regular, the proof Theorem 2.6.11 can be repeated with
“compact” in place of “closed”.
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(b) Fix ¢ > 0 and let K be the compact subset obtained in
the modified version of Theorem 2.6.11; that is, K C X is
compact with u(X \ K) < € and such that f|x continuous.
Conclude that f is uniformly continuous.

(c) Define the modulus of continuity w of f, to be the function
wy : [0,00) = [0, 00) with
wi(t) = sup{|f(y) — f(@) - 2,y € K, d(x,y) <t}
Show that |f(z) — f(y)| < wi(d(zx,y)) for all z,y € K, that

w1(0) = 0, and that w is non-decreasing and continuous at
0.

(d) Let
e
w(t) = " /t wi(s)ds.

Show w is continuous, that we can define w(0) = 0 while
maintaining continuity, and |f(z) — f(y) < |w(d(x,y)) for
all z,y € K.

(e) Define
g(x) = nf{f(y) + wld(z,y)) : y € K}. (2.6)
Show that g is continuous and that g|x = f|x.

(f) Show that if f is complex-valued, a continuous function g
as above exists for f.

(g) If || f|loo < 00, show that g can be replaced with hog, in the
sense that there exists a continuous function H : C — C
such that ||k o g|leco = ||f]lco, and h o g is still a continuous
function that agrees with f on K.

Answer.

(a) Because p is inner regular, the inner regularity by closed sets in Theo-
rem 2.6.11 can be replaced with inner regularity by compacts. Then the
closed subsets produced in the proof will be compact.

(b) A real-valued function f on a metric compact set K is uniformly contin-
uous by Exercise 1.8.17.

(c) By definition, if we take ¢ = d(z,y) then wi(t) > |f(x) — f(y)]. When
t = 0 the inequality d(z,y) < 0 forces z = y, and then w;(0) = 0. When
we increase t more pairs x,y because possibly available, so the supremum
is greater; therefore w; is non-decreasing. As for the continuity, fix £ > 0.
As f is uniformly continuous on K, there exists ¢ > 0 such that d(z,y) < ¢
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implies |f(z) — f(y)] < e. Soif 0 <t < §, then wy(t) < &; that is, wy is
continuous at 0.

(d) Since wy is continuous at 0, given € > 0 there exists § > 0 with wy(t) < ¢
when 2t < §. Then, for such ¢,

Lo Lo
w(t) == wi(s)ds <e= lds =e.
t )y t )y

This shows that lim;_,ow(t) = 0. For ¢ > 0, as f is bounded on K we have
that w; is also bounded, and then w depends continuously on ¢. Namely,

co-3( [ )

and the integrals are continuous because

t+h t t+h
‘/ w1 —/ w1 / w1
0 0 t
Finally,

1 2d(z,y)
w(diw) = o | L s 2 wdy) 2 17@ - W)

(e) By definition, g(z) < f(x) when z € K. And since

fy) +wld(z,y) = fy) + f(@) = fly) = f(2),
g = f on K. As for the continuity of g, we proceed as follows. Since K
is compact, the function K 3 y — d(z,y) is uniformly continuous and
hence bounded, say d(z,y) < ¢ for all y € K. As the interval [0, ] is
compact, the function w is uniformly continuous on [0,¢]. Fix z € X and
€ > 0 and choose § > 0 such that

< hflwn oo

|s —t] <6 = |w(s) —w(t)| <e, s,t €0, (]
and
dly,y') <6 = [f(y) = W)l <e, y.y € K.
Suppose that d(z, z) < 6. Then
|[d(z,y) — d(z,y)| < d(z,z) <0, y e X.
For any y € K,

[f(y) + wld(z, ) = [f(y) +wld(z,9)]| = lw(d(z,y)) —w(d(z,y))| <e.
By definition of g(x) there exists y € K such that f(y) + w(d(z,y)) <
g(z) + €. From (2.6) we have

9(2) < F() +w(d(5)) < F) +w(d(z,y)) +e < gla) + 2.
So g(x) — g(2) < 2e. Exchanging roles and combining both inequalities
we get that |g(z) — g(2)] < 2e, and hence ¢ is continuous. .
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(f) Suppose that f = f; + ifs, with f1, fo real. Fix ¢ > 0. By the real part
of the theorem, there exist K, Ko compact with u(X \ K;) < §,j=1,2,

and functions fi, fo € C(X) with filk, = filx, and fo|k, = fo|k,. Let
K = KN Ks. Then K is compact, and

X\K=X\(K1NKy)=(X\K;)U(X\ Ka).
So .-
u(X\K)<§+§=5.
Put g = fi +ifs. Then g € C(X) and g|x = f|x-
(g) If || flloo < 00, consider the function h : C — C given by

) Tew, r< o
i { sl

[fllso €™ >[I flloo

The function h is continuous, so we may replace g with h o g. This keeps
all requirements for g, and it satisfies |k o g|loc = || f]|co-

(2.6.10) This exercise sketches the constructive proof of Lusin’s Theo-
rem (Corollary 2.6.13) given in | , Theorem 2.24]. Prop-
erly, the statement to be proven is that in the situation of
Corollary 2.6.13, when the measure space is complete and the
measure p is outer and inner regular, if there exists A € A with
u(A) < oo and f|x\a4 = 0, then for every ¢ > 0 there exists
g € C.(X) and B € A, such that u(X \ B) <e¢, f =g on B.
If || flloo < 00 we can choose g with || f|lcc = [|9]]cc-

(a) Assume A compact and 0 < f < 1. Show that there exists
V open with V' compact and A C V.

(b) Show that there exists a sequence {s,} of simple functions
with s, ' f uniformly, and such that

Sn(X)C{ meN}

ﬁ
on’
and
sn(z) — sp_1(z) € {0,27"}, x € X.
(c) Define simple functions {t,} by
ty = s1, tn = Sn — Sn—1, nel+N.
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Show that, with sqg = 0,

Y tn=f.
n=1

(d) For each n € N, let T, = ¢,1({27"}). Show that T, is
measurable, and T,, C A C V for all n.

(e) Show that for each n there exist K,, compact and V,, open,
with K, C T,, C V,, C V and with u(V,, \ K,,) < ==, and

on
gn € Ce(X) with gn|i, =1,0< g <1, and suppg, C V,.

(f) Define
9= ZZ_ngn-
n=1
Show that 0 < g, <1, g € Co(X), and B € A with p(X \
B) <eand f=gon B.

(g) Extend the result to arbitrary A measurable and arbitrary
I

Answer.
(a) Lemma 2.6.4 gives us V open, with V compact and A C V.

(b) Because f is bounded and non-negative, Theorem 2.4.13 provides a se-
quence {s,} of simple functions with 0 < s, < s,,41 < f for all n, and
with s, /' f uniformly. The construction in the proof guarantees that s,
only takes values of the form m /2", and also that s, — s,_1 can only take
the values 0 and 27".

(¢) We have
0o N
2t = i D (on =) = Jim o = 1

(d) T, is measurable because t,, is and singletons are closed in R. Also, T;, C
A C V since t,(x) > 0 implies f(x) > 0.

(e) For each n, by the regularity of the measure, where exist K, compact and
Vi, open, with K,, C T,, C V;, and u(V,, \ K,) < 5. We may also assume
that V,, C V, by replacing V,, with V,, N V. By Urysohn’s Lemma there
exists g, € Co(X) with gn|k, =1, 0< g <1, and supp g, C V.

(f) We have

9= 227719”.

n=1
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As 0 < g, < 1, the series converges uniformly and so g is continuous.
Since g, = 0 on V¢, we have that suppg C V, and so g € C.(X). Let

B =V \ K.

Then u(B') <e. Ifx e X\ B = ﬂV,f U K, then for each n we have

that x € VSorax € K,,. If z € V¢, then g, =0 and ¢, = 0; and if x € K,
then g, = 1 and t,, = 27"™; in both cases, the corresponding summands in
the series for f and g agree. So f =gon X\ B’. Weput B= X\ B'.

(g) Now we assume that A is just measurable, and still 0 < f < 1. Since
1(A) < oo, by the outer regularity there exists V' open with V' C A and
p(V'\ A) < e/2. By the inner regularity there exists K compact with
K Cc Vand pu(V \ K) < €/2. By the first part of the proof, applied to
f 1k, there exists g € C.(X) and By measurable with u(Bg) < /2 and
g=fon KNB§. As f=g=0o0nV¢

{f#9} CBoU(V\K).
Taking B’ = By U (V' \ K), we showed that f =g on X \ B’ and

u(B') < p(Bo) + w(V\K) < -+ 2 =e.

Then we put B= X \ B’.

When f non-negative and bounded, 0 < f < ¢, we apply the above to
fle

When f > 0 and unbounded, let H,, = {f > n}. The measurable sets
{H,} form a decreasing sequence of sets of finite measure (since H, C A);

and on ﬂ H,,, f would have to take the value co. As this is not possible,

the meagure of the intersection is 0, and by continuity of the measure
w(Hy) — 0. This allows us to choose n so that u(H,) < /2 and f is
bounded on the complement. We apply the previous part of the proof to
f on H,: so there exists g € Co(X) and By C HS with u(Bp) < €/2 and
f=gon HE\ By. Then B’ = H, U By satisfies u(B’) < ¢ and f = g on
X\ B'. Weput B=X\DB.

When f is real valued, we can write f = f+— f~, and use the previous
part of the proof to find ¢1,92 € C.(X) and Bj, Bs measurable, with
w(Bj) < ¢e/2,and ft =gy on X \ By and f~ = go on X \ By. Then if
B’ = B1 U By, we have u(B’) <eand f = g1 — g2 on X \ B’. And again
we put B =X\ B

When f: X — C, we write f = f1 + ifa, with fi, f5 real-valued, and
apply the previous paragraph.
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If || flloo then |f| < c a.e. for some c. Define v : C — C by
z, 2] <¢
V(z) =

cz/lzl, |z > ¢
and replace the g previously obtained with v o g. By construction ~ is
continuous, so yo g € C.(X). Whenever g = f, we have yog = g = f;
and clearly |hog| < ¢. As we can do this with ¢ = || f||cc, we get that
170 glloe = [1.f lloo-

(2.6.11) Determine where in the proof of Egorov’s Theorem 2.6.16 is
the condition p(E) < oo used.

Answer. When using continuity of the measure in the proof, what one gets
is that u(E) = lim,, u(EM); the complete computation is then

WE\E) = p(E) — p(E) —— 0.

(2.6.12) Let (X, M, u) be a positive measure space. We use the follow-
ing notation, that will be introduced formally soon: L!(u) is

the set of integrable functions; and || f|1 = / |fldp. A set
X

® C L'(u) is said to be uniformly integrable if for each & > 0
there exists § > 0 such that

/ fd,u‘ <e (2.7)
E
whenever f € ® and u(F) < 4.

(a) Prove that every finite subset of L!(u) is uniformly inte-
grable.

(b) Prove the following convergence theorem of Vitali: if
(i) u(X) < oo;
(ii) {fn} is uniformly integrable;
(iii) fn(z) = f(z) a.e;
(iv) |f(z)] < 00 a.e;
then f € L'(n) and || fn — flli — 0.
Suggestion: Egorov.
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(c) Show that (b) fails for the Lebesgue measure on R, even if
| f=ll1 < ¢ for all n. So the finite-measure hypothesis cannot
be omitted.

(d) Show that for a measure space X with finite measure, Vi-
tali’s Theorem (b) implies the Dominated Convergence The-
orem.

Answer. Note first that we can replace the condition (2.7) with

/ |fldp < e. (AB.2.6)
B

Indeed, if f is uniformly integrable, we may apply the definition to the sets
En{f>0}and EN{f < 0} to obtain that both f* and f~ are uniformly
integrable. And then |f| = f* + f~ is also uniformly integrable by using &/2
and the least § between the one from f* and the one from f~.

(a) Consider first a single f € L'(u). If X,, = {|f] < n}, then f — flx, —
0 pointwise (because |JX,, = X up to a nullset by (2.6.12(b)iv)). By
Dominated Convergence,

Ilf—flx,|li—0.

Fix ¢ > 0. By the above there exist n € N, g € L!(p), with |g| < n, and
with [|f — gl < §. Let 0 = ¢/(2n). If u(£) < J, then

[intaus [ 1= gldn-+ [ loldi< 5+ nu(e) <
E E E

So f is uniformly integrable. If & = {f1,..., fn}, for each j there is a §;
as above. Now choose § = min{éy, ..., }.

(b) Fix € > 0. Since {f,,} is uniformly integrable, there exists § > 0 such that
[z |fnl < /3 when pu(E) < 6. By Egorov, there exists measurable B C X
with p(X \ B) < § and f,, — f uniformly on B. So choose ng such that
|fn — fl < e/(Bu(X)) on B when n > ng. Then, for n > ng (and using
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Fatou at the end),

IIfn—f||1Z/XIfn—fIdMZ/Blfn—fdu+/X\B|fn—f|d/~L

3
<o [ et [ Aaldus [ ifld
3M(X)/B X\B| | X\B| |

<S4+ % 4 liminf | frnl du
373 e

& g E
< Z — - =
3T3t3=¢

As ¢ was arbitrary, this shows that | f,, — f||1 — 0 and that f € L' (since
L' is complete).

(c) Let
1
fn(x) = — 1[0 n]
Then lim,, f,,(x) =0 for all z. leen e >0, if u(E) < e then
R

So the {f,} are uniformly 1ntegrable. Also, ||fn]l1 = 1 for all n. Thus
Il fn — fll1 =1 for all n, contradicting Vitali’s Theorem.

(d) The situation for Dominated Convergence is that |f,| < g for some g €
LY(p). By (2.6.12(b)i), the function g is uniformly integrable. Then since
S fuldp < [ gdp for all E and all n, the sequence {f,} is uniformly
integrable. From |f,,| < g for all n we obtain |f| < g. As g is integrable,
we get that |f| < oo a.e. Then the four conditions in Vitali’s Theorem
apply and we obtain that f € L'(u) and || f, — f|l1 — 0.

2.7. Product Measures

(2.7.1) Write another proof for Proposition 2.7.2 by showing the set
S={ECXxY: E,eB, EYe A forallze X, yeY}.

is a o-algebra that contains the measurable rectangles.
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Answer. Since (A x B), is either B or & and (A x B)Y is either A or &,
A x B € S whenever A € Aand B € B. For any E € S,

(B9 ={yeY: (z,y) ¢ E}={ycY: (x,y) € B} = (E;)° € B,
and similarly (E€)Y = (EY)¢ € A. So S contains complements. If {E,} C S,

(UEn>x={y€Y (,y) UE}
:U{er: (.C(J,y)eEn}:U(En)xeB

and similarly the y-section of a countable union is the union of the y-sections
and so in A. Thus § is a o-algebra that contains all measurable rectangles
and so AL B C S. In particular, E, € B and EY € A for all measurable E.

(2.7.2) Let E,E, C X xY for k € N, and € X. Show that
(Ur),-Ueee  (15), e
k k k k

and
(Ec)m = (Em)c

Answer. If y € (Ey), for some k, this means that (z,y) € Eji. Thus
(x,y) € Uy, Ex, showing that y € (Uk Ek) . All the implications we just did

are reversible, so this proves that

(U&L:U@W~

Now if y € (E),, then (z,y) € E° so (z,y) ¢ E, and hence y ¢ E,. Thus
(B, C (E;)° Again the implications are reversible, and this shows that
(B = (Eg)°.

As for the intersections, combining the other two properties

(), = (=), = [(U=)], = (Un.)
- (Ursr) = () =
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(2.7.3) Show that every o-finite measure p is semifinite (see Exer-
cise 2.3.26). Show also an example of a semifinite measure
that is not o-finite.

Answer. Suppose that p is o-finite. This means that we can write X =
U,, Xn, with u(X,) < oo for all n, and X,, C X, for all n. Let E be
measurable with p(E) = co. Since E = J,,(F N X,,), by continuity of the
measure we have p(E) = lim, u(E N X,). So there exists n such that u(E N
Xp) >0, and also p(EN X,) < p(X,) < oo.

As an example that the reverse implication fails, let X = R and p the
counting measure. Then every nonempty set contains a point, which has
positive finite measure. But the space is not o-finite, since R is uncountable.

(2.7.4) Let X and Y be separable metric spaces. Show that B(X x
Y)=B(X)EBY).

Answer. We may generate the product topology with the metric
d((a,b), (¢,d)) = dy(a,c) + dy (b, d).

This way we can see that X x Y is a separable metric space, and that for
any open set Z C X x Y and any (z,y) € Z there exists an open rectangle
V x W with (z,y) e VxW C Z.

Let {g,} C X, {pn} C Y be dense. Then {g, X gm}tnm C X XY is
dense. Given any open Z C X X Y, combining what we have just seen we
can find for each (g,,pm) an open rectangle V,, ,,, x W, ,,, with (pp,qm) €
Vaom X Wiom C Z. So Z is a countable union of open rectangles. This
shows that B(X ) B(Y) is a o-algebra that contains all open sets, and thus
B(X xY)cCB(X)EB(Y).

The reverse inclusion holds without the separability (nor metric) re-
quirements. If V.C X and W C Y are open, then V x W is open in X x Y
and hence V x W € B(X xY). Let

S={ECX: ExYeB(XxY)}

Since B(X x Y) is a o-algebra and all set operations will happen in the first
coordinate, it follows easily that S is a o-algebra. As V xY € B(X xY) for
all open V C X, we have that S is a o-algebra that contains all open sets in
X. Thus B(X) C S. In particular, E xY € B(X xY) for all £ € B(X).
We can similarly show that X x F € B(X xY) for all F € B(Y). Then
ExF=(ExY)N(X x F) € B(X xY). Thus the o-algebra B(X x Y)
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contains all rectangles E x F with E € B(X), F € B(Y); this shows that
BX)HB(Y)CB(X xY).

(2.7.5) Show that for any € > 0 there exists V' C R", open, dense, and
with m (V') < e. Then answer the following questions:

(a) Does the measure of an open subset of R™ agree with the
measure of its closure?

(b) Is the measure of the boundary of every open subset of R"
zero?

Answer. The set Q" is dense and countable. Write Q™ = {qi }xen. Given
€ >0, let

V= Borropelar),
k=1
where ¢ = m(B;1(0)). Then V is open, dense (since it contains Q™) and
m(V) < e. As the closure of V is all of R", we have m(V) < e and m(V) = oo.
Similarly, as every point in R” is a boundary point for V| the boundary of V'
has infinite measure.

(2.7.6) Show that, in R x R, the set

ﬂU[ — k} ={(z,2): 0<x <1}

n k=1

is not a countable union of rectangles (measurable or not).
Conclude that the set of countable unions of rectangles does
not form a o-algebra.

Answer. If A x B is a rectangle with both A and B having at least two
elements a1,a2 € A, b1,ba € B, then {(a1,b1), (a1,b2), (az,b1), (az,b2)} C
A x B has different points that share a coordinate. That does not happen on
{(z,z) : x}, so it cannot contain a non-trivial rectangle. So we are left with
only rectangles of the form {z} x {z}, but then we need uncountably many
of these to cover the whole diagonal.

(2.7.7) Let (X, A, u) and (Y, B,v) be measure spaces and {A x Bi} a
countable family of rectangles. Use Lemma 2.7.4 to show that
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there exists a pairwise disjoint countable family of rectangles
{4}, x By} such that

UAQCXB]/C:UAkXBk

k k

ST u(AV(BL) < 3 a(Av(BY).
k

k

and

Answer. Let S; = A; x By and
k

Sk:(Ak XBk)\ USJ

j=1
By Lemma 2.7.4 each S is a finite disjoint union of rectangles Sy = U Ch,j %
J
Dy, ; with {Cy ;}; pairwise disjoint for each k. Then

UAk X Bk = USk = Uck,j X Dk,j
k k k,j

as a disjoint union. Because S is a disjoint union of rectangles and Sy C
Ay x By, it follows that C ; C A, Dy ; C By, for all j. Then, because they

are pairwise disjoint,
ZM Crj) = Uciw < w(Ag).

All terms are non—negatlve SO

Zu (Crj)V(Drj) <> p(Crj)v(Br) < p(Ag)v(Bi)

J

ZMC}CJ ij <Z,LLA]C v(Bg).

Finally, we relabel {Olm x Dy ;} as {4}, x B,’C}

and hence

(2.7.8) Show that m x m is outer regular.

Answer. Let E € M(R x R). Fix € > 0. By Lemma 2.7.7 there exists a
countable union of rectangles R such that E C R and (m xm)(R\ E) < /2.
We may assume without loss of generality that R = | J, Ry, with all rectangles
disjoint (we did this in the proof of Proposition 2.7.5). Now Ry = Ay X By,
with Ak, By € M(R). By the outer regularity of m (Corollary 2.3.26) there
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exist open sets Vi, Wy with Ay C Vi, B, C Wy, and m(Vy \ Ax) < /g/2k+1
m(Wy, \ Bg) < \/2/2F1. Then V = |J,, Vi x W}, is open and

(m x m)(V \ R) = (mxm)(U (Vi x W) \ URk)
k
< moxm) (Ji x W)\ i)

k

= (mxm)(JVe \ 40) x (Wi \ B))
k
gy
k

Finally, we have that £ C V and
(mxm)(V\E)=(mxm)(V\R)U(R\E)) <

w\m
IR
Il
™

(2.7.9) Let (X, A, ) and (Y, B, v) be measure spaces. Let f : X xY —
C be AL B-measurable. Show that the sections f,, and fY are
measurable.

Answer. Let V C C be open. Then
V) ={yeY: fla,y) e Vi={yeY: (z,y) € T (V)}

By Proposition 2.7.2 we conclude that f (V) is measurable.

(2.7.10) Let (X, A, ) and (Y, B,v) be complete measure spaces, and
f: X xY — C measurable. Show that the sections f, and fY
are measurable a.e.

Answer.  Given V C C open, we have that f~}(V) € M(X xY). By
Lemma 2.7.7 we can write f~1(V) = FUG with F € AL B and G a nullset.
Then

(f) V) ={yeY: fla,y) e V}=(T'(V)e = (FUG): = F; UG,

Now F, is measurable by Proposition 2.7.2 and, by the completeness, so is
G, by Lemma 2.7.9. Then f, is measurable p-a.e., precisely where G, is
measurable.



124 CHAPTER 2

(2.7.11) Show an example of an M (X X Y)-measurable function f such
that f, is not measurable for = in a set of positive measure.

Answer. Since every measure can be completed, there is no way to make this
exciting, as we can only play with sets that are equal a.e. with measurable
sets.

Take for instance X = Y = R with Borel measure; that is, we consider
the Lebesgue measure but we take B(R) to be our o-algebra in each of X and
Y. Choose H € M(R)\ B(R), and put F = [0,1] x H. Then F € M(R x R);
to see this, note that by Proposition 2.3.28 we can write H = B U Hy, with
B € B(R) and m(Hy) = 0. Then

E = ([0,1] x B)U([0,1] x Hy) € M(R x R),

since both sets in the union are measurable (the first one is Borel while the
second one is a nullset). Now take f = 1g. Then f is measurable, as E is.
But for z € [0, 1],

(f2)71(0,2) ={y: (z,y) € E} =H,

so fy is not measurable for all z € [0, 1].

(2.7.12) Let (X, A, u) be a measure space. Show that the following
statements are equivalent:
(a) there exist {X,,} C A, pairwise disjoint, with u(X,) < co
for all n and X = UXn;

(b) there exist {X,,} C A, with X,, C X,,11 and p(X,) < oo
for all n, and with X = UX"'

. J

Answer. Suppose first that {X,,} are pairwise disjoint, with finite measure,
n

and X = UX"' Let Y, = U X € A. Then p(Y;,) < >0, i(Xk) < oo, and

n k=1

xoJvo X, =x,
n n

SOX:UY”‘
n
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Conversely, suppose that X = UX" with X,, C X,,41 and u(X,,) < oo

for all n. Let Y7 = X; and inductivel; let
n—1
Yo =X\ | X
k=1
Then the Y;, are pairwise disjoint by construction. Also, u(Y,) < u(X,) < oo
for all n. And, given any x € X there exists n such that € X,,, which implies
that € Y U---UY,. Thus X =J,, Y.

(2.7.13) Let f : RY — C be integrable. Show that

ft)ydm(t) = flz —1t)dm(t), r R (2.8)
Rd R

Answer. This can be done using Exercise 2.5.7, but we will write an explicit
argument.

Assume first that f = 1p for some measurable E with m(E) < oo.
Then, using that Lebesgue measure is translation and reflection invariant,

/}RdlE(x—t)dt:/ 1””’E(t)dt:m(x_E):m(E):/RdlE(t)dt.

Rd
By linearity, it follows that (2.8) holds for f simple. We can then use Mono-
tone Convergence to obtain the equality for f > 0, and then it will hold for
f = fT — f~ by linearity of the integral.

(2.7.14) Use Fubini’s Theorem and the equality

o 1
/ e dt==, x>0,
0

X

* sinz T
dr = —.
0 x 2

Note that x — % is not integrable.

to show that

Answer. There is a bit of a subtlety in that the integral exists as an improper
Riemann integral, and not as a Lebesgue integral. By definition,

> sinz Zkm sinz
dr = lim dx.
0 x k—oo 0 x
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Looking at the iterated integral of the absolute value,

2km  poo 2km oo
/ / |sinz e | dt do = / | sin z| / e "t dt dx
0 0 0 0

2k | sin x|
= / ———dr < o0,
o x

since % is continuous on [0, 2k7]. As this iterated integral of the absolute
value converges, by Fubini the double integral exists and is equal to the
iterated integrals. Thus

blnx 2km 2km
/ / / sinxe ”“tdtdx—/ / sinxe™ " da dt
0
_ —2k7rt
= ———dt.
/0 1+¢2
Since the integrand is nonnegative and bounded by the integrable function
t— by Dominated Convergence we get

1+t27

. 00 00
S - . 1— —2k7rt 1
/ ST gz = lim 72d —/ ﬁdt:z.
0 x k—oo Jq 1+t 0 1+t 2

(2.7.15) Let f : X — [0,00) be measurable. Use the layer-cake repre-
sentation (2.5) to conclude that

/fdu/ w({f > 1)) di

Answer. We use (2.5) and Tonnelli to get

/fdu // 1 1100) (5) dt dpa(s //1f1m ) du(s) dt

:/O u(f 11t o0 >>dt—/0 w({f > ) dt

(2.7.16) Let (X, A, 1) be a o-finite measure space. Let f : X — [0,00)
be measurable.

(a) Show that the graph of f is a (u X m)-nullset.
(b) Show that if
B={(z,t) eX xR: 0<t< f(x)}
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then (u x m)(B) = /X fdu.

(c) Does the above work if we replace the codomain with an
arbitrary measure space?

Answer.

(a) The graph of f is the set G = {(z, f(z)) : = € X}. It is measurable
because the function g(x,t) = f(z) — t is measurable (since it is a linear
combination of measurable) and then

G =g '({0})
is measurable.
Note that 1g(z,t) = 1 if t = f(z), and zero otherwise; so the set
{t: 1g(z,t) = 1} consists of the single point f(z). Using Tonelli, we have

Grxm)@) = [ Aadgxm) = [ [ 16.0)dm(e) duto)

X xR

:/ 0,du = 0.
b's

Below is a second argument without Tonelli. If X = (J, X, with
w(Xn) < oo, then G = |J,, Gy, where G,, is the graph of f|x,. Hence
we can assume without loss of generality that u(X) < oo. Similarly, we
can partition [0,00) = |J,,[n,n + 1), which allows us—again without loss
of generality—to assume that f(X) C [0,1]. Fix k € N and let {I;} be a
dyadic partition of [0, 1]; that is, m(I;) = 27 for all j. Then

(nxm)(@) = (uxm) (UGN (X x 1)) = 3 (0 xm)(@ N (X x 1))

J

< Z(M xm)(f~H(I;) x I;) = Zu(ffl(fj)) m(1;)

=278 3 ) = 27 ().

As this can be done for any k, (1 x m)(G) = 0.

(b) With the same g as above, B = g~1[0,00) is measurable. Then we can
use Tonneli to see

(uxm)(3)=/ 1 d( x m) = //1thdm()du()

= [ mi: 0<t< f@Yduto) = [ 1@ duta
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And here is an argument without Tonelli. Suppose for a moment that
(X)) < oo. Suppose first that f = 1. Then

B={(z,t): 0<t<lg(z)} =Ex(0,1),
and
(4 m)(B) = p(E) = /X Ly dp.
When f =3, a;lg; is simple,

B = UEJ X (0,0lj),
J

(o m)(B) = 3 ayu(Ey) = [ d
J
Now assume that f is bounded. Given £ > 0, there exists s = > j alg,
with |s(z) — f(x)| < € for all z. Since s < f, we have B; C By. Then
(n>xm)(By) = (u x m)(Bs) = (ux m)(Bf \ Bs)
= (wxm)({(z,1) = s(z) <t < flx)}

< (Mxm)(UEj X (aj,oz—i-s))

—€Zu ) =& pu(X).

It follows that if {s,} is an increasing sequence of simple functions that
converge uniformly to f, then by Monotone Convergence

(;Lxm)(Bf)—hm(uxm —hm/ Spdp = /fd/i

When f is unbounded, let f, = min{f,n}. Then f, is measurable and
fn /' f. We have By, C By, ., for all n, and By = J,, By, . By continuity
of the measure and Monotone Convergence,

(e m)(By) = timGo x m)(By,) =tin [ pau= [ fan

Finally, for arbitrary o-finite X we have X = J,, X,, with pu(X,) < oo for
all n and X, N X,,, = @ if n # m. Then

(5 m)(B) = 3 x m)(B Z/ fin= [ fan.

n

and then

(c) Let X =Y = N with the counting measure. Any function is measurable.

Let f: X — Y be the function f(z) = 1. Then the graph of f is N x {1}
and (p x p)(N x {1}) = oo x 1 = co. The integral equality requires R
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on the codomain for the integral to make sense. Consider X = R with
w = m, and the counting measure on the codomain. Let f(z) = x. Then

(m % 1)(B) > (m x p)([1/2,1] % [1/2,1]) = 5 pu([1/2,1]) = o0,

but/ fdmf—

(2.7.17) (Polar Coordinates in R™). Let S,,_1 be the unit sphere on R™
(i.e., those u with |u| = 1). Show that any nonzero z € R™ can
be written = ru, with r > 0 and v € S,—1. Thus R™\ {0}
can be seen as the cartesian product (0,00) X Sp_1.
Let m be the Lebesgue measure on R", and define a
measure o on the Borel sets of S,,_1 by

a(A) =nm(A),

where A = {ru: 0 <7 <1, u € A}. Show that for every
Borel f >0,

/]R"fdm / / r* L f(ru) do(u)dr. (2.9)

Hint: if AC S,—1 isopen and 0 < ry < g, let £ = {ru:
ry <r <rg, u€ A}. Show the equality for 1z, and then pass
to characteristics of Borel sets.

Answer. For any nonzero € R, we have = = |z| (z/|z|). Note also that
for any measurable X C R"™, and any r > 0, we have m(rX) = r"m(X).
This can be seen by calculating the outer measure (the covers for rX are
precisely r™ times the covers for X) or by using the corresponding property
for the 1-dimensional Lebesgue measure and considering the n-dimensional
Lebesgue measure as the product measure.

Let A and E as in the hint. We have, since 1"1121 C rgfi when rq < rg,

/n lgdm =m(E) = m(roA\ r1A) = m(ryA) — m(ri A) = (r — rM)m(A).

On the other hand, since ru € E if and only if 1 <7 < ry and u € A,

/ / "M g (ru) do(u dr—/ "1/1dadr
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So (2.9) holds for such E when A is open.

For any x € E we have x = ru, u € A. As A is open, there is a ball
By (of dimension n — 1) in A with u € By; so « € (r1,72) X By, an open set.
Then there exists a ball B in R™ with € B C (r1,72) X By; showing that F
is open.

Let V' C R™ be open and bounded, say V' C Bgr(0); assume also that
m(V) = m(V). This last condition happens for instance when V is a finite
union of balls and can fail for countable unions (proof of both facts at the
end).

Given 0 < r; < 19 let
U(Th’l‘g): U (lV)ﬂSnfl.

t
te(ry,r2)

Each U(ry,r2) is open in the relative topology of S,,_1 since it is a union of
open sets. For each n € N define
on

En:U{'r'u: MST<kR

(k—1)R kR
. B (DR KRy

on 7 gn

Each F,, is a finite disjoint union of sets where (2.9) holds, so by additivity
of the integral we get (2.9) for each FE,. Since Uy C U; when I C J, the
sequence E, is decreasing. Now we claim that, with X, either {0} or the
empty set

Vc XqU ﬂEn cV (AB.2.7)

(proof at the end). Our hypothesis about the boundary of V' implies that
ly = 13 a.e. By (AB.2.7) and continuity of the measure we also have

/1En = m(E,) —— m(V) = /1V. (AB.2.8)

n— o0

As 1g, — 1y is monotone non-increasing a.e., its pointwise limit has to be
0 a.e. (because on the set where the limit is not zero (AB.2.8) fails). Thus
1y = lim, 1, a.e. As 1p, satisfies (2.9), Dominated Convergence (justified
by V being bounded, so we are integrating inside Br(0) and thus any bounded
measurable function is integrable) then gives us (2.9) for 13 and thus for V.

For arbitrary V open we can write V = UB”’ a countable union of

n
n

balls. Putting F;, = U B,, allows us to write V = U F,,, an increasing union
k=1 n
of sets which are finite unions of balls. Each F;, satisfies (2.9) by the previous
paragraph; and then so does V' via Monotone Convergence.
Finally, let B C R™ be Borel. By the outer regularity of the Lebesgue
measure, for each h € N there exists V}, open with B C V}, and m(V}, \ B) <
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1/h. Replacing V41 with V441 NV, we can get the sequence Vj, to be
decreasing. If m(B) < oo, we can apply Dominated Convergence twice to get

/ lpdm = hm ly, dm = hm/ / " 1y, (ru) do(u) dr
R™ R™ Sn—1

// =11 (ru) do (u) dr.

When m(B) = oo we can write it as an increasing union of Borel sets, and
we get the equality (with infinity on both sides) via Monotone Convergence.

So (2.9) holds for all characteristics of Borel sets. Then by linearity
it holds for all simple Borel functions; and by Monotone Convergence the
equality holds for all measurable f > 0.

Proof that for a finite union of balls, the Lebesgue measure of the closure
of their union is equal to the measure of the Union. For a single ball centered
at the origin take A =S,,_; and ry =1 — k, ro =1+ k, which gives us

m(B1(0) \ B1(0)) < m(By 1(0)\ By_1(0))
= [0+ "= = mBio) o

For a finite union of balls we obtain m (V) = m(V) from the unit ball case
by translation, scaling, and finite subadditivity of the Lebesgue measure.

To see that this cannot hold in general for countable unions, let {g,}
be an enumeration of Q N [0,1], fix € > 0, and let V;, = (gn — 57, qn + 57)-
Then if V = J,, Vi, we have

V)<Y mVa) =) 5o =2,

n

while m(V) = m([0,1]) = 1

Proof of (AB.2.7). If tu € V with u € S,_; and ¢ > 0, then for all n
we have u € U ((k’b;nlm, k2;bR ) where {k,} is a sequence of positive integers

such that ¢t € [ 1B kaR) G 1y € B, for all n. ThuchxouﬂE

2n 2n
Conversely, if tu € ﬂ FE,, then for each n there exists k,, € N with ﬂ <
(( nl)R, kgnR) with tu = t,u,. For each u,, there exists

Sn € [(k"Q_,,Ll)R, kZ""R) with s,u, € V. Note that s,, — t since the intervals

squeeze to t. By compactness of §n,1 there exists a convergent subsequence
{tn, } and so tu = lim; s, u,, € V. If 0 € V we will also get Xo = {0} C V.
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(2.7.18) Show that, when n = 2, the equality (2.9) becomes the usual
Calculus polar coordinate change of variable; that is, for f €
C.(R?),

0o 27
/fdm:/ / r f(rcost,rsint) dt dr.
R2 o Jo

Answer. We have

/R2fdm:‘/ooo/51rf(ru)dudr.

We can parametrize S, the unit circle, as (cost,sint) for ¢ € [0, 27]. For an
arc A = (cost,sint) with a <t < b, we have

P b—a
o(A)=2m(A) =2r 5

=b—a.

So o can be seen as the Lebesgue measure on the arc length. As f(ru) =
f(rcost,rsint),

e} 27
/fdm:/ / r f(rcost,rsint)dtdr.
R2 0o Jo

(2.7.19) (Volume of a ball in R™) Let B,.(0) be the ball of radius r, in
R™, centered at the origin.

(a) Show that m(B1(0)) = o(Sp—1)/n.

(b) Calculate / e 171" am using Fubini.

n

(c) Calculate / el dm, using (2.9), in terms if o(Sp_1)
and the Garﬂlﬁ?na Function from Exercise 3.1.6.

(d) Show that m(B,(0)) = r™ m(B1(0)).

(e) Use what you found to write a formula for m(B,(0)).

(f) Let C,, C R™ denote the hypercube of side 2 centered at
the origin, and B,, C R”™ the ball of radius 1 centered at
the origin. Show that lim,_, . % = 0.  This result
is not so anti-intuitive when you notice that diam B,, = 2,
while diam C,, = 2y/n. Another way of seeing it as natural
is that the unit ball cannot touch the areas near the corners

of the cube. The square has four corners, the cube has eight
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corners, and in dimension n the hypercube has 2" corners.
So as dimension grows, there are more an more parts of the
cube that cannot be touched by the ball.

133

Answer.

(a) We have, using the previous question,

m(B1(0)):/]R 1B (0) dmz/ r"_l/ 1B, (0)(ru) do dr
" n—l

/ ”1/ 1d0dr—7( n1)

Alternatively, we can note that By(0) = Sp1.

2

(b) By Fubini, and using that e~ 12 = ¢=1 ... ¢~

/ e~ dm, = </ e_t2dt> = 7"/2,
n R

(c) Now, using the substitution s = 2,

/ elol" dm = / " 1/ e 1 do (u) dr
RrR™ Sn—1
/ " 1/ e " do(u) dr

oo
:a(Sn,l)/ rnler dr—J(S"*l)/ e
2
0 0

_ U(Sn—l) E
== I( 5 ).
(d) This is the same as in the previous question:
m(B,(0)) = m(r B1(0)) = r" m(B1(0)),
using the outer measure (or approximating from within by boxes).

(e) Now

n 271'71/2 n/2 rm

m(B.(0)) = r" m(B1(0)) = — 0(Sn-1) = TG7) = TE T

(f) Since m(Cy,) = 2™, we are doing
n/2

lim —— < i
n1—>oo 2”1—‘(" + 1) - n1—>Holo 2n

7.l_n/2

=0

as /r < 2.
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(2.7.20) Let o > 0, n € N. In R™, evaluate
/ %d:c, and / % dx
jel<1 1| jo|>1 1]

Answer. We use (2.9). Let f(z) = \x\“ 1B,(0)- Then

/a:|<1 || / / . |m‘a 1p,(0)(ru) do(u) dr
/ / . P do(u) dr = nm(By(0)) /Olr”ladr.

n 7z.n/2

/ L e @y 5"
|

[e3
z|<1 “r‘ 00, a>n

Thus

For the integral from 1 to oo, all that changes is the convergence of the integral
on r at the end. So

00, a<sn

1 do — s o
|x\21W v nw—”/n7 a>n
(a—=n)T(§+1)

(2.7.21) Let (X, A, ) be a o-finite measure space and f : X — C mea-
surable. Let w; : [0,00) — [0, 00) be the distribution function

wr(t) = p({lf] > t}).

Prove that
/ |f|p=/ ptP~twe(t) dt, 1<p<oo.
X 0

More generally, show that if 7 : [0,00) — [0, 00) is increasing,
differentiable, and (0) = 0, then

[rvotan= [T wtroa
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Answer. We have, using Tonelli since we have iterated integrals of nonneg-
ative functions,

/’YO|f|du //lf(xn t)dtdu(x // 0 11550y (8) dt du(z)
/ / t) 1 j>43 (t) du(z) dt

- / 2 (&) p{I] > £3) d() dt

2.8. LP-Spaces

(2.8.1) Let (X, A, ) be a measure space. Show that the relation
defined in (2.44) is an equivalence relation. Show that ad-
dition, multiplication, and p-norms of classes are well-defined
by means of their representatives.

Answer. Since f = f everywhere, we have f ~ f. If f = g on A and
1w(A¢) =0, then g = f on A and pu(A°) =0,s0g ~ f. If f ~gand g~ h,
there exist A, B with p(A¢) = u(B¢) = 0 with f = g on A and g = h on
B. Let C = ANB. On C we have f = g = h; and p(C¢) = p(A°U B°) <
u(AC) + u(B¢) =0, s0 f ~ h.

If f ~ f and g ~ ¢’ then there exist A,B with f = f"on A, g = ¢’
on B, and p(A°) = u(B) =0. Les C=ANB. OnC, f+g=f'+¢ and
fg=1g. And u(C%) = p(A° U BY) < p(A°) + p(B°) = 0.

Finally, if f = g on A and p(A°) =0,

/Ifl‘”du:/ Ifl”du:/ Ig\”du:/ lglP dy.
X A A X

(2.8.2) Let p € [1,00] and f € LP(X). Show that {|f|] = oo} is a
nullset.
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Answer. Suppose first that p = co. Then p({|f| = o0}) < u(||f]l > | fllco =
0.
When p < oo, if u({|f] = o0}) > 0 then

anz:/ If\deZ/ P dp = oo,
X {|f|=00}

a contradiction.

(2.8.3) Show that |f| < || flleo a-e.

Answer. By definition, for each n € N there exists A, such that |f]|
| fllcc+1/non A, and u(AS) = 0. Let A = ﬂA Then pu(A°) = mA(

I/\ IN

ZM A°) =0. And on A we have |f| < ||f||oo +1/n for all n, so |f| g 1 #llos

n
a.e.

(2.8.4) Show that if (X, A, 1) is a measure space and {f,} C LP(X),

then
(o] o0
(DI DA
k=1 Pok=1

and the inequality still holds even if one or both sides are infi-
nite.

Answer. We have, using Monotone Convergence and both continuity and
monotonicity of the exponential functions,

(/X(iw)pdu)l/p:(/ KIE%O(ZW) du)
=g ([ o) = o |1,
Klgnw]; | frllp = g:l | fillp-

/P

|25,

IN

(2.8.5) Let p € [1,00). Show that if a € ¢P(N), then a is bounded.
Can we say the same for f € LP(R)?
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Answer. We have
i 1/p
el < (D la®)F) ™ = llal,
k=1

So [lallee < [lallp-
In LP(R) there are unbounded functions. For instance we can consider

0, <0
flz) =271 ze(0,1)
0, z>1

Or
= E 1 .
f(x) el " [n’”+,,Lp1+2j|

(2.8.6) Show that the hypothesis that || f||, < co for some r in Propo-
sition 2.8.11 cannot be omitted.

Answer. Let X = R with Lebesgue measure, and take f = 1. Then || f]|oo =
1, while || f||, = oo fora all p < oo.

(2.8.7) Show that a Cauchy sequence {f,} C LP(X) is uniformly
bounded in LP(X): that is, there exists ¢ > 0 such that || f, ||, <
c for all n.

Answer. This holds in any metric space. Let ¢ > 0. Since {f,} is Cauchy,
there exists ng such that for all n, m > ng we have

an - fm”P <e&.
Then
1 fallp = 1 fmlln] <e
showing that the sequence of real numbers {||f,|/,}» is Cauchy. As Cauchy
sequences in R are bounded, there exists ¢ > 0 with || f, ||, < ¢ for all n.
Another way to answer the question is to use the standard argument
that a Cauchy sequence in a metric space is bounded.

(2.8.8) Show that ¢*(N), 1 < p < oo is separable, while ¢>°(N) is not
separable.
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Answer. With {e;} as usual the canonical basis, let

X:{chej: neN, ¢; € Q+iQ}.

j=1
Then X is countable; let us show it is dense. Given f € ¢P(N), we have
oo oo
f= ijej, where Z |fi]P < oo.
j=1 j=1
Fix ¢ > 0. Choose n such that 3°7° . [f;[P < (¢/2). Choose ¢; € Q +1Q
with [e¢; — f;] < (P /27T1)/P. Then y = 37, ¢je; € X, and

1=yl = |D_(fi —ci)es + Y fies
j=1 j=n=1 ,

i 1/p > 1/p
< (Z|fj*0j|p) +( Z |fj|p)

j=1 j=n+1

oer NP e e ¢
<(le+) tasgty=e

=

On the other hand, ¢*°(N) is not separable. Consider the uncountable
set P(N), and let o : P(N) — £°°(N) be given by a(R) = 1g. That is, we
map R to the sequence = that has z, = 1 if £k € R, and x;, = 0 otherwise.
For any two sets R, S € P(N) with R # S, there exists k € (R\ S)U(S\ R).
Then (1g — 1g)(k) =1 and so ||1g — 1g]lcc = 1. We have uncountable many
points all at distance 1 from each other, and so £°°(N) cannot be separable.

Here is another argument to show that ¢>°(N) is not separable. Assume
that A C £*°(N) is countable. Write A = {a,, : n € N}. Now construct

x € £ by
>1
sy [0 a2
1, Jam(m)| <1

Then |z(m) — an,(m)| > 1, giving us || — a;,|| > 1 for all m. Thus A is not
dense.

(2.8.9) Show that the subspace
coo = {z : N— C, with finite support}
is dense in P(N), 1 < p < co. What about the case p = co?
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Answer. Taking the set X from question (2.8.8), X C cgo, 80
?(N) = X C ego C £P(N).

When p = oo it cannot be dense, again by (2.8.8), since cqq is separable,
so we would have that ¢*°(N) is separable.

(2.8.10) Show that if f € L'(u), then for each & > 0 there exists § > 0
such that / |fldp < € whenever p(FE) < 6. Can § be chosen
B
independently of f?

Answer. The argument we need was already used to answer Exercise 2.6.12.
Fix e > 0. For n € N, let A,, = {|f| > n}, B, = {|f| <n}. We have

1 1 ”f”l
= = — < = < 2=
u(An) / ldu n/ ndy n/n|f|du .

n n

[intda= [ intdns [ i< M)
E ENA, ENB, n
Choose n so that n > 2| f|]1/e, and let 6 = =. Then, if u(E) < 4,

2n°
Il f11 € €
< 202 < = — = €.
/E|f|du_ o —|—nu(E)_2—|—2 €

Here is a slightly different argument, though in the end it uses the
same idea. Given f € L'(u) and ¢ > 0, by Proposition 2.8.16 there exists
g € L>(p) with ||f — gll1 < &/2. If we put 6 = ¢/(2||g||oc), then if u(E) < o
we have

So

3 3 3 3
/Ifldu§§+/ 9l dp < 5+ [[gllon(B) < 5 + 5 =<
E E

The choice of § is intrinsically dependent on f. Consider the functions
fn=n1y 1. Then for E, = [0, &) we have [, fn, =1, while u(E,) = ;. If
we fix £ > 0 with € < 1 and we fix § > 0, then for n > % we have u(E,) < §
while fEn fu>e

(2.8.11) Let (X, A, 1) be a measure space. Let p,q € (1,00) with % +
¢ =1 Let f € LP(X), g € LY(X). Show that the following
statements are equivalent:

(@) [lFgll = 1 f1lpllglly ;
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(b) either f =0, g = 0, or there exists @ € (0,00) with |f|P =
algl?.

(Hint: for the nontrivial part, try to undo the proof of Young’s
Inequality)

Answer. If f =0 or g =0, the equality holds trivially. If | f|? = «|g|?, then
9l = [ Voldu= [ aXglot du = [ it an
b's b's b's

1/p 1/q
||f||p||g||q:( / a|g|%m) ( / Igl"du> R
X X

Conversely, assume that ||fglli = || fllpllgllq- I || flpllglly = O, then either
f=0o0r g=0. So we assume that | f||, > 0 and ||g||; > 0. By replacing
f with f/||fll, and g with g/|lg|lq, we may assume that | fgls = 1 and
1Fll> = llglly = 1. So we have

Joa=1=1 [ 1p+L [ o

We may rewrite this as

L g
o= [ (G1sP+ 2l - 17l

By Young’s Inequality, the integrand above is nonnegative, so from the equal-
ity we conclude that

and

1 1
==|fI"P+ =g/ ae
| fygl , | f] p gl

Now fix an & where the equality holds; writing a = |f(z)[?, b = |g(x)|?, we
have .

at/Ppt/a = Ea—i— b.
p q

Applying logarithm, we obtain
1 1 1 1
- loga+-logb=1log(-a+-0].
p OBAT 08 & (p q )

Because of the concavity of log, this equality can only happen if a = b. So
|f(z)]P = |g(x)]? for all such =z; that is, |f|P = |g|? a.e. Going back to
the original f and g, we get [fIP/[flb = [g|?/llglld a.e., and we can take

a=|£15/glg:
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(2.8.12) Let (X, A, u) be a measure space. Let p,q € (1,00) with % +

% = 1. Let f € LP(X), g € LY(X). Show that the following

statements are equivalent:

(@) [If +gllp = [Ifllo + llgllp;
(b) there exist a;, 8 > 0, not both zero, with af = g a.e.

Answer.

If f 4 g =0 then the equality 0 = || f|, + |lg|| + p implies f = g = 0.
If f =0, we can take § = 0, a = 1. Similarly, if g = 0 we can take @ = 0,
g =1

Otherwise, both f, g are nonzero and we can rewrite || f +gll, = || fll, +

9]l as

1f + gllp = (£l + lgllp) I1f + gllp ™
If we now look into the inequalities used to prove Minkowski’s inequality, we
get equality in the two Holder inequalities in between. By Exercise 2.8.11
there exist numbers a’,b’ € C, with at least one of them nonzero, such that
[P =0 |f + 9, g =d|f + g ae. In fact, since |f| # 0 and |g|ne0, we
can a’b’ > 0. Thus we have a, 8 > 0 with

[fl=B1f+4l, gl = alf +gl.
This implies that «|f] = 5g|. The equalities in the proof of Minkowsky’s
inequality also give

J 0 al =171 ll) £ + 5" =

This means that |f|+ |g| = | f + g| whenever | f + g| # 0; but when |f+g| =0
we have |f| = |g| = 0, and thus |f + g| = |f| + |g| a.e. This last equality
occurs if and only if fg > 0 a.e. Indeed, by squaring and cancelling we get
|fg] = Re fg; and the equality |z| = Rez for z € C implies z > 0.
So whenever both f # 0 and g # 0, if h = fg,
h

f=|?‘g-

Taking absolute value (recall that h > 0), II?LI = 2 constant. Then o f="7g.

)

The converse is trivial: if af = 8¢ with «, 5 > 0 and a # 0 we have

B B
17+l = | 2o+, =2 gl + gl = 171, + Nl
P «

If a = 0 then B # 0 and we can exchange roles.
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(2.8.13) Show by example that the p-norm is not a norm when p < 1.

Answer. We want to show that the triangle inequality fails. In LP({1,2}),
let f=(1,0), g =1(0,1). Then

£l =lglp =1, |If +gll, =2"7.
As 0 < p < q, we get
1F +gllp =27 > 2= [Ifll, + llgllp-

(2.8.14) Prove the following generalization of Holder’s Inequality for
n 1

functions f1,..., fn. Namely, if p1,...,p, > 1 with > =1 =
J
1,and f; € LP(X), j=1,...,n. Then

[f1--- fulle < W fillpy - (1 fnllpn- (2.10)

Answer.  We will do induction on the usual Holder inequality. As a base
case, we can take the case n = 2. So now assume that (2.10) holds for n. Let

,— 1
R
Then, using first Holder with conjugate exponents r and p,,4+1 and later with
exponents
p1/7r P/
we get

Wi foralh = /X oo fal lfnsal i < 11 Falle [ fosa e

1/r
- ( / |f1|”~~-|fnlrdu) T
X

r r Yr
< (Il -+ 1l ) Wbl

= fillps -1 fm

The argument can be simplified slightly by using the inequality from Exer-
cise 2.8.15.

The proof can also be made by mimicking the proof of the original
Hoélder inequality, but using a version of Young’s inequality with n terms,
that also follows from the convexity of the log function.

Pn+1-
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(2.8.15) Use Holder’s Inequality to prove the following more general
inequality: if f € LP(X), g € LYU(X), where p,q > 1 and r is
such that 1+ = 1+ L, then

1£gll- < [1f1lllgllq- (2.11)

Answer. Note that r cannot be infinite. We can apply the usual Holder, with
exponents p/r and ¢/r. Then

r rl/r r1/r rl/r
1fglle = LA Lgl™ 137" < WA 1070 gl 1507 = 111l lglla-

This works even when one of p, g is infinite, as long as the original relation
Py % + % is satisfied.

s

(2.8.16) Show that if f, g have compact support, then f g has compact
support.

Answer. Suppose that F' = supp f and G = suppg have finite measure.
Then

(fxg)(x / f)gle—t)dt = / f)glz—t)dt = / ft)g(z—t)dt.
Fn(z—G)
Fory e G,z—y € Fifandonlyifz € y+F C G+F. Thussupp fxg C G+F.

(2.8.17) (Young’s Convolution Inequality) Prove Young’s Convolution
Inequality (2.48). (Hint: for non-negative f,g and p,q,r finite,

(f*g)(x / FOP gz — )T f(t)P/Pr g(z — t)V/P2 dt

and use (2.10) for the exponents r,p1,ps, where = =

1

1 _1_1 e
and —==—=)
P2 g T

3=

Answer. We have % + % = % + 1, and

1 1 1 1 1 1 1 1 1 1 1
+—+—=-+--—-+-—-—-=-+---=1
r J4! q1 r p r q r p q T
As with the original Holder inequality, we may assume without loss of gener-

ality that f, g > 0, for they always appear inside an absolute value. Following
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the hint,

(fxg)(x) = f( )p/r (x t)q/r f(t)p/pl gz — t)q/pQ dt

<( Rdf(t)pg(x—t)th)l/ ( Rdf(t)pdt)l/ ( /]R oo —1yar)

d

AT, /
= ([ f@rg—eae) AL gl
R
Then, as rp/p; = r — p and rq/ps = r — g,

Hf*gn::/ (F * 9)(@)]" de

< Iflze/e ||g|reee / / F(OPg(x — 1) dt da

— 17157 gz / / (0P g(x — )7 da dt

= £l Ngllg™ W15 11gllg = 11F115 llgllg-

Taking the r*" root we get (2.48).
It remains to address the case where at least one of p, q,r is co. When
r:oowehave%+§:l, and

|(f * g)(@)] < /Rd IO g(z = t)[dz < || f]lp [lgllq

by Hoélder’s Inequality. If p = oo this forces ¢ = 1 and 7 = oo and again we
can apply the Holder. Same when ¢ = co

(2.8.18) (Interpolation). Let (X, A, (1) be a measure space. Let r,s €
[1,00] with » < s. Show that if f € L"(X) N L*(X), then
feLr(X) forallpe (r,s).

Answer. There exists ¢ € (0,1) with & = £ 415
Using Exercise 2.8.15,

1l = WA LA Ml < A e LA Wspamey = IR NI < 00

(this works even if s = c0).
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(2.8.19) Let f,, : X — [0,00) be measurable for all n, with f; > fo >
.-+ >0, with f,, — f pointwise, and such that there exists ng
with f,, € L*(u). Prove that

lim fndu = / fdp.

X X

n— oo

Show that the assertion fails if the L! condition is omitted.

Answer. The limit is the same if the sequence begins at ng; so without loss
of generality we may assume that f; € L!(u). Then Dominated Convergence
applies, with g = f;.

If no integrability is required, consider X = R with Lebesgue measure,
and f, = % Then f, \,0, and

/fn:oo for all n, /f:O.
X b'e

(2.8.20) Let X be a set. Show that if 1 < p < ¢ < oo, then ¢9(X) C
?(X) CL*(X).

Answer. Assume first that 1 < p < ¢ < co. Since p < ¢ we have p/q < 1.

Then . . -
(Z |an|q)p/q < Z |ap|2P/1 = Z lan|P.
n=1 n=1 n=1

This idea works for any finite subset of X, and taking limit works for any
countable subset. Even if X is uncountable, a € ¢?(X) implies that a, # 0
only on a countable subset. So |la|l, < ||al|p, showing that £7(X) C P(X).
When ¢ = co, any element of (X)) is bounded, so #7(X) C £*°(X).

(2.8.21) For some measures, r < s implies L"(u) C L*(u); for others,
the reverse inclusion holds; for others, L™ (u) = L*(u); and still
for others, no inclusion holds if r # s. Show examples of all
these situations, and find conditions on g under which each
case occurs.

Answer. If r < s, then ("(N) C ¢*(N). Indeed, if >, |ax|” < oo, then
eventually |ai| < 1. Then |ax|® < |ag|" for all k sufficiently large. This shows
that >, |ax|® < co. This will happen whenever A contains infinitely many
pairwise disjoint sets {E;} with 0 < u(E;) < oo.
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If u(X) < oo, then r < s implies L*(p) C L"(p). Indeed, if [ |f|" =
00, then f\f\>1 |f]” = oo (otherwise, as u(X) < oo, we would have that the

whole integral is finite). Then flf\>1 |f]® > flf\>1 |f]" = oo.

If A is finite (in particular, if X is finite), then L"(X) = L5(X) for all
r,s,as f € LP(X) if and only if |f| < oo a.e. and f|a = 0 a.e. if u(A4) = oo;
independently of p.

On the real line with the Lebesgue measure, there is no inclusion
L™(R) C L*(R) if r # s, as shown in Exercise 2.8.22.

(2.8.22) Givenp > 1, find f € LP(R) such that f ¢ LI(R) for any g # p.

Answer. Let f, : (0,1] = R be f,(z) = 2(-1+1/")/P_ Then f, € L?[0,1] and
fn & L7[0,1] for all ¢ > p/(1 — 1). Similarly, let g, (z) = 2(=1=%)/P_ Then
gn € LP[1,00) while g,, & L7[1,00) for all ¢ < p/(1 + L).

An easy computation shows that

1 0o
/ ‘fn|p:/ |gn‘p:n'
0 1

The idea is to use the infinitely many intervals available to us to patch
things and “use all n”. Let v : N x N — Z be a bijection. Define intervals

Im,n = [7(mv n)aV(m’n) + 1)

As « is bijective, the intervals I, , are pairwise disjoint and cover all of R.
Let

fay = {2 Il =0 m), €l
:I: f—
2*”/1’771*1/? gn(x - 'y(m,n) +m — 1), T e Im,n; m > 1
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Now
s mZ/ P

m,n

= zn: 27"t /

Iy

szt Y [ e —tmm) +m - 1P
n m=2 m,n

|fn(aj - 7(1’ n))|p

147

o 1 - _loo 1
=Y 2 /Olfn(x)l D3l mZ/ lgn(a +m— 1)

- zn: 27"t /01 | fn ()P + ;2—%—1 g/mn; |gn (2)[?
DR / @l + Yot [ la@r

= 2.
On the other hand, if ¢ > p there exists n with ¢ > p/(1 — %) Then

1
/ |f]e > / 1f17 = 27nq/pn*q/p/ _ 11 —dz = 0.
R Iin o xr(w)

And if ¢ < p there exists n with ¢ < p/(1 + %) Then

/R|fqz/U Im,nf|q=/1°og(ll+i)dx:oo.

For a fancier example, let

1

f(z) =14 a/r(log?x + 1)’
0, otherwise

x>0

Then

! *
/|f\pdaz§/ - dﬂc—l—/ s— dr =2 < o0.
R o zlog”x 1 zlog®x

If ¢ > p, using the substitution t = —log z,

1 1 00 et(%—l)
Tdx > ————dx = ——— dt = 0.
fiaz || = |,

And if ¢ < p,

[e'e) 1 [ele] 6{;(17%
|f]? da > — = dr= S dt=o.
- 1 29/Plog?l/P g 1 (B +1)e




148

CHAPTER 2

(2.8.23) Do Propositions 2.8.14, 2.8.16 and 2.8.18 hold in ¢>°(N)? Give
proofs or counterexamples.

Answer.  All three fail in ¢*°(N). When N is considered with the discrete
topology, the counting measure is a Radon measure, and so the compactly
supported continuous functions are precisely the measurable functions with
finite support, which in turn are simply the functions with finite support. If
a has finite support, then a(n) = 0 for some n; this gives |1 — a|loc > 1; that

is, the constant function 1 is at distance 1 from the sets of finitely supported
functions and of compactly supported continuous functions.

(2.8.24) Prove Lemma 2.8.19.

Answer. Fix € > 0. By Proposition 2.8.18 there exists g € C.(X) with
lf —gllp < /3. As g has compact support E, we will show at the end of
the proof that there exists an open neighbourhood V of 0 such that |g(z —
t) — g(z)| < &/(3u(E)'/?) for all x, whenever t € V. From this estimate we
obtain ||g; — g, < £/3, and then

1fe = Fllo < [1fe = gelly + gt = gllp + lg = 1l
=2[lg = Fllp + llg: = gll

2e €
<=+ -=c.
3+3

We now prove the inequality for |g(z — t) — g(x)|. Let ¢’ = ¢/(3u(E)'/?);
since g is continuous for each z € E there exists an open set V,, with 0 € V,
and such that y — x € V, implies |g(y) — g(z)| < €’/2. By replacing V,, with
Ve N (=V,) if needed, we may assume that —V,, = V,. The continuity of
addition guarantees that there exists an open neighbourhood W, of 0 with
W, + W, C V., and again we may assume that —W, = W,. As F is compact
and F C U (x+W,), there exist z1, ..., x, with E C (z1+ Wy, )U---U(zp+
zEE

Wy,). Let V = ﬂ W,,. Then V is open, =V =V, ,and 0 € V. If t € V and
j=1

re€FasEC(xy+ Wy )U---U(x, +W,,) there exists j with z € x; + W, ;

so|g(x) —g(z;)| <e'/2. Asx—t—x; = (x —xj5) —t € Wy, =W, CV,,, we
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also have |g(z —t) — g(x;)| < €’/2. Then
t) =

lg(z—1t) —g(z)| < [g(z— 3u(E) /P

When z ¢ E, we have g(x) = 0. Since X \ F is open there exists a neighbour-
hood W of 0 such that z + W C X \ E and —W = W. For any t € W,
x—t € X\ E, and so g(x —t) = 0. So for t € V NW the estimate
lg(x —t) — g(z)| < &’ holds for all x € X.

e €
—9(z))|+lg(z5) —g()| < 5 +5 = =

(2.8.25) Show that (2.46) can fail when p = oo, even if u(X) < oo.

Answer. Let X = [0,1] with Lebesgue measure, and f = 1o 1j. Then
ft — f = 1(%7%4’_0, SO Hft - f”oo =1 for all ¢.

(2.8.26) Let (X, ) and (Y, v) be o-finite complete measure spaces such
that L?(X) and L?(Y) are separable. Fix orthonormal bases
{fa} and {g,} for L?(X) and L?*(Y) respectively. Show that
{fn(®)gm (y) }n.m is an orthonormal basis for L?(X x Y).

Answer. First,

[ 1@ 8@l @l arw) aua) = ( [ lon @] aw)

([ sl auta)

< llgmll2llgell2ll full2ll fsll2 < oo

Then Fubini (Theorem 2.7.16) guarantees that the double integral exists and
agrees with the iterated integrals. Thus

<fngm7fsgt> = /X><Y fn(x)fs(x) gm(y)gt(y) d(p, X V)(.%‘,y)

= <fna fs><gmygt> = 6(n,s),(m,t)

and thus the set {f,(z ) »(¥) }n,m 1s orthonormal. It remains to see that it is
total. If (h, fn X gm) = 0 for all n, m, we have

_ ( e0) am) o)) (o) o)
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s0, as n is arbitrary, the function @ — [, h(x,y) gm(y) dv(y) is zero almost
everywhere for each m. Let

En=f{reX: /Y W) g ) di(y) # 0}.

Each E,, is a null-set (so measurable, by the completeness), and then so is
its (countable) union E. Outside of E,

Y

Thus for each 2 € X\ E, h(x,y) = 0 almost everywhere. As |h|? is integrable,
its integral agrees with the iterated integrals, so

/;(Xylh(x’y)‘Qd(“x v) :/X/Ylh(w,y)IQdV(y) dp(z)

- / / (e, ) di(y) du(z) = 0.
X\EJY
Soh=0in L2(X x Y).

(2.8.27) Let (X, X, u) be a measure space. A sequence { f,} of complex
measurable functions on X is said to converge in measure to
the measurable function f if for every ¢ > 0 there exists IV
such that

p({z: |fu(@) - f(@)| > €}) <&, n>N.
Prove:

(a) Show that if u(X) < co and f, — f a.e., then f,, — f in
measure (Hint: use Egorov’s Theorem).

(b) For 1 < p < o0, if f,, € LP(u) for all n and ||f,, — f|l, = 0,
then f, — f in measure.

(c) If f, = f in measure, then there exists a subsequence fi,,
that converges to f a.e.

Answer.

(a) Let € > 0. Since pu(X) < oo, Egorov’s Theorem applies. So there exists
E C X, with u(X \ E) < £ and such that f,, — f uniformly on E. So
there exists N € N such that |f, — f| <&, on E, when n > N. Then

p{lfn = fI > e} S p(E°) <e.
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(b) If f,, does not converge in measure to f, then there exists € > 0 such
that for every N € N there exists n > N with u({|fn — f| > €} > «.
This means that we can choose an unbounded sequence {nj} such that
w({|fn, — f] > €} > e. Then, if p < oo,

I = £l = [ Vo= Sl | = flds > <
X {lfn—rf1>e}
for all k, so || fn, — f|l, does not go to zero. When p = co we have || f,,, —

flloo > € for all k, so we obtain the same conclusion.

(c) Let Epy = {|fn — f| > +}. By hypothesis there exists nj, > niy_1 such
that p(En, k) < . We have En, k1 C Ep . Let E = ﬂEk. By

continuity of the measure, u(E) =0. f z € X \ E = U (X\ En %), then

there exists ko such that € X \ Ep, k. As the union is increasing,
x € X\ Ey, i, for all k > 0; so |fn, (z) — f(z) < 1, showing that f,, — f
outside of E.

(2.8.28) Let {a,} be a sequence of positive numbers, (X,¥, ) be a
finite measure space, and f, : X — [0,00), n € N measurable
functions such that

/ fndu =n, / f2du = a,n?, n € N.
X X
(2.12)

(i) Show that if the sequence {a,} is bounded, then f,
does not converge to 0 a.e. (Hint: one possible ap-
proach uses Egorov’s Theorem)

(ii) Does the above hold when {a,} is unbounded?

Answer.

Suppose that (2.12) holds, that f, — 0 a.e. and that a,, < ¢ for all n.
By Egorov’s Theorem (2.6.16) there exist sets Ej, € ¥ with m(Ey) < 1 and
fn = 0 uniformly on X \ Ej. In particular for each k there exists n(k) > 2
such that f,,|x\ g, < m for all n > n(k). Then (writing n = n(k) from
now on, for simplicity)

fndﬂ:n—/ fnd,u>n—1>n—1.
Ek X\Ek 2
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This gives us, using Cauchy Schwarz/Hoélder,

1/2 172
n—1< [ fadu< M(Ek)m(/ I3 du) = uw(Bx)'?a)/?n < Ck1/2n'
E), X
Thus 1o
1 1 c
S P
2 = 1 n < k1/2

As the inequality % < Ii—g is impossible for k£ big enough, we conclude that
fn — 0 a.e. is not possible.

For the case where a, is unbounded, let X = [0,1] with Lebesgue
measure, f, = n? lj,27 and a, =n. Then
/fndm:n, /f,%dm:n?’:aan,
X X

and f, — 0 a.e.

(2.8.29) Suppose that pu(X) < oo, f € L>®(u), || flleo > 0, and

an:/|f|"d,u, n € N.
X

Prove that

. Qp41 _
A e = Wl

Answer. Since p(X) < oo,

Qp41 _ fx |f‘n+1 d/L
(079 fX |f‘nd/14

fx |f|n dp
fx |f|"du

< 1 lloo = [[flloe-

So

limsup 2 < || £ oo
n Qp

Now we use Holder (with p = (n+1)/n, ¢ =n+ 1) to obtain

n/(n+1)
115 = /X LfI" < </X |f"“> u(X)H D = [ Flm (X))

Then
anp1 _ £l iias; - .
= T 2 T g = I e w(X) T,

Then, as the right-hand-side converges to ||f|loo (Proposition 2.8.11),

liminf 2% > || £]|so.
n—00 Qo



2. LY-SPACES 153

(2.8.30) Let hy as in (2.50). Suppose that g € C°°(—4, ) for some § > 0
and 0 < g(x) < hy(z) for all x € (0,6). Show that ¢ (0) =0
for all k£ € N.

Answer. Since g is C*° we know by hypothesis that its derivatives exist at
all points in (—4,0). So it is enough to show that the right derivatives at
0 are 0. The inequality 0 < g(z) < hy(x), after taking limit as x — 07,
gives us directly that g(0) = 0. Suppose for induction that ¢(*)(0) = 0 for

k=0,1,...,n. Then we can write the Taylor polynomial of g as
(n+1)
g £(@) n
gle) = (n +(1()!)) "t z € (=4,
with |£(z)]| < |z|. Then
n n+1)lg(x hi(z
0< lg" D (g(a))| = CEIEE < (o1 2100,

Taking limit as = — 0, we get &(z) — 0 and 0 < g(»+1)(0) < 0, so g**t1)(0) =
0 (because g"*! is continuous, any way of approaching zero will do). We then
get by induction that g("+1)(0) = 0 for all n € N.

The limit for h; comes (with the substitution t = 1/22) from

2
671/1

lim = lim t"/%e7t = 0.
rz—0t+ " t— 00

(2.8.31) (this is not an easy one; the topic of which LP spaces are sepa-
rable is subtle) Let (X, A, u) be a o-finite measure space such
that A is countably generated. Show that if u is o-finite, then
LP(u) is separable for p € [1,00).

Answer. By hypothesis X = J,, X,,, pairwise disjoint, with p(X,) < oo for
all n. This produces a decomposition of LP(u) into summands LP(ux, ). So
we may assume without loss of generality that p is finite .

Let {A,} be a countable family that generates A. For each k € N let
X = X({A1,..., Ax}), which is finite. Let A = J,, Xi. Then A is countable.
Define an outer measure

w(E) = inf{Z,u(AkT) Ak, Ag, € A, EC UA’W'}'

By Carathéodory’s Theorem there exists a o-algebra & C P(X) such that p*
is a measure on £. As A C &, we have that A C £. And p*(E) = u(E) for
all E € A, so pu* extends p to £&. What this gives us is that for any F € A
there exists F' € A with E C E’ and u(E'\ E) arbitrarily small. So, by
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Proposition 2.8.17 ~
spang{lp,ilp: E,F € A}

is a countable dense set in LP ().

2.9. The Riesz—Markov Theorem

(2.9.1) Show that under the hypotheses of Riesz—Markov, if a measure
w satisfies (2.54) then u(K) < oo for all K compact.

Answer. Since T is locally compact and K is compact, by Urysohn’s Lemma
there exists f € Co(T), 0 < f <1 and f|x = 1. Then

M(K):/TleMS/deM:SD(f)<OO'

(2.9.2) Use Riesz—Markov to construct Lebesgue measure in R"™, n €
N. Prove that the measure you constructed is the Lebesgue
measure, by showing that it agrees with Lebesgue outer mea-
sure on boxes. Show that the o-algebra M from the theorem

is M(R™).

Answer. As mentioned in Remark 2.9.5, we apply Riesz—Markov to C.(R™)
and the linear functional

bl bn
f+—>/ flxy, ... zy) day - - day,
al Anp,

where supp f C [a1,b1] X - -+ X [ap, by]. If By and By are two boxes such that
each contains supp f, we know from Eq. (2.32)—together with the fact that
intersection of intervals is an interval—that the intersection By N By is a box,
and of course it contains supp f. By (2.33) we know that the complement
of By N By is a union of boxes. So we can write By = (B; N By) U Uj Cy,
where each C; is a box and f = 0 on each €. Then, as By admits a similar

decomposition,
fdx = / fdx = fdx.
By B1NBs B




2. THE RIESZ-MARKOV THEOREM 155

So the linear functional is well-defined. Positivity is clear, as any Riemann
sum of a nonnegative function will be nonnegative, and so will their limits.
Next we need to show that the measure p such that

/dercz/deu

satisfies u(B) = H(bj —a;). Let

J

0, t<a—%or t>b+%

k(t—a)+1, a—1<t<a
hk,ab(t) =

1, a<t<b

k(t—b)+1, b<t<b+z

and
n
fk(l‘l, e ,l‘n) = H hk,aj,bj (l‘])
j=1
Then each fj is continuous, fx \, 15, and by Monotone Convergence

w(B) = liin frdx

So u agrees with m on open boxes. As the open boxes generate B(R™), the
two measures agree on Borel sets.

The uniqueness of the measure is guaranteed by Riesz—Markov, so the
only remaining question is the comparison between M and M(R™). And
these are equal by (iv) in Proposition 2.9.10 and the outer regularity of ;1 and
m, which guarantees that both measures have the same nullsets.
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(2.9.3) Let X be a topological space and p a Borel measure. The
support of y is the set

supppu={zr € X : w(V)>0 forall V open with z € V}.

Prove that suppp is closed, and that its complement is the
largest open nullset.

Answer. If x & supp p, then there exists V open with € V and u(V) = 0.
Since V is open, for any y € V there exists W C V, open, with y € W. Then
p(W) < (V) =0, so u(W) =0and y & supp p. Thus (supp p)¢ is open, and
so supp p is closed. The argument shows that if W C X is any open set with
w(W) = 0 then W C (supp i), showing that (supp p)¢ is the largest open
nullset.

(2.9.4) Let X be a compact Hausdorff space, and p a Borel measure
with u(X) = 1.

(a) Show that p(supp p) = 1.
(b) If H C supp i is compact, show that pu(H) < 1.

Answer.
We know from Exercise 2.9.3 that (supp )€ is the largest nullset. Then

1 = pu(X) = p(supp p U (supp p)) = p(supp p) + p((supp p)°) = p(supp p).
As X is compact Hausdorff, it is normal (Exercise 2.6.1). If H C supp p,
let € supppu\ H. As H is compact, there exist V, W open with VNW = &

and x € V, K C W (Lemma 2.6.3). As x € supp g we have that u(V) > 0,
and so p(H) < pu(W) <1—p(V) < 1.

(2.9.5) On X = R?, define
ly1 — y2l, T1 = T2
d((z1,v1), (22,92)) = {
L+ y1 — 92, 21 # 22
(a) Show that d is a metric.
(b) Show that (X, d) is locally compact.

(¢) For f € C.(X), show that there are only finitely many
Z1,...,&y, such that f(z;,y) # 0 for at least one y.
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(d) Let
A=Y [ s
g =

and show that A : C.(X) — C is linear and positive.

(e) Let p be the measure corresponding to A via Riesz—Markov.
Let E = {(x,0) : = € R}. Show that u(F) = oo and that
u(K) =0 for all K C E compact. Does this contradict the
Riesz-Markov theorem?

Answer.

(a) Let (zj,y;) € X, j =1,2,3. If 21 = x2, then
d((z1,91), (22,92)) = [y1 — y2| < lyr —y3| + |ys — 2|

< d((w1,y1), (z3,93)) + d((73,3), (T2, y2)).
And if 21 # x4, then either 1 # x5 or 3 # x3. Then

d((z1,11), (w2, 92)) = 1+ [y1 — 2| < 1+ |y1 — y3| + lyz — 1]

<d((z1,v1), (x3,93)) + d((3,3), (T2, Y2))-

So the triangle inequality holds. If d((z1,y1), (z2,y2)) = O then since
1+ |y1 — y2| > 0 we get that x;1 = x5 and y; = ys directly from the
definition, so that (z1,y1) = (z2,y2).

(b) Let us first identify the balls. If x1 # o then d((z1,y1), (x2,y2)) > 1. So
for a fixed (z1,y1) and r > 0, if r < 1 we have

B,((x1,y1) = {(z1,9) : |y —wml| <7},

a vertical segment containing the point (z1,y1). If » > 1, then

Br((z1,y1) = {(z1,9) : ly—ml <rpU{(z,y): ly—wpl<r—1}

It is important to notice that the second coordinates of the open balls are
open sets on the y-axis.

Now given (71,y1) € X, consider the neighbourhood By /5((21,91))-
Its closure {(x1,y) : |y —y1| < 1/2 is compact: indeed, if {V,,} is an
open cover, the sets W, = ma(V,) give an open cover of the segment
[y1 —1/2,y1+1/2]. By compactness, there is a finite subcover with indices
Qai,...,0n,. Then

Bija((z1,91)) ={z1} x [y1 —1/2,51 +1/2] C Vo, U--- UV, .

So By/2((w1,%1)) is compact, and thus (X, d) is locally compact.
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(¢) If K C X is compact, then m (K) is finite (because if 7 (K) is infinite,
then {{z} xR: x € m(K)} is an infinite open cover that does not admit
a finite subcover).
On the second components, we need m2(K) to be compact (a contin-
uous function maps a compact to a compact, and it is easy to check that
7o is continuous). So the compact sets in (X, d) are precisely those of the
form

n
K = | J{z;} x L;, (AB.2.9)
j=1
where L; C R is compact.
So, if f has compact support, it can be nonzero on finitely many
LlyeeeyTp.

(d) The functional A is well-defined by the previous item, since the integral
will occur in a compact subset of R. More importantly, the definition is
ok if we enlarge the set of z; to include other values of « where f(z,y) =0
for all y. This makes linearity trivial, since we may work with the same
set j_ {2;} x L; for both f and g. Positivity is obvious.

(e) Since p comes from Riesz—Markov, it is outer regular. We have
wE) =inf{uw(V): ECV,V open}.
And for an open set V,
u(V) =sup{Af: f <V}
For € > 0, let V' be open with E C V. For each z € R, there exists 6, > 0

such that {z} x (=0,,0,) C V. Since there are uncountably many x, there
exists § > 0 such that there are infinitely many = with §, > §; denote such

set as D.
Now, for any n € N let x4, .. xn € D. Let
b
L ye(=% %),
9iW) =90, |y > 5%,
linear segment in between
and

j=1
Then f € Co(X)4 with f < V. And
Af—jz_:l/Rf(xj» 22723

Tt follows that pu(V) > nd for all n, so u(V) = co. As V was an arbitrary
open with £ C V| we get that u(E) = oo.
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For any compact K C E, we have K = {(21,0),...,(2,,0)}. Fix
>0, and let V = U;.l_l{mj} X (—e/(2n),e/(2n)). If f <V, then

Af = Z f xj,y) dy < Z
—e/2
As this occurs with any f < V, we get that uw(V) < e. Then pu(K) <
p(V) <e. And so u(K) = 0.
There is no contradiction because Riesz—-Markov only promises inner
regularity for finite-measure sets.

(2.9.6) Consider the same topological space X from Exercise 2.9.5.
(a) Show that if E € B(X), then each vertical slice E, is Borel.
(b) Define

E)=> m(E,), E € B(X).

Show that p is a measure, inner regular.

(c) Show that the p-nullsets are those Borel sets that inter-
sect each vertical line in a nullset. Show that the diagonal
D = {(x,z) : = € R} is a nullset, and that every open V
with D C V intersects each vertical line in a set of positive
measure. Conclude that y is not outer regular.

(d) Define
(&) p(E),  if E intersects countably many vertical lines
vV =
00, otherwise

Show that v is inner regular (on open sets), and outer reg-
ular on Borel sets.

(e) Show that

/deu:/xfdu, f e C(X).

Answer.

(a) Let
S={EeB(X): E, € BR) forall z}.
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As shown in the proof of Proposition 2.7.2 sections preserve all o-algebra
operations. So S is a o-algebra. If 0 < r < 1, then

By ((z1,91)) = {(z1,9) : ly—w| <7}
Then B, ((z1,y1))s ={y: [y —wi| <7} = By(y1) € B(R). And if r > 1,

Br((z1,91)) = {(z1,9) = ly =l <rjU{(z,y) s |y — ol <r—1}
Then B, ((z1,y1))es ={y: [y — 1| <r} = B,(y1) € B(R). So S contains
the open balls and thus all the Borel o-algebra B(R).

(b) Since every summand is nonnegative, p makes sense even if m(E,) > 0
for uncountably many z. If {E}} is a countable pairwise disjoint family
in B(X) then for fixed z the sets {(E}),} are pairwise disjoint; so

N(LkJEk) = %:m<(LkJEk>I) = ;m(g(Ek)x> = %:zk:m((Ek)x)
S S IS e

First equahty is the definition of p. The third equality is the og-additivity
of m. The exchange of sums is a direct application of Tonelli’s Theorem.
So  is a measure.
The compact sets are of the form (AB.2.9). Let E € B(X). Let
R={z: m(E,) > 0}. We consider cases:
e R is finite. Say, R = {z1,...,z,}. Fix e > 0. Since E,, € B(R),
by Proposition 2.3.25 there exists L; C E,,, compact, with m(E;; \

L;) < ¢/27. Then K = U{xj} x L; is compact, K C E, and
j=1
wWE\K) <e.

e R is countably infinite. If u(E) = oo, we proceed as in the un-
countable case below. Otherwise, R = {x1,22,...}. Fixe > 0. There
exists n such that » ;. m(E;;) < e/2. On 21,...,2, we proceed
as in the finite case to obtain K compact, K C F, and u(E\ K) < ¢.

e R is uncountable. Now p(E) = co. Given s > 0 there exist
T1,..., 2y, such that 357 m(E,;) > 2s. Choosing K as in the cases
above we get K C E and p(K) > s.

So w is inner regular.

(¢) If u(E) =0, then m(E,) = 0 for all z. So F intersects the vertical line at
2 in the nullset F,. For the diagonal,

D)= m({z}) =0.

If V is open and D C V, then there exist numbers r, > 0 such that
B, ,({z,z}) C V for all z. By reducing them if needed, we may assume
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that r, < 1 for all . Then W = UBTI (z) is open, D C W C V, and

p(V) = p(W) =Y m((@ = e, +14)) = Y 2y = 00

since any series with uncountably many nonzero terms is divergent. So
w(D) =0 and pu(V) = oo for any open V with D C V, showing that u is
not outer regular.

(d) Let V' be open and nonempty. If v(V) < oo, as v(V) = u(V) we proceed

as in the proof of the inner regularity of p. When v(V) = oo, there is
an uncountable set R C R and intervals J,, z € R, with {z} x J, C V.
Since there are uncountable many .J,, there exists 6 > 0 and R’ C R,
infinite, such that m(J,) > ¢ for all z € R'. Fix K, C J,, compact, with
m(K,;) > 4. Given x1,...,x, € R, the set K = szl{xj} X Ky, CVis
compact, and v(K) = u(K) = 2?21 m(K,;) > nd. So we can produce
K C V, compact, with v(K) arbitrarily big.

Outer regularity is automatic when v(E) = oco. If v(E) < oo, then
E cuts countably many vertical lines and pu(E) < oco. So there exist
{z1,22,...} such that v(E) = >, m(E;;). Fix ¢ > 0. By Propo-
sition 2.3.25 there exist open sets V; C R such that E,, C V; and
m(V; \ Ey;) < €/27. In turn we can decompose each V; as a count-
able union of Vjj; with Vj; an interval of length less than 1. Then
V =, 1{z;j} x Vj is a union of balls, so open, £ C V, and

v(V\ E) Z m(V; \ Ey,;) <
Jj=1

We cannot have full inner regularity for v. For instance let E =
{(z,x+q): z €R, g€ Q}. Then E crosses uncountably many vertical
lines and so v(E) = oo. If K C E is compact, K = Jj_{z;} x L;
with L; compact. As K C E this means that each L; is countable
Then pu(K) = >, n(Kz;) = >, m(Lj) = 0. Note that v(E) = oo, while
w(E) =0.

(e)If f € C.(X), let K = suppT. As K is compact, u(K) < oo, and so

v(K) = p(K). For any Borel set E C K, we also have v(F) = u(E). So
the integrals will agree on any simple function that approximates f, and

thus
/X fdu= /X fv.
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2.10. Complex Measures and Differentiation

(2.10.1) Let {c, }nen C Csuch that ) ¢, converges. Show that ), ¢,
converges absolutely if and only if the limit does not change
under permutations; concretely, show that the following state-
ments are equivalent:

(a) Y, cn converges absolutely;
(b) >, Co(n) = 2., Cn for all permutations o : N — N;

(¢) D, Co(n) converges for all permutations o : N — N.

Answer. (a) = (b) Let ¢ : N — N be a bijection. Write L = )" c,.
Suppose that )" [c,| < oo and let ¢ > 0. Then there exists ny such that
Yonon len] < e Let ng = max{o=(k) : k=1,...,n0}. If n > ny, then
n#o (k) forallk=1,...,n; so o(n) > ng. Then

ni
’L_ ch(n) = Z |con)] < Z len] < e,
n=1

n>ni n>ngo
showing that } c,m) = >, cn-

(b) = (c) Trivial.

(¢c) = (a) Suppose first that ¢,, € R for all n. Then we can write ¢,, =
¢t — ¢, as a difference of non-negative numbers. Because ), ¢, converges
we have that ¢, — 0, so ;i — 0 since ¢; < |¢,|. If 3, ¢f = o0, then we can
choose 1 =ng < ny < ng < --- such that an§n<nk+1 ¢t >1+¢, forall k.
So if ¢ is the permutation that gives the order

+ + - o+ + =
€] e 3Cn—15C1 5 Cpysev 9 Cry1:C e -

Then for all k&

Mk41 k
Z Co(j) > Zl =k,
j=1 r=1

and this would make }° ¢,(,) = 00, a contradiction. So >, ¢l < oo. Re-
peating the argument with the series ) (—cy) gives us >, ¢, < oo. Then
Soalenl <3, 68 + 30, ¢, < oo and the series converges absolutely. In the
general case, the convergence of ) ¢, is equivalent to that of ) Rec, and
> . Imec,, so by the above these latter two series converge absolutely and
then from |c,| < |Recy,| + [Imc,| we get that > |c,| < oo.
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(2.10.2) Prove Proposition 2.10.6.

Answer.

(a) Suppose that A is concentrated on A. Since A(E) = A(E N A) for all
E, the same happens for each partition in the definition of |A|; so |A| is
concentrated in A.

(b) As a consequence, if Ay L Ay then |[A1] L |As], as they will be concentrated
respectively in the same disjoint sets.

(c) If A1, A2 L pu, say Ap is concentrated on Ay, Ay on Ag, and p on B. Then
A1NB = A;NB = @. Thus (A1UA2)NB = @. As A1 +c)q is concentrated
on A1 N As, we get that Ay + ¢y L .

(d) If A, A2 < pand p(E) = 0, then (A + cA2)(E) = M (E) 4+ ch(E) =
0+c0=0. So A\ + che K pu.

(e) If A < prand p(E) =0, then p(E;) = 0 for all j and any partition of E,
giving us |A[(E) = 0. So |\ < p.

(H) If Ay < pand Ag L p, let Ao be a measurable set where g is concentrated,
and B a measurable set where p is concentrated. Then Ao N B = &. Since
pu(B¢) =0, we have A\1(B¢) =0, s0 A\;(E) = A (ENB) for all E. So A is
concentrated on B, and thus Ay L .

(g) If A < pwand A L p, by the previous paragraph we have that A L A. This
can only happen if A is concentrated on the empty set: that is, A = 0.

(h) Since F is itself a partition, |A(E)| < [A[(E). If |A|(E) = 0, then A\(E) = 0.
Thus A < ||

(2.10.3) Let p be a complex measure on a o-algebra A. For E € A,
define

AE) =sup{ > |u(E))|: E; € A disjoint, | J E; = E}.
j=1 J
Show that A = |u|.

Answer.  Since the definition of |u| allows countable partitions, we have
A < |pu|. By Theorem 6.4, [u|(E) < oo. Now fix e > 0 and let {E;}32,
be a partition of E such that > . |u(Ej)| > [u[(E) — /2. As [u[(E) >
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Z;L |(E;)|, there exists m such that
S Iu(B)| = S By - e/2 > ul(B) — /2 — /2.
j=1 j=1

So AM(E) > |u[(E) —e. As e was arbitrary, A(E) > |u|(EF), showing the
equality.

(2.10.4) Let Aj, A2 be mutually singular complex measures on a o-
algebra A over X. Show that

A1+ Aa| = | A1) + | A2l

Answer. Fix E € A and {E,} C A a countable partition of E. Then

DI A (B < D B+ D (Bl < IMI(E) + o (B).
k k k

So [A1+ A2(E) < [M[(E) + [A2l(E).

By definition there exist disjoint Ay, Ay € A with A1 N A; = X and
such that \; is concentrated on A; and )\, is concentrated on A,. Fix E € A
and € > 0. Then there exist partitions {E,} and {F,} of F such that

S (B +e > MI(E), > X2 (Br)| +e > [X2l(B).
k k
We have

S ED =DM BN A =D (A1 + A2)(Ex 0 Ay,
o o k

and

Z M (ER)| = Z [A2(Ff N Ag)| = Z [(A1 4 A2) (Fk N Az)|.
k k k

Since { ExNA;} and {F;NAs} are partitions of ENA; and ENAs respectively,

their union is a partition of E, and hence

(Al +A2)(B) < 26+ ) (B + ) M (E)]
k k

=2+ > (A1 +A)(Be N AD[+ ) 1A + Ao)(Fi N Ay)]
k k

<2+ [A + Ao (E).

As the inequality holds for all € > 0 and the reverse inequality was already
shown, we have |A1 + A2|(E) = |A1|(E) + [A2(E)].
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(2.10.5) Use Proposition 2.10.7 for an alternative proof of Exercise 2.5.8.

Answer. Define a measure 7 on [0,1] by (E) = [, |g|dm. Then ¥ < m.
Fix s € [0,1] and € > 0. Let d be as in Proposition 2.10.7. If ¢t > s. [t—s| < J,
then m([s, t]) < ¢ and so

(&) = ()] = / gl‘ = [(s, Dl <e.

For t < s the estimate is entirely similar. Hence v is continuous.

(2.10.6) (Radon—Nikodym and Lebesgue’s Decomposition can fail when
X is not o-finite) Let p be the Lebesgue measure on (0,1)
and A the counting measure on M((0,1)). Show that A has no
Lebesgue decomposition relative to p, and that p < A and p
is bounded, but there is no measurable function A such that
dp = hdA.

Answer. Suppose that A = A\, + A\s with A\, < pu. As Ay L pu, there exists a
p-nullset A with \; supported on A. On B = (0,1)\ A, A\s(B) =0, u(B) =1,
Aa(B) = AN(B) = co. But for any b € B we get

1= A({b}) = Aa({b}), while pu({b}) =0,
a contradiction.

For the second part, we trivially have p < A, since A is zero only on the
empty set. Now suppose that pu(E) = [, hdX for all E € M((0,1)). Then,
for any ¢ € [0, 1],

0=pu{t}) = / hdX = h(t).
{t}
So we would have h = 0, a contradiction.

(2.10.7) Suppose that {g,} is a sequence of positive continuous func-
tions on [0,1]. Let u be a positive Borel measure on [0, 1], and
suppose also that

(a) limy, 00 gn(z) = 0 a.e.[m]

(b) / gndm =1 for all n
[0,1]
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(¢) lim fgndm = fd,u for all f € C[0,1].
Does it follow that pu L m?

(Hint: Egorov’s Theorem. There are probably other ways
to attack this)

Answer. Yes. Let E = {x : lim, g,(z) = 0}. By hypothesis, m(E) = 1. So
m is concentrated on E: if EN A = &, then m(A) = 0. It remains to show
that p is concentrated on [0,1] \ E.

Because the g,, are continuous, F is Borel:

1
E-NUN o <L)
m n k>n
Fix € > 0. By Egorov’s Theorem, there exists a Borel set B C E such that
w(E\ B) < ¢ and g, — 0 uniformly on B; so there exists ng such that, on B,
gr < € whenever k > ng. Then, for any f € C[0,1] and n > ng

[ fondm<< [ ifiam

We can do this for any &, so we conclude that lim,, f g [ gndm = 0. Then

fdp = lim fgndm—l— fgndm = lim/ fgndm.
Be n—oo | pe

[0 1] n—r oo

If we look carefully at the proof of Egorov’s Theorem, it is clear that we can
assume B to be open: that’s because the sets in the proof can be defined in
terms of strict inequality which makes them open, and then B is obtained as
a (countable, although not important for this) union of open sets.

Since B C [0, 1] is open, it can be written as a countable union of open
intervals, and from there we see that we can construct {f;} C C]0,1] such
that f;  1p. Then

n(B) =/ 1p dp = lim i du=lim1im/ fj gndm =0,
[0,1] 7 Jo,1] J " JBe
since each f; is supported in B.
We have shown that for each € > 0 there exists B C E with u(E\B) < ¢
and p(B) = 0. Then
p(E) = u(E\ B) +u(B) = p(E\ B) <¢

for all € > 0, and thus u(E) = 0. So p is supported in E¢, which is a nullset
for m.
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(2.10.8) Let (X, .A) be a measurable space, and u, A positive measures
such that u is o-finite and A < u. Let g = dA/dp. Show that,
for any measurable f : X — C such that [, fd\ exists,

/Efd)\:/Efgdu. (2.13)

Answer. The Radon—Nikodym derivative definition gives us that

/1Ed)\:)\(E):/gdu:/ 1g gdpu.
X E X

By linearity we obtain that
/ sdA\ = / sgdu
X b's

for all simple functions s. For f > 0 measurable, there exists a sequence {s,}
with 0 < s, /* f. Then Monotone Convergence gives us

/de)\:/xsfdu.

Now for general f, we can write f = f1 — fo + i(f3 — f4) with f; > 0 and
at least three of their integrals are finite; for each f; the above applies, and
at least three of the four integrals against g du are finite, so (2.13) occurs by
linearity.

(2.10.9) Let (X, A, 1) be a finite measure space and f € L'(X). Define
v:A— Cby

V(E):/Efdp.

(a) Show that v is a complex measure on (X,.4) and that
v(E) = 0 whenever E € A with p(E) =0.

(b) Show that for any measurable function g : X — C,

/ngV:/ngdu (2.14)

if the left integral exists.

Answer.
(a) By writing f = fi — fo +i(fs — f1) with f; > 0 for all j we get that

v = v — vy + i(vs — vy), where v;(E) = fjdu. These are positive
E
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measures, all finite since
(B < [ 15l [ 1flde <70 <o,
E E

By Exercise 2.5.4, if {F, } C A is a pairwise disjoint sequence,

w(UB) = [ =3[ fdn=S i)
n LJn En n En n
By linearity, we get that v is a complex measure.
If u(E) =0, then 0 = / fdu=v(E).

(b) Writing f = f1 — fo +i(f3 — fa), with f; > 0 for all j, we have

B)= [ fidu- /fzduﬂ(/ oyt~ /f4du)

We denote by v; each of the four (positive) measures, that is v;(E) =

/ fijdp. When g > 0, we can use Exercise 2.5.9 to get / gdv; =
E X

/ gf; du. By linearity
X

/gdl/=/gfdu, g=>0.
X X

As this equality is linear on g, and in general g will be a linear combination
of four non-negative functions, the equality holds for all g such that the
integral on the left exists.

(2.10.10) Let (X, .A) be a measurable space, and let i, A be o-finite pos-
itive measures such that A < p and g < A. Show that

% _ (%)71 a.e. (i, \).

Answer. Write f = d\/du and g = du/dX. Then, for any E € A,

/Eld)\:/\(E):/Efdu:/EfgdA.

As F is arbitrary, 1— fg = 0 a.e. (A). Exchanging roles we get that 1—gf = 0
a.e. (p).
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(2.10.11) If dv = f dp and dX\ = g dv for positive measures p and v, show
that A < g and find the Radon—Nikodym derivative dA/dp.

Answer. Using Exercise 2.10.8 we have

A(E)=/Egd1/=/Efgdu-

This shows that d\ = fgdp, so A < p and the Radon—Nikodym derivative is
fy.

(2.10.12) Let (X, X)) be a measurable space and M (X) the set of complex
measures on Y. Show that, with the norm |u|| = |u|(X) and
the obvious addition and multiplication by scalars, M (X) is
complete with the metric d(u,n) = || — 7|

Answer. Since |p| is defined in terms of a supremum and sums of absolute
values, the triangle inequality for the absolute value gives ||u+v|| < ||u||+|v].
Similarly, |lcpll = |c| ||pll- I ||p]| = 0, then |p|(X) = 0, so |u| = 0 and thus
@ = 0. So the norm is indeed a norm.

It remains to check completeness. Let {u} be a Cauchy sequence. For
any F € B(X), we have

|k (E) = i (E)| = [ (ke = 1) (B < e — 5| (E) < e = p1|(X) = [l = ]
So the number sequence {ux(E)} is Cauchy in C, and thus convergent to a
number p(FE). This is a measure, because if {E,,} are pairwise disjoint then

M(UEn) = li]gnuk<UEn) = lilgnZ/«Lk(En) = u(En),

where the last equality is due to Tonelli’s Theorem. Finally, given ¢ > 0
choose kg such that ||u; — pk|| < € whenever k, j > ko. Then, if k > ko,

e = pull = lpn = pl(X)
= sup { Z |(Mk — ,LL)(EJ)| X = UEj’ pairwise disjoint}.
J J

For any such sum we have

Z |(i — 1)(Ej)| = 11?12 | (. — pe) (Ej)| < hmesup [ — el < e

So, if k > ko we get ||ur — p| < €, showing that p, — p.
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(2.10.13) Let (X, A, u) be a o-finite measure space, and A1, Ay positive
o-finite measures, with \; < p and A2 < p. Give a neces-
sary and sufficient condition, in terms of the Radon-Nikodym
derivatives, for \; < Ag. In such case, express d\;/d\y in
terms of d\;/dp and dAs/dp.

Answer. The necessary and sufficient condition is that
{g=0}NEC{f=0}NE forall E such thatu(E) > 0.
Let f,g be the respective Radon—Nikodym derivatives, so that \; = fdu,
A2 = gdp. If Ay < A2 and p(E) > 0, we have that g|g = 0 a.e. (u) implies
fle =0a.e. (1). So{g=0}NE C {f =0}NE for all E such that u(E) > 0.
Conversely, assume {g = 0} N E C {f = 0} N E for all E such that
p(E) > 0 and suppose A\ (F) = 0. If u(E) =0, then A2(E) = 0. If u(E) > 0,
then g|g = 0 a.e. () and so by the assumption we have f|g =0 a.e. (11). So
)\1(E) =0 and )\1 < /\2.
For the Radon—Nikodym derivative, note that from d\s = gdu we get,

if & C{g#0},
((E) = /1@ / gdp = / ).

So dy = %d)\z on those sets where g # 0.
When Ay < A1 we have, with h = d\/d\s and E C {g # 0},

/hd)\g M(E /fdu /fd)\g

d)\l o f _ d)\l/d,u
Dy ; {g#0} = dXa/dp Liars /dus0}-

So

(2.10.14) Let (X, %, u) be a o-finite measure space. Show that there
exists a finite measure v on ¥ such that v < p and p < v.
Does such a v always exist when p is not necessarily o-finite?

Answer. By hypothesis we have X = (J, X,, with {X,} C X, pairwise
disjoint and p(X,,) < oo for all n. Let

V(E) = Zmu(Ean), Eex.
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Then v(X) = 1, v(@) = 0, and if {E}} C X are pairwise disjoint we have,
using Tonelli,

1
V(LkJE,C) :%:mzk:u(mmxn)

1
= ———(ErNX,) =) v(Ey).
So v is a finite measure on X. If u(F) = 0 then v(F) =0, so v < u. And if
v(E) =0, then u(E N X,) = 0 for all n, and therefore

p(E)=> pENX,)=0.

Thus p < v.

The o-finiteness is crucial. Let X = [0, 1] and g the counting measure.
This is not o-finite. Suppose that v is a finite measure on ¥ = P([0,1]).
We will always have v < p, for u(E) = 0 if and only if £ = @. If we
had p < v, this means that v cannot be zero on any nonempty set. Let
R, = {t € [0,1] : v({t}) > 1/n}. If R, were finite for all n € N, then
the set {t : v({t} # 0} would be countable, contradicting that v is nonzero
on all nonempty sets. Hence there exists n such that R, is infinite. Then
v(Ry) > > 4ep, 1/n = oo, showing that v cannot be finite.

(2.10.15) Show that a linear combination of absolutely continuous func-
tions is again absolutely continuous.

Answer. Tt is enough to show that if fi, fo : [a,0] — C are absolutely
continuous and ¢ € C then cf; + f> is absolutely continuous. Let € > 0. Then
there exist d, k = 1,2, such that

; |fk(D) — fr(aj)] < 2+ 1)

for any partition a < a1 < by < as < by <---<b, <band Zj |b; —aj| < dk.
Put § = min{dy, d2}. Then, for a partition

a<ar <bi<ax<by<---<b,<b
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with 37, [b; — a;| < 6, we have

S Iehilb) + folby) — ehila) — folay)] < > lellfibs) = fi(as)]

Jj=1

+Z|f2 = fa(ay)|

<€ SRR — <e
2(le) +1)  2(e|+1) =

(2.10.16) Assume that both f and M f are in L'(R™). Prove that f =0
a.e.

Answer. Assume, without loss of generality, that f > 0. Suppose that f is
not zero a.e. Then there exists some ball B,(zg) with ¢y = fBr(mo) f>0.
Now, for any 2 with ||z|| > ||zo[|+7, we have the inclusion B,(x) C By (z)
(since, for y with [|y|| <7, ||zo +y — x| < ||xo|| + 7+ ||z|| < 2||z||). Then, for
x with ||z]| > ||zl + 7,

1 1 co c
M > > >_ 90 _ -
flw) > m(Baa)) /Bzm(m) = m(Byz)) /Br(xo) /= m(Byjey) 2]

for some constant c. Note that one can use the definition of the Lebesgue
measure, via boxes, to deduce that m(aF) = a"m(E), so we don’t need to
actually know the formula for the volume of a ball above.

Then, with R = ||zg|| + 7, using Tonelli, and writing m(B;(0)) = s"d,

M{f > ds dx
/n r= /|w||>R el /|m|>R/|m| L
_ m(B;(0))
_cn/ /ml<ssn+ldxds cn/ st
:cdn/ de—
R

(2.10.17) Let X be a locally compact Hausdorff space. We say that a
complex measure p on B(X) is regular if |u| is regular, and
Radon if |p] is Radon. Let v be a positive Radon measure on
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B(X), g € L*°(X), and define a complex Borel measure p by

WE) = /Eg dy.

Show that u is regular if «y is regular, and Radon if v is Radon.

Answer. By Proposition 2.10.12,

Hl(E) = /E gl dy.

If E € B(X) and € > 0, by the outer regularity of v there exists V open with
EcCVand y(V\E)<e. Then

WV \ B) = /V 111 <9170\ B) < gl =

Thus |p|(E) = inf{|u|(V) : V open and E C V}. Similarly, if K C E and
v(E\ K) < €, then with the same inequality |p|(E\ K) < ||¢||cc . Finally, if
K is compact, [4/(K) < lg]lo0 1(K) < 00.

(2.10.18) Let X C C be compact and pu a complex Radon measure on
X. Show that if fX fdup > 0 for all polynomials f such that
f(X) C [0,00), then p is a positive measure.

Answer. Since X is compact, we may approximate any continuous function
uniformly by polynomials (Stone-Weierstrass: Theorem 7.4.20). So we obtain
that [y fdu > 0 for all f € C(X). Given any closed E C X, choose a
decreasing sequence {V,,} of open sets with m(V,, \ E) < 1/n. By Urysohn’s
Lemma (Theorem 2.6.5) there exist continuous functions f,, with 0 < f,, <1,
fnle = 1, and supported in V,,. We have f,, — 1g a.e., since

m(E N ﬂ V) = m(o Vo \ E) =limm(V,, \ E) = 0.
Then by Dominated Convergence we get

u(B) = [ tpdp=tin [ foduz0.
X noJx

In particular ;(X) > 0. For any V C X open, u(V) = u(X) — (X \ E) > 0.
And then, by regularity, u(E) > 0 for any Borel set E.
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(2.10.19) Let X be a compact Hausdorff space and u a regular complex
Borel measure on A. Let ¢ : C(X) — C be given by o(f) =
Jx fdp. Show that ¢ is multiplicative if and only if p =
for some xy € X.

Answer.  We have 6., (fg) = (9/)(z0) = f(20)g(0) = 0ay (f)a, (9)-
Conversely, assume that ¢ is multiplicative. There is a fairly sleek proof

of this in Proposition 7.4.6 (that does not even require the existence of the
measure i, let alone its regularity), but we will provide an ad hoc proof here.
We have the advantage that we know that the multiplicative functional is
given by a measure.

Given E C X Borel, by Corollary 2.6.14 there exists a sequence {g,} C
C(X) such that g, — 1g. We may assume that the sequence is non-negative
and uniformly bounded by 2, as we can replace g,, with pogog,,, where p(x) =
max{z,0} and ¢(x) = min{z,2}. Then Dominated convergence applies (as
= p1 — p2 + (3 — pa) with p,; positive measures) and so

M(E)Z/ 1Edu=hm/ gn dp = lim ¢ (gn).
X noJx "

If F' is another Borel subset of X and {h,} C C(X) are bounded positive
functions that converge pointwise to h, then g,h, — 1glr = 1gAr. Then

p(ENF) = lim g(gnhn) = lm o(gn)p(hn) = p(E)p(F).

In particular u(E) = u(ENE) = pu(E)% So u(E) € {0,1} for all Borel
sets E; in particular, p is a positive measure. We can write 1 = pu(X) =
wWEUE®) = pu(E)+ p(E°) so p(F) =1 if and only if u(E°) = 0. We deduce
that if Ey, E», ... are Borel and disjoint with | J,, B, = X, then there exists
k such that u(Ej) =1 and p(E;) =0 for all j # k.

Let

Xo = ﬂ{E C X : compact, p(E)=1}. (AB.2.10)

Let Ey,...,E, C X be compact with y(E;) =1 for all j. We will show by
induction on n that u(Ey N---N E,) = 1. When n = 1, there is nothing to
prove. Suppose that pu(Ey N---NEy) =1. Then

Eip = (Ek+1\(E1 ﬁ“'ﬂEk)) U (E1 ﬂ~'~ﬁEkﬂEk+1).

As w(EyN---NE) =1, we get that u(Er41 \ (E1N---N Eg)) = 0, as this
last set liesin T\ (Ey N--- N Ey). Then u(E1N---NEL N Eyyq) = 1.

The family of compact sets in (AB.2.10) has the finite intersection prop-
erty and so Xg # @ by Proposition 1.8.19. If zg,21 € X are distinct, by
X being Hausdorfl there exist disjoint open sets Vy,V{ C X with z¢ € V{,
x1 € V{. Using Lemma 2.6.4 there exist Vy, V4 C X, open, disjoint, with dis-
joint compact closure, and xg € Vg, z1 € V4. For any F C X compact with
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w(E) =1, we have xg,21 € Xo C E. If (Vo) = 0, then E \ V is compact
and p(E \ Vo) = 1, giving us Xg = X \ Vo, contradicting that zo € Xj.
Thus u(Vo) = 1, and similarly u(Vi) = 1. But as Vy and V; are disjoint,
only one of them can have measure 1 (indeed, if u(Vh) = p(V1) = 1, we get
1>pu(VoUVi)=1+4+1=2). So Xg = {zo}. Now is the time to use that u
is regular. If p({xzo}) = 0, then by the regularity there exists V open with
20 € Vand pu(V) < 1, so u(V) = 0. Then for every E C X compact with
w(E) =1, E\V is compact and u(E\V) = 1, so VNX, = &, a contradiction.
So p({xo}) =1 and so u = dy,.

2.11. Differentiation

(2.11.1) Consider R with Lebesgue measure, and E C R measurable. If
it exists, the number

. m(EN(z—¢e,x+¢))
dp(@) = ;l—% 2¢e
is the density of E at x. Show that dg(z) = 1g a.e. Can you
formulate and prove an analog result in R™?

Answer. In R™, we can define

dpte) = tiy "EO D)
We have
m(ENB(z)) 1
m(B:(z))  m(B:(x)) /B © lgdm —=1p  ae.

by Theorem 2.11.9. Note that while 15 might not be integrable, we only care
about its behaviour on balls, where it is integrable. So we may replace 1g
in the integral with 1znp, (o) and we get the equality a.e. over an increasing
countable union of sets.

(2.11.2) Let f € L'[0,00) be such that

/fdm—O z > 0.
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Show that f = 0. This was already done in Exercise 2.5.6 but
now a much much shorter proof is available.

Answer. By Lebesgue differentiation (Theorem 2.11.13) we have
2z
1
fl@)=5- [ [f=0

2z J,

almost everywhere.

(2.11.3) For a closed square and a closed disk in R?, calculate the den-
sity at every point.

Answer. The density is
. m(EN B,(x))
) = I B )

For any interior point, a small enough ball will be entirely within the set,
and so dg(z) = 1. In the boundary of the square, for any point not a vertex
a small enough ball will have precisely half in the square and half outside,
so dp(x) = % In each of the four vertices, for a small enough ball precisely
a quarter of the ball will be inside the square, so dg(z) = i. For points in
the boundary of the disk, for small enough r the boundary of the disk will
be basically a straight line, so it divides the small ball almost in half: thus

(2.11.4) For E C R?, the boundary OF is the closure of E minus the
interior of E.

(a) Show that E is Lebesgue measurable if m(9F) = 0.

(b) Suppose that E is an arbitrary union of a collection of closed
disks with radii at least ¢ for some ¢ > 0. Show that E is
measurable.

(c) Show that the radii above don’t need to be restricted.

(d) Show that some unions of closed disks of radius 1 are not
Borel sets.

(e) Can disks be replaced by triangles, rectangles, arbitrary
polygons, etc.? What is the relevant geometric property?
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Answer. Write E° for the interior of E.

(a) If m(OF) = 0, then OF is measurable. More importantly, ENJFE C 0F
is a null-set. Then
E=E°U(ENJE)
is measurable as E° is open.

(b) Write E = | JB,,(z;). Let @ € E\ E°. As | B, (x;) C E°, we get
J J
that © € E\UB,,J.(:U]-). Let s > 0 with s < ¢/4. As z € E, there

J
exists k such that dist(z, By, (zx)) < s/2. Looking at the segment that
joins x and zj, because ry > ¢ > 4s we can fit a ball Bs/4(y) of radius
s/4 in the intersection Bs(z) N By, (z)). As this little ball lies outside of

E\ U B, (z;), it lies outside of E'\ E°.
J

B:(z) B, ()
AN
Then
m((E\ E°) N By(x)) . m(Bs(@)\Byjaly) _{ 7s°/16 _, 1
m(Bs(z)) - m(Bs(x)) 2 16

As s was arbitrary, this shows that dg, . (z) < 1forallz € E\ E°. Since
by Exercise 2.11.1 the density is 1 a.e., this implies that m(E \ E°) = 0.
That is, m(OFE) = 0 and so E is measurable.

(c) Let J, ={j: r; > 1/n}. Then
UBTj (zj) = U U B, (zn)
J n j€Jn

and the case with minimum radii applies to each union of J,, so we get a
countable union of measurable sets.



178 CHAPTER 2
(d) Let V' C R be measurable but not Borel. Let E = ],y Bi1(v,0). By the
above, E is measurable. But if E is Borel, so is
ENnRx{1})=V x {1}

As V = f~Y(V x {1}) with f : 2 — (z,1), this would imply that V is
Borel (Proposition 2.4.3), a contradiction.

(e) The key feature seems to be convexity. That is what guarantees that we
can put the smallest copy in the intersection, as in the picture.

(2.11.5) Let {f,} be a sequence of non-decreasing functions f,, : R —
[0,00), such that f(z) =), fa(z) < co for all . Show that

f(@) =22, fu(x) ae

Answer. Since derivatives are local we may restrict the domain to an interval
[a,b]. Since we can do this for any interval and a countable union of nullsets
is a nullset, we do not lose generality.

We know that f] exists a.e. (because f,, is monotone). By removing
a countable union of nullsets, we may consider only those z such that f/ (x)
exists for all n. Fix one such z. Let

=>_fi@)
This exists because f;,(z) > 0 for all n. The monotonicity of f,, makes all

Newton quotients non-negative. Then

Zf’Lz+h fIL Zf’L‘r+h f’L():f(x+h)_f(‘r)
W .

Taking the limit as h — 0, and then as N — oo,
=Y filx) < () (AB.2.11)
n=1

Let hy = YN, f,. Then hy / f. Choose numbers {N;};, C N, with
N1 > Ni and f(b) — hy, (b) < 2. Define

s() =Y (f@) by (@) =) > fale
k k n>Np+1

This function s is monotone on [a, b], since the f,, are; so 0 < s(z) < s(b) <1,
where the last inequality is guaranteed by the choice of the Ni. It follows
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that s is differentiable a.e., and then applying (AB.2.11) to s

0< Z (f'(z) = hly, (x)) < 5'(2) a.e.
k

This in particular implies that A’y () — f'(z) a.e., which is > f)(z) =
f'(z) ae.

(2.11.6) Suppose that E C [a,b], m(E) = 0. Construct an absolutely
continuous monotonic function f on [a, b] so that f’(z) = oo for
allz € E. (Hint: E C (), Va, with V,, open and m(V,) < 27";
consider Y, 1y, )

Answer. Since E is measurable, for each n there exists W,, D FE, open, with
m(W, \ E) < 27". Define

v, = (n] W;.
j=1

Then V,, is open, V,, D E, and m(V,, \ E) < m(W,, \ E) < 27". Let

f(t) = /: >y, dm.

There are no problems defining this, since everything is nonnegative. Also
(using monotone convergence)

ng(t)gZ/tlvndeZQ”:L

Being the antiderivative of a nonnegative function, f is nondecreasing. It
is absolutely continuous, because it maps nullsets to nullsets and it is the
integral of its derivative (the derivative exists a.e. by Lebesgue differentiation,
proven below).

For every Lebesgue point of g = >~ 1y, (so, almost everywhere), we
have

x+r

r—0 r r—=07r z

so f' = g a.e. For each x € E, we have f'(z) = g(z) =), 1y, () = oo.

(2.11.7) Let f : [a,b] — C be of bounded variation. Show that f admits
side-limits at all points.
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Answer. Let xg € [a,b]. Suppose that limw_m;r f(x) does not exist. This
means that there exists ¢ > 0 and a monotone sequence {z,} C [a,b] such
that z, N\, ¢ and |f(zn+1) — f(zn)] > . Indeed, the non-existence of the
limit means that there exists € > 0 such that for all § > 0 there exist y, z €
(w0, x0+6) that satisfy | f(y) — f(z)| > e. Start with §; > 0 with 2+ < b and
choose y1,z1 with zg < 21 < y1 < zo+0 and |f(y1) — f(z1)] > e. Inductively,
given y1,...,Ym and z1,..., 2y, with

20 < Zm < Ym < Zm—1 < Ym-1 < -+ < 21 <Y1 < x0+ Iy,

let dpr1 = Zm — zo. Since the limit does not exist, there exist zpm41, Ym+1
with 2o < Zm+1 < Ym+1 < Zm and | f(Ym+1) — f (2m+1)| = € and the induction
is complete.

Define

o Ynt+1)/2, N odd
" Zn/2 n even

Then z, \, o, and

m

> 1 f(@rr1) = flar)| = me.

k=1
As this can be done for any m, the total variation of f is infinite. The
contradiction implies that the right-limit exists. An analog argument shows
that left-limits also exist.

(2.11.8) Let f : [a,b] — R. Show that f is of bounded variation if and
only if there exist g, h : [a,b] — R, both monotone, and such
that f = g — h.

Answer. The total variation F' is monotone by construction; in fact, it is
proven in Proposition 2.11.16 that both ¢ = F'+ f and h = F are monotone,
so f=g—h.

Conversely, if f = g — h with g, h monotone, let a = tg < t; < --- <
t, = b. Then

Z If(t;) — f(ti—1)| < Z(.‘](tj) —g(tj—1) + h(t;) — h(tj—1)

9(b) = g(a) + h(b) — h(a)
for any partition of [a,b]. Thus F(b) < ¢g(b) — g(a) + h(b) — h(a) < co and f
is of bounded variation.
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(2.11.9) Let f : [a,b] — C be a function of bounded variation. Show
that f is Riemann integrable.

Answer. By Exercise 2.11.8 we can write f = g — h with g, h monotone non-
decreasing. So the assertion reduces to arguing that a monotone function g
is Riemann-integrable. We may assume without loss of generality that g > 0
(replacing g with g — g(a)).

If e >0, let P = {aog,...,a,} be a partition of [a,b] with A; = a; —
aj—1 < m Then, using that g is monotone,

U(g7P) - L(gap) = Z [g(aj) - g(aj—l)] Aj
k=1

m Zg(aj) —glaj_1) =e.

k=1

IN

Thus g is Riemann-integrable.
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3

A Bit of Complex Analysis

3.1. Analytic and Holomorphic Functions

(3.1.1) Construct an example of a convergent series of positive terms
> % b such that @ > 1 and 8 < 1.

Answer. Choose s,t € (0,1) with s < t. Define

sk, k even
by =

tF=1, Kk odd
Then Y, by, < > " 4+ >, t% < co. Also, when k is even,
lbria| _ t*
TR
And when k is odd,
lbra| _ s*
|| tk

Soa =00, 8=0.

183



184 CHAPTER 3

Let us now get an example of a convergent series with finite o > 1.

Choose any convergent series » ., aj with % — 1, for instance aj, = 1/k?.

Form
{a(k_l)/Q, k odd
by =
aayz, k even
Then, when k = 2h + 1 is odd,

[bet1|  cansr

= — a.
|bx| ap,
And when k& = 2h is even,
bria| _ an _ 1
|bk| aa, o

3.1.2) Construct an example of a divergent series of pOSitiVG terms
g
g kbk such that o > 1 and 5 < 1.

Answer. Choose any a > 1. Choose any divergent series ), ax with % —

1, for instance ay = 1/k. Form

b (l(k,,l)/g, k odd
k =
aay )z, k even

Then, when k = 2h + 1 is odd,

b aaq
lbess| _ @ahis
|| an
And when k = 2h is even,
brgr| _ an _ 1
|| aap, «

(3.1.3) Show that the function f(z) = z is not holomorphic anywhere
in the complex plane.

Answer. When h =t is real,

fz+h)—f(z) _t _
f—%—l.z

But when h = it is imaginary,

z+h)—f(z)_;it__1
h o
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I Then f is not differentiable at z and thus not holomorphic at z.

(3.1.4) Prove the Dirichlet Criterion: If {a,}, {b,} C C and
(a) nh_)ngo an = 0;
(b) > lan+1 — an| < 00;
n=1

< M for all m.

(¢) there exists M > 0 such that ‘ Z b,

n=1

Show that Z anby, converges.
n

Answer. The trick is to use summation by parts. If s, = anl anb, and

ty = 22:1 by, then
k

Sk = arp1te + Y tn(an — ania).

n=1

As |t,| < M by hypothesis, the series above converges absolutely, and so

o0
lim s, = Z tn(an — ant1)-
k—o00

n=1

(3.1.5) Show that in Exercise 3.1.4 the hypothesis “Z |ant1 —an| <

n=1
00” can be replaced, when it makes sense, by “{a,} is mono-

tone”.

Suppose that {a,} is non-decreasing. Then

Answer.
k k
E ant1 — an| = E Uny1 — Qp = Qy1 — G — —a,
k— o0
n=1 n=1
so the series converges. Similarly, if {a, } is non-increasing,
k k
E |an+1 - af'n,| - § Ap — Apy1 = a1 — Q1 — a1,
1 1 k—oo
e —

In both cases, the hypothesis in Exercise 3.1.4 is satisfied.
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(3.1.6) Show that the Gamma Function
I'(2) :/ t*"te tat
0

defines a holomorphic function on the semiplane Rez > 0.
Show also that I'(z+ 1) = 2I'(z) for every z in its domain, and
that T'(n) = (n — 1)! for all n € N.

Answer. First we check that the integral exists. If z = a + ib with @ > 0

then
tz—l — ta—l-i—ib _ ta—l eiblogt'

Then
I'(z) =

oo (oo}
/ 8(t—1)r ez’(t—l)@ et dt‘ < / e(a—l)logt—t dt.
0 0
Taking to such that (a — 1log < ¢/2 for all ¢ > ¢,

oo oo
/ e(a—l)logt—t dt S/ e—t/Q dt < 0,

t[) tD
so the integral converges.
Now we look at the Newton quotients. Given sequence {h,,} with |h,| <
1 for all n and h,, — 0, we have by Dominated Convergence
_ z—1+4+h, _ 42—1 oo
lim Lz + hn) = I'(2) = / lim ¥e*’5 dt = / t*~1logte tdt.
0 0

As this can be done for any sequence that converges to 0, the limit of the
Newton quotients exists (the integral converges as the exponential wins over
the power of ¢ and the logarithm). So T' is holomorphic.

Integrating by parts,

oo o0
I(z+1) = / tPe tdt = / 27 et dt = 21(2).
0 0

The expression for n follows by induction, since I'(1) = 1 and T'(n) = (n —
1)C(n —1).

3.2. Inverses of Holomorphic Functions and the Logarithm




3. LINE INTEGRALS 187

3.3. Line Integrals

(3.3.1) Show that if v : [a,b] — C is piecewise continuously differen-
tiable, then it is of bounded variation.

Answer. Let a =ag < aj; <--- < a, = b be a partition of [a,b]. We have

> bl (el = | / oY
k=1 k=1 Jar-1
< Z/ (t)| dt

- / () e

< (b—a) [ loe-
We know that +' is bounded because it is continuous on each of the finitely
many intervals [ag—_1, ag].

(3.3.2) Let «(t), t € [a,b] be a curve. Show that it is natural to define

the length of ~ as
b
— [ ela

Answer. If we partition the interval [a,b] as a = tg < ¢ < -+ < t, = b,
an approximation to the length of the curve would be 377, [v(t;) — v(t;j-1].
Then we can do, using the Mean Value Theorem,

n
Iy (t; 1|
Zl|’Y(tj) ti— 1|—Z t—t UE ZW i —tj-1)
§=
for some t} € [t;_1, tj], and now the sum is a Rlemann sum for the integral

o)
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3.4. The Index

3.5. Cauchy’s Theorem

3.6. Zeros of Holomorphic Functions

(3.6.1) Show that the order of a zero is well-defined, in the sense that
if (z—w)"g(2) = (z—w)™h(z) with g, h holomorphic at w and
g(w)h(w) # 0, then n = m.

Answer. Assume without loss of generality that m > n. Since both g and
h are nonzero at w and they are continuous, there exists a disk w + DD
around w where both g and h are nonzero. For any z € w + rD, we have
(z —w)"g(z) = (2 — w)™h(z), and since g(z) # 0 and h(z) # 0 this gives us
(z—w)” = (z—w)™. Thatis, (z —w)™ ™ —1=0forall 2z € w+rDD.
Then all derivatives will be zero on the disk. If m —n > 0, this gives us, after
differentiating m —n — 1 times, z—w = 0 for all z € w+r D, a contradiction.
Thus m = n.

(3.6.2) Let V be open and f holomorphic on V. Show that f has at
most countably many zeros.

Answer. Since V is an open subset of the plane, we can cover it with count-
ably many closed disks (for instance, B, (0). By Corollary 3.6.3, each of the
closed disks can only have finitely many zeros, so the union of all of them can

have at most countably many.
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(3.6.3) Let V be a simply connected region and f holomorphic on V'
such that it has no zeros on V. Show if a € V' and

9(2) = log f(a /f

then f(z) = e9(*). Note that we know from the proof of Propo-
sition 3.3.8 how to differentiate the integral.

Answer. We have that

Then

(FZ)e™P) = (£(2) = f(2)g' ()™ =0,
so there exists ¢ € C such that f(z) = ce9*). Evaluating at z = a, f(a) =
cf(a), so ¢ =1 (note that f(a) # 0 by hypothesis).

3.7. Maximum Modulus Principle and Liouville’s Theorem

3.8. Consequences of Cauchy’s Theorem

3.9. The General Cauchy Theorem

(3.9.1) Let f be entire and such that there exist ¢,7 > 0 and n € N
such that |f(2)| < c|z|™ for all z with |z| > r. Prove that f is
a polynomial with deg f < n.
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Answer. Consider z with r < |z| < 2r, k € N with k& > 2r, and let v(t) =
2+ ke, t € [0,27]. By Corollary 3.9.4,

2 n n
|f(n+1) ’/W f(z + ket) k‘ it gy <c/<:(27“+k) _c(2r+k)
~or

fn+2e(n+1)i Le — Jen+2 - fen+1

As we are free to choose k as big as we want, we conclude that f"1(z) = 0.
So the holomorphic function f”*! agrees with zero in a set with a cluster
point; thus f?*! = 0 by Corollary 3.6.2. By writing f as its Taylor series
centered at 0, it follows that f is a polynomial of degree at most n.

(3.9.2) Let f be entire and such that, for z big enough, Re f(z) < ¢|z|*
for some ¢ > 0 and s > 0. Show that f is a polynomial of degree
at most m = |s].

Answer. Let n =m + 1. Using Corollary 3.9.4,
| . | 27 T )
FM0) = = /() dz = %/ _Jre) rie'® do
0

2mi T ontl 2mi rntlei(nt1)0
n [T . ,
=3 — f(rew) e~ q.
Trt
0

Applying Cauchy’s Theorem to 2" =1 f(z) we get

2
0= 7{ f(2)z"tdz = f(ret?)yrn—lein=10 e g
rT 0

2w ) )
=qr" f(re'®)e™? ap.
0
Complex conjugation then gives
2m
0= f(rei(’)e_mg do.
0

This allows us to write, since Re f = f + f,

! 2 , ,
|F™(0)] = v / Re f(re'?) e=™m? d@‘
0

r’

_nl

Trn

27
/ (cr® —Re f(rew)) e~mf d9’
0

e .
= * —Re f(re')) db
< /0 (cr e f(re ))

7T,,.7L

= 2cr®™" — 2n!Re f(0)r™"
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As we are free to choose r, it follows that f (")(0) =0 and f is a polynomial
of degree at most m.

3.10. Meromorphic Functions and Residues

(3.10.1) Let V C C be open, zp € V, and f: V — C a function. Show
that the following statements are equivalent:

(a) there exists n € N such that (z — 29)"™ f(z) has a removable
singularity at zo;

(b) there exist aq,...,a, € C, with a, # 0, such that on some
disk around zq

f(Z)_Z(Z_aikZO)k

k=1
has a removable singularity at zo;

(c) there exist coefficients {c;}72_,, C C such that, on some
disk around zg,

Answer. Suppose that (z—z0)"™f(2) is holomorphic at zg. By Corollary 3.5.2
there is a disk around zy such that

(z — z)" Zka—Zo

We can rewrite this, splitting the sum as convenient and defining ay, = b, _g,

Zka—Zo Zbkz—zok"—i—Zbkz—zO -
= Zak(z —20) 7+ an—k(z - 2)¥,
k=1 k=0

which gives the desired expression for f.
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If we now assume that f(z)—> ,_, (z—ai;o)k has a removable singularity
at zg, on some disk we can write

f(z)— Z(z_aikz())k = Zbk(z — z9)".
k=0

This is -
flz) = enlz = 20)F, (AB.3.1)
k=—n
if we put ¢, = a_j, for k < 0, and ¢, = by for ak > 0.
Finally, if f is as in (AB.3.1), then

(=20 f() = 3 ez =20 =3 ez = 20)"
k=—n k=0

and so (z — 29)" f(z) is analytic at zp.

(3.10.2) For each of the following functions, classify its singularities.
(2) f(z) = 22, z € C\ {0};
(b) f(2) = &, 2 € C\ {0};
(c) f(z) = €e'/%, 2 € C\ {0}.

Answer.

(a) The function is bounded on any disk that does not contain 0. Since we

have
2

= 1—%+O(Z5),

sin z

z
the singularity is removable.

(b) We have
i 1 1.z 2
FE) =il i o),
By Exercise 3.10.1, f has a pole of order 2 at 0.

(¢c) The singularity at 0 is essential. For

) =3
k=0

is always unbounded on disks around 0. This can be seen for instance by

taking z = m and then 2" f(z) > m (by considering the (n + 1)t

term of the series).
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(3.10.3) Use the Residue Theorem to evaluate ]{ ﬁ dz.
|2|=2 -

Answer. Since we have a circle, the index is 1. The integrand has poles at
z =0 (order 2) and z = 1) (order 1). Since
1 1 1
fE =zt

we see that Res(f,0) = —1 and Res(f,1) = 1. Then

1
——dz =2mi(—-1+1)=0.
fz—Q Z2(Z - 1) ( )

e*

(3.10.4) Find ?{ dz

2 2 :
|2]=3 2" T 7

Answer. Since e* is nonzero and entire, the only poles +im of order 1. These
lie outside the simple curve |z| = 3, so our integrand is analytic on the interior
of the curve, and hence the integral is zero by Cauchy’s Theorem.

(3.10.5) Find ¢ 4z

2 2 :
lz—i|=3 2~ 7

Answer. As mentioned in the answer to Exercise 3.10.4, the poles are +i.
Now the curve has i inside of it, and —im outside (so with index 0). We
have .
. . ¥4 /Z7l' 1
Res(f,im) = lim S ——

z—im 2+ AT 247 247

Therefore

o .1
% % dZ = 727'(7, _— = 1.
|z—i|=3 2~ T 7 27

1

2m
(3.10.6) Find /0 Eicost




194 CHAPTER 3

Answer. If we put z = e, then cost = (2 + z7!). Then

2m 1 2m jeit 1
/ ——dt = / i Ty At = i Iy 4%
o OS+4cost o et (5+2(eft 4 e~)) 2]=1 izb+2(z+271))

% 1
= —1 532 1 r. 15 dZ

The function f(z) = (222 + 5z + 2)~! has simple poles at z = —2 (outside

the curve) and z = —1/2 (inside the curve). The residue is
1 z+3 1 1 1
Res(f,—=) = lim 2 = ==,
2/ = oM 2+ 1)(2+2 1
—-1 ( z+ )(Z + ) 2( ; + 2) 3
Thus

2
1 1 21
b g = ol =T
/0 5+ 4cost T3 T

> 1
(3-10-7) Compute /;Oo m dx

Answer. Since 2% + 4z + 5 = (x + 2)? + 1, its two roots are —2 + 4. Let
YR = 71 + 72, where

() =—-R+t, t€[0,R]
and .

Y2(t) = Re™, t €10,n].

So g is a closed curve, going from —R to R on the real line, and then coming
back as an arc towards —R. Write f(2) = (22 + 42+ 5)71. Since —2 + i is
the only pole (simple) of f inside yg and

B N (z+2—1) _ 1
Res(f, Q‘H)*Z}EH (z+2—i)(z+241) 20

1
f(z)dz =2ir — = .
/YR () ¢ ' 2Z

we have

Also, when |z| =
|22 + 42+ 5> |2%| — |42 —4=R*> —4R -5

2m
= —_ < —.
‘/ dz ‘/ (Reit)? +4R(”—0—o ‘—/0 4R 54 < R

SO
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Thus

> 1 R 1 1
———dx = lim ———dx = lim ——dz=.
/oox2+4:p+5 R—oo J_pa?+dx+5 R%oo[YR22+4Z+5

(3.10.8) Compute/ O dx.

2

Answer. Consider v1,72,vr as in the answer to Exercise 3.10.7. Since cos z
is not bounded on an arc, we will instead use that
* cosw e
/ 1122 dr = Re / 1122 dx.
— 00 o0

So let f(2) = e%*/(1+ 22). This function has simple poles +i, and

N (z —1i)e? _i_i
Res(f) =lim = o ~ o
When |z| = R we have |1 + 22| > R? — 1, which shows that |Re®/(1 +
(Re'*)?)| < R/(R% — 1) and thus f'm f(2)dz — 0 with R. Then

CoS T

00 ] eiz o . . 77{'
[mmdaj— lim ReLRWdz—2ﬂzRes(f,z)_e.

R—o0

s—1

(3.10.9) Show that if s € (0,1) then / ; dx =
0

+1 sinms’

Answer.
Consider f(z) = z°71/(z +1). We use a “keyhole” contour that leaves
out the positive z-axis:
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This allows us to choose the branch of the logarithm where 0 < 6 <
27. Which is crucial because we need the logarithm to calculate 257!, It
is common to use a small circle around the origin (which justifies better the
name “keyhole”) but using straight lines simplifies the computations a bit;
most sources will gloss over the estimates below to avoid the effort.

Over v1(t) =t +ie, t € [-e,VR? — 2],

VR?—e? io)s—1
(2)dz = / % dt
- t+1+4 i€

—E

dt

VR2=¢2 (t2 +€_:2)(571)/2 ei(s—1)arctan §
- t+1+1e

—&

o0 s—1
/ T da.
R—x Jo x+1

e—0
The limit is taken via Dominated convergence, since for big enough ¢
(12 4 £2)(5=D)/2 gi(s—1) arctan §
‘ t+1+ice
which is integrable since 0 < s < 1.

< 48_1ts_2
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Over y2(t) = VR? — €2 —e —t —ie, t € [—&,VR? — 2], now we need

to look carefully at the log branch we are using. Concretely,
(a —i)" ! = (a® + %)== 1)/2 pils—1) (2r—arctan £)
Then

/f(z)dz—/ T RSt
. e VR?—e?2 —e—t+1—ic

:_/m(

t —ig)*~t
t+1—1ic

—€

dt

SBe 2 ) .
_ _6271_(571)7; R?—e¢ (t2 + E2)(571)/2 efz(sfl)arctan £
t+1—ic

—€

s—1

dx.

R—o0 r+1

_6277(5—1)1 /
e—0 0

Over vr(t) = Re', t € [arctan 5, 2m — arctan %} we have, as long as
R>2,
s—1 (s—1) s—1
R < R < 2R
|[Re*+1 — R—1 — R
From Lemma 3.3.4 we get

’/ £(2)dz

And over ~5(t) :—5—|—ztt6[ , €], aslongass<%

s—1
_ —€+ zt i di
e 14it
Therefore we have shovvn that

i X s—1
(1762ﬂ(871)1)/ Y dr= lim /f(z) dz.
0 g

z+1 R—x
e—0

F(Re)) < =2,

<2R*227R=47R*' —— 0.
R— o0

- 1—¢ e—0

‘ f(z)dz
’YE

c [t —el*~?
< / Tl dt <4e(2e)" ' ——0.
—€

Now we calculate the integral using its residue at the only pole z = —1. The
pole is simple, and we have

1) — 13 (Z+1)2371 _ (_1\s—1 _ Jin(s—1)
Res(f, 1)721_131_1172_’_1 =(-1)"""=e .

Therefore

. 0 s—1 .
(1 — e2m(s=1i) / f+ : dx = 2mie’™ (=),
0
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Thus, using that e'™(571) = eimse—im — _pims
o0 g1 2mietm(s=1) T s
/0 z+1 dr = 1 —e2r(o-1i ] _e2r(s-1i  goin(s—1) _ gin(s—1)
2 i) 2
™ ™
T e 1™ sinns
2i

0 .
rsimaxT
(3.10.10) Evaluate /wm B

Answer. As before we use the same curve yg from 3.10.7 and we work with
the real part:

o rsinx o we'®
/_001*2+4x+20 * e/oox2+41’+20 “

The function f(z) = ze**/(2? + 42 + 20) has poles at z = —2 4 4i. Only
—2 + 44 lies inside g, and its residue is

(=2 +4i)e? 244D (—2 4 4i)e
—2+4i+2+4 8eti

Res(f, -2+ 4i) =
Then

o rsinz . C(—2+4 42’)6*4*21') o N 9
_ m(2cos2+sin2)

2¢et

o0 wa
s T

T = — .
14 e* sin s

(3.10.11) Show that, for 0 < s < 1, /

— 00

Answer. The poles of f(z) = 11—:; occur when e = —1; that is, when
z = (2k + 1)7i, k € Z. The residue at mi is

(z —mi)e® . wes(wtmi) . wesSwtm) _

eS(f? 7TZ) zl)H;i 1 _|_ ez w—0 1 + cw+7r7, wl_)l’no 1 — ew €
We let v, be the curve describing the rectangle with vertices

—R,R,R+2mi,—R + 2ri

s
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(so only i lies inside the curve). That is, v» = v1 + v2 + v3 + V4, where

7 (t) = t € [-R, R];
Y2 (t) = R + 2mit, t e [0,1];
v3(t) = —t + 2mi, t € [-R, R];
Y4(t) = =R + 2mi(1 — t), t €[0,1].
Then
R es.’lf
/ z)dz = / —dx
Y1 R 1 + e
and

R e—sx+27ris omi R esx+27ris
/ f(Z) dz = _/ T o —atomi dr = —e wzs/ p dx.
s _pl+te _gp l+¢

We have the estimates

et 2mestt
)d ‘ < dt < 0
’ f z / |1 + efit2mit| “efl—1 Ryco
and .
Qme—sht Qe SR
d ’< __at < 0.
‘/mf(Z) Z—/O [1 4 e-B+2mil=t)| ™" = ] — =R R0
Then
. oo 5T
li dz = (1 —e*™* d
i f - [
Therefore
0 s 27 —2mies™ -7 T
%dJU:i Res(f, i) = T = o = oo
[oo 1 + e 1— 27Tls 1 — esmi e Qi—e: sin s7
g m(l—a)
(3.10.12) Show that if —1 < a < 3, then / 55 dr = .
o (1+22) 4cos &

Answer. We have to deal with the expression z®. This is e*'°8#, but depends
on the branch of the logarithm we choose. Since we will only work in the
semiplane Im z > 0, we may use the branch of the logarithm where 0 < 6 < 7.
Then, when z = Re® with Im z > 0 we have 0 < 6 and then

(Rve)a — @ log(Re®?) — ea(log R+if) _ R eme.
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With this interpretation we have, when x < 0, 2% = (=) ¢*“™. Then

/Rx“dm:/Radﬂ/‘) N
g (At a2 o (d+a2)2 NCEraE
:/Rmadx_i_eiaﬂ /0 ﬂdm
0 (1+$2)2 _R (1+£B2)2

R (0%
[1e%g T
=(l+e )/0 At dz.

We consider the upper semicircle given by v1(t) = —R+ ¢, t € [0,2R] and

v2(t) = Re®, t € [0,7]. We have, using that when R > /2

. 4
1+ R2%2)2 = R' + 1 - 2R%cos2t > R* +1— 2R? = (R — 1)? > RT

the estimates

(Re'*)*Ri ¢ T RY4+1
< L
A (1+z2 ' ’/ (1+ R2e2it)? dt’ */O s onp &
a—+1
S/ A gt = 4xR— —— 0.
0 R R—o0
It follows that
> % 1 Fa
——dr = —— lim / —_dz
/0 (1+ 22)2 (1+eW”) R0 [ s (14 22)2
211
m Res(f(z),1).
It remains to calculate the residue. We have
2z d (z—4)2%2% . d 2%
Res ((1+z2)2’ ) LS iy gyl L el P
ey 2ot . _l-a a1z
—iﬂm(a(2+l)72z)—Te 27,

Hence

/oo 3:112 de: 271'1? 1—a€(a_1)§i
o (1+2?) (14 efomr) 4

_ 21 11—« a%i
- eiour/?(efionr/2+eiom/2) 4 €

_ 2 1_04604%@‘:7"(1_04)
2¢i07/2 cos 4 4 cos &F
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(3.10.13) Using the ideas in Example 3.10.6 show that, for any mero-
morphic function f with no integer poles and such that there
exist s,¢ > 0 with N |f(yn)| < ¢ for all N, where vy is the
curve from Example 3.10.6,

Zf(n) =7 Z Res(f(z)ZgT:j,w), (3.1)

neZ weP

where P is the set of poles of f.

Answer. Let g(z) = % Since f has no integer poles, the poles of ¢
are P. The integer poles are of order one, reasoning as in Example 3.10.6.
We have

Res (f(z) COSTFZ,n) ~ lim (z—n)f(z)cosmz ~ im wf(w+n)cosm(w + n)

sinmz z—n sinmz w—0 sinm(w + n)

— lim wf(w+n)cosmw _ f(n)

w—0 sin Tw T
f ) cos 7TZ ) (f(z) Ccos Tz ) 1
% sin 7z Z Res sinnz + Z f(n). (AB.3.2)
|w‘<N 7I<|N|

We also consider the square vy with vertices (N + i)(il +1) as in Exam-
ple 3.10.6. We ran the estimates as in the example, only that now instead of
(3.26) (where we had f(z) = 272) we obtain

]g LG DEN Y N
N (1—6 2) N—o0
Then, taking the limit on (AB.3.2),

> 1 = 3 Res (A )

newZ weP

CosS Tz

22 sinmz

(3.10.14) Show that Y  ———— =7°.

neZ 0= 2)2

Answer. Here we are taking f(z) =
=3. So

Res(f,%) = li_r)Il 4 “?)ﬂ} = lim E[COSW'Z} = lim{ il } = —.

i sin® 7z

ﬁ, with a single pole of order 2 at
2
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Then (3.1) gives us

(3.10.15) Show that, foranyr>02 L :W+L_ 1

n2+7r2 20 (e —1) 272

Answer. We want to apply (3.1) to the function f(z) = This function

m
has poles at £ri. The residues are
cos Tz . . (z —ri)cosmz cos T
Res (7 ) = lim =
(22 +r?)sinwz’ zori (z—ri)(z+ri)sinTz  2risinmri
e e 1+ 6—27‘77
B _27'(6” —e ) _27'(1 — e 2rm)
and
Res ( cos Tz _m.) — lim (24 ri)cosmz _ cosmri
(22 +r?)sinmz’ T 2S5 (z—ri)(z+ri)sinTz | 2risinar
e 4T 1+ €—2r7r
T 2r(erm—etm) (1 —e 2Ty
Therefore
1 + e2rm
Z f _ 6—27‘71') .
neZ
Since f(0) = %,
— 1 1 1 1 142
- = Z 4Tt
anJrrz 2( +Zf ) 2( r2+ 7’(176*2”))
n=1 neEZ
m T 1

2r ' or(e2T—1) 22

(3.10.16) Let r € R\ Z. Show that Y ﬁ _ L _ weeanw
n=1 -

2r2  2rsinmr

Answer.  We apply Exercise 3.10.13 to f(z) = (22 — r?)~1. This has two

simple poles +r. The residues are
. CoSTZz COSTTr
Res ( = lim - = - .
z—r (z+r)sinmz  2rsinmr

COSTZ )
(22 —r?)sinmz’
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Similarly,
Res( COS Tz —1") — lim COSTZ __cosTr
(22 —r2)sin7z’ T 25 (z—r)sinmz 2rsinar’

As f(0) = —T%,

1 f0) 1 1

, _ 1 mcosar
anfrz T2 +22f(n)_2r2 2rsinmr’
n=1 neZ

(3.10.17) Show that the function —— is bounded on the square with
vertices (N + 1) (1 £ i), independently of N. Conclude that
if f is meromorphic, it has no integer poles, and there exist
s,¢ > 0 such that N1 |f(yn)| < ¢ for all N, where ~yy is the
curve from Example 3.10.6, then

S0 fm) = —r 3 Res(sﬁfjr)z,w), (3.2)
weP

nez

where P is the set of poles of f.

Answer. We have ) 5

| sinmz| - leiz — e—iz]”
We consider the same square vy as in Example 3.10.6. This time we need
estimates for —L—. On the vertical line (N + ) (1 + it), consider first the

Sin Tz

. We have

1
case t > 4(N+%)

|eiz _ eizl > ’ ‘eiz| _ ‘e—iz| ’ _ eﬂ't(N-‘r%) _ e—‘n’t(N—i—%) > e7r/4 1> ew/4 1

1
doesn’t change the absolute value). When [t| < —1—+,
4(N+3)

The caset < — 4(N1 T is dealt with similarly, by exchanging z with —z (which

[2sin((N + D) +imt(N + 1)) | =2

sin(§ +imt (N + 1))

, 1 . 1
— 67.77/26—71'(N+2)t _ e—zﬁ/2€ﬂ<N+2)t

= ‘eiﬂ'(N+%)t + eﬂ(NJr%)t

= Q‘COS (77(]\7 + %)t)‘ > V2.

For the other vertical line the estimates are the same as we can exchange
the roles of z and —z without changing the absolute values. And the same
happens with the horizontal lines, as these are obtained from the vertical
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lines by multiplying them by . In all, we have shown that there exists ¢ > 0,
independent of N, such that

# <
|sinmz| —
on yy. By hypothesis, there exists ¢’ > 0 with |f(n)| < Disad |1+S for sufficiently

big n. Then, with ¢ = max{c '} and N >4,

‘% d’< BN +4) _ 12 0.
sinmz

Nits — N®¥ Noo
The residue of —— nos at z=mnis (using that sin(z 4+ 7n) = (—1)" sin z)
z—n sinmz z—n w T
Thus

Res (L)) = G120

S Tz ™

As the poles of f(z occur at n € Z and at the poles of f, the equality (3.25)
becomes (3.2).

_ 2 cos T
(3.10.18) Show that for any r € R\ Z we have Z (7(L D T oo
neL

+7)? sin? 7rr

Answer. We apply Exercise 3.10.17 to the function f(z) = ﬁ The only

pole of f occurs at z = —r, with order 2. So
. d z4+7r)? . TCOSTZ T CoSTTr
Res(f,—r) = lim N G 5 ) = lim —— =——,
z——rdz (z=r)%sinmz  z——r sin®7z sin® 7rr

and then (3.2) gives us

Z (-n» (=) —mweosTr W2 CosTr
- (n+4r)? sin? 7 sin? 7o

T'L

(3.10.19) Find Z 1+n2
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Answer. We apply Exercise 3.10.17 to the function f(z) = ﬁ The poles
are £¢. The residues are
Res(f(z),i):lim ,1, = 1 - = — 2 -1
sinz z—i (z+14)sinmz  2isinmi 2i(e”™ —e™) em —e ™
and
Res (M,fi) = lim ,1 . = . 2 = — 1 .
sinz z——i(z—i)sinmz  —2i(e™ —e™T) er —e ™

By Exercise 3.10.17

Z (—1)” . 2

1+n2  em—e ™
nez

Therefore

°°(—1)"_1(_ (—1)n)_1(_ o )_ T 1
Zl+n2_§ 1+Zl+n2 T2 1+e”76*” Tem—e 2

n=1 nez

(3.10.20) Consider the Gamma Function from Exercise 3.1.6. It is only
defined for Rez > 0. But it can be continued analytically
(doing analytic continuation) in the following way. We know
that T'(z 4+ 1) = 2I'(z). This we can write as

T(z) = I'(z + 1)7
z

which suggests a way to extend the function “to the left”, first
to the strip —1 < Rez < 0 (avoiding z = 0), and subsequently
to each strip —(n + 1) < Rez < —n (avoiding z = —n). We
have to avoid 0 because otherwise it appears on the denomina-
tor, and this makes the extension undefined on all non-positive
integers. The formula, using that I' is holomorphic, shows that
this extension is holomorphic. So we get a meromorphic func-
tion with poles at —n + 1 for n € N.

(a) Show that these poles are simple.
(b) Show that, for all z € C\ Z,
()1 -2) =

™

sinmz’
Exercise 3.10.9, via a substitution of the form y = t/z,
should be useful.

(¢) Show that there exist a,b > 0 such that for all z € C

IT(2)| < acbl? sz
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(d) Show that there exist a,b > 0 such that for all z € C

< gebl#llog 2],

IT(2)]

Answer.

(a) For each pole —n with n € {0} UN,

lim (z+n)l(2) = lim (z+ n)F(z +1)
= lim G+ W2
- Zlirgn(z +n) Z(zr—izl;_- n?zl—o)— n)
_ =nrra _ (="
n! n!

So the residue of first order exists and hence each pole is simple.

(b) For s € (0,1), and using Tonelli and the substitution y = t/x,

o0 oo
L(s)(1—s) = / t et at / x e da
0 0

:/ / et dt da

o Jo

:/ / (E) e_x_tldtdx
o Jo \T t

yse_x(y'H) 1 dy dx
Y

s=le=2(W+1) gy dy

s=le=2(W+1) gy dy

© L s—1
/ W= G
o y+1 sin s

the last equality coming from Exercise 3.10.9. By Corollary 3.6.2, the
equality T'(2)T'(1 — 2) = === extends to all z where the function is holo-

sinwz

morphic, which is z € C\ Z.

<

Il
S
Nﬁc\
Neyd
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(c) Suppose first that Rez > 1. Let k = ||z|]. Then

oo oo
/ tz—l et dt‘ _ / tRcz—l ei(Imz) logte—t dt’
0 0

00 1 0o
S / 2tR.ezfl eft dt = / tR,ezfl eft dt +/ tRezfl €7t dt
0 0 1

1 e’}
g/ t1/2et dt+/ the ™t dt = ¢y +T(k+ 1)
0 1

IT(2)| =

=c1 + k! < + kF = ¢ + Flogk

Next consider the case where |[Rez| < 3. When [Im z| < 1 we have a
continuous function on a compact set, so there exists co > 0 with |T'(z)] <
¢ there. When [Im z| > 1, noting that |z| > [Imz| > 1 and Rez+1 > 1,

IT'(z+1)
r) = E
for k = ||z||. So in this case |['(2)| < ¢ + o + eklogk,

Finally, when —n — % <Rez< —n+ % for n € N, we reduce to the
previous case by

<|T(z 4+ 1)] < ¢ + eFloek

IT(z + n)] 4 4 klogk
= < = < = g
where we used that |z—|—m\2—Rez—mZn—l—mform:O,...,n—l.

2
Now combining all the estimates and replacing ¢; and ¢3 by 4¢o/3 and

4ce/3, we have that |['(2)| < ¢1 + o + e¥1°8% where k = ||2]]. So
IT(2)| < ¢1 + co + el?l1o8 2l < geblzl loglz],
where we can choose a =b=c; +c2 + 1.

(d) By the previous part of the answer we know that
1 P —-z)sinmz|
IT(=2)] ™ '

We also know that
(6\2\ + 1) < el?l

N =

|sinmz| = % le™ —e ™| <

Therefore, using that |1 — z| <1+ |z|,
b b pebli—zllog izl glzl < L (4[] log(14121) o]
L)~ 7 m

< 1 gebt2lzitoglzN gzl = 1 g obo2blzllog |2 2]
m m

1
< L gebe(@bH1)lzllog 2]
™
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Renaming the constants we get

1
< ae

blz| log ||
T(2)| —

3.11. Weierstrass’ Factorization Theorem

(3.11.1) Let h,k : V. — C be functions defined on a region V. Show
that if both functions are nonzero and differentiable at z = zg,
then

(Wb (z0) _ W(0)
h(z0)k(z0)  h(z0) = k(z0)
(h/k)'(20) _ h'(20) _ K'(20)
h(z0)/k(z0) ~ h(z0)  Kk(z0)

and

Answer. Using the product rule,

(hk)'(z0) _ h(z0)K'(20) + P'(20)k(20) _ '(20) n k' (20)
h(20)k(20) h(20)k(20) h(z) — k(z0)"
Similarly,
(h/k)'(z0) _ h'(20)k(20) — h(20)K'(20) _ P'(20) _ K'(20)
h(20)/k(20) k(20)?h(20)/k(20) h(zo0)  K(z0)

(3.11.2) Find the Weierstrass factorization of the entire function f(z) =
sinz.

Answer. The zeros of f are z, =n, n € Z. We can take p, =1 for all n to
satisfy (3.34). We also note that z = 0 is a zero of order 1. Then

sinmz = ze9(%) H (1 — %)ez/".

n#0
If we index by only the positive integers, the terms for —n have corresponding
factors of the form (1 + %)672/ ™. Therefore
2
sinmz = ze9(®) H (1 - %) (AB.3.3)
n>0
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Using logarithmic differentiation repeatedly (and using the convergence of
the product and the series)

TCOSTZ —2z/n% _1 / N 22
sinmz Z( 2) z+g(2)+;n2—22'
We know from (3.28) that

oo
TCOSTZ 1 —2z
- =-+ E -5
sinmz z n?—z

n=1

Comparing the two expressions we conclude that ¢’'(z) = 0, so g is constant.
From (AB.3.3) we have, writing ¢ = e9(*)

sinmz 22
z ¢ H ( n2

n>0

Taking limit as z — 0, we get m = ¢. Thus

2
sinmz = 7wz H (1—%).

(3.11.3) Show that Theorem 3.11.9 holds for entire functions with the
convention that the empty product is equal to 1. That is, given
f entire there exists g entire with f = e9.

Answer. We can repeat the corresponding part of the argument in the proof
of the Weierstrass factorization. Let f be entire. Then f’/f is entire. Let
g=f'"/f. Then

(fe™9) =f'e7? —fge ¥ =0.
So there exists ¢ € C with f = ce9. Choose ¢y € C with e® = ¢, and then
f =e9.

(3.11.4) Show that the Weierstrass product

z):zH (1—%)62/"
n=1

converges uniformly on compact sets and defines an entire func-
tion.
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Answer.  Since ) 7712 < 00, the proof Proposition 3.11.8, with f,(z) =
1 — z/n, gives us that

o0
f10-2)
n
n=1
converges uniformly on compact sets. As compact sets are bounded, multi-
plication by z does not affect the uniform convergence.

(3.11.5) Find an entire function with simple zeros at z = n? for all
n € N. Ensure that you choose the minimal k£ in each factor

Answer. Using Proposition 3.11.8 and the condition E % < 00 guarantees
n
n

2
(- 5%)
works. However even the choice p, = 0 for all n works, since > 2 < 00, 50
we can also consider

that

:zg

o

o) =T1 (1)

n=1
and that would be the minimal choice.

(3.11.6) Considering the Gamma function as a meromorphic function
as in Exercise 3.10.20, show that f(z) = 1/I'(z) is entire and

o0
1 z
= zeV? 2\ g—#/n
() ze 11 (1 + n) e

where v is the Euler constant

oo

7:2%—log<1+%>.

n=1

Answer. From Exercise 3.10.20 we know that I'(z) is defined everywhere on
C with the exception of —n for n € {0} UN. We also know from the same
exercise that

lim (z+n)T'(2) =

z——n n!
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In particular there exists r > 0 such that for all z € B,.(—n) we have

1
|z +n| |T(2)] > o
That is,
’1 L o) |z +nl, lz4+n|<r
T(z)| )l '
This shows that 1/I'(z) has a removable singularity at z = —n, and that

it can be extended as 0 at the point. As I' takes finite values for all other
choices of z, it follows that 1/T'(z) extends to an entire functions with zeros
zn = —n, n € N, and z = 0. The estimates from Exercise 3.10.20 allow us to
use Theorem 3.11.12 with £k =1, so

oo
1 az+b ( Z) —z/n
- =ze 1+—)e
I'(2) 7};[1 n

for certain a,b € C. As zI'(z) = T'(z + 1), we get that lim, ¢ 2I'(z) = 1.
Then

— 1 L— az+boo< E) 7z/n7b
17!%2’11(2')7;%6 U 1+n ¢ -°

since the product is holomorphic (hence continuous) by Proposition 3.11.8.
So b = 0. Now evaluating at z = 1,

1= eaﬁ <1+ %) e~/ = e exp <log<ﬁ (1+ %) e‘l/"))

n=1

(o)
= e® exp (Zlog (1—|—%) — % =ee 7.

n=1

So a = v and we are done.

(3.11.7) Show the inequalities
n 1
|Bn(2)] 2 2™, Il <3
and )
[Bu(2)] 2 1 = zleI" ol 2 5
for constants ¢, > 0, n € N.
Answer. Assume first that |z| < 1. Recall that for such z we have the

2
expansion
oo Zk
log(1 — E —.
og( 2) 3

k=1
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Then

n k oo Lk
[Bu(e)l = 11— 2] [eXobm | = 1 — ol 707200 7

k

N\ Pl N\ £l
— ‘e k=n+1 k | > ¢ k=n4+1 k
nt1 \" n-t n+1 gtk
|| Zk n+41 || Zk ntl
2 672|Z|n+1.

"

When |z| > 3, since

[\v]

k

n 2k n ||
|En(2)] = |1 — 2| ‘ezkzl Fl>]1—z|e” PN

=|1- z|e*‘z\"22;1 o

> \1—z|e_‘z‘n22=12 = |1 — 2| e~ A=ZTM",

(3.11.8) Show that if {2,} is a sequence with ) |z,|™® < oo for any
s > k, such that |{|z,| < r}| < cor®, and |z —2,,| > |2, | %71 for
all n, then there exist a,b > 0 such that for any s € (k,k+ 1)

()]
n=1 Zn

Answer. We can write
o0
z z z
Ia) = T )] T ()]
n= >

Using Exercise 3.11.7,

‘Ek< )‘2 H 672|Z/Z”|S=exp(—2 Z |Z/Zn|s>

|z] [E] 1
<3 <z Tn] <2

[zn|
1 ) = e o2
EM ’

where ¢g =23, |zﬂ\=~
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For the other product, using again Exercise 3.11.7,

IR G e VR |

12l o1 L1
B Tonl 2 12

Zn

Nl

1

3 B
For the first of these products, using the hypothesis that we have |z,| < 2|z|
(which in particular means that the product has finitely many factors, namely
{lzn] < 2[2[} < co(2]2])%),

z Zn — R
1 _ 2| = o~ Z z —k—2
\zl\_[ 1 #n \z]II 1 Zn \JTI 1 | n|
EES] EnE EnEE
> [ @lz)7*72 = (2fz])~ 2ol

s S/
o= (r+2)co(212])" log2l2| > g—aolz]

For an appropriate constant ag and s’ > s. But then the inequality holds for
s, too (namely, we could have worked with an sy < s and use s where we
used s').

For the second of the products,

- * —2 )
IR R B

>1 |z]
>3 >

= exp <72 Z |z/zn|s>

2| >
! ) — e—cilzl®
|2

2z |°

Zn

m\»—A

(NI

[zn

(o)
> exp (—2|Z|S Z
n=1

Collecting the estimates we have

oo
z _ s _ s _ ./ s _ s
‘HE'C(*)‘ > e=sl2l" gmaolzl® g=ellzl® = o=bl2l®
Zn
n=1

(3.11.9) Let R > 0 and f analytic on RD, with f(0) # 0 and f #
0 on the boundary. Denote the finitely many roots of f by
{#z1,...,2m}, counting multiplicities. Show Jensen’s formula

27
log | £(0 |—Zl @+—/ log | f(Re™)| db.
0

by going through the following steps.
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(a) Show that it is enough to prove the case R = 1.
(

b) Prove the case where f has not roots.

)
)
(c) Show that the formula behaves nicely with products.
(d) Prove the case where f(z) = z — z1.

)

(e) Conclude the general case.

Answer.

(a) The case for general R > 0 follows from applying the case R = 1 to
9(z) = f(Rz).

(b) If f has no roots, then f(z) = e9(*) by Exercise 3.6.3. So |f(2)| = eRe9(),
Then from Cauchy’s Theorem

2 2w
1 i 1 i
log |F(0)] = Reg(0) =Re o [ g(e")do = o [ tog| ()] db.
0 0

(¢) We have
log[f1(0)f2(0)] = log | f1(0)] + log [ f2(0)].

and

27 ) ] ) 27 )
/ log |f1(Rew)f2(Rew)| df = / log | f1 (Re’9)| do +/ log |f2(R€19)| do.
0 0 0

(d) If f(2) =z — z1, we have 0 < |z1] < 1 since R =1 and f has no zeros on
the boundary nor at 0. We may write z — z; = 2z1(2/21 —1). The formula
holds trivially for a constant and it works nicely with products as we just
proved above, so it is enough to show the formula for f(z) = 1 — z/z.
Then f(0) =1, so the formula to be proven becomes

2m 2m
0:/ log\l—eie/zl|d9=/ log
0 0

The function h(z) = i(l—zlz) has no roots on the disk (because |z1]| < 1)
so the previous part applies and the integral is indeed zero.

2

1 (1—e %2)|db.

21

(e) Given any f with the given conditions, we know from Corollary 3.6.3 that
f(z)=(z—21) (2= zn)g(2), with g(z) holomorphic with no zeros. The
previous parts of the exercise show that Jensen’s formula applies to each
factor, and then it applies to the product.
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(3.11.10) Let R > 0 and f analytic on RD, with f(0) # 0 and f # 0
on the boundary. Denote the finitely many roots of f by
{z1,...,2m}, counting multiplicities. Let n(r) denote the num-
ber of nonzero roots of f which have absolute value less than
r. Show the following variation of Jensen’s formula:

R 2
log\f(0)|:—/0 @dx—&—%/o log | f(Re®)|dB.  (3.3)

X

Answer. We need to show that

% n(a) |2

The formula reduces immediately to the case R = 1 as in the previous exercise.
Let hy(z) = 1if > |z,| and 0 otherwise. So n(z) =), hn(x). Then

YRR ol (G R Sl PR oy
e r = >y x 2 anx—n og |zn|.

(8.11.11) Let f be entire with {2z} its nonzero roots and such that
|£(2)] < aebl?!” for certain constants a,b and all s > sq > 0.

(a) Show that there exists ¢ > 0 with n(r) < cré for large
enough r.

(b) Show that

o0
1

Zl |S<OO

n=1 “

for all s > sg.

Answer.

(a) If f(0) = 0, we replace f with g(z) = f(z)/z™ for appropriate m. The
function f has the same zeros as f with the exception of 0, and outside
a small disk around the origin we still have |g(z)| < ae’l*I" after possibly
redefining a. So we may assume that f(0) # 0. Fix r > 0 and let R = 2r.
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Using (3.3) and that n(r) < n(z) if r < z,
o B ()
n(r)logQ:n(r)/ ;dxg/ ——dx

X

27
108 O + - [ ol (Re") a0

2
1 bR®
<c+
c1 27r/0 log(ae”™ ) dé

=c + loga + 2°br®.

Taking limit as s — sg we get

n(r) < Al8a | 200
—  log2 log 2

So as long as r > (c1 + log a)l/so’
n(r) < 20+ 1

log 2
Now the series. Choose ng such that n(r) < ¢r® for all r > 20, Then for

S0

s> 8o
oo o0
B _ 2k+1
IR WP LR o
|2 |>270 k=no 2% <2, <2841 k=1
oo (oo}
2(k+1)sl)
<c Z e = 2% ¢ Z 2k(s0=5) 0
k*’no k:no
since 2°07% < 1. Thus > 7, |Z = < oo

(3.11.12) Use Exercises 3.9.2, 3.11.7, 3.11.8 and 3.11.11 to write the proof
of Theorem 3.11.12.

Answer. Fix s > sg. Using Theorem 3.11.9 we can write

f(z) = 2me9®) ﬁ En<i)
n=1
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The condition |f(z)| < ae’?!" gives us, via Exercise 3.11.11, that

o0

1
Z|Z |S<oo
n=1 "

Then Proposition 3.11.8 allows us to take p, = |so] for all n; we denote this
number by k.

Using the hypothesis on f and Exercise 3.11.8 there exist ¢, d positive
with

aeb\z|5

)| = ' fe) ‘ <
I (=) e
It follows, after renaming constants, that for each s > k there exist a,b > 0

such that Re g(z) < a+b|z|*. Then Exercise 3.9.2 shows that g is a polynomial
of degree at most k.

— ac—LebFd)|z1"

efte9(2) = |eo(z

(o)
(3.11.13) Consider the entire function s( Z Gt
(a) Show that
sinh z

(b) Show that

n=1
Answer.
(a) We have
e 2n 0 2n .
2y _ 1 z __ sinhz
3(2)—11220(277,4—1)! ;(2n+1) P
(b) We can estimate, for |z| > i
0 . 1/2
|2]™ sinh |z|1/2 _ 2el*! 2172
< = <
|S(Z)‘ = Z@ (2n +1)! \z|1/2 = |Z|1/2 < e

The roots of s are {inm : n € Z\ {0}}. Then Theorem 3.11.12 with
k= |1/2] =0 gives us

s(z)=c H (1—%)201_[(14—7;—;).

neZ\{0} neN

Evaluating at z = 0 we get that ¢ = 1.
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4

Hilbert spaces

4.1. Basic Definitions

(4.1.1) Prove that each of the examples in Examples 4.1.2 is actually
a Hilbert space.

Answer.

(a) Since C" is finite-dimensional, it is complete. The sesquilinearity is
obtained directly from doing arithmetic on the expression y*x.
(b) The formula for the inner product is a series version of y*z, so the

sesquilinearity is automatic. The series for (x,y) converges by the
Cauchy—Schwarz inequality:

Z \Znyn| < (Z|xn|2)1/2(2|yn|2)1/2 .

showing that the series converges absolutely. The completeness is a
consequence of Riesz—Fischer (Theorem 2.8.12).

219
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(¢) Again the inner product is sesquilinear by elementary computations.
And again the Cauchy—Schwarz inequality guarantees that the in-
tegral for the inner product converges. Completeness is give by
Riesz—Fischer. When (f, f) = 0, then [f] = [0] by definition, so the
inner product is definite.

(d) Finite-dimensional, so complete. The expression Y*X is sesquilinear
and the trace is linear, so the inner product is indeed sesquilinear.
When (X, X) =0, this is Tr(X*X) = 0, and this is

0=Tr(X"X)=> |k,
k.

so X =0.

(4.1.2) Show that cg is dense in £?(N).

Answer. Let z € (?(N). Fix ¢ > 0 and let ng € N such that > nsno lzn]|? <
e2. Let z € cop be given by 2, = xp, for k < ng and 2, = 0 for k > ng. Then
Iz =25 = llanl® <
n>ng

As € was arbitrary, this shows that égp = ¢?(N).

(4.1.3) Find examples of pre-Hilbert spaces which are not Hilbert
spaces.

Answer. An already mentioned example is cog in ¢?(N). Another example
is C[0,1] in L?[0,1].
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4.2. The role of the inner product in the topological structure

(4.2.1) Prove (4.3).

Answer. This simply requires expanding;:
1€ +nl1* = (€ +n,. & +m) = (&€) + (n,m) + (&) + (0, €)

= [I€1* + lInll* + 2Re (&, m).

(4.2.2) Let n € N and H = C". Show that H admits infinitely many
inner products that are not multiples of each other, and that
they all induce the same topology (for this, show that the in-
duced norms are equivalent).

Answer. Given ty,...,t, € (0,00), define t = (t1,...,t,) and

n
(@, )i = Ztk Tk Y-
k=0

The inner product properties are proven with the exact same proofs as in the
usual case (which is t; = --- =t,, = 1), since t; > 0 for all k. Then

n 1/2
ol = (3 el l2f2)
k=0

and with respect to the Euclidean norm we have
min{f} fzlls < [y < max{F} o]l

More generally, for A € M,(C) positive definite we can define (x,y)4 =
(Az,y).

(4.2.3) Prove the Polarization Identity (4.6).
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. 3 3.
Answer. We have, since Y, _oi* = >, _, %% =

3 3
S i€t itn i) =D (W) + v m) +iFe(n, &) +i (€ )
k=0

k=0

3
= (W& +vmm) D i
k=0

3

+(n,€) Zi% +p(&m) Y 1

k=0 k=0
= 49 (& n)-

(4.2.4) Prove the Parallelogram Identity (4.2).

Answer. We have
1€+l +1E—nl* =€ +nE+n) +(E—nE—n)

= 2(§,€) + 2(n,n) + 2Re (£, 1) — 2Re (¢, n)
= 2[|¢]J* + 2[In|>.

(4.2.5) Use the Parallelogram Identity (4.2) to show that none of the
examples on Section 5.1 is a Hilbert space, with the exception of
Example 5.1.4 and the case p = 2 in Examples 5.1.7 and 5.1.8.

Answer. Consider first ¢?(N). Let ¢ = (1,0,0,0,...), n = (0,1,0,0,...).
Then
I +mll2 + € = mll3 = 2017 + 17)2/P = 2'F5,
while
20€ll7 +2lnlly =2 +2 = 4..
The equality is only possible when p = 2 (since 21ts = 92 implies p = 2), so
| - |l is never a Hilbert space norm when p # 2.

For LP(X) we can use the same idea as above.
For ¢y, use the same & and 7 from the ¢P example: now we have

€ +nl% + 1€ —nll% =1+1=2,
201€l1% +2lnlZ =2 +2=4.
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(4.2.6) Fix n > 3, and let w € C be an n'" primitive root of unity. Let
Y:HxH—->Chea sesquilinear form. Show that

W&, m) = Zw (€ + whn, £+ whn). (4.1)

Answer. We have, since Zz_é wk = Z_é w? =0,
n—1
D W€+ whn, €+ W) Zw W(E,€) + ¢(n,m)
k=0

+wFep(n, &) + @*p(&,m))

— WD) F i) Y
k=0
+(n,€) i (X)) i 1
k=0 k=0

=np(§,n).

(4.2.7) Does (4.1) work for n = 2? Why?

Answer. No, it doesn’t. When n = 2, the roots are 1 and —1, so there are
no conjugates; conjugates were essential in the sum corresponding to ¥(&,n)
being nonzero. Concretely, the root —1, which is the only primitive root of
unity of order 2, does not satisfy (—1)2 4+ 12 = 0.
Explicitly,
1
D DM E+ (DM €+ (D ) = p(E+ &+ ) —d(E — 16— )

k=0
In other words, when n = 2 the expression in (4.1) gives Re (&, 7).
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(4.2.8) Let ¢ : H x H — C be a sesquilinear form. Show that

1 2m ) ) )
wEen =5 [ e retn e (42

Answer. This is exactly the same computation as with the roots of unity,

only now using the identities fo% et dt = fo% e?t dt = 0. So

2m ) ) om
/ 6”’(?(54—6“77,54—6“77) :/ ezt(w(g’g)_’_w(n’n)
0 0
+ ep(n, &) + e (€, n)) dt
27 )
— @O + o) [ ctar
0

27

27
; 2t qt , 1dt
Ty 5)/0 2t 1 (¢ 77)/0
= 2mp(€,m).

(4.2.9) Let H be a Hilbert space and &,n,v € H with ||£]| = 1 and
Inll <1, ||lv|| <1. Fix € > 0. Show that

Hg - ’”T”H < ¢ implies ||€ — 7| < 2vE and ||€ — v|| < 2V/%.

Answer. From ||€]| = 1 we get

- Sl e

= < |le = Ty

1= el < fle = 2 1R < e+ |22
giving us

2
HU‘;V > (1—¢)2

Also,

Re (& m < [(&m)] < €]l lInll < 1.
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So 1 —Re (&, 1) > 0 and similarly 1 — Re (¢,v) > 0. Now
l€ = nll* = 111 + [In]l* — 2Re (€, )
<2(1-Re(£,m)
—Re(,n) +1—-Re(§,v))) =22 - Re (§,n+v))
+(1-¢’-Re{&n+v)+1-(1-¢)?)

IN

‘77+,, 2Re<§ n;]/>+26—€

77+V

<2
<21
2(lél + |
2(Hf +2€—52)

< 2(e? +2¢ — £?) = 4e.

Taking square root we get ||£ — || < 24/e. Exchanging the roles of  and v
gives us the other inequality.

4.3. Orthogonality

(4.3.1) (Definition of convexity) Let K C H. Show that the following
statements are equivalent:

(a) for any &,n € K and t € [0,1], £ + (1 — t)n € K

(b) for any &1,...,&, € K and ty,...,t, € [0,1] Withzjtj =
we have >, t;§; € K.

Answer. (a) = (b) We proceed by induction. Assume that for any
51,...,€k € K and tq,...,t; € [0,].] with th]’ = 1, we have thjgj e K.
Then, if 617"'76764-1 € K and tl,...,tk+1 S [0,1] with Z]t] = 1 and
trr1 # 1, let

k

Szzt]‘7 Sj:ﬁ, ]:17,16
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Then 0 < s < 1, s; > 0 for all j, and Z?:l s; = 1. By the inductive
hypothesis, Z?,l s;&; € K. Then, since 1 — s = tj41,
k+1

Zt@-s(Z&@) (1—5)&k41 € K.
k41
When tg11 =1 we have t; =--- =1t =0, so thfj =1 € K.
(b) = (a) Trivial, taking n = 2.
(4.3.2) Prove Lemma 4.3.15.
Answer. Suppose &y, ..., &y are orthonormal and ¢y, .. ., ¢, € C. We proceed
by induction. For the base case, we have ||c& ]| = || [|[€1]] = |¢|. Assume as

inductive hypothesis that

k 2 k
2
| et =D lel
J=1 Jj=1
Then

1 ) k )
HZ%’&}'H = Hzcjﬁj +Ck+1€k+1H
j=1 j=1

k 2 k
= H > g H + k1841 + 2Re < > ik, Ck+1€k+1>
i=1 =1
k k
=Y I+ lenna P 2D e (& &rn)
j=1 j=1
k1

= lol
j=1

(4.3.3) Let 11,79, ...,m, be linearly independent. Show that if & =
m/|lmll and
Mt 1 — Z§=1<77k+17€j> &

4.3
i1 = Sy (a1, 65) & “3)

Ekr1 =
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then &1,...,&, is orthonormal and

span{&y,..., &} =span{n, ..., }.

Show that the same algorithm works if the original set of vec-
tors is countably infinite. This process of “orthonormalizing a
basis” is called the Gram—Schmidt Process.

Answer. We write

k
Ekt1 = Chp1 (ﬂk+1 - Z<77k+1afj> é}'),

j=1
where ¢y is the constant given by dividing by the norm; note that ¢y #
0 by the linear independence. By induction, assuming that &;,...,& are
orthonormal, we have for j =1,...,k
1

P~ (€er1,65) = (Met1,&5) — (Mes1,€5) = 0.

This shows, without loss of generality, that ({x,&;) = 0 when j # k. And
&k, &) = 1, since the & are normalized by construction. Also by (4.3),
Ner1 € span{&y,...,E41} for all k. As the n linearly independent vec-
tors &1, ..., &, span the n-dimensional subspace span{ni,...,n,}, we get the
equality
span{&y,..., &} =span{ni, ..., }-

This latter argument does not work when we are dealing with infinitely many
vectors. In such case we can prove the equality

span{&y,..., &} =span{ny,...,n,}
for all n by induction, which shows that they span the same space.

(4.3.4) Let K C H be a subspace, and let £ € H. Prove that if
0 < [Iv[|* +2Re (£,v), veK,
then & € K+.

Answer. Fix v € K. For any z € C, we have
0 < |2 [[v]|* + 2Re 2 (€, v).
Choose 6 € R so that ¢ (£,n) = [(¢,v)|. For t € R we may use z = —e~ ¥ ¢
to get
0.< €2 w2 — 2t [(¢, 1)l
We can rewrite this inequality, for ¢ > 0, as
20(6,v) < tv|*.
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As t can be chosen arbitrarily, (¢,v) = 0. And since this can be done for any
v € K, we have shown that & € K.

(4.3.5) Let J be a set and ¢ : J — C a function. If ), le(4)]? < oo,
show that {j € J: ¢(j) # 0} is countable.

Answer. We have
el e o= {ier: 1G>}
neN

If J is uncountable, then at least one of the sets in the union is infinite, say
Jm =1{j: |c(4)] > £}. Then

Sl = Y o=

(4.3.6) Show that any orthonormal basis of C? is of the form shown in
(4.11).

Answer. Let {z,y} C C? be an orthonormal basis. Then
o1 + |22’ =1, PP+l =1, @iFi+2apm = 0.
From the first two equalities we get that (we reversed the order of sin and

cos in y for convenience)

z1 = e cost, o = ePsint, Y1 = eCsins, yo = e coss,

with a,b,c,d,r,s € R. By absorbing the sign of the sine and/or cosine into
the exponentials, we can modify these coefficients so that we can assume that

s,t € [0,7/2); indeed, cost and sin t are two real numbers with cos? t+sin? t =
1, so with some combination of signs they can both be made positive and

there exists ¢ € [0,7/2) with |cost| = |cost'| and |sint| = |sint’[, and
the sign can be absorbed by the exponential like if cost’ = —cost then
e cost = €@t cost’. Now the orthogonality equality becomes

i(b—d)

e (?=%) costsin s + e sintcoss = 0.

If sins = 0 the coss # 0, which forces sint = 0, and s = t. We similarly
get s = t if coss = 0. When sinscoss # 0, we get |tant| = |tans|, but
t,s € [0,7/2) and then t = s. Now the equation becomes

(€@~ 4 0= Dygintcost = 0,.
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so ei(a=¢) = _¢ilb=d) — ¢ib=d+m) Then q — ¢ = b— d + 7 (possibly plus 2k,
but again we can re-adjust a, say, to absorb this) and thus d =7 —a+b+c.

(4.3.7) For each of the Hilbert spaces considered in Examples 4.3.17,
find examples of orthonormal bases other than the canonical
ones.

Answer. The possibilities are endless, but since we need to check orthonor-
mality, we cannot get too crazy.

In C", given the canonical basis {eq,...,e,}, we can form an orthonor-
mal basis by doing

f1:%(61+€2)7f2: %(61_62)""‘f2k71

% (e2k—1 + €an), % (e2k—1 — €2k),

(how to finish depends on whether n is even or odd). And the same example
works in ¢2(N) and L?(T). Orthonormality is easily checked, and since each
er, is in the span of this new elements (like, for example, e; = %(fl + fa),
and eq = %(fl — f2)), the new orthonormal system is total.

In general, we can take U to be a unitary and apply it to any orthonor-
mal basis to obtain another one.

An easy way to perturb orthonormal bases while still getting orthonor-
mal bases is to play with phases. For instance, if {£;} C H is an orthonormal
basis and we choose numbers {f;} C R, then {e"%¢;} is an orthonormal basis.

In L?(T) we can do any of the above tricks. For instance we can let
g =V2RezF k€ {0}UN, and g, = v2ImzF—, —k € N.

(4.3.8) Prove that the inner product in a Hilbert space is jointly con-
tinuous in its two variables.

Answer. If £, — £ and 7, — 7, then
Il = {1l T < Ml = il = 0.
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So ||ma|l = |Imll, implying in particular that there exists r > 0 with ||n,| < r
for all n. Then

[(€ns i) — (&) = [(&n — &) + (& — )|
< Kén = & )| 4 (€ 1 — 1)
< 16n = &l Il + 1€ 1 — 0l
<7 l1&n =&+ €N Inm — i,

and the continuity follows.

(4.3.9) Let K4, K2 C H be subspaces. Show that
(K1 +K2)t =K nky.

Show also that the equality is not true for arbitrary subsets.

Answer. Since K1 C Ky + Ko, we immediately have (K; + Ko)* C Ki; as
we can do the same for Kz, we have shown that (K + Ka)* € Ki N K5
Conversely, if v € Ki N Ks and & +n with &€ € K1, n € Ky, then

<l/,£+77> = <V’§> + <V,77> =0+4+0=0,
and so Ki N Ky C (K1 + Ka)*t.
When K1,y are not subspaces, we can fix nonzero £ € H and take
Ky = {¢}, Ko = {—¢}. Then
(K1 + Ka)" = {0} =, while Ki N Ky = {¢}+.
As long as dimH > 2, {¢} # H.

(4.3.10) Let A C H. Use Proposition 4.3.8 to obtain directly that
At = spanA.

Answer. We will apply Proposition 4.3.8 to K = spanA. We have K+ = A+;
indeed, if £ € K+, then & € A+ (since A C K). Conversely, if £ € A+, then
for any n1,...,mm € Aand ay,...,a,, € C,

(62 aimy) =D _@{&m;) = 0.

Taking limits, we get that ¢ € (spanA)* = K+. So it is enough to show that
K+ =K.
By Proposition 4.3.8,

Peii =1—Per =1—(I—Pg)=Px.
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This shows that if £ € K+ then € = P& = Pcé € K. Hence K ¢ K+ ¢
IC and the equality follows.

(4.3.11) Let A C H. Show that (spand)t = A+. ]

Answer. Since A C spanA, we get that (5pand)- Cc A*. Now, if £ € AL,
then for Y.} | cyax € span A,

(€ cvar) = en(& ar) =0.
k=1 k=1
Thus € € (span A)L. And if 5 = lim,, n,,, with 7, span A, then
(€ m) = (& limy,) = lim(g, 7,,) = 0.
So ¢ € (spand)*.

(4.3.12) Let {#;} be a family of closed subspaces of 7. Show that

(LjJij:O'Hj, <OHj>L:spanLjJHj‘.

L
Answer. Let ¢ € (U] Hj) ;and ) € Hy. Asn € |J; Hj, we have ({, ) =0,

and so £ € Hy. As this can be done for all k, £ € ﬂj 'Hj‘ Conversely, if

£en; Hjl and 7 € (J; H;, there exists k with 1 € Hy; as § € Hik, (€,m) =0
i
and so £ € Uj H; | . This establishes the first equality.

The second equality follows from the first one by taking orthogonals
and using Exercise 4.3.11.

(4.3.13) Show that if  C H is a closed subspace, then ker P = K.

Answer. By Proposition 4.3.8 we have H = K + K+ as a direct sum, and if
€ =&+ €1, then Pcé = &c. So if P& = 0, this means that &€ = £, € K+,
Conversely, if € € KL, then € = ¢, and thus P& = 0.
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(4.3.14) Let A C H. Prove that AL is equal to the intersection of all
closed subspaces of ‘H that contain A.

Answer. The intersection of all closed subspaces that contain A is spanlll A.
As AL is closed (any orthogonal is closed), we have spanll'l A ¢ AL+

As At is a closed subspace of H, we have H = A+ + ALL as a direct
sum. This in particular shows that (A+1)+ = AL. We have (span!'ll A)+ =
AL: the inclusion A C spanl'l A gives automatically that (spanll A)+ c AL
and if £ € A+, then ¢ will be orthogonal to any limit of linear combinations
of elements of A, so At C (spWﬂ"“ A)t, showing the equality. Taking or-
thogonal on the equality, we get

The last equality above follows from the fact that we can see, for I a closed
subspace of H, the equality H = IC 4+ Kt as showing that Kt = K.

(4.3.15) Let X C H be a subspace. Show that K is dense in #H if and
only if K+ = {0}.

Answer. If K+ = {0}, then £ = K*+ = {0}+ = H, so K is dense. Con-
versely, if K1 # {0}, then from H = K + K+ as a direct sum we obtain that
K is not dense: for given any ¢ € K+, we have dist(¢,K+) = ||€]| > 0, so

£k

(4.3.16) Prove the equality (4.14).

Answer. Because the inner product is continuous, we can put limits (and
hence series) in and out. So

m = (D066 & > &) & )

J k

#) (650 &r) = Y (€600, &)

J

= (&) n.€
k.j
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(4.3.17) Let A C H be a set and f : H — H a function such that
f(H) C Aand &€ — f(&) € At for all € € H. Show that A is a
closed subspace and that f = Pjy.

Answer. Given any £ € H, we can write

z=f)+(E—f(&) e A+ A"
This shows that H = A + AL,
We will show that A = AL, which makes it a closed subspace. Indeed,
if ¢ € A+, then writing &€ = n+ v with € A and v € AL, we have

0= (&v)=VI* + (n,v) = v
So v =0 and then £ =n € A.

Given § € H, as € = f(&) +[¢ — f(&)] with f(§) € Aand £~ f(€) € A,
we have that f(£) = Pa&.

(4.3.18) Let {&,}, C H be an orthonormal basis, and put

M={nen: Z(1+> &))" < 1}.

Show that M is bounded, closed, convex, and that it has no
element with greatest norm. (This gives us an example of a
bounded, closed, convex subset and an R-valued nonnegative
continuous function that does not attain its mazimum. Of
course, M is not compact).

Answer. For any n € M,

Il =Y 1l <30 (14 1) g <.

if |n]] = 1, then

Z(H?) (1, €n)| >Z|nsn = [ln? =

son & M. That is ||n|| < 1 for all n € M. On the other hand,
_ 1

and ||n,] — 1.
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Convexity: if &,n € M, t € [0,1], and writing b, = 1 + 1/n to manage
the spacing,

2Bl + (1= &)l = 30 (P16 &)+ (= 071 )

+2Ret(1 — £)(€, &) (0, n)]

< Db [PHE P + (1= 02|, &a)
+2t(1_t)|<£7£n>||<7775n>|]

t2zb2 (€& + Zb2 (1, )
+ 261 = 1) Y B [(€: &) (. €n)]

<t 4 (1—t)
+2t1—t[2b2 (€ &) } [ZbQ (1, €n)] ]

<P+ (-t +2(1—t)=1.
It remains to check that M is closed. If nm € M for all m and n,,, — 1, then

i(wl) (1, &n) —hmZ(l—i— ) {11, ) < 1,

n=1
for all k. Then, with k& — oo, we obtain that n € M.

/2

(4.3.19) (While nothing is wrong with this exercise, the examples known
to the author are far from trivial, so not being able to do this
exercise does not show any lack of expertise) Show an example
of a non-separable Hilbert space H with a dense subspace K
such that K contains no orthonormal basis.

Answer. Let H; = L?[0,1]. Consider the set {g; : t € (0,1), where g; =
1(0,+)- This set is uncountable, and linearly independent. Let Ha be a Hilbert
space with orthonormal basis {7; }1c(0,1); we can achieve this by taking Ho =
¢2(0,1), note the little ¢. Let K = span{(g;,n:): t € (0,1)} C Hy & Hz, and
let # = K. Then # is a Hilbert space, with dense subspace K. We claim
that K cannot contain an orthonormal basis for H. Let {z,: a € A} be an
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orthonormal set in K. By definition, each xz, can be written as

Na
Ta = ch (9t;+1t;)-
j=1

Let {h, : n € N} be an orthonormal basis of H;. An element of a Hilbert
space can have only countably many nonzero coeflicients in a given orthonor-
mal basis. So, for each n, there are at most countably many a € A such
that ((hn,0),2,) # 0. As N is countable and countable union of countable is
countable, there exist countably many a € A such that (h,,,z,) # 0 for some
n. As any element of H; is expressed with countably many coefficients over
{hn}, there exists Ay C A, countable, such that (g,z,) =0 for all a € A\ Ay
and all g € H;. Note that ;5 Cigt # 0, since the g, are linearly independent
and ¢ # 0 since z, # 0. As

(Somt) )| oo

for all a € A\ Ao, this says that A\ Ay is countable (because {z,} is an
orthonormal basis), and hence A = Ay U (A \ Ap) is countable. So there is
no uncountable orthonormal set in K, which precludes K from containing an
orthonormal basis for H.

2
>0

(4.3.20) Let H be a Hilbert space. Since R C C, we can see H as a real
vector space, that we denote Hg.

(a) Show that Hp is a real Hilbert space with the inner product
{€,m) = Re (§,m).

(b) Show that if {£;} is an orthonormal basis for #, then {£;}U
{i&;} is an orthonormal basis for Hg.

(c) We say that £, € H are real orthogonal, denoted ¢ Ly 7,
if Re (¢,n) = 0. Show that £ L n if and only if £ Lg 1 and
’Lg J_]R n.

(d) Show that if H C H is a real subspace, then (iH )& = iHz .

Answer.

(a) Since (£,£) > 0, if Re (€,&) = 0 then £ = 0. The real bilinearity follows
directly from the sesquilinearity, so we do get a real inner product.

(b) For any & € H we have Re (£,i€) = —Rei[|¢||*> = 0. So Re (¢;,i&;) = 0 for
all k,j. If £ is real orthogonal to all of {£;} and {i¢;}, then for each j we
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have
0=Re <§7§]> + iRe <§77'5J> =Re <§’€J> +’LR€ (7Z)<€7£J>
=Re (£, &) +ilm (£, i&;) = (£, §;).

So ¢ € {& 1} = {0} and hence {¢;} U {i&;} is an orthonormal basis for
Hr.

(c) If (&,m) = 0, then Re(£,n) = 0. Conversely, if both Re(¢,n) = 0 and
Re (&,in) = 0, then (£,n) = 0 as in the previous paragraphs.

(d) We have
(iH)g ={¢ €H: Re(&in), n€ H} ={( € H: Re(—i&,n), ne€ H}
={i¢ €M : Re(¢,n), ne H} = iHy.

(4.4.1) Write a complete proof of Corollary 4.4.5, without using The-
orem 4.4.4. (Hint: show that the linear operator induced by
mapping one orthonormal basis to another is an isomorphism)

Answer. Suppose that 7 : Hy — Hs is an isomorphism. Let {{;} be an
orthonormal basis of H1. We have

(m(&5)s m(&k))2 = (&5 Ek)1 = k5
so the set {m(§;)}; C Ha is orthonormal. If v L 7(¢;) for all j, use that 7 is
surjective to get n € Hy with w(n) = v. Then

0= (v,m(&))2 = (r(n),7(§))2 = (M, &)1
It follows that 7 = 0, so v = 0, and {7 (¢;}; is total, and thus an orthonormal
basis. Such basis obviously has the same cardinality as {{;}, so dimH, =
dim 7‘[1.
Conversely, if dimH; = dim Hs, let {{;};es and {v;},cs be orthonor-
mal bases of H; and Hs respectively. Define 7 : H; — Hs by

w(;cjfj) = ;cjuj.
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This is well-defined, by the uniqueness of the representation of a vector in an
orthonormal basis. Clearly

I (&)l = Z 46,1 = ligll,

so 7 is an isometry. And 7 is surjective: given any Zj cjv; € Ha, we can

write it as 7(3_; ¢;&;). So Hi =~ Ho.

(4.4.2) Show that a finite-dimensional Hilbert space is separable.

Answer. Let {&1,...,&n,} be an orthonormal basis for H. Let
Q= {Z(Cj +id;) & ¢ cj,dj € @}-
j=1
This set is countable, as it can be written as
m
Q= U > (cj +id)) &}
c1,d1,e.sCm,dm €Q j=1
And it is dense: given £ = ZTzl(aj +ib;) & € H, and € > 0, choose rational
numbers ci,dy, ..., Cm, dm € Q with |a; — ¢;| < e/VvV2m, |b; — d;| < e/V/2m.
Then

Hg e+ i) - Hi its; — )¢
=1

_ (i(aj — o) + (b — dj)?)”2 <e.

j=1

(4.4.3) Prove Proposition 4.4.6.

Answer. If H has countable dimension, let {£,, },en be an orthonormal basis.
Now form the set

X = {Z(an +ibp)En : n, by € Q} :

n

Given € > 0 and £ € H, write £ = ) ¢y, and choose ap, b, € Q such that
len — (an +1by,)| < €/2™. Then

€ — Z (an 4 ibn)én)* = Z|cn — (an +ib,)|* < €2 22_2" <
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and X is dense.

Conversely, suppose that dim H = |J| with [J| > |N|. Let {£;},cs be an
orthonormal basis for H. Since ||§; — || = v/2 for all j # k, the uncountable
family of open balls {B\/ﬁ/Q(é-j)}jej is disjoint. So H is not separable.

(4.4.4) Show that the unit ball of a finite-dimensional Hilbert space is
compact.

Answer. Since H is a metric space, it is enough to show that any sequence
in the unit ball admits a convergent subsequence. Let {n,}, be a sequence
with ||n,|| <1 for all n. Fix an orthonormal basis {&1,...,&mn}.

The sequence {(n,,&1)}n is inside the closed unit disk D C C; so it
admits a convergent subsequence {(n,,,&1)}x. Now consider {(n,,,&2)}k;
again, this sequence admits a convergent subsequence. Repeating the pro-
cedure with all &;, we obtain a subsequence {7,,} such that each of the
sequences {(Mn,,&;)}r is convergent, j = 1,...,m. Let ¢; = lim,(n,,,&;),
and define n =3~ ¢;§;. Now

7 =1, 12 =D lej = (. €)1 —— 0.
j=1

4.5. The Riesz Representation Theorem

(4.5.1) Let ¢ be a bounded functional on H. Fix an orthonormal
basis {¢;}. Given any & = Zj c;& € M, show that (&) =
>_;¢j(§;) and use this fact to get an alternative proof of the
Riesz Representation Theorem (4.5.4). Explain where the con-
tinuity of ¢ was used.
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Answer. Since ¢ is continuous,

w(;cjfj) = %0<liglzcj§j> = li;nga(chgj)

JEF jEF
=1 o) = ().
m Z cjp(§;) Z cjp(§;)
JeF J
As for the Riesz Representation Theorem, it is clear that we need

WZZ@@*

The only thing to prove, then, is that such an element exists in H. For any
finite subset F' C J,

Y le(e)P = o( X 8@16) < llell (X lete?)

JEF jeF jEF
From this we get that
S leE)P < el
jEF

As this can be done for any F, we conclude that {p(&;)}jes € ¢3(J), and
thus n =}, ©(£;) & € M exists by Lemma 4.3.18. The continuity of ¢ was
used to evaluate ¢ on the series and evaluate term by term; we first use the
continuity to exchange ¢ with the limit, and then apply linearity.

We now offer a second way to prove the Riesz Representation Theorem.

Note that, for any net {a;};ecs, we have
[ Sup{‘ chaj‘ s e (), el =1}, (AB.4.1)
jeJ

even if we allow for |la||s = co. Indeed, we have, by Cauchy—Schwarz (doing
it first for finite sums),

> cias| < el llalla = lall.
j€d
If [[all2 < oo, then take ¢ = a/|lall2 to get equality in (AB.4.1). And if
lall2 = oo, for any finite F' C J we can take ¢ = a|p/||a|F||2, so
>_ciaj = laj*/llalrll> = llalro.
jeJ JEF
So we get that the supremum is infinite by taking larger and larger sets F.
Going back to our first equality, for any ¢ € ¢2(.J) with ||c|2 = 1,

| S eieten| = (3 eits)| < el | 3 x| = el hells = el
J J J

Thus {p(&;)}; € 2(J). Now let n = > ¢(&)€ € h, and we get that
@(§) = (&m) for all § € H.



240 CHAPTER 4

(4.5.2) The vector space of all bounded functionals on H is called its
dual, denoted by H*. Show that

lell = sup{le(&)] : €]l =1}

defines a norm on H*, and that if n € H is the vector cor-
responding to ¢ via the Riesz Representation Theorem, then

lpll = flll-

Answer. If ||| = 0, then |¢(&)| = 0 for all &, so ¢ = 0. We have
Al = sup{[Ap(E)] = [[€ll = 1} = sup{[A[p(&)] : €]l = 1}
= [Al sup{le(©)] = [l = 1}

= [All¢ll-
And

I + ¢l = sup{lp(&) +¥(&)] = [I€]] =1}
< sup{[e(§)[ + [¥(§)] : €] =1}
< sup{le()] : [[€] = 1} +sup{lp(&)] - [I€ll =1}
= llell + 11l
Since ¢(&) = (£,n) for all £, we have

()] = [(&;mI < [l Il

50 [lepl| < [|n]]. Also,

eln/lnlh = S5 = .

So [l = Il

(4.5.3) Let ¢ : H — C be nonzero, linear, and bounded. Show that
dim(ker )+ = 1.

Answer. Since ¢ # 0 we have kerp C H, so (ker o)t # {0}. Let n €
(ker ) be nonzero, and let n = n1/¢(n1); then ¢(n) = 1. Now, for any
¢ € (ker p)t, we have that & — p(£)n € ker ¢; but since &,7 € (ker )+, we

also have & — (€)n € (ker ). Thus & — ¢(&)n = 0; that is, & = p(&)n € Cn.
So (ker p)+ = Cn, one-dimensional.
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(4.5.4) Let ¢ : H — C be linear. Prove that the following two state-
ments are equivalent:

(a) ¢ is bounded;
(b) ker ¢ is closed.

Use the ideas in your proof to show that if ¢ is unbounded,
then ker ¢ is dense in H.

Answer. If ¢ is bounded, then it is continuous. Thus ker ¢ = ¢~1({0}) is
closed, being a continuous pre-image of a closed set.

Conversely, if ker ¢ is closed, if it is all of H then ¢ = 0; otherwise, we
can proceed as in the proof of the Riesz Representation Theorem. Namely,
we take a nonzero 1; € (ker )+ (assuming that this is nonzero is where we
use that ker ¢ is closed) with o(n;) = 1, and put n = n1/||n1||*>. Then for any
§EH, E—p(&)m € kerp, s0 (€ —p(&)m,m) = 0, which implies ¢(£) = (£, n).

Then
()] = 1K€, mI < 1€l lInll,
and ¢ is bounded.
If ¢ is unbounded, by the proof above we have that ker ¢ is not closed.
If ker ¢ is a proper subspace, we can still repeat the above argument with 7y,
and we would have proven that ¢ is bounded. So ker p = H.
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Banach spaces

5.1. Normed spaces

(5.1.1) Prove that in a normed vector space, addition of vectors and
multiplication by a scalar are continuous.

Answer. Since we are dealing with metric spaces, sequences are enough for
continuity. Suppose that X is a normed space, a € C, and that =, — =z,
Yn — y in X. Then

lox +y — (azn +yn)l| = [[(0x — azn) + (y — yn)|
<lalllz —anl + lly — ynl =0
Similarly, if «,, — «, there exists ¢ > 0 with |a,| < ¢ for all n, and then

lantn — azl| < fon| [lve = vl + |an — ol [|2]] < ¢llzn — 2] + [on — af [l].
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(5.1.2) Let X be a normed space, x € X, and {z,} a sequence such
that x, — . Show that ||z,| — ||z].

Answer. We have, via the reverse triangle inequality,
| lznll = 2]l | < llen — 2.

Hence ||z,| — |||

(5.1.3) Show that equivalence of norms is an equivalence relation.

Answer. Let p,q,r be norms on X. We have p(z) < p(z) < p(x) for all
x € X, so the relation is reflexive. If p ~ ¢, there exists a,8 > 0 with
ap(z) < g(x) < Bp(x) for all x. Then %q(w) < p(z) < 1g(z), s0 ¢ ~ p and
the relation is symmetric.

If p ~ q and ¢ ~ r, there exists «, 87,5 > 0 with

ap(x) < q(z) < Bp(x), ~q(z) < r(z) < dq(x).
Then
ayp(z) < r(x) < Bop(z),
so p ~ r and the relation is transitive.

(5.1.4) Let X be a normed space and {z,} C X a Cauchy sequence.
Show that the sequence is bounded, that is there exists ¢ > 0
such that ||z,| < ¢ for all n.

Answer. By Exercise 1.8.27, there exists z € X and r > 0 with ||z, —z| <r
for all n. Then
[znll < llon — | + (=] <7+ [|l].

(5.1.5) Consider the real Banach spaces X; = (R?, ||-||1), X2 = (R?, ||-
l2), X3 = (R?,]| - ||oo). Find and describe graphically the unit
ball of each space (the use of real spaces is only to allow the
possibility of drawing the unit balls).

Answer.
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For X, the edges of the ball are the lines |z| + |y| = 1, so the unit ball
is the square with vertices (1,1), (1,-1), (—=1,1), (-1, -1).

For X5, the unit ball is the usual closed disk of radius one, centered at
the origin.

For X3, the unit ball is the square with vertices (1,1), (—1,1), (=1, -1),

1,-1).
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17777777777777777 277272277277777]
7707777777777 177777777777777
7707077777777 707777777777777
1707777777777 7777 7777777777777
7777077777777 777777777777777
7707777777777 7777 7727277777777
7717777777777 777777777777777
1777777777 7777777 7727227777777
7707777777777 7777 777777777777777
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(5.1.6) Show that the canonical basis is a Schauder basis for ¢(P(N)
when 1 < p < .
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Answer. Let a € P(N) with p < co. Given ¢ > 0, there exists ng such that
Y nsng an|? < €P. Then for any finite set F; C N\ {1,...,no},

1/p Ui 1/p
H Z anen| = ( Z \an\p) < ( Z \an\p) <e.
ner P ner

n=no+1
So the sequence of partial sums of the series is Cauchy, and the series con-
verges. As for the uniqueness, if Zanen = 0, then )" |an|/? = 0, which

implies a,, = 0 for all n.

(5.1.7) Show that the canonical basis is not a Schauder basis for £*°(N).

Answer. For a tail of a series,

> n>m Gnn
£>°(N) contains elements that do not go to zero, like constant functions: if
an, = 1 for all n, the series will not converge.

= sup{jan| : m» >m}. And

(5.1.8) Show that £°°(N) has no Schauder basis.

Answer. Any space with a Schauder basis is separable, while ¢>°(N) is not
separable.

(5.1.9) Show that the canonical basis is a Schauder basis for c.

Answer. As in £*°(N), we have H >
oo

now sequences converge to zero, so the tails of the series do too. As for the

uniqueness of the coefficients, if > ane, = 0, then 0 = sup{|a,| : n}, so

an, = 0 for all n.

nem anenH = sup{lan| : m > m}; but

(5.1.10) Let X be a normed space and z,z € X, with S, the reflexion
of X on z. Show that

(a) Sg = id)(;
(b) S is an isometry;

(c) S, is affine;
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(d) z is the only fixed point of S,;
(e) We have the equalities

Iz — S.z|| = ||z — ||, |z — S.z|| = 2|z — 2|, =,z€X.

Answer.
(a) For any x € X,
S%x — 8. (22 —x) = [22 — (22 — 2)] — .
(b) For z,y € X,
1522 = Sayl = (122 =2 = 2z = y) || =[x =yl
(¢c)If z,y € X and t € [0,1],
Str+(1—t)y)=2z—(tz+(1—-t)y) =t(2z2—xz)+ (1 —t)(22 — y)
=tS,x+ (1 -1)S.y.
(d) If S,x = x, this is 22 — x = z, hence = = z.

(e) We have
Iz = Szl = ||z = (22 = 2) || = [l — =],

and
|z — S.zl| = lz — (22 — 2)|| = 2|z — 2.

5.2. Finite-dimensional Banach spaces

(5.2.1) Show that a finite-dimensional normed space X is separable.

Answer. Let n = dim X. Using a basis for X we can construct a linear bijec-

1/2
tion I' : X — C™. We may consider on C"™ the 2-norm, ||c|| = (Zk |ck|2) ,
which makes C™ a Hilbert space. As all norms are equivalent by Corol-
lary 5.2.3, X is linearly homeomorphic to £2({1,...,n}). The latter is sepa-
rable by Exercise 4.4.2, and so X is separable.
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(5.2.2) By Theorem 5.2.2, the norms || - ||1, || ||2, and || - ||oo are equiva-
lent on C™. Find specific constants that realize the inequalities.

Answer. From Cauchy—Schwarz,

1/2 1/2
ol =Y Jal < (D ) (3012) 7 = valall
k k k
Conversely,

2
ol = (3 Jal) = D Janf,
k k

zll2 < llzll < Vil
Both inequalities are sharp, as seen by taking x = e; for the first one, and
x =Y, e for the second one.
We also have, directly, that

SO

[2]loe < [lz[ly < 7l
These again are sharp: take « = e; for the first inequality and = = ), ey, for
the second one.
Finally,
[zlloo < [lzll2 < v ||]|oo-
These can be seen to be sharp by taking the same choices as above.

(5.2.3) Show that || - ||1, defined in (5.2), is a norm.

Answer. By construction ||z||; > 0 since the absolute value is non-negative.
If ||z||; = 0 then >, |xx| = 0 gives us x, = 0 for all k, so x = 0. Given A € C,
we have |[Az|| = >, [Axk| = |A|[|z]:. Finally,

eyl =D lex+y+kl <D lowl+lyel = D ]+ lyel = lllh+lyls-
k k

k k

(5.2.4) Let X be a normed vector space of dimension n. Prove that
that there is a bicontinuous isomorphism between X and C"
(considered with the Euclidean norm).

Answer. Fix a basis {e1,...,e,} for X. For € X we denote by x1,...,x,

1/2
the coefficients of = ), wyer. Then y(x) = (Zk |:Ek\) defines a norm
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on X. By Corollary 5.2.3 there exist o, § > 0 with
allz]] < v(z) < Bl

Let T : X — C™ be given by I'(z) = (21,...,2,). Then T is a linear bijective
from the fact that {e1,...,e,} is a basis. And we have

D)) =~(z) < Bzl
so I is continuous. And

1/2
T~ (@1, zn)| < @~ (@ Ya, ..., 20)) = a_l(z \xk|2) .
k

So T is a bicontinuous isomorphism.

(5.2.5) Prove Corollary 5.2.4.

Answer. By Corollary 5.2.3 we may choose a norm that suits us. For instance
we can fix a basis f1,..., f, and choose

H Zn:%“jfj = (Zn: |$j\2)2-
j=1 j=1

This norm trivially satisfies the Parallelogram Identity, and hence X becomes
a Hilbert space with this norm. Then the closed bounded sets are compact
by Theorem 4.4.8.

The same argument, but without mentioning Hilbert spaces, would look
as follows. Fix a basis f1, ..., fn. By Corollary 5.2.3 we can consider the norm

Hchfﬂ'Hl :Z|0j|~ (AB.5.1)

In this norm, any element of the unit ball will have coefficients in the unit
ball of C. Then, by the Heine—Borel Theorem, there is a subsequence such
that the first coordinate converges. From this subsequence we can then ex-
tract a subsequence where the second coordinate converges. After n steps we
will obtain a “coordinate wise” convergent subsequence; using the norm in
(AB.5.1) we see that the subsequence is norm-convergent. So the unit ball is
compact.

A third argument is as follows. Fix a basis f1,..., f, € X and define

T:X —C"by
T(ijfj) = (,Il,...,l‘n).
J=1

It is easy to check that T is a bijection. By Corollary 5.2.5, T and T~! are
bounded. In particular both 7" and T~' map compact sets to compact sets.
We can define a norm on X by ||z| = ||Tz||2. Then B1(0)* = T-1B1(0)¢,
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hence compact. Once we know that the unit ball in X' is compact for some
norm, since all norms are equivalent (Theorem 5.2.2), we can use the com-
pactness in one norm to obtain compactness in a second norm by showing
that every bounded sequence admits a convergent sequence.

(5.2.6) Let X, be finite-dimensional vector spaces, and T': X — Y
linear. Show that

dimker 7'+ dimran7T = dim X
This equality is usually called the rank-nullity theorem.

Answer. Let n = dim X and let z1,...,x, be a basis of kerT. Complete
it to a basis x1,...,2, of X. Let Xy = span{@,11,...,2n}. Then T|x, is
injective, and ranT|y, = ranT, so T|x, is an isomorphism between Xy and
ranT. Then

dimker T + dimranT = dimker T+ dim Xy = r + (n — t) = n = dim X.

5.3. Direct Sums and Quotient spaces

(5.3.1) Let X be a vector space and M, N C X subspaces with X =
M + N. Show that the following statements are equivalent:

(a) each element x € X can be written as x = y+z, with y € M
and z € N, in a unique way;

(b) M NN = {0}.

Answer. Suppose uniqueness first. If z € M NN, then z=2+0=0+ 2
(first term in M, second term in N) and hence z = 0. Conversely, suppose
that M NN = {0} and that y; + 21 = y2+ 22, with y1,y2 € M and 21,29 € N.
Then the element y; — yo = 22 — 21 is in M N N = {0}, and so y2 = 1,
9 = Z1.
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(5.3.2) Let X, ) be normed spaces. Show that the norms || - ||1, || - |2,
and || - ||oo—=as defined after Definition 5.3.1—are equivalent.

Answer. The estimate for norms in R? will serve us here, since

[ )l = [zl lyD, )l = (1l Ty D2,
and

(@, 9)llso = Izl [[9])oo-
That is, we have

(2, 9)lloo < 1z, 9)ll2 < Nl 9l < V2l y)ll2 < 202, 9) o

(5.3.3) Let X be a Banach space, and M C X a subspace. Show that
the following statements are equivalent:

(a) M is closed;
(b) if {z,} C M is Cauchy, x = lim,, z,, exists and z € M.

Answer. Suppose first that M is closed. Let {z,} C M be Cauchy. As X
is complete, the sequence is convergent; let x = lim, x,,. Being a limit of
element in M, the point x is in the closure of M; but M is closed, so x € M.

Conversely, suppose that M is not closed. Then X \ M is not open;
so there exists © € X \ M that is a limit point for M; that is, there exists
{z} C M with z,, —» z and x ¢ M.

(5.3.4) Let X be a normed space (not necessarily complete), M C X a
subspace. Show that the following statements are equivalent:

(a) M is closed;
(b) if {zp} C M and z,, — x, then 2 € M.

Answer. Suppose first that M is closed. If {z,} € M and z,, — z, then
reM=M.

Conversely, if M is not closed, thenX \ M is not open; so there exists
x € X\ M that is a limit point for M; that is, there exists {z,} C M with
T, > xand x & M.




252

CHAPTER 5

(5.3.5) Let X be a Banach space and P € B(X) a projection. Show
that P has closed range.

Answer. Let {Px,} be a Cauchy sequence. Since X is Banach, there exists
y € X with Pz, — y. Then

Py = P(lim Pz,,) = lim P?z,, = lim Px,, = y.
n n n
Soy=Pye PX.

(5.3.6) Show that, given a family {X}},cs of Banach spaces, each of
(D), (B¥).. (%),
jes 0 jeJ jeJ

1 < p < o0, is a Banach space.

Answer. In each case the vector space operations are defined pointwise;

namely, (g + ah)(j) = g(j) + ah(j).
For the c¢g and £°° direct sums the norm is the same,

lgllco = sup{llg(H)Il : j € J}.

That this is a norm is basically the same proof as the case that the usual
infinity norm on ¢>°(N) is a norm. Namely, ||g + h||oco < ||g]lco + |||l Dy the
triangle inequality on each X; and the fact that the supremum of a sum is at
most the sum of the suprema. That ||ag|| = |af||g|| follows from the corre-
sponding property on each X; and that non-negative scalars can be exchanged
with the supremum. For the case p < co we prove the triangle inequality by
mimicking the proof of Minkowski’s Inequality (Corollary 2.8.10).

So all that remains is to show that the spaces are complete. Let {g,,} C

(®Xj)z be Cauchy. Fix € > 0; then there exists ng such that ||g, —
jeJ

9Imlleec < € whenever m,n > ng. For any fixed j € J we have ||g,(j) —

Im(i)llso < [|gm — gmllo and so the sequence {g,(j)} C X; is Cauchy. So

for each j there exists a limit ¢g(j) = lim,, g,,(j). Now we need to show that

llgllcc < o0 and that g, — g. We have, for n,m > ny,

19n(3) = 9@l < Mlgn(G) = gm DI + lgm () = 9D < € + [lgm (F) — 9()II-

As we are free to choose m and g, (j) = g(j), we get ||gn(j) —g(j)|| < e, and
this occurs for all j. Thus ||g, — g|lec < €, and this shows that g, — g, and
using n big enough

9]l < 119 = gnlloc + llgnllec < 00.
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This establishes the completeness of (@XJ)[ . For the ¢y sum all the
jeJ

above applies, but now we have that lim; g,,(j) — 0 for all n and we want to

show that same for g. And this follows from

lg@I < Nlg(G) = gn(DI + llgn ()l < 119 = gnlloo + lgn(G)II-

Then limsup; [|g(j)[| < [|g — gnlloc; as we are free to choose n and g, — g,
we get limsup; ||g(7)|| = 0 and therefore the limit exists and lim; ||g(j)|| = 0.
Thus g € (@Xn>
=
And now the case p < co. Again we have a Cauchy sequence {g,} C
(@ Xn)e . We still have the inequality ||g(j)|| < ||glp, so the existence of
X ya

Co

the limit g is proven exactly as before. Now we have

g — gll, = (Z l9.) — 9I7) .

Fix € > 0. Since the sequence is Cauchy there exists ng such that ||g, —
gm|lp < € whenever m,n > ng. We will mimic the proof of Theorem 2.8.12.
Because {g, } is Cauchy, we inductively choose a subsequence {gy,, } such that
| Gngsr — Gnill < 27% for all k.

By Minkowsky’s Integral Inequality (2.47),

(32 (3= smm) <Z(Z|gnm Do)

J
N N
= Z ||gnk+1 — Gny, ||P < Z 2_k <L
k=1 k=1

This implies that Z <|| Z lgniir (5) = gn, (4)|| < oo for all j, and hence the
j k=1
function

9(3) = gn, (j +Zgnk+1 — 9, (j)

is defined for all j. We also have

oo
§ gnk+1_gnk
k=1 p

o0
< ||gn1||p+z 197411 =9 llp < |Gy lp+1,
k=1

Hng < ||gn1||p+
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S0 g € (@ Xn)ep' Since the definition of g telescopes,
jed

e oo
Z Gnisr = Ini|| = Z 27k — g—k+1

k=h p k=h
and so g,, — ¢. As this was a subsequence of a Cauchy sequence, g, — ¢;
thus the space (@ Xn) is complete.

= e

J

19— Gnnllp =

(5.3.7) Show that, in the particular case where X,, = X for all n, and

@ X denoting any of the three kind of sums in Exercise 5.3.6,
neN

(a)@X&X@@X;

neN neN
b Pr=ProP-a.
neN neN neN

In all cases the isomorphisms are isometric.

Answer.

(@) Let T: X & @ X — €D & be given by
neN neN
x, n=1
I'(z,9))(n) =
(I'(z,9))(n) {g(n_m -

Equivalently we may write (I'(z,g))(n) = 61,z + (1 —61,,) g(n —1). This
is linear, for

(C(z 4+ ay, g+ ah))(n) = 010z +ay) + (1 = 61,,) (g(n — 1) + ah(n — 1))
=01 px+ (1 —010)g(n—1)
+ ad1 Yy + (1 —01,,) A(n —1).
For the infinity norm,

IT(2, 9)lloe = sup{[[T'(z, g)(n)] = n} = [[(z,9)lls-
And when p < oo

Tz, g)ll5 = > 610 + (L= 81,0) g(n = )| = [[(z, 9)ll-
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In either case, I is isometric. And we finish by saying that I' is surjective,
for given g € @X, we have g = T'(g(1), g’), where ¢’(n) = g(n — 1).

neN
(b) The idea is now very similar, but we take T : @ X @ EB X — @ X to
neN neN neN
be
g(n), n odd

(T(g, h))(n) = {

The linearity, isometry, and surjectivity are proven in an analog way to
that of the previous case.

h(n), n even

(5.3.8) In the setting of Exercise 2.3.27, show that

(Brwm) =rxzm,

2

Answer. Given f = {f;}; with f; € L?(K,p;) for all j, and such that
> Il fil* < oo, let (Vf) : X — C be given by (Vf)(z x {j}) = fij(x). We
have that V is linear and

VG = [ ViPdn= Y [ Vi )P

=3 [ 5P an= 151 = 171E

so V is an isometry. Given f € L*(X), let f;(z) = f(z x {j}). Then f; is
p;-measurable and if f = {f;} we get Vf = f.

(5.3.9) If H is a Hilbert space and M C H is a closed subspace, show
that /M has a natural Hilbert space structure that makes it
a Hilbert space, and that H/M can be identified with (i.e. is
naturally isomorphic to) M.

Answer. Let P be the orthogonal projection onto ML. We have £ + M =
P&+ M: indeed, I— P is the orthogonal projection onto M (Proposition 4.3.8),
so £ — P = (I — P)§ € M. We define

&+ M,n+ M) = (P¢, Pn). (AB.5.2)
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This is well-defined since £ —&2 € M implies P¢; — P& = 0. Sesquilinearity is
straighforward. If (€4+m,{+ M) =0, we get ||PE|| =0,s0{ = (I—-P){ € M,
so &+ M =0.

We can define the isomorphism 7 : H/M — M=+ by 7 : & + M — P¢.
Again, this is well-defined because if P¢; = P&, then P(§ — &) = 0, so
& — & € M this also shows that 7 is one-to-one. Linearity is clear. And for
any £ € M+, we have ¢ = P¢ = (&), so 7 is onto. Finally, m preserves the
inner product by (AB.5.2).

(5.3.10) Prove that when M C X is a closed subspace, the quotient
norm is a norm (Hint: think of it as a distance).

Answer. If [|v+ M| = 0, this means that inf{[lv+m||: m € M} = 0. Thus
v € M = M. For any nonzero A, and using that M is a subspace,

IA(v + M)|| = inf{|[Av +m| : m e M}
= A inf{|lv+m/A]|: me M} =|\|v+ M|.

For the triangle inequality, fix € > 0. Then there exists mi,my € M such
that ||o +mq|| < |jv+ M| +¢, ||w+ mz|| < |Jw+ M| + . Then

[o +w+ M| < lv+w+mi +maf < lvt+mi + [lw+mof
<o+ M| + [Jw+ M| + 2.
As we can do this for all € > 0, we obtain ||[v+w+ M| < ||[v+ M|+ ||w+ M]|.

(5.3.11) Let X = C[0,1] and M = {f € X : f(1) = 0}. Show that
X/M={c+M: ceC}and|f+M|=]|f(1)

Answer. We have that f ~ g if and only if f(1) = ¢g(1). Hence f+ M =
f(1) + M for every f. That is, we can choose a constant function as the
representative for each class; which means that X/M = {¢+ M : ¢ € C}.
As for the norm, we only need to calculate the norm for a constant function,
since these are representatives. If g(1) = 0, then |c+ g(1)| = ||, which shows
that ||c+ g|| > || for all g € M; with g =0, we get |[c + M| = |¢|.
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(5.3.12) Let X = C[0,1]. Fix t1,...,t, € [0,1]. Let M = {f € X :
ft;) =0, j=1,...,n}. Then X/M ~ C", and ||f + M| =
max{|f(¢;)|: j=1,...,n}

Answer. We have that f ~ g if and only if f(¢;) = g(¢;) for all j. Hence
the map f+ M — (f(t1),..., f(tn)) is well-defined X/M — C™. It is
surjective, as we can construct a continuous function with n prescribed values
(we can make it piece-wise linear, for instance); it is injective by definition of
the equivalence relation. And it is linear, hence a vector space isomorphism.
Continuity is a given since we are dealing with finite-dimensional vector spaces
(Theorem 5.2.2). As for the norm, since g(t;) = 0 for all j and any g € M,
Ilf + gll > max{||f(t1)],--.,|f(tn)|}; and choosing g = 0 gives us the reverse
inequality.

1
(5.3.13) Let X = C[0,1]. Let M = {f e X: / = 0}. Show that
0

1
X /M =~ C and that ||f + M| = ’/ f’.
0

1
Answer. For any f we have f ~ cif ¢ = f. So we have C as representa-

0
tives. That is, we can define p : X/M — C by

1
o+ = [ 1

1
If f+ M = g+ M this means that / (f —g) =0, and so p is well-defined

0
and injective. The linearity follows from the linearity of the integral, and the
surjectivity from p(c + M) = ¢ for all ¢ € C.

1
As for the norm, if ¢ = / f then
0

1 + M|l = lle+ M| = [e] [[1 + M]].
So we focus on showing that |1 + M|| = 1. By definition,

1
1+ M|| = inf goo:/gzl.
[+l =it {Jlgle | g=1}
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1
From/ 1 =1 we get that |1+ M]|| < 1. On the other hand, if ||g]|cc <1—9

0
for § > 0, then
1 1
(/ g’é/ gl <1-34.
0 0

This shows that if folg = 1, then ||g|loc > 1. Thus |1 + M| > 1 and so
114+ M| =1.

(5.3.14) Let X = ¢>°(N) and M = ¢y. Show that the norm on X' /M is
given by

lla + co|| = lim sup |ay|, a € (*°(N).
n

Answer. Let s =limsup,, |a,|. Fix € > 0, and = € ¢y. There exists ng such
that |z, | < € for all n > ng. By definition of limsup there exists n > ng such
that |a,| 4+ ¢ > s. Then

s <|ap| +e <lan+zp| + |xn| + € < |la+ x| + 2e.

As x € ¢p as arbitrary, we get that s < ||la + co|| + 2¢; and e was arbitrary
too, so s < [la + co]|.
If we take x = —a 1y, . n,) € co, then

la + #lloc = sup{lan|: n > no}.
It follows that ||a + col| < sup{|an|: n > no} for all ng. That is,

la+co|| < lim {lan|: n>ne}t=s.
nog—00

5.4. Locally Convex Spaces

(5.4.1) Let X be a topological vector space and M C X balanced.
Show that if ¢ € T then cM = M.




5. LOCALLY CONVEX SPACES 259

Answer. The definition of balanced implies that ¢M C M and ¢™'M C M.
Then

M =c(c'M) C eM,
and so cM = M.

(5.4.2) Let X be a topological space. Show that the following state-
ments are equivalent:

(a) singletons are closed;
(b) finite sets are closed;

(¢) X is Ty: namely, given distinct x,y € X, there exists an
open set V such that z € V, y € V.

Answer. 1f singletons are closed, then {z1,...,2,} = Uj_,{z;} is a finite
union of closed, so closed. The converse is trivial.

Again assuming that singletons are closed, given x # y, since {y} is
closed, V.= X\ {y} isopen, and z € V, y ¢ V. So X is T;.

If & is Ty, given x € X, for each y # x there exists V}, open, with
yeVyandx €V, ThenV = Uy;éx Vy is open, and it contains all points bar
x: that is V =X\ {z}. As V is open, its complement {z} is closed.

(5.4.3) Show that in a topological vector space, all open neighbour-
hoods around a point = are given by translates by x of neigh-
bourhoods of 0.

Answer. Fix x. The function f(y) = = + y is continuous by definition of
TVS. It’s inverse g(y) = —x + y is also continuous, so f is a homeomorphism.
Given any open set V with 2 € V, the set W = f~1(V) is open by continuity,
and 0 € W, since f(0) =xz. We have V = f(W) =2+ W.

(5.4.4) Show that any open neighbourhood of 0 in a topological vector
space is absorbing, and that any nonzero multiple of an open
set is open.

Answer. Fix V open with 0 € V. By definition of topological vector space,
the map v : C — X given by 7(t) = tx is continuous; as y(0) =0 € V, there
exists an open disk W = Bs(0) C C with 0 € W and a(W) C V. This means
that if |¢| < ¢ then tz € V. So V is absorbing.
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Let V open and fix ¢ € C\ {0}. Also by definition, the map a: X — X
given by a(z) = L z is continuous. Then ¢V = a~!(V) is open.

T e

(5.4.5) Let X bea TVS and V, W C X with V open. Show that V +W
is open.

Answer. This was explicitly done in the text! For each v € V, by Exer-
cise 5.4.3 the set v+ W is open. Then

VW= [Jw+w)
veV
is open.

(5.4.6) Prove that, in a topological vector space, the interior and the
closure of a convex set are convex.

Answer. Let A C X be convex. Let Ag be the interior of A. If z,y € Ay and
€ (0,1), choose open V,,,V,, C A with z € V,, y € V,,. Then tz € tV,, which
is open, and (1 —t)y € (1 — )V, which is also open. And tz + (1 —t)y €
tVy+(1—1)V,, which is open by Exercise 5.4.5, and a subset of A by convexity.
As for the closure, if 2,y € A, there exist nets {z;} and {y;} with
x; — x, y; — y. Then, since addition and multiplication by scalars are

continuous,

tr + (1 —t)y = limtx; + (1 — t)y; € 4,
j

as tx; + (1 — t)y; € A by convexity.

(5.4.7) Prove that, in a topological vector space, the closure of a bal-
anced set is balanced; and if the interior contains 0, then the
interior is balanced.

Answer. Assume that A C X is balanced. If x € A and ¢ € C with |c| < 1,
there exists a net {x;} with 2; — z. As A is balanced, cz; € A for all j.
Then, by continuity of the product by scalars, cx = lim cz; € A.

If 0 € A and = € Ay, the interior of A, by Exercise 5.4.3 there exists
an open set V with 0 € V and  + V C A. Using Lemma 5.4.4, there exists
Vo open and balanced with 0 € V C V. Then, if 0 < |¢| < 1, cx + ¢V} is an
open neighbourhood of cz, and cx + ¢V = ¢(z + Vp) C cA C A, so cx € Ay.
When ¢ = 0, we have that cx = 0 € Ay by hypothesis. So Ag is balanced.
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Here is an example of a balanced set such that 0 is not in its interior.
Let X = C? and

A={(z1,22) : |a1] < |22}
Then A is balanced, since multiplying each coordinate by a fixed ¢ with |¢| < 1
will not alter the inequality. And

Int A ={(z1,22) € A: |z1] < 22|}
In particular, 0 = (0,0) Int A.

(5.4.8) Give examples, in C2, with the usual topology, of open neigh-
bourhoods of 0 that are:

(a) balanced but not convex;
(b) convex but not balanced.

In each case, does a local basis at 0 for the topology exist where
all sets are like that? Are the same examples possible in C?

Answer.

(a) Let Vo = {(z,w) : |z] <1, |Jw| < %}, Vi ={(z,w) : |2| < %, |lw| < 1},
and V = Vp U V;. This is what a real version of V' would look like:

The set V is open (union of open), and balanced: both V and V;
already are balanced, since ¢ with |¢| < 1 will make |cz| < |z| and |cw| <
lw|. And it is not convex: for small € > 0 the points (3 —¢,1 —¢) and
(1—g,2—e)areinV,but 3 (3 —g,1—-e)+1(1—¢c,53—¢e)=(2—-¢,3—¢)
is not in V.

Since “crosses” like the above one but on different sizes can be put
inside balls, and balls inside them, they induce the same topology as the
balls; so there is a basis for C? given by sets as above.
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In C, an open balanced neighbourhood of 0 is an open disk or all of
C, so it is convex. Indeed, if V' C C is open and balanced with 0 € V| let
r=sup{|z| : z € V}. If r = o0, given any z € C there exists v € V with
|v| > |2|; then write v = ae®, z = be'*. We have

z = <b> ety e V.
a

When r < oo, given z € C with |z| < r we can find v € V with |v| > |z]
and we can repeat the above argument, so V = B,(0).
(b)Let V={2€C: -1<Rez<1, -3 <Imz< 3} x{weC: |uw|<1}.
Then V is open, and it is convex:
t(Zl,’U.)l) + (]. — t)(ZQ,UJQ) = (tZl + (]. — t)zg,twl + (]. — t)U)Q) eV.
But it is not balanced: we have (3,2) e V, but i(3,3) = (34,34) ¢ V.
The same argument with the balls shows that there is indeed a local
basis at 0 for the topology of C? made of open sets which are convex but
not balanced.
InC,let V={2€ C: 2Rez)?+ (Imz)? < 1}. Then V is an
open neighbourhood of 0, and it is convex (it’s an “ellipse”). But it is not

balanced: z =1i/v2 €V, but iz = —1/v2 ¢ V.

(5.4.9) Fill the details in Example 5.4.14, i.e. show that the topol-
ogy induced by the seminorms agrees with the topology of
pointwise-convergence.

Answer. Take the family of seminorms as in Example 5.4.14.

Suppose that f; — f pointwise. Given V(p1,...,pn,€) where pi(g) =
lg(tx)], for each kK = 1,...,n we can choose ji such that, for j > ji, we
have |f;(tx) — f(tx)] < €. Let jo = max{ji,...,jn}. Then, for j > jo,
pk(f] - f) = |fj(tk) - f(tk)| <e. So fj € f + V(plv' .. 7pn76) for an] > ]Oa
as the basic neighbourhood was arbitrary, we have shown that f; — f in the
topology determined by the seminorms.

Conversely, if f; — f on the seminorms, given ¢t € [0,1] and € > 0, there
exists jo such that for all j > jo we have f+V (py,€); that is, |f;(t)— f(t)| < e
for all 7 > jo; so f; — f pointwise.

(5.4.10) Show that if H is an infinite-dimensional Hilbert space and

weak

{&;} is an orthonormal basis, then {; —— 0.




5. LOCALLY CONVEX SPACES 263

Answer. Fixn € H. We have, since (0, &) % = |In||* < oo, that (n,&;) —

weak

0. That is, {; —— 0.
Note that this only works in infinite dimension, for otherwise the coef-
ficients need not converge to zero.

(5.4.11) Let V' C X be an open, balanced, convex, set with 0 € V. Let
€ > 0. Show that

{o: wl) <el={z: pv(z) <1} =¢V.

Answer. The set €V is open by continuity of multiplication by scalars, and
it is trivial to check that it is convex. By Proposition 5.4.9,

eV=c{r: py(z) <1} ={ex: py(r) <1}

= {z: ,uv(éa:) <1} ={x: py(z) <e}.

(5.4.12) Let X be a TVS, M C X a convex, open, neighbourhood of 0.
Show that pps is continuous.

Answer. Since p) is a real seminorm,

ar () = par ()] < g (z = ),
so it is enough to show that pjs is continuous at 0. Fix ¢ > 0. By Exer-
cise 5.4.11, the set eM is open and eM = {z € pp(z) < €}. So we can take
eM as the neighbourhood of 0 that guarantees that |y (z)| < ¢ if € eM.

(5.4.13) Let X be a vector space and P a family of seminorms that
separates points. Show that the sets

Vae(p1y- -y Pnsy€), r€X, p1y...,pn €P, >0,
where
Ve(pi, .. ypn,e) ={x' € X: pr(a' —z) <e, k=1,...,n}.

form a base for a topology.

Answer. The sets clearly cover X, as every x is allowed. So we need to
show that given x,y € X, p1,...,Pnq1,---,qm € P and € > 0, 6 > 0, if
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Va1s .30y €)NVy(q1, -+ s Gm, €) # @ there exist z € X, rq1,...,7, € P and
~ > 0 such that

‘/Z(T17 s 77‘]@77) C Vm(plv s 7pn7€) N Vy(Qla .. 'aqm7€/)~
This is achieved by taking z € Vy(p1,...,Pn,€) N Vy(q1, .. qm,€),

Ti,- 3Tk =P1y---sPnsq1y-- -, qm,
and
v = rgijn{e —pe(z —x),e" —qi(2 —y)}.
Then for any w € V,(r1,...,7k,y) we have
pr(w —2) <pp(w —2) +pr(z —2) <y +pr(z —x) <k,
and

!

gj(w—2)<gj(w—y)+q(z—y) <v+g(z—y) <.

(5.4.14) Let X, be locally convex spaces. Show that (z;,y;) = (z,y)
on X &r Y if and only if z; — = and y; — y.

Answer.  Suppose that (zj,y;) — (z,y). By definition this means that
(p x q)((zj,yj) — (x,y)) — 0 for all seminorms p for X and ¢ for Y, and by
definition of the product seminorms this is p(z; — ) + q(y; —y) — 0. As
p(z; — ) < plx; — ) +q(y; —y) for all j, we get that p(z; — ) — 0 and
similarly ¢(y; —y) — 0 for all seminorms. Hence z; — = and y; — y.

Conversely, if z; — x and y; — y then p(z; —z) — 0 and ¢(y; —y) — 0
for all seminorms. It follows that p(z; —z) 4+ ¢(y; —y) — 0 for all seminorms
p X ¢, showing that (z;,y,;) — (z,y).

(5.4.15) Show that the family Sy from Proposition 5.4.21 is indeed a
family of seminorms that separates points.

Answer. Fix p € Sy. For a € C nonzero,
plax + M) = inf{p(a(x + m/a) : m € M} = |o| inf{p(z + m/a): m e M}
= |a| inf{p(x +m): m e M} =|a|p(z + M).

For the triangle inequality, let =,y € X and fix € > 0. Choose m,,m, € M
such that p(z +mgy) < p(x + M) + ¢, p(y + my) < p(x + M) + e. Then

plx+M+y+M)=inf{plx+y+m): me M} <p(x+y+mgz+my)
<p(x+mg) +ply +my) <plx+ M)+ plz + M) + 2¢.
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As this works for any € > 0, the triangle inequality is established. It remains
to show that the family separates points. If z + M # 0, this means that
x & M. As M is closed, there exists a basic neighbourhood N = {z: p;(z) <
1, 5=1,...,r} of 0 such that M N(x + N) = @. That is, m —x ¢ N for all
m € M. Which means that p;(z +m) > 1 for all m € M, so py(z + M) > 1.

5.5. The Dual

(5.5.1) Let X’ be a normed space. Show that X* is a normed vector
space.

Answer. Given ¢, € X* and A € C we can form linear combinations by
(p+ M) (x) = p(x) + Ap(x), so X* is naturally a vector space if we show that
this linear combination is continuous. But this follows from the continuity of
o and ¥ and the continuity of the vector space operations: if x,, — x, then

(P + X)) (xn) = @(an) + Mp(2n) = 0(2) + Mp(2) = (@(2) + M) ().

(5.5.2) Let X be a TVS. Show that X* is a vector space.

I Answer. The same arguments as in Exercise 5.5.1 work.

(5.5.3) Let X be a finite-dimensional space. Show that X* is finite-
dimensional and dim A* = dim X.

Answer. Fix a basis xq,...,x,. For each x € X there are unique numbers
Aj(z) € C with z = 7, A\j(x) ;. The uniqueness makes each \; : X — C
linear, since

ar+y= Z(a)\j(m) +Xi(y)) z;.

J
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They are also continuous since dim X < oo (Corollary 5.2.5). Given any
Ve,

o) =Y N@ () = (Y i) n) @), wex.
J J
Thus X* = span{A1,..., A, }. Also, if 37, ¢;A; =0, for a fixed z;, we have

0= ch)\j(xk) = ¢y
J

Socp =+ = ¢, = 0, and Aq,...,\, are linearly independent. Thus
dim X* = dim X.

(5.5.4) Complete the proof of Proposition 5.5.2.

Answer. Assume first that dim X/K = 1. Choose z such that © + K # K.
Then X/K = C(z + K). Define ¢(y) = ¢, where ¢, € C is the scalar such
that y + K = ¢y« + K. The scalar is unique (because if ax + K = br + K
then (a —b)x € K, and so a — b = 0), so ¢ is well defined. If y,z € X and
AeC, then (y+Az)+ K =(y+ K)+ A(z + K) by definition of addition in
the quotient; so y + Az + K = cyz+ Ac,z + K = (¢ + Ac.)z + K. Thus
o(y + Az) = o(y) + Ap(z) by the uniqueness and thus ¢ is linear.

If p(y) =0, then y+ K = K, so y € K; thus ker ¢ C K. Conversely, if
y € K then y+ K =0+ K so ¢(y) = 0. Then K = ker .

Now assume that K = ker ¢ with ¢ # 0. Fix € X'\ K with ¢(z) = 1.
For any y € X, y — o(y)x € ker p = K. Thus

y+ K =pyr+K,
showing that X/K = C(z + K) and dim X/K = 1.

(5.5.5) Prove Proposition 5.5.4.

Answer. (i) = (ii): trivial.

(if) == (iii): trivial, as we can take z = 0.

(ili) = (iv): assume that ¢ is continuous at xy. Then there exists
d > 0 such that |p(z) — p(xg)| < 1 whenever ||z — z¢|| < §. Now let z € X.
Then 2’/ = ﬁ + x satisfies ||z’ — xo|| < §. Then

2||z 2|z
(@) = 2207 — ) < 2L
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(iv) = (i): Fix 2o € X. Given e > 0, let 0 = £. Then, if ||z — 20| < 4,
we have
[p(x) = @(zo)| = [o(z — zo)| < 7lla — zo| <e.
So ¢ is continuous at xg.

(5.5.6) Prove Proposition 5.5.6.

Answer. By definition,
llell = inf{r : |p(z)| < r||z| for all z € X'}.
Given ¢ > 0, there exists r as above with r < ||¢|| + . Then, for any = € X,

(@) < vzl < (lell + &)l
As this holds for all € > 0, we get |p(z)| < ||¢]| ||z||. So
lloll = min{r : |o(x)| < r|z|| for all x € X'}.

Now if r is an upper bound for {|p(z)| : ||| = 1}, we have |o(x/||z]])| < r
for all nonzero x, so |p(z)| < r||z| (which works also for = 0). So, by (i),
sup{|p(z)| : ||z|| =1} > ||¢]|, since ||¢|| is below all upper bounds. And since
when [l2] = 1 we have |(2)| < [l¢lllal] = oll, we get [lo] itself is an upper
bound, so sup{|e(x)|: ||z|| =1} < |l¢|l, giving us the equality (ii). For (iii),
we simply note that y = x/|[z|| has [lyl| = 1, and [@(z)|/[lz]| = |e(z/[z])]

(5.5.7) Use Proposition 5.5.6 to show that (5.10) defines a norm on
the space of bounded functionals on X.

Answer. We need to show that the norm as in (5.5.6) is a norm.
If ||o|| = 0, then |p(z)| = 0 for all z, and so ¢ = 0.
For A € C,

Apll = sup{|rp(@)] : |zl =1} = [Al sup{[o(z)] : (] =1}

= [Alllell-
And

lp + 21l = sup{lp(z) +¢(2)] [l =1}
= sup{|p(x)| + [¢(z)] = [lz] =1}
< supflfloll + ()] : lofl =1}
= llell +sup{lo(@)] : [zl = 1} = llell + [[¥l
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(5.5.8) Let X be a topological vector space, and ¢ : X — C linear.
Suppose that there exists an open neighbourhood V of 0 and
¢ > 0 such that |¢(v)] < ¢ for all v € V. Prove that ¢ is
continuous

Answer. Fix e >0, and let V. = £ V. For any x € V., we can write z = £ v,
with v € V. Then

[p@) = le(C o)l = le()| < Ce=e.

So ¢ is continuous at 0. If now z; — z, since addition and multiplication by
scalars are continuous we have that z; —x — 0. Then ¢(z; — ) — 0, and so

p(a;) = ¢(z).

(5.5.9) Let X = {f € C[0,1] : f(0) = 0} with the supremum norm,
and ¢(f) = [, f. Show that [|¢] = 1 but |p(f)| < 1 for all
f e X with ||f| = 1.

Answer. 1If || f]| <1, then
Now let

Then g, € X, ||gn|| = 1 and

1
1 1 1
=—4+1-=-—=1-—.
/Ogn 2n+ n 2n

This shows that [|¢|| > 1 — 5= for all n, so [j¢|| = 1.

If remains to see that |p(f)| < 1 for all f € X with ||f]] = 1. Given
such f, because f is continuous at 0 there exists § > 0 such that |f(¢)] < %
when ¢ < 0. Then

f)|=’/01

’/f’ 1< +1—5_1—g<1

(5.5.10) Let X be a normed space and ¢ : X — C a linear functional.
Show the following statements are equivalent:
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(i) ¢ is unbounded;
(ii) there exists a sequence {y;} C X such that |ly;|| =1,
e(y;) > j for all j;

(iii) there exists a sequence {z;} C X such that z; — 0,
and ¢(z;) =1 for all j.

Answer. (i) = (ii): If ¢ is unbounded, then for each n € N there exists
xn € X with |p(z,)| > nl|z,]. Take A, € T with Apyo(x,) = |p(zn)]. If we
take g = Anzn/ |l then yn | = 1 and

Aplea) _ Lolwn)
(B2 (B2
(i) = (ili): Take the sequence {y,} as in (ii) and define z, =
Yn/(Yn). Then [lzn|| = 1/0(yn) <1/n = 0, and (zn) = @(Yn)/P(yn) = 1.
(iii) = (i): Given {z,} as in (iii), let z, = @, /||zx||. Then ||z,| =1

and |p(zn)| = le(xn)|/ ||zl = 1/||zn]] = oo, so ¢ is unbounded.

©(Yn) = >n.

(5.5.11) Let X be a Banach space, X; a dense subspace and ¢ : Xy — C
a bounded linear functional. Show that ¢ admits a unique
extension p € X*.

Answer. Let x € X. There exists a sequence {z,,} C Xy with x,, — x. Since
 is bounded,

[o(zn) = @(@m)| = [e(n — zm)| < [l@]l l2n = 2ml,
so the sequence {¢(z,)} C C is Cauchy. Let ¢(x) = lim,, p(z,), this limit
exists since C is complete. This is well-defined: if 2/, — z, then
(6ln) = Plat)] = (e — )| 50
with m, n, so the limit is the same. Linearity of ¢ is straightforward since it
is defined as a limit of linear maps. Finally,

16(2)] = lim ()| < || 1m Jzal] = o] 2]

(using Exercise 5.1.2 for the last equality). Thus ||@|| = ||¢||-
Uniqueness: if ¢ € X* and ¢|x, = ¢, then for any € X there exists
{z,} C Xy with x,, — . Then, using that 1 is continuous,

Y(z) = li7rln Y(x,) = lirrln p(zn) = §(z).



270 CHAPTER 5

(5.5.12) Let V be an infinite-dimensional real /complex vector space and
consider maps ¢1,...,¢, : V — C linear. Improve on Propo-
sition 5.5.12 by showing that

dim ﬂ ker p; = oo.

j=1

Answer. Consider as in the proof of Proposition 5.5.12 the linear map I :
V — C" given by I'(z) = (¢1(2),...,pn(z)) 7. Let Y = T(V), a subspace of
C". We have
V/kerT ~ Y.
This forces dimkerI' = co. Indeed, if we had dimkerI" < oo, we can choose
a basis y1,...,ym of Y and a basis {z1,..., 25} of kerI". By the isomorphism
there is a basis {v; + kerT',..., v, + kerT'} of V/kerI'. So any v € V can
be written as a linear combination of vy,...,v,,21,...,2s and V would be
finite-dimensional.
So dim (j_, ker p; = dimker I' = co.

For a different argument, suppose that

dimV = o0 and ﬂ ker ¢; = span{z1,...,2,}
j=1

with z1,..., 2 linearly independent. Extend {z1,..., 2.} to a basis

{Zl,...,ZT} U {wl,wg,...}
of V. If we let {¢1,12,...} be the dual basis of {wy,ws,...} we get an
infinite linearly independent linear functionals. As {z1,...,2,} C kert); for
all j, from Lemma 5.5.10 we have v; C span{e1,...,¢,}, a contradiction
since we have infinitely many linearly independent ;.

5.6. Examples of Duals
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(5.6.1) Let ¢ € [1,00), p € R with %4—% =1,¢g: N> C. Put
By, ={f € ?(N): [fll, =1}. Show that

max {|(f, ) : fGBp}maX{Zlg fGB}
k=1
where -
> 9w
k=1

Answer. Let us denote the left-hand-side by L and the right-hand-side by
R. The triangle inequality guarantees that L < R.

Write g(k)f(k) = e |f(k)g(k)|. Let fo : N = C be given by fo(k) =
e f(k). Then | foll, = [Ifll, = 1, and

> g o) =[S e ah) k)| = S lgth) £ ()
k=1 k=1 k=1

Then R < L, as any element in the right-hand set appears in the left-hand
set. Thus L = R.

(5.6.2) Consider the Banach space ¢o (Example 5.1.9). Given z €
co show that for any f € ¢'(N) the map z — Y. z,f, is
a continuous linear functional. Use this to prove that there
is an isometric embedding of ¢!(N) into c¢fj. Prove that this
embedding is surjective, i.e. ¢ = £*(N).

Answer. Call the map ;. It is linear, since limits and sums are linear:

(@ +ay) =Y (T +oyn)fn = anfn + aynfn =75 (@) + s (y).

n

Since z € ¢g, we have that |z,| < ||IH<><> for all n. Then

Z xnfn

So v € ¢ and |y¢]| < ||fH1 Now write f, = e#|f,| and let = be the
sequence with its first m entries consisting of x, = e~ ", and the rest 0.
Then z € ¢, ||2|lcc =1 and

v (@) = < ZIxnl [l < llloo 1 £1]1-

|’Yf |_Z|fn
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We then get that ||| > Yo, |fn]; as we can do this for any m we get
that ||v¢|l > || flli- Thus ||vs]| = ||flli- This shows that v : f — 7y is an
isometric embedding. It is also linear, since

'y(f+ag)( >_7f+aq an fn+agn anfn+azxngn

=75(x) + ayy(z ):[v(chw( ().

For surjectivity, let ¢ € ¢f. Given = € ¢y, we have © = ) xne,, where
e, are the canonical elements, i.e. e,(j) = dn,j. The series converges, since
Z, — 0 and the norm is the supremum norm. Thus, as ¢ is continuous and

linear,
== Z I71¢(6n)-

So ¢ = v(f), where f,, = ¢(ey,), if we are able to show that this f is in £}(N).
For this, write ¢(e,) = €% |¢(e,,)|, and let = € ¢ be such that

e_w”7 n<m
T, =
0, n>m

Then, using again that ¢ is continuous and linear,

Z lp(en)| = Zmn¢ en) = (Z xnen) = ¢(z) < I8l [|=] = l|¢ll-

As m is arbltrary, thls shows that || f|l1 = >_,, [¢(en)| < co. Thus v is onto.

(5.6.3) Using the ideas in Exercise 5.6.2, show that the dual of ¢
(the Banach space of convergent sequences with the supremum
norm) is £}(N).

Answer. We have that ¢ = ¢y + C1. The proof in Exercise 5.6.2 doesn’t
apply directly, because we used that x € ¢y to prove surjectivity—and that’s
essential in some way, since otherwise we would have a “proof” that £>°(N)* =
?1(N), which is false. The embedding part works fine—as it also does for
£>(N)—so we need to focus in surjectivity, i.e. showing that if ¢ € ¢* then
there exists f € ¢}(N) with ¢ = (-, f). Using Exercise 5.6.2 we have that,
on ¢y, p(x) = (x, f) where f, = p(en). As ¢ = ¢g + C1, the value of ¢
changes depending on what (1) is. The problem, in other words, is that
the function z +— lim, x, cannot possibly come from ¢!(N) if we try to
reuse the embedding from Exercise 5.6.2. We can solve this the following
way: we reserve the first coordinate in ¢! (N) for the value (1). So we define
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v £Y(N) = ¢* by

G+ = Afi+ 3 eufusn.

n=1
Given ¢ € c¢*, we have by restriction that ¢ € ¢j. By Exercise 5.6.2 there
exists f/ € }(N) with ¢ = (-, f). Let

F=oWer+ 3 foen € C(N).
n=2
This f trivially satisfies y(f) = ¢, so v is surjective. Finally we check that ~
is isometric. Note that, for x = 2’ + A1 € ¢ with 2’ € ¢y, we have [|z] 0 =
max{|A|, [|2||cc }. Then

W@ <IN S+ [zl [ faral < Il £l
n=1

So [|[v(H)Il < Iflli- Choosing an appropriate x as in Exercise 5.6.2 we get
that ||z]|ec = 1 and |y(f)(z)] > Yo", | fal, and as we can do this for any m
it follows that ||v|| > ||f]]1 and thus v is isometric.

(5.6.4) Show that ¢ and ¢y are isomorphic as Banach spaces. ]

Answer. For x € ¢, write I, = lim,, x,,. Then define v : ¢ — ¢y by
v(@) = (g, 21 — lg, 0 — lgy .. .).
As lyqy = 1y + 1y, it follows that + is linear. Also, if y(z) = 0, then I, =0
and 0 = x1 — I, = z1, etc., so x = 0. Finally, given y € ¢,
y =71 +y2,91 + Y3, y1 +ya, ).
So v is an linear isomorphism. And « is bounded, as |l;| < ||z]/s and so
[y(@) || < max{|ls|, sup{|zn —la| : n € N}} < 2[a].

Note that + is not isometric. For instance if z = (2,1,1,...), then ||y(x)| = 1,
while ||z|] = 2. This failure of v on being isometric is not a failure of the way
~ was chosen, but rather an intrinsic feature (see Exercise 5.6.5). The inverse
4~1 is trivially seen to be bounded, again with ||[y~!|| = 2; or we can obtain
it from the Inverse Mapping Theorem.

(5.6.5) Show that there is no isometry—Ilinear or not—between ¢ and
co (Hint: consider that 1 is the middle point between 0 and 2).
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Answer. In ¢ we have that ||2—1]] = |1 —0|| = 1; that is, the element 1 is at
distance 1 from both 0 and 2. More importantly, 1 is the only element with
that property. Indeed, suppose that ||2 — z|| = ||z|]| = 1. The second equality
gives us that |z,| < 1 for all n, while the first equality gives us |2 — z,| < 1
for all n. Then 2 — |z,| < |2 — 2, <1, so

2 <14 |za] < 2.
Thus |z,| = |2 — z,| = 1. The second equality is
5 —4Rez, =1,

which in turn is Re z, = 1. Combined with |z,| = 1, we obtain z, = 1. Asn
was arbitrary, z = 1.

Meanwhile, given x,y € ¢ with ||y — || = 2, there are uncountably
many z € ¢ with ||z — z|| = ||y — #|| = 1. Indeed, by translating everything
by y we may assume that y = 0. That is, ||z|| = 2, and we are looking
for z with ||z — z|| = ||z|| = 1. Since we are in ¢g, the norm is actually a

maximum. That is, there exists m with |z,,| = 2 and |z,,| < 2 for all n. Since
lim,, , = 0, there exists ng such that |z,| < 1/2 for all n > ng. We can
define z to have z, = x,/2 for all n < ng, and z, = e, /2 for n > ng;
with the exception of z,, = 1. Then |z, — z,| < 1 for all n, and |z,,| = 1.
Thus ||z — z|| = 1, ||z]| = 1, and we are free to choose the 7,41, Tng+2, - .- I
uncountably many ways.

(5.6.6) Let S be an arbitrary set. Show that ¢1(S)* = ¢°°(S), where
the duality is the same as the one in Exercise 5.6.2.

Answer. We have the natural embedding v : £°(S) — £*(S)* given by
= 2Tl
J
Then 7 is linear, since for every y € £}(S)

v(z +az)(y) = Z(xj + azj)y; = ijyj + aZz]yJ = ) + av(2)](y).
J
Also,
(@) W) <D lzyi] < llzlloo lyll, @ € £2(S), y € £(S).
J
Thus |[y(z)| < ||z]|eo- Given € > 0 and k such that ||z|ec — |zk| < &, let
y € (*(N) be given by y, = A, where Azy = |xx|, and y; = 0 if j # k. Then
lyllh =1, and
V(@) (Y) = lze| > 2] — &
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As we can do this for any € > 0, we get that v(z) = ||z||c. So the embedding
is isometric. It remains to show that ~ is surjective. Let ¢ € ¢1(S)*. Write
yelt(S)asy= Zj y;je;. Then, since ¢ is linear and bounded,

y) = ZWP(@J’)

We have, since |lej||1 = 1, that [¢(e;)| < [|¢] for all j. So x = {¢(e;)} €
£(5), and o ={x).

(5.6.7) Let p € (1,00) and g € ¢9(N). Show that the map
p:fe Y f(k)g(k) (5.1)
k=1

defines a bounded functional on ¢P(N) with norm ||g||,

Answer. Since ¢ is made up of pointwise evaluations, products by scalars,
sums, and limits, all of which are linear, ¢ is linear itself. Holder’s inequality

D=3 sEwe®)] < 11 loll
k=1

guarantees that ¢ is well-defined, it is bounded, and ||¢| < ||gllq. Now let
f:N — C be given by

F(k) = 0(k) g(k)*~",
where 0(k) = |g(k)|9/g(k)? when g(k) # 0, and 0 otherwise. Then

IFIE =D 1f(k \p—Z\g )| U’"ZW )| < oo,
i
so f € P(N). And

= flkglk) = Z(’(k)g(k)q’lg(k) =D lg(R)I
k k

q,,

= llgllg = 1£1lx llglla = [[£1lp gllq:

so [lell = llgllq-

(5.6.8) Let ¢ € £°°(N)*. Show that there exist ¢1, s such that ¢ =

P1 + oo, Where @1, 000 € £2°(N)*, Poole, = 0, and ¢y (z) =
(z,y) for some y € (1(N) and all x € £~°(N).
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Answer.  Let pg = ¢|,- By Exercise 5.6.2 there exists y € ¢(N) such
that ¢o(z) = (z,y). Call ;1 the extension to all of /*°(N) with the same
formula. Let oo = ¢ — ¢1. Then vuole, = 0 by construction, ¢q is bounded
by construction, and ¢, is bounded because it is a linear combination of
bounded functionals.

(5.6.9) Let M be the o-algebra of subsets of [0, 1] that are either finite
or countable, or alternatively have finite or countable comple-
ment. Let u be the counting measure.

(a) Show that p is not o-finite.
(b) Show that g(z) = « is not measurable.

(c) Show that v : f +—— > xf(x) defines a bounded linear
functional on L'(p).

(d) Show that + is not of the form ~(f) = [ fhdu for h €
Lo ().

(e) Conclude that L(p)* # L>(u).

Answer.

(a) If u(E) < oo, then E is finite. And a countable union of finite sets is
countable, so not all of [0,1]. Hence p is not o-finite.

(b) Take X = (0,1/2), which is open. Then g=*(X) = X, which is not
measurable.

(¢) We have

Yoaf(@)| <Y alf @) <Y 1@ =If]h

So «y is bounded and ||y|| < 1. Linearity follows from the fact that the
series will be absolutely convergent because f € L'.

(d) If it were, given t € [0, 1] let f = 1. Then
h(t) = Y f@he) = [ fhdp =)= Y ai(@) =t.

So h(x) = x, but then it cannot be measurable.

(e) If they were equal, every v would be of the form v(f) = [ fhdu, which
we showed above is impossible.
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(5.6.10) Let X = {0,1}, and p the measure given by up({0}) = 1,
pu({1}) = co. Show that L'(X)* # L*(X).

Answer. Here LY(X) = {f : f(1) = 0}, so L*(X) is one-dimensional. On
the other hand, L>°(X) consists of all f : {0,1} — C, so it is two-dimensional.

(5.6.11) We consider the measure space [0,1] with the counting mea-

sure.

(a) Show that ¢1[0,1]* = ¢°°[0,1], though the measure is not
o-finite.

(b) Let X = {a : [0,1] — C : suppa is countable and a €
Co(suppa)}. This last condition is saying that a converges
to zero on its support. Consider the ||« ||oo norm on X.
Show that X is complete and that X* = ¢1[0, 1].

Answer.

(a) Given a € £1[0,1] and b € £>°[0, 1], the duality (b,a) is well-defined and

bounded:
(ya)l = | 3o bt)a®)]| < 16l S la®)] = 1] -

So b induces a bounded linear functional. Given ¢ € £1[0,1]*, let b be
given by b(t) = p(es), where {e;}; denotes the canonical basis. Then
)| < el lleclls = llell, so b € £°[0,1]. For any a € £1[0,1], the series
(b, a) is well-defined since a € ¢1[0,1] and b is bounded. We have

(b.a) = 3" b()a(t) = Y- altyplen) = o Y alt)er) = la),

where the exchange between sum and limit is justified by ¢ being contin-
uous.

(b) It is clear that X is a vector space, so we check for completeness. Let

{an} C X be Cauchy. Since |an(t) — am(t)] < |lan — amlloo, We get
that for each ¢ the number sequence is Cauchy, and so we can define
a(t) = lim, a,(t). We get that a is bounded, because {a,} is bounded: if
¢ > ||lay|| for all n,

la(t)] < la(t) — an(t)| + lan ()] < [a(t) — an(t)] +c.

As this works for all n and a(t) — a,(t) — 0, we get that |a(t)| < ¢ for all
t. With the same idea we get that a is a norm limit: fix € > 0 and choose
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ng such that ||a, — amllec < € when n,m > ng. Then
la(t) — an(t)] < |a(t) = am ()] + |am(t) — an ()]
< la(t) — am ()] + [lam — anllo
<la(t) — am(t)| +&.

As the right-hand-side does not depend on n, we get that |a(t) —a,(t)| < e.
This shows that ||a—ap||eo < &. It remains to show that supp a is countable

and that a € Cy(suppa). Fix § > 0, and consider those ¢ such that
la(t)| > 4. Choose n such that ||a — ap|[oc < 4. Then

|an(t)| = an(t) — a(t) +a(t)] = |a(t)| — |an(t) — a(t)]
2 la(®)] = lla — an|le

§ 6
>5— 2 =_.
Z0-5=5

By hypothesis |a,(t)] > g on a finite set, and so the set {|a| > d} is finite.
This shows that a € Cy(suppa), as the finite set we found acts as the
compact set outside of which a is small. So X is complete.

Now given b € ¢1[0,1], we can define (b,a) = >_,b(t)a(t), and this
is well defined because a is bounded and b is summable. Conversely, if
p € X*, let b(t) = p(et). Let F C [0,1] be finite. Let 8; € T such that
By b(t) a(t) = |b(t) a(t)|. Then

Db a(t)] =D b(t) Balt) =Y wler) Bralt)
F F t

= llell llalloo-

=o( Y Baye) < el | D Bratt) e
F F

So the series ), b(t)a(t) converges absolutely, and in particular it con-
verges unconditionally. Then, using the continuity of ¢,

> bt)alt) = > elealt) = (D alt)er) = ela).

t

(5.6.12) Recall from Exercise 2.3.26 that a measure p is semifinite if
for every measurable E with u(E) = oo there exists F C E
with 0 < p(F) < oo. Show that for a measure space (X, A4, 1)
the following statements are equivalent:

(a) p is seminifite;

the canonical embeddin, : — 1s injective.
(b) hi ical bedding I' LOO(X) Ll(X)*' injecti
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When these conditions are satisfied, I' is actually isometric. J

Answer. Suppose first that p is semifinite. Fix f € L*°(X). We know
from Holder’s inequality that [|[T(f)]] < ||flleo- Given € > 0, let E = {|f| >
Il flloo —€}- By definition of the infinity norm we have u(E) > 0. Then either
w(E) < oo, and we put F' = E, or by the semifiniteness there exists F' C E,
measurable, with 0 < u(F) < co. Now we can define, if we write f = | f|,

= e 1p.
9= u(F) F

Then g € L' (X) with ||g|l; = 1, and
. L .
vl =| [ Fode| = s [ 11> 1fl =

As e was arbitrary, it follows that [|T(f)|| = || f]lcc and so T' is isometric.
Conversely, suppose that p is not semifinite. This means that there

exists measurable E with u(E) = oo and u(F) = 0 for every measurable

F CE. Let f =15 € L™(X). Given g € L*(X), let F = {g # 0} N E. Then

u(F) =0 and so
F(f)g:/ngdu:/ngu:O

So I'(f) = 0 and therefore I' is not injective.

(5.6.13) A measure y is localizable if it is semifinite and, in addition,
given any collection & of measurable sets, it admits an essen-
tial supremum: that is a measurable H such that u(E\ H) =
0forall E € £ (so E C H a.e.) and if H' satisfies the same
property then u(H \ H') = 0 (that is, H is the smallest such
set up to nullsets). (This exercise is non-trivial, and it appears
as an exercise by necessity of space; if tackled, it should be
considered a project, and some guidance will likely be needed)

(a) Show that if p is semifinite and the canonical map I' :
L*®(X) — LY(X)* is surjective, then y is localizable.

(b) (This part of the exercise is pure measure theory, but it is
needed for the rest; it allows us to patch measurable func-
tions (notably Radon-Nikodym derivatives) together as long
as they agree almost everywhere on the intersection of their
domains. It is not a trivial result so the reader might want
to skip it and just use it) Suppose that yu is localizable and
that {f;} is a family of measurable real-valued functions,
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each with domain D; € A and such that f; = f; a.e. on
D; N Dy. For each g € Q and each j, let
Ejq={veDj;: fj(x) > q},
and let E, be an essential supremum of {E;,: j}. Put
h'(x) =sup{q: ¢ € Q, x € E,},

allowing for sup@ = —oo. Finally, let h(z) = h/(z) if
h'(x) € R and zero otherwise. Show that h is measurable
and that h|p, = f; a.e. for all j.

(¢) Show that T is an isometric isomorphism if and only if u is
localizable.

Answer.

(a) Fix a collection &£ of measurable sets. Let F be the family of finite unions

of elements of £, ordered by inclusion. Note that E \ G is a nullset for

every E € £ if and only if it is a nullset for every £ € F. We define

¥ : LY(p) — C in the following way. Given f € L'(u) with f >0 a.e.,
(f) = lim /E fdp.

EeF

The limits exists by monotonicity. Note also that ¥(f) < ||f||1 so the
limit is always real. For arbitrary f we write f = f1 — fo +4(f3 — f4) with
f1, f2, f3, fa = 0and f1fo = f3f4 = 0 a.e. (so the four functions are unique
up to a nullset) and we define ¥(f) = ¥(f1) — ¥ (f2) + i(f3) — ib(fa).
Linearity of ¢ follows with the same idea as in page 130 of the Book. The
estimate |¢(f)| < ||f|1 is direct.

Since by hypothesis I is surjective, there exists g € L>°(X) such that
T'(g)f = ¥(f) for all f. Necessarily, ||g||cc = 1; so we may assume without
loss of generality that |g| < 1. The function g is necessarily real-valued and
non-negative on each E € &, since by Exercise 2.5.22 we have that g|g is
non-negative for each F' C E measurable and finite; by the semifiniteness
this means that g|g is non-negative.

Let H = {g > 0}, measurable since ¢ is. For any F € A with
u(F) < oo we have 1z € L'(11) and so

dp = dp = = li d
/Fg 1 /leg p=1(1p) EIg}T/Ef 1 (AB.5.3)
=sup{(ENF): FeF}
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Given F € &, if u(E\ H) > 0 then by semifiniteness there exists measur-
able F' C E\ H with 0 < u(F) < oo. Then

u(F)Zu(EﬂF)S/ngMSO,

a contradiction. Therefore u(E\H) = 0. Ifnow H'isanother measurable
set satisfying u(E\ H') = 0 for all E € &, suppose that u(H\ H') > 0. By
the semifiniteness there exists measurable F C H\ H’ with 0 < u(F) < cc.
For every E € £ we have

W(EF) = u(((B\ H) U (B0 )]0 F) = p((E0H) 0 F)
<wuH NF)=0.
Therefore, by (AB.5.3)
/ gdu = 0.
F

As g > 0 a.e. on F (because F C H, u(F) = 0. This is a contradiction,
that shows that p(H \ H') = 0. Hence p is localizable.

(b) We first note that h’ is measurable, for (using Corollary 2.4.5)
{z: W(x)>a}= U E,eA
q€Q, ¢>a
whenever a € R.
Given indices k,j and ¢ € Q,
Ej 4N (Di\ Erg) C{z € E;NEy, f(x)#g(x)}
so it is a nullset. Then
(Eq N Dy) \Ek,q =E.N (Dk \ th) = U Ejqn0 (Dk \ Ek,q)
q€Q
is also a nullset. We now form the union of the symmetric differences
Hy = | (Brg \ (Dk N Ey) U (D N Ey) \ Egyg),
q€Q
which again is a nullset, since Ey, ; C Dy, and so Ey, 4\ (DrNEy) = Ej ¢\ E,.
We have that
when z € Dy \ Hy, re€bB, <= xz€ B, (AB.5.4)

Indeed, if z € (Eq N Dy) \ Hy, this means that « ¢ (E, N Dy) \ Ejq,
so ¢ € Ey 4. Conversely, if @ € (Eyq N Dy) \ Hg, then o € Dy N Ey, so
z € E,. Looking at (AB.5.4), if x € Dy, \ Hy, then h'(z) > ¢ if and only
if fr(z) > q. Doing this for every ¢ € Q, we have shown that b’ = f;, a.e.
on Dk.
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Finally, we define
n(x), h(r)eR
W LR
0, N (z) € {—o0, 00}

Then h is measurable because it is a modification of A’ over a measurable
set.

(c) It remains to show that if u is localizable, then I is surjective. Fix ¢ €
LY(X)* with ||| = 1. Let Ag = {F € A: p(F) < oo}. Given F € Ay
define vp : A — R by

ve(E) =¢(1gnr).
We have vp (@) = 0. If By, F5 € A are disjoint, then

vr(E1 U Eg) = Y(1(p,up)nr) = Y(1enr + 1E.nr)
=Y(1g,nr) + V(1g,nr) = vr(EL) + ve(E2).

Therefore v is additive. Now let {E;} C A be a countable pairwise
disjoint family. Then

u(U(Ek N F)) =3 u(E N F).
k k

| X tainr], = X winnp) o,
k>n k>n
Then, as v is continuous,

VF(UEk> = ¢(21EmF) =Y W(ELNF) = ve(Ey).

Thus vp is a measure. Using again that v is bounded,

lve(E)| = |Yv(1enr)| < |I1earl = p(ENF).
So vp < p. By Theorem 2.10.10 there exists a Radon—-Nikodym derivative
hr € L'(X) with

Hence

VF(E) = / hr du, Eec A
E

From Exercise 2.5.22 we have that hp is real-valued a.e. Moreover, if
G = {hp > 1} then

/GhF dp = vp(G) < p(GNF) < p(G).

Thus u(G) = 0. We can similarly see that u({hr < —1}) =0. So |hp| <1
a.e.
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Now let Fy,Fy € Ap. We claim that hp, = hg, a.e. on Fy N F.
Indeed, given measurable E C F} N Fy, since lpnp, = 1g = lgnm,

/ hiy i = 6(Lpnm) = d(lpnm) = / s di.
E E

So the function hp, — hp, has integral 0 on every measurable subset of
the finite measure space F; N Fy. By Exercise 2.5.22, hp, = hp, a.e. on
Fy N Fy. By (b) there exists a measurable function h : X — C such that
hlp = hr for every F € Ay.

Given F' € A(),

{zeF: |h(zx)]>1} C{|lhr| >1}U{z € F: h(z) # hpr(z)}.
The two sets on the right are nullsets, so the set on the left is also a nullset.
This forces {|h| > 1} to be a nullset; if it were not, by semifiniteness there
would exists F' € {|h] > 1} with 0 < u(F') < oo, forcing {x € F': |h| > 1}

to not be a nullset. Thus h € L>(X) and ||h|l < 1. Now, for any
F e .Ao,

F(h)lp:/lefhdu:/thdu:uF(F)zw(lp).

By linearity we get that T'(h)f = ¥(f) for every simple f. As both T'(h)
and ¢ are continuous, it follows that I'(h) = 1 by Proposition 2.8.17.
Finally, if ||¢|| # 1, we can scale and apply the proof to the scaled version.

1/p
(5.6.14) For 0 < p < 1, show that [|f], = (zj |f(j)|p) is not a

norm.

Answer. Consider |le; + eall, = 217 and |le1|l, = 2], = 1. Then, as
O0<p<l,

llex + ezl = 277 > 2 = [leal, + [lezl,-
So the triangle inequality fails and thus the p-norm is not a norm when p < 1.

(5.6.15) Show that if 0 < p < 1 and ¢ satisfies % + % = 1, we have the
Reverse Holder Inequality: given f € ¢P(N), g € ¢9(N),

D1 ®)g®) = [ £llpllgllq-
k




284

CHAPTER 5

Answer. If Y, |f(k)g(k)| = oo, the inequality is trivial. Now assume—
by multiplying f by a suitable constant—that >, |f(k)g(k)| = 1. Assume
also—now multiplying g by a suitable constant—that ||g||; = 1. Let h(k) =
f(k)g(k); note that h € ¢*(N), so h? € ¢/P(N). Also, 1/|g|? = |g|? €
¢Y/(=P)(N), since |g|~?/(=P) = |g|?. We have, using the usual Hélder in-
equality for 1/p > 1,

1715 =D IF(R)P =D In(k)|
k

k

P 1/(1-p)
< <Z|h(k)> (Z Ig(k)lq> =1
k k
So || fll, > 1, and this is exactly
1fllpllglla = 191l

(5.6.16) Prove that ¢ : LY9(X) — LP(X)*, as defined in (5.17), is linear
and bounded, and ||¥(g)] < |lgllq-

Answer. Linearity follows directly from linearity of integrals. We have

(9)f] < /X 9l 11 i < lglly 111

This implies [|¢(g)[l < llgllq-

(5.6.17) Fix p € [1,00). Let X = C[0,1] seen as a normed space with
the p-norm. Show that the functional f — f(0) is unbounded.

Answer. Let f,(t) = (n — n%t)'/P, 1,17 Then f, is continuous, and

1/n
1
P _ _n? S
1l = [ n=nttyde= ;.

Meanwhile, f,,(0) = n'/P becomes arbitrarily large for big enough n.
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(5.6.18) For a fixed 0 < p < 1, consider the vector space
P(N)={z:N->C: Z|xj\p < oo},
J
with dy(z,y) = >, lz; — y;[P.
(a) Show that d, is a metric, so £7(N) is a TVS.
(b) Show that the dual of ¢7(N) is £°°(N).

Answer.

(a) We have, for a,b > 0and p’ = 1/p > 1, a” +b” < (a+b)?" by the binomial
series. Thus a'/? + b'/P < (a + b)'/P. Applying this to a = |1 — 7P,
b=|r—tP,

Lt = Lt < (L= ] 4l 1P = (@74 0
<a+b=|1—7r"P+|r—t".
Thus
dp(w,y) =D |y =yl <D lwy— 2P + |25 — P = dpl(w, 2) + dp(2,9).
J J

So d, satisfies the triangle inequality. As dp(z,y) = dp(y, ), it is a metric.

(b) We consider the usual duality. As p < 1, we have that 3, |z;|P < oo
implies that 3, [z;| < oo for any z € ¢P(N) (since |z;| < 1 eventually),
so x = ) xje;, where {e;} is the canonical basis e; = §;. Moreover, if
dp(2,0) <1, then ) 2;] < 37, [2;[P. Thus, for y € £2°(N) and z € ¢P(N)
with dp(z,0) <1 (i.e., z € Bi(0)),

(= | S wiws] <3 lugasl < e S kil < Iyl do(,0).
J J J
It follows that y, as a linear functional, is continuous at 0, and thus con-

tinuous.
Let ¢ : £?(N) — C be a continuous linear functional. For € ¢?(N),

Bla) = Y ai6le;).

Suppose that {¢(e;)} is not bounded. Then, by choosing a subsequence
if necessary, we may assume that |¢(e;, )| > 2%. Let z = Y, 27%e;,. We
have z € ¢P(N), since Y, (2—k)P = (1 —27P)~'. And

$(z) =Y 27%2F = o0,
k

a contradiction. So y = {¢(e;)} € £*°(N) and ¢(z) = (y, z).
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(5.6.19) (another example of a topological vector space with trivial dual)
Let X = BJ[0,1], the bounded Borel functions modulo almost
everywhere equality. On this complex vector space, define

1
aro = [ L

L+|f —gl’
(a) Show that d is a distance.
(b) Show that (X,d) is a topological vector space.
(¢) Show that X* = {0}.

Answer.

(a) It follows readily from the definition that d(f,g) = d(g,f) > 0 for all
f,ge X. Andif d(f,g) =0, then |f —g| = 0 a.e. since it is the numerator
of an almost everywhere zero function. So it remains to show the triangle
inequality. Consider the function p : [0,00) — [0, 00) given by p(t) = %th
This function is differentiable, and

ey (11 )’ 1
) = (1 1+t) — (1+1)2 > 0.
So p is increasing. Given f,g,h € X, as |f —g| < |f —h|+|h —g|,

1 1
_ M</ 7= hi x|k =gl
d(f,g)—/O T+|f—gl = Jo 1+[f=hl+|h—gl
:/1 |f =] +/1 h—al
) 1+|f—h|+|h—g\ 0 1+|f—h|+|h—g|

1 1
|f — hl / lh—g|
< F—hl_ =9 e h) + d(h, g).
*/0 Al | it = ag + o)

(b) We need to show that points are closed and that the vector space opera-
tions are continuous. That points are closed we get for free since X is a
metric space. And this follows from the fact that d is translation invariant.
Namely, using the translation invariance and the triangle inequality,

d(fi1+ f2,91 + g2) = d(f1 — g1, f2 — g2) < d(f1 — 91,0) + f(f2 — g2,0),

and so addition is simultaneously continuous in both variables. And if
ay, — « for scalars {a, } and a,

1
d(evn f,auf) = d((cr, — ) £.0) = / e < o, — ol [l -2 O
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(¢) Let V C X be nonempty, open, and convex. By translating if needed, we
assume that 0 € V. So there exists 6 > 0 such that Bs(0) C V. Choose

n € N such that n > % Fix f € X. The function s — / 1J|rf||f|
0
continuous with range [0 d( )] (Exercise 2.5.8 or Exercise 2.10.5). Let

so—Oandsk—ﬁ for k=1 ,n. Let

gk = nf 1[sk_1,sk]
Then g; € B0, 1] and

Sk 1
d ,02/ i/l <8 — Sp_1 = — < 0.
(gk ) ” 11+n|f| = Sk k=1 =

That is, gr € Bs(0) C V. Then, as V is convex,
n
1
= 1; o9k & V.

Thus V = X. Now if ¢ € X* the continuity and linearity of ¢ imply that
©~1(BY%(0)) is nonempty, open, and convex. By the first part of the proof
above, ¢~ 1(B%(0)) = X. This means that |p(z)| < 1 for all x € X, which
by linearlty can only happen if p = 0.

5.7. The Hahn—-Banach Theorem

(5.7.1) Write a complete proof of Corollary 5.7.6.

Answer. If we define q(z) = ||¢| ||z]|, then ¢ is a seminorm and for all
x € W we have |p(z)| < |||l llz]l = g(z), so Theorem 5.7.5 applies. We
get @ : V — C, linear, with ¢|lw = ¢ and |p(x)| < ¢(z) for all x € V.
Fix ¢ > 0. Choose z € W with ||z]] = 1 and |¢(z)| > |l¢|| —e. Then
|2(x)] = |p(x)] > |l¢ll — &; as this can be done for all € > 0, we obtain
|2l = llell.- On the other hand, |p(x)| < q(z) = ||¢| || for all x € V, so

12l < llell-
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(5.7.2) Let X be a locally convex space and Y C X a subspace with
dim Y < co. Show that Y is (topologically) complemented.
Answer. Let ey,...,e, be a basis of ). Define maps, for j = 1,...,n,

@;j + ¥ = Cby ¢;(37_, ajej) = aj. This is well-defined, since ey,..., ey,
form a basis. We also have that ¢; is linear, and continuous since dim Y < oo
(Theorem 5.4.16). By Corollary 5.7.24 there exist 91,...,%, € X* with
sl = sl amd w1y = ;.

Let P: X — X be given by

Pz = ij(x) en.
j=1
This map is linear and bounded, since each 1; is. We also have Py € ) for

all x € X, and Py =y for all y € Y. So P is a continuous projection onto ).
By Proposition 5.4.19, the subspace ) is topologically complemented.

(5.7.3) Let X be a locally convex space and V' C X a closed subspace.
Show that if m = dim X' /V < oo, then V is topologically com-
plemented with complement of dimension m. Give an example
to show that V need not be complemented if it is not closed.

Answer. Let y14+V, ..., ym+V be a basis of X /V. Take p1,...,0m € (X/V)*
to be the dual basis, i.e., ¢;(yx + V) = d;, and define ¢1,...,9,, € X* as
Y = @i 0 q, where g : X — X /V is the quotient map; the 1, are continuous
since g and ¢y, are.

Let W = span{yi,...,ym} and P : X — X given by

Pz = i) y-
k=1

Then P is a bounded projection onto W. The proof will be complete if we
show that V' = (I — P)X. Note that we showed above that z+V = Px+V for
allz. f v = (I—P)x, thenx+V = Pr+V =V, sox € Vand (I-P)X C V.
And by definition of ¢, P|ly =0,s0 V C (I — P)X.

For an example when V is not closed, let X’ be any infinite-dimensional
Banach space and let ¢ : X — C be any unbounded linear functional. Then
V = ker ¢ is a subspace of X with dim X'/V = 1, and V is dense so it cannot
be topologically complemented.
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(5.7.4) Show that ¢>°(N)* # ¢*(N), by proving that the equality would
imply that ¢*°(N)/co has trivial dual, in contradiction with
Corollary 5.7.7.

Answer. Suppose that every bounded functional on ¢*°(N) comes from an
element of /1(N). Denote by 7 : £*°(N) — ¢q the quotient map. Let ¢ €
(£>°(N)/co)*. Then g om € £°(N)* (note that the quotient map is bounded
by definition of the quotient norm). By hypothesis there exists y € ¢}(N)
such that ¢(m(z)) = (x,y) for all x € ¢*°(N). Since 7|, = 0, we get that
(x,y) = 0 for all z € ¢p. This implies that y = 0, as (ex,y) = yx for each
ke N. So ¢ =0.

(5.7.5) Let X bea TVS and ¢ : X — C be linear. Show that if ¢y =0
on some neighbourhood V' of 0, then ¢ = 0.

Answer. Let © € X. By continuity of the product by scalars, we have
%x — 0. As V is an open neighbourhood of 0, there exists n such that
Ly € V. Then 0 = p(Lz) = L p(z), so p(z) =0.

n

(5.7.6) (This is part of the proof of Proposition 5.7.12) Show that if X
isaTVS and ¢ : X — Cis linear and open, then Rep : X - R
is real linear and open.

Answer. Let V. C X be open. Then ¢(V) C C is open. If t € Rep(V),
there exists s € R with ¢ + is € (V). From (V) open we get that there
exists 0 > 0 such that Bs(t+1is) C ¢(V). Now if r € R with |r — t| < J, then
|r +is— (t+1is)| =|r —t| <9, sor+is € (V) and then r € Re p(V); thus
(t—0,t+ ) C Rep(V), showing that Re p(V) is open in R.

(5.7.7) (This is part of the proof of Proposition 5.7.12) Prove that if
X isa TVS and ¢ : X — C is a linear functional, then ¢ is an
open map if and only if for every neighbourhood Z of 0 € &,
©(Z) contains 0 € C as an interior point.

Answer. 1If ¢ is an open map, then ¢(Z) is open, and so 0 is interior. Con-
versely, let V' C X be open. Fix v € V; then —v+V is an open neighbourhood
of 0. By hypothesis, 0 is an interior point of p(—v+V) = —p(v)+¢(V). Thus
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©(v) is an interior point of p(V'); indeed, there exists § > 0 such that |¢| < §
implies t € —p(v) + ¢(V), so ¢(v) +t € (V) and hence Bs(¢(v)) € ¢(V).

(5.7.8) Prove that the set Z used at the beginning of the proof of
Theorem 5.7.13 is nonempty, open, and convex.

Answer. Since V is open, we have
Z(): U (V*”UJ#’Z()),
weWw
a union of open sets, so open. And as both V, W are convex, if vy,vo € V,
wy,we € W and t € [0,1],
t(Ul — w1 + 1‘0) + (1 - t)(’UQ — W + Io)
=tv] + (1 — t)’l)g — [tw1 + (1 — t)’wg] + xg € Zy,

S0 Zjp is convex. We also have that —Z; is open an convex, and hence Z =
Zy N (—Zp) is open and convex.
Finally, Z # @ since 0 € Z.

(5.7.9) Is the condition “V open” necessary for Theorem 5.7.137?

Answer. Yes. The result can fail when neither V' nor W is open, already in
R2. For instance, let X = R? and

V=A{0,0}U{(z,y): >0}, W ={(0,1)}.
Both V, W are convex, none is open. Let ¢ be a real linear functional and
c € R with ¥(z,y) < ¢ <(0,1) for all z > 0. Linear functionals in R? are
of the form ¢ (z,y) = ax + by for some a,b € R. So need

ax + by < ¢ <, x>0, yeR.

Taking first the limit as x \, 0, we have by < ¢ < b for all y € R. This can
only happen if b = ¢ = 0. So now our inequality is ax < 0 for all x > 0. This
works with any a < 0. But we also have (0,0) € V, and this requires the
inequality 0 < 0, which is impossible.
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(5.7.10) Show that if X is a locally convex space and M C X is a
subspace, then the closure M of M is

M= () kerf,
FEKM
where Ky = {f € X*: M C ker f}.

Answer. Let f € Kp;. Then M C ker f. As f is bounded, ker f is closed; so
M C ker f. As this works for all f € K, we have that M C Nfer,, ker f.
Now let y € (\;ex,, ker [\ M. If such y exists, by Hahn-Banach (Corol-
lary 5.7.19) there exists g € X* such that g|3; = 0 and g(y) = 1. But this is
impossible since g € K, which requires y € ker g. So no such y can exist,
showing that M = (g, ker f.

(5.7.11) Use exercise (5.7.10) to show that if X is locally convex and
M C X is a subspace, then M is dense in X if and only {f €
X*: f=0on M} ={0}.

Answer.  Assume first that M is dense. Then by exercise (5.7.10) we get
that X = meKj\l ker f. If f = 0 on M, then f = 0 on M by continuity.
Thus K = {0}. Conversely, if Kj; = {0}, then by exercise (5.7.10) we have

M =ker0=X.

(5.7.12) In Remark 5.7.26 it is shown that the map f —— fol f is not
continuous on X = LP[0,1], 0 < p < 1. Prove this explicitly
by finding a sequence {f,,} C X such that d,(f,,0) — 0 while

1
Answer. Let f, = \/kl)Et_l 11 3. Then

1
_ 1 —p o 1 1 _ 1
dp(fn; 0) = (log n)P/2 /1/nt dt = (logn)r/2 (1 -p (1 fp)nkl') n—00 0-

Meanwhile,

1 1
1 _
/0 fn:W/1 t~Ydt = (logn)t/? —— .

/TL n—roo
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(5.7.13) Let X be a locally convex space, and x,y € X. Show that if
Regp(x) = Rep(y) for all p € X, then z = y.

Answer. Given ¢ € X'*, consider ¢ = i@ € X*. Then

Imp(z) = —Reiy(z) = —Reip(y) = Imp(y).
Thus ¢(z) = ¢(y) for all ¢ € X*. By Corollary 5.7.7,

[z —yll = sup{le(z —y)| : ¢ € X", [lol| =1} =0,
so x =Y.
Here is an alternative argument. If x # y, we apply Theorem 5.7.18 to
the compact sets {x} and {y}, so there exists ¢ € X* with Re p(z) < Re¢(y).
This contradicts our hypothesis, so it follows that x = y.

(5.7.14) Let Y be a balanced, convex, closed subset of a locally convex
space X, and let z € X \ ). Show that there exists ¢ € X*
with p(z) > 1 and |¢(y)| <1 for all y € Y.

Answer. Apply Theorem 5.7.18 to the sets {x} and ) to obtain ¢’ € X*
and ¢, d € R with

Rey'(r) <c<d<Rey'(y), yel.
As Y is convex and balanced, y € Y if and only if —y € ), so we also have
Re¢'(y) <d < <Rey'(—z), ye€,

where ¢/ = —c¢, d = —d. Also from Y being balanced and convex, we get
0 €Y s0d > 0. Now let ¢'(x) = |¢'(x)] e be the polar form. Let
o= (e7"/c)¢'. Then

_I¢@)] | Reg/(~)

¢ - c

For any y € ), write ¢'(y) = |¢'(y)|e?” to get e=7¢'(y) > 0, and

> 1.

—¢'(x)

/ Y 6717 / Yy e—i’yy Re / efi'yy C/
|¢(y)‘:“fo()‘ ' (y) o( ): ©'( )ngl'

c c c c
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Huge consequences of Baire's Category
Theorem

6.1. Bounded linear operators

(6.1.1) Prove the First Isomorphism Theorem for linear operators:
given vector spaces X,) and T : X — ) linear, then

X/kerT ~ranT

canonically.

Answer. Define T : X/ kerT — ranT by T(z + ker T') = Tz. This is well-
defined since T' is zero on ker T'. Linearity is straightforward, as is surjectivity:
given Ta € ranT, Tx = T(x + ker T). As for injectivity, if T'(x + ker T') = 0,
this means that Tx = 0 and so = € kerT', which is the same as saying that
z+kerT =0.

(6.1.2) Prove Proposition 6.1.2.

293
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Answer. If T is continuous, it is continuous at 0. If T" is continuous at 0 and
xj =, then ; —x — 0, s0 Tx; — Te =T(x; —x) — 0, so T is continuous
at x. If T is continuous at x, with the same idea we can show that T is
continuous at 0; this means that for each ¢ > 0 there exists § > 0 such that
|lz|| < ¢ implies ||Tz|| < e. Then for z € X we get that ||dz/2|z||| < 4, so
T (0x/(2]|z|)|| < €; and this gives us

2e
1Tz]| < - [l]-

(6.1.3) Let X, Y be normed spaces, and T : X — ) be linear. Show
that the following statements are equivalent:

(a) T is unbounded;

(b) there exists a sequence {z,} C X such that ||z,|| = 1 and
|Txy| > n for all n;

(c) there exists a sequence {z,} C X such that x,, — 0 and
| T2, || =1 for all n.

Answer. If T is unbounded, then for each n there exists z, € X with

HHI;Z””” > n. Then x,, = =2 satisfies lzn|l =1 and ||Tzy| > n for all n.

If now we assume that we have a sequence {x,} with ||z,|| = 1 and
|Txy,|| > n for all n, let z, = Ty Then llzn]l = m <1 50, and
|Tz,|| = 1 by construction.

Finally, if {z,} C X such that z,, — 0 and ||T'z,|| = 1 for all n, then
% = HTln — 0o and T is unbounded.

(6.1.4) Prove that (6.1) defines a norm in B(X,Y), and that
|1 Tz|| < [Tl [|lzl, T €B(X,Y), €.

Answer. For any r > ||T|| we necessarily have
[Tz|| < rll|

(otherwise, we would have some fixed nonzero x with ||T'z| > r||x||, and for
any s < r we also have ||Tz| > r|z| > s|z|, implying that ||T|| > r). As
this occurs for all r > ||T||, we get that | Tz| < ||| ||z]|-

To show that T is a norm, we have that ||T|| > 0 by definition. If
IT|| = 0, Then ||Tz| <0, and so Tz = 0 for all , which is T'= 0.
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Given A\ € C,
[IAT|| = inf{r > 0: ||ATz| <rlz|, z € X}
T

=inf{r>0: ||Tz| < o

], = € &}
L
A
o

A

. r
= |\l mf{m>0: ITz|| < — |lz||, z € X}

=\ inf{r >0: |Tz]| < = |lz|, = € X}

= [AHIT]-
For the triangle inequality,
(T + S)z|| = [Tz + Szl < || T| + |||
< ATl + ST {F = AT+ 1STD fl-
As this occurs for all x € X', we have shown that ||[T'+ S| < ||T]| + ||S].

Alternatively, if we already have Proposition 6.1.4, we can use the equal-

ity
17| = sup{[|Tz| : ||z =1}
for a much simpler proof. Then, as
(T + S)a| = ITz + Sz|| < [Tz + [|Sz]|

and the supremum is subadditive, we get that | T+ S| < [|T|| + ||S|. I
IT|| = 0, then ||Tz| = 0 for all z, so T = 0. And, since |[A\Tz| = |\ ||Tz|l,
we get that ||[AT|| = |A||T]|-

(6.1.5) Prove Proposition 6.1.4.

Answer. Since ||T| = inf{r : ||Tz| < r|z|, z € X}, given € > 0 there exists
r > 0 such that |T|| > r — e and ||Tz|| < r|lz| for all . Then, for each z,

1Tzl < (1T + e)llll = T ] + & [l]]-
As this happens for all € > 0, we get that ||Tz|| < ||T'|| ||=|. This shows that
1T = min{r : ||Tzl| <rlz]], = € X}.
When ||z|| = 1, by the above, ||Tz|| < ||T||||lz]] = |T||. So ||T|| is an upper
bound. And if s = sup{||Tz| : ||z|| = 1}, Then for any x we have

“Zll<s
] ’

which implies that [|Tz| < s||z|| for all s. Then s > ||T||, and so s = ||T|.
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For the third equality we just note that

Tz = floll = 1} = T/ ll]l - = # 0}.
The inequality | Tz|| < ||T||||=]|, that we already used above, follows directly
from ||T|| = min{r : ||Tz|| < r|z|, = € X}.
Finally, take x € X, and then, using the above inequality twice,

TS| < TS ]l < TS l]]-

As ||T'S|| is the infimum of the constants that may appear in the above in-
equality, we get that || TS|| < || T |IS]-

(6.1.6) Prove Proposition 6.1.5 (Hint: note that Proposition 5.5.8 is a
particular case).

Answer. Let {T,,} C B(X,Y) be a Cauchy sequence. From the reverse
triangle inequality,
ITall = 1Tl | < T = Tl
which shows that the number sequence {||T,||} is Cauchy, so convergent. In
particular, there exists ¢ > 0 with || T, || < ¢ for all n. For any fixed x € X,
[Tnz = Tone|| = (T = To)l| < [T = Tl 1],

so the sequence {T,z} C Y is Cauchy. As ) is complete, the sequence is
convergent and we may define Tx = lim,, T,,z. Since the T,, and limits are
linear, it follows that 7' is a linear function. Also, if we fix x € X and let
e > 0, there exists n with ||Tz — T,,z|| < e. Then

ITz|| < [Te = Toz|| + [|Tox|| < & + [Tl ||2]] < € + cllz]-

As we can do this for every ¢ > 0, we get that [|Tz| < ¢||z||. As we can do

this for all x € X', with the same ¢, we have shown that T' is bounded.
Finally, we need to show that T is a (norm) limit of the T,,. Fix ¢ > 0.

There exists ng such that || T, — T),| < € if n,m > ng. Then, if n,m > ng,

ITz — Tye| < |Te — Twall + (T - To)all < | T2 - Ta| + & |a].
Taking the limit as m — oo, we get
[Tz — Tox| <ellz|

for all n > ny.

(6.1.7) Let X, Y be normed spaces. Show that if dim X =n, dimY =
m, then B(X,Y) can be identified with M,, ,(C).
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Answer. We note first that any linear map X — Y is bounded (Corol-
lary 5.2.5). The identification depends on the choice of bases on both X and
Y. Fix bases {e1,...,e,} and {f1,..., fm} of X and Y respectively. Given
T € B(X,)) there exist coefficients ¢, k=1,...,m, j =1,...,n, such that

m
Tej = Z tkjfk~
k=1

Given z € X, we can write z = >, x;e;, and so

Tx = Z Ztijjfk = Z (Ztkja:j) fk (ABG].)
j=1k=1 k=1 j=1
Let v : B(X,Y) = My, »(C) be given by v(T') = [tx;]. Because the repre-
sentation of a vector in a basis is unique, v(T') = v(S) implies T'= S, so v
is injective; it also implies that is linear. Given [ty;] € My »(C) we can use
(AB.6.1) to define T' € B(X,)) such that y(T') = [tx;]; so v is surjective.

(6.1.8) Let Y be an infinite-dimensional normed space. Show that the
space B(C,Y) is infinite-dimensional.

Answer. Any linear T : C — ) is determined by its value at 1. Given
n € N, since ) is infinite-dimensional we can find y1,...,y, € Y, linearly
independent. Define TjA = Ay;. As T;(aA + p) = (A + p)y; = T\ + Tjp,
the operator T} is linear for all j. Boundedness is automatic since C is finite-
dimensional. Now if 3, a;T; = 0, then

0=> a;Ti1 =) ajy;
J J

As 1y1,...,Yn are linearly independent, we get that a3 = -+ = o, = 0. So
T1,...,T, are linearly independent. This works for any n, dim B(C,Y) = co.

(6.1.9) Let X, Y be a Banach spaces and T : X — Y linear and iso-
metric, that is | Tz| = ||z| for all z € X. Show that ranT is
closed.

Answer. Let {Txz,} be Cauchy. As ||z, — Tm|| = |[T(xn — zm)|| = |T2n —
T2, the sequence {x,} is Cauchy in X. Let = limz,. As T is bounded,
lim,, Tx,, = Tz and so {Tz,} converges.
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(6.1.10) Let X', Y be normed spaces.

(a) Show that if ¢ € X*, yp € Y, and T : x — ©(x)yo, then
1Tl = llell lyoll-

(b) Show that if ¢1,...,¢, € X* and y1,...,y, € Y, then
T:xv— 3 ¢j(2)y; is bounded.

(c) Show that if Y is Banach, ¢1,@s,... € X* and y1, 42, ... €
Y with > o]l lly;ll < oo, then T': x +— 37, p;(x)y; is
bounded.

Answer.
(a) If Tz = ¢(x)yo, then
IT|| = sup{[|Tz| : ||| = 1} = sup{lle(x) yoll : x|l =1}
= llwoll sup{le()] = llzll =1} = [lwoll llll-
A slightly more convoluted approach:

ITz|| < llo(@) yoll = le@)lyoll < Nl lwoll [1]l,
so |IT] < |l¢ll lyoll- Fix € > 0 and let © € X such that ||z|] = 1 and
[p(@)] = (]l —€)- Then

1Tz[l = () lyoll = (el — ) llyoll
As & was arbitrary, | T > [l |[yo|-

(b) We prove (c), as it has (b) as a particular case. When
o
Tz => ¢;(x)y
j=1

with > ([l ly;]l < oo (the series for T' exists because of this last con-
dition and the fact that )’ is Banach) we have, using that the norm is
continuous,
N N e
ITel =i | 7 (@) | < timsun > el sl ol = (3 el sl ol
i=1 o= j=1
so T is bounded and ||T|| < Z;‘;l llell ly;]l- The case with a finite sum is
a particular case of this, as we can take ¢; = 0 for j > n.
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(6.1.11) Let T : cgg — coo be given by

T :( ﬂﬁ)
('Tlax27 ) T, 27 3a

Show that T" is bounded and bijective.

Answer. The proof of |T]| = 1 and injectivity are exactly the same as for
Exercise 6.1.12. In fact, there is no need to even re-do the proof, as coy C ¢,
the restriction of an injective map is injective, and the canonical basis is in
Co0-

Surjectivity: if € c¢go, then © = T'(z1, 222, 323,...). The sequence
{nz,} is in coo for all z € ¢y because of the finite support.

(6.1.12) Let T : ¢g — ¢o be given by
T(CEl,ZEQ,"') = (131,%,%,...).
Show that T' is bounded (with ||T']] = 1) and injective, but not
surjective.

Answer. We have
ITx|| = sup{lex/k| : k} <sup{lex|: k} = [|z[.
So T is bounded and ||T|| < 1. As Te; = e;, this gives us ||Te1|| = 1 with
ler]| =1, s0 |T|| = 1. It Tw = 0, then &z, = 0 for all n, so z, = 0 and
x = 0; hence T is injective.
Consider b € ¢y where b, = 1/n. If b = Ta, then b, = a,/n for all n,
80 ay, = 1 for all n. But then a & ¢y. So T is not surjective.

6.2. Invertibility in B(X)

(6.2.1) Show that if R is a ring with unit, and both a and ab are
invertible, then b is invertible. Using the algebra B(¢?(N)),
show that it is possible to have ab invertible with neither a nor
b invertible.
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Answer. Since ab is invertible, there exists ¢ € R with cab = abc = 1. As
both a and ¢ are invertible, we get a=tc™! = a7 (abc)e™ = b. So b is a
product of invertible elements and thus invertible with inverse ca.

In B(¢*(N)) we may take the left and right unilateral shifts 7" and S
from above. Then T'S = I even though neither S nor T are invertible.

(6.2.2) Let S € B(X) with || — S|| = 1. Decide (and justify) whether
such an S is always invertible, sometimes invertible and some-
times not, or never invertible.

Answer. The operator S can fail to be invertible; easiest example is S = 0.
But there are also examples where S is invertible. For a trivial example of
this situation, let S = 2I. Another example is v = % + i@, and put S =~ 1.
Then S is invertible with inverse y~! I, and ||[I — S|| = |1 — | = 1. For a
slightly less trivial example let X = C? with the 2-norm (that is, the usual
Euclidean norm) and let
v 0
= 9

It is not hard to check that because S is diagonal its norm is |y| = 1, and
11 =S| = max{[1 —~|,|1 - 7]} = 1.

(6.2.3) Let S € B(X) such that |[I — S|| = 4. Decide (and justify)
whether such an S is always invertible, sometimes invertible
and sometimes not, or never invertible.

Answer. Here we can apply Lemma 6.2.1 to T = I — S and we get that S is

invertible with inverse
o0

STh=> (19"

k=0

(6.2.4) Let S € B(X) such that S2 = S. Decide (and justify) whether
such an S is always invertible, sometimes invertible and some-
times not, or never invertible.

Answer. There is the possibility that S = I, in which case it is invertible.
It could also be 0, in which case it would not be invertible. There are always
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many non-trivial idempotents on X if dim X > 1 (example: fix y € X and
p € X* with ¢(y) = 1, and define Sz = p(z)y). Any non-trivial idempotent
S cannot be invertible, and as I — .S is also a non-trivial idempotent, it cannot
be invertible. To see this, note that ker S = ran(/ —S). So if ker S is trivial,
then S = I.

6.3. Baire’s Theorem and its Corollaries

(6.3.1) Let & be a metric space. Show that A C X is nowhere dense
if and only if X'\ A is open and dense.

Answer. We always have X \ A open, so all that matters is whether it is
dense.
Suppose that X' \ A is not dense. Then there exists 2 € X and r > 0
such that B, (z)N(X\ A) = @. Thus B,.(x) C A and A is not nowhere dense.
Conversely, suppose that X' \ A4 is dense. For any x € X and r > 0, we
have B,.(z)N (X \ A) # @. So it is not possible for B,.(z) to be inside A; thus
the interior of A is empty, and A is nowhere dense.

(6.3.2) Prove that Baire’s Category Theorem 6.3.1 holds for locally
compact Hausdorff topological spaces (Hint: use the finite in-
tersection property instead of completeness).

Answer. Fix W C X open. Since V is dense, WNV; # @. As Vj is also open
WNV; is open. So its interior is nonempty: and with X being locally compact,
there exists a nonempty K1 C WNVi, with K| compact. Now K;NV; is open
and nonempty, and we can repeat the process. Inductively: we now assume
that we have K, with K,, compact and K,, C K,,_1, and K,, C K,,_1 NV,,.
Reasoning as above we obtain an open set K, ; with m compact and
K,+1 C K,. This way we obtain a family {K,} of compact sets with the
finite intersection property, inside the compact set K;; thus N, K, # @. Let

x € N, K,,. Then, for each n,
re K, CK, 1NV, CV,.
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So x € V, for all n, and then x € (", V,,. So WN(, Vi, # @. As W was any
open set, it follows that (), V;, is dense.

(6.3.3) Show that any Hamel basis of an infinite-dimensional Banach
space is uncountable (Hint: show that finite-dimensional sub-
spaces are nowhere dense).

Answer. If a subspace contains a ball, then it has to be the whole space.
Indeed, suppose that B,(y) C Xy C X, there xq is a subspace. Let x € X.

Then, as y € Ay,
€B.(y)

—~
20zl [¢_r
= [<2||x|| v +y) _y] € &

As finite-dimensional subspaces are closed, we have shown that the interior
of their closure is empty, so they are nowhere dense. If X has a countable
Hamel basis {z,}, we can write

X = Uspan{wl, U

contradicting Theorem 6.3.1.

(6.3.4) Show an example of an infinite-dimensional normed space that
is a countable union of nowhere dense subsets.

Answer. As per Exercise 6.3.3, any normed space with a countable Hamel
basis will do. For instance X = C[xz], with the norm ||p|| = max{|p(t)] :
t € [0,1]}. In this case—and in the case of any other normed space with a
countable Hamel basis—we can write the nowhere dense sets explicitly, as in
Exercise 6.3.3. Namely, X = J,,{p: degp < n}.

(6.3.5) Let ‘H be a Hilbert space. Prove that T' € B(H) is surjective
if and only if it admits a right inverse S € B(H). The same
assertion is not true for Banach spaces (Remark 6.2.5).

Answer. If T'S = I, then x = TSz, so T is surjective. Conversely, if T is
surjective, consider the restriction Ty of T to (ker T')*. Then Ty is bijective,
so by the Inverse Mapping Theorem 6.3.6 there exists S : H — (kerT)*,
linear and bounded, with 73S = I. Then T'S = TpS = I, so S is a right
inverse for 7.
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(6.3.6) Let X be a Banach space. Show that T' € B(X') admits a right
inverse if and only if T' is surjective and ker T" is complemented.

Answer. Let P : X — kerT be the orthogonal projection onto kerT'. Let
M=(I-P)X. Ifze Mand Tx =0, then x € M NkerT = {0}, so T is
injective on M. Thus T : M — X is a bounded bijective operator. By the
Inverse Mapping Theorem there exists S : X — M, bounded, with T'S = I .

Conversely, if T'S = Iy and x € X, then © = T(Sz), so T is surjective.
It remains to show that the existence of S guarantees that ker T" is comple-
mented. From T'S = I we see that S is injective. So given any x € X there
exists a unique x; € SX such that Tz = Tx,. And obviously x —z1 € ker T
Sox=(x—x1)+x €kerT+SX. If z € SX¥NkerT, then z = Sy for some
y,and y =TSy =Tx =0,s0 x =0. Thus X =kerT + SX is a direct sum.
If Sz, — 0, then z,, = T'Sx,, — 0, so SX is closed. Finally, consider the
projection P : X — SX. Given x € X, we have Pz = x1, with z; € SX and
Tx =Tx;. Let y € X with z; = Sy. Then, using that S is bounded,

[Pzl = [zl = ISyl < ISyl = IS 1T Syl
= [IS[HI Tz ]l = ISIHIT2]] < [ISTITI ]l

and so P is bounded. This shows that SX" is topologically complemented,
and thus so is ker T' (since P is bounded, so is I — P).

(6.3.7) Show that 7! in Example 6.3.8 is unbounded.

Answer. For each n, T~ te, = ne,. Thus |le,|| =1 and || T e,| = n.

(6.3.8) Prove that the Closed Graph Theorem 6.3.12 implies the Open
Mapping Theorem 6.3.5.

Answer. Assume first that T is bijective and bounded, and that its graph
is closed. Since the flip is a homemorphism X x Y — Y x X, we get that
G(T7Y) ={(Tz,r) : z € X} is closed. By the Closed Graph Theorem, T~}
is bounded. Then, for any V open, TV = (T~1)~(V) is open by continuity
of T—1.
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} Now if we assume that T is bounded but only surjective, the linear map
T:X/kerT — Y is bijective and bounded:

IT(z +kerT)|| = |Tz|| = inf ||Tz+Tz|
z€ker T

<71 inf_|lo+ 2] = |71l o + ker 7.
z€ker T

By the above, T is open. We also proved in Proposition 5.3.13 that the

canonical quotient map 7 : X — X/kerT is open. Then T' =T o 7 is open,

being a composition of open maps.

(6.3.9) Complete the proof of Theorem 6.3.12 by showing that for a
linear map T : X — Y with X, Banach, the graph G(T) is
closed if and only if for every sequence {zy} C X and y € Y,
if x, — 0 and Tz, — y then y = 0.

Answer. If G(T) is closed, x, — 0, and Tz — y, then {(zy, Tzk)} is Cauchy
in G(T'). As G(T) is complete—closed subset of the complete space X & JY—
the limit of the sequence is in G(T'). So (0,y) € G(T'), which implies y = 0 as
(0,0) € G(T') and G(T') is a graph.

Conversely, suppose that {(zx, Tzx)} is a Cauchy sequence in X & ).
As max{||z|, lyll} < |I(z,y)|l, we have that both {z}} and {Tx} are Cauchy
in X and ) respectively. As both X' and ) are complete, there exist x € X,
y € Y with 2z — = and Tap — y. Then 2y — 2 — 0 and T'(zp — =) —
y — Tx. The hypothesis then gives us that y — Tx = 0, that is y = Tx. Thus
(xg, Txy) — (x,Tx), showing that G(T') is complete, and thus closed.

(6.3.10) Let X be a Banach space and X7, Xs C X closed subspaces
such that X = X1 & X5. Let T € B(X) such that TX; C X;
and T Xy C X5. Show that T is invertible if and only if T'|x, €
B(X;) and T'|x, C B(X3) are invertible.

Answer. Suppose that T is invertible. Let P be the projection only Xj.
We have, for ¢ € Xy, TPxy = Txy = PTx,. Similarly, TPxo = PTxy for
any ro € Xa; it follows that TPx = TP(x1 + x2) = PT(x1 + x2) = PTx.
That is, PT = TP. Multiplying on the left and right by 7! we get that
T-'P = PT~ L. Then, if § = Tﬁl|X1 S B(Xl), ST‘Xl = TS|X1 = IX1~
Similarly, T'| x, is invertible.

Conversely, suppose that there exist S; € B(X;) and S € B(X3) such
that SITX1 = T|XIS = IXl and SQTXZ = T|XQS = IXQ. Let S = 51 @55,
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that is S(.’L‘l + .232) = S121 + Soxa. Then
ST(.I‘l + .’L’Q) = S1Tx1 + S3Txy = IX1$1 + ]XQCL‘Q =T + X9,
and similarly T'S = Ix. So T is invertible.

(6.3.11) Let X be a Banach space and T' : X — X be a linear map.
Use the Closed Graph Theorem to show that if (Tx)y = (Ty)z
for all z,y € X, then T is bounded.

Answer. Suppose that z,, — x and Tx,, — ¢. If we show that ¢ = Tz, then
the Closed Graph Theorem implies that T" is bounded. For any y € X,

¢(y) = lim(Tzn)y = lim(Ty)z, = (Ty)x = (Tz)y.

As y was arbitrary, we conclude that ¢ = Tz and hence T is bounded.

(6.3.12) Let X be a Banach space and T': X — X™* be a linear map. Use
the Uniform Boundedness Principle to show that if (Tz)y =
(Ty)z for all z,y € X, then T is bounded.

Answer. Consider the family {Tx}|;<; of bounded linear functionals. We
have

[(Tx)y| = [(Ty)x| < [Tyl =] = [Tyl
Hence sup{|(Tx)y| : ||z|]| < 1} < oo for each y. By the Uniform Boundedness
Principle, sup{||T«| : ||z|| <1} < oo, and this number is |T||.

(6.3.13) (Compare with Exercise 6.5.14) Show an example of a normed
space X and T € B(X) such that for every z € X" there exists
n € N with 7"z = 0, but such that 7™ # 0 for all m € N.

Answer. Let X = cgp and T the right-shift, that is
T(al,ag, .. ) = (ag,ag, .. )

Then T"a =0 if a, = ap41 = -+ = 0. But T €1 = €1, so T™ # 0 for all
m.

(6.3.14) (Compare with Ezercise 6.3.13) Let X be a Banach space and
T € B(X). Assume that, for each € X, there exists n € N
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such that T™x = 0. Show that there exists m € N such that
Tm = 0.

Answer. The hypothesis gives us that X = |J,, kerT™, a union of closed
subspaces (closed, because T™ is bounded and so ker T = (T™)~1({0}) is
closed). By Baire’s Category Theorem—as in Remark 6.3.3—there exists m
such that ker 7" is not nowhere dense: so ker T contains a ball. A subspace
that contains a ball is necessarily the whole space (see Exercise 6.3.3 for a
proof), so ker T™ = X.
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Weak topologies

7.1. The weak topology

(7.1.1) Prove that if 7; C Tz are topologies on a set X', with 7; Haus-
dorff and 75 compact, then 71 = T3 (Hint: consider the identity
map (X, T2) = (X, T1)).

Answer. Let i : (X,T2) — (X,71) be the identity map, i(x) = z. Given
V € Ti, we have i (V) = V € T5. So i is continuous. Now let K C X be
closed. Since 73 is compact, K is compact. The image of a compact set under
a continuous function is compact; so K = 4(K) is compact in (X,77). From
71 Hausdorff, compact sets are closed. So i maps closed sets to closed sets.
Thus, if V' € Tz, then X \ V is closed in (X, Tz2), and so X \V =4(X\ V) is
closed in (X,71). So V € T1, and we have shown that 75 C T7.

(7.1.2) Let X be a TVS. Show that the weak topology o (X, X*) is the
weakest topology such that every ¢ € A* is continuous.

307
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Answer. Let T be a topology on X such that ¢ is continuous for each ¢ € X'*.
By Proposition 7.1.4, every ¢ € X* is o (X, X'*)-continuous; so given any open
V C C we have that ¢=}(V) € T; so o(X,X*) C T.

(7.1.3) Prove that
o(X,X*) = Top{e ' (B,(\): p€X*, r>0, A C}.

Answer. Since B,(\) is open for all r > 0 and all A € C, ¢~ }(B,(\)) €
o(X,X*). This shows that

o(X,X*) D Top{e (B,(\): p€X* r>0, A€ C}
Now given any V' C C open, for each v € V there exists r, > 0 with B,. (v) C

V. Then
V=|_J B,
veV
Thus
e (V)= (U B ) = | ¢ (B (v))
veV veV
€ Top{o Y(B,(\)): p € X*, r>0, A€ C}.

So

(X, X*) C Top{p H(B,(\): ¢ € X*, r>0, A& C}.

(7.1.4) Show that the sets N(p1,...,px;€), indexed by a positive in-
teger k € N and ¢1,...,¢0r € X", € > 0, form a local base for
o (X, X*) at 0.

Answer. Let V be a weak-open set with 0 € V. By Lemma 7.1.3 there exist
€>0and p1,...,p € X" with [, cpj*l(BE(O)) CV. As(; <p;1(Bs(O)) =
N(p1,...,px;€), these latter sets are open and again by Lemma 7.1.3 we can
write V' as a union of these sets.

(7.1.5) Show that the sets N(¢1,...,¢k; ), where @1, ..., € X'* are
linearly independent and & > 0, form a local base for o (X, X*)
at 0.
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Answer.

We will show that these neighbourhoods generate the same open sets
than the “non-linearly independent” neighbourhoods. If ¢1,..., ¢, are lin-
early dependent, after reordering we may assume that @1, ..., ¢, are linearly
independent, and that ¢, y1,..., v, are linear combinations of those, say

T
Prtj = chks%.
k=1
Then

e (@) < D lesul low(@)] < (Z |Cjk|> max{|pp(z)[: k=1,...,7}.
k=1 k=1

If we put ¢ = max; {3, lejkl) : 4=1,...,n—r}, then
N(@],--~7807»;5/C} C N(QDl,.-.,QDn;E} CN(@IM'w@T;E}'

(7.1.6) Let X be a normed space and {x,} a weakly convergent net

weak

with a,, —— 2. Show that ||z| < liminf, ||z,||. Find an
example where the inequality is strict.

Answer. We have, by Corollary 5.7.7
2]l = max{|p(z)] : » € X7, [l <1}
For any ¢ € X* with ||| < 1, since |¢(z;)] < ||z;||, and choosing a subnet

{z,,} such that limy ||z;, || = liminf; ||z;]|,

()] = lim |op(z;)] = lim ()] < lim |z, || = lim inf fla]].
For an example, it was shown in Example 7.1.6 that an orthonormal basis on
an infinite-dimensional Hilbert space is a sequence {§,,} with ||€,| = 1 for all
n and &, weak, .

(7.1.7) Use Proposition 7.1.4 to show that if ¢ € X*, ¢ € R, then
{z € X: Rep(zr) > c} is weakly closed.

Answer. Because X'* is complete (in this case, with the weak topology), it
is enough to show that if {z;} C {x € X : Rey(z) > ¢} and z; — z weakly,
then z € {x € X : Rey(x) > c}. And this is trivial: since Rey(z;) > ¢ for
all j, we have Re p(z) = lim; Re p(z;) > c.
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(7.1.8) Prove that the weak topology is a locally convex topology given
by the seminorms p,(z) = |p(x)|, ¢ € X*.

Answer. Using Proposition 7.1.4,

weak

T —— T = Yo e X", p(z;) 2 p(z) < Ype X*, py(x; —x)—0.

The only observation one needs is that ¢(z;) = p(x) <= ¢(z; —z) =0
by linearity.

(7.1.9) Prove Proposition 7.1.12.

Answer. Let K C X be weakly compact. For each ¢ € X™*, sup{|2(p)| :
z € K} < oo, since ¢ is weakly continuous and a continuous function
maps compact sets to compact sets. But then, by the Uniform Bounded-
ness Principle (Theorem 6.3.16), applied to K C B(X*,C) = X**, we get
that sup{||z| : z € K} = sup{||2] : # € K} < 0.

(7.1.10) Prove Corollary 7.1.17.

Answer. The set K = conv{z, : n € N} is convex, so by Theorem 7.1.16,

—o(XX*) = - .
we have z € K*%") = K. This gives the existence of the net {z],}. When
X is metrizable, by taking a countable local base around z, we can extract a
convergent subsequence out of {x }.

(7.1.11) Show that the unit ball of ¢q is not weakly compact.

Answer. Consider the sequence

n times

—
gn = (1,..‘,1,0,...).
If the unit ball of ¢ is weakly compact, then {g,,} has a cluster point z. That
would mean that for every y € ¢1(N), (y,gn) — (y,2). With y = ey, we get

Z(k) = <€,Z> = hfln<ekagn> =1

But then z =1 & ¢p.
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(7.1.12) Let X be a normed space and {z,,} C X such that ||z,| > >0

for all n, and such that z,, ek, ). Show that T /|| Tn| weak, o

Answer. Given p € X'*,

'*0( |zn||)‘ - Hﬁ lo(zn)] < % p(20)| 0.

(7.1.13) Show that the boundedness requirement in Lemma 7.1.18 can-
not be dispensed with. That is, find an example, for p € (1, o0],
of a sequence {f,} C ¢?(N) such that (f,,g) — 0 for all g € ¢gp
and h € ¢4(N) such that (f,,h) does not converge to 0.

Answer. Since p > 1, we have that 1 < ¢ < co. Let f,, = ne,, n € N. Then
fn € P(N) for all n, and (f,,, g) — 0 for all g € coo. Indeed, if g = >}~ aex,
then (f,,,g) = 0 for all n > m. Meanwhile, if we put h = 3, k=%/(29 ¢; then
h € £4(N) while (f,, h) =n?>=3/C0 > pl/2 - .

(7.1.14) Show that the p > 1 requirement in Lemma 7.1.18 cannot
be dispensed with. That is, find an example, of a bounded
sequence {f,} C ¢}(N) such that (f,,g) — 0 for all g € cgo
and h € £>°(N) such that (f,,h) does not converge to 0.

Answer. Let f, = ey; then (f,,g) — 0 for all g € coo but (f,,1) =1 for all
n.

(7.1.15) Let X be a normed space, with X* separable. Show that the
weak topology is metrizable on the unit ball B{*(0). (Hint: if
in need of inspiration, look at the proof of Corollary 7.2.20)

Answer. Let {¢,} C B (0) be a dense sequence. Define

Z |§0nx_ )|7 x7y€BIY(0)'

The series converges, since |¢on(x — y)| < |lenll (2] + lyl]) < 2. It is also
translation invariant, symmetric and satisfies the triangle inequality, so it is
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a translation invariant metric. If x; weak, 0, fix e > 0 and choose ng such
that >° ., 27" < e/4. Choose also jo such that |p,(z;)| < &/2,if j > jo,
n=1,...,ng9. Then, for j > jo,

no no

—n —n —n € €

(CTES SRR SR IURIED SEREFES B8
n= n>ngo n=

It follows that d(x;,0) — 0. Conversely, suppose that d(x;,0) — 0. Fix

¢ € X* and ¢ > 0; assume initially that ||| < 1. There exists n such that

le — ¢nll <e. Then

p(25)] < lp(@5) = enl@i)| +on(25)] < Nl = @nll +l@nlzi)] < €427 d(p;,0).
Thus
limsup |p(z;)| < e.
J
As € was arbitrary, we obtain the lim; [p(z;)| = 0. Now if ¢ is arbitrary, we
apply the above to ¢/|¢|.

(7.1.16) Let X be a Banach space and K C X convex. Show that K is
weakly closed if and only if K N B,.(0) is weakly closed for all
r>0.

Answer. Note that B,.(0) is weakly closed by Theorem 7.1.16. So when K
is weakly closed, K N B,.(0) is weakly closed, being an intersection of closed
sets.

For the converse, let {x,,} C K be a Cauchy sequence. Then z,, — x €
X. As a norm-convergent sequence is bounded, there exists r > 0 such that
||zn|| < r for all n. Then {z,} C K N B,-(0); this set, being weakly closed, it
is also normed closed, so z € K N B,(0). In particular x € K, which shows
that K is norm closed. As K is convex, Theorem 7.1.16 gives us that K is
weakly closed.

(7.1.17) Let H be a separable Hilbert space and fix an orthonormal
basis {¢,}. Let S C H be

S={&m+mé&y: n,m e N}

Let §° ! denote the weak sequential closure of S. Prove that

= e o]
the inclusion 5t c SV 4 is proper by showing that

w—seq

O E S’W—ch \ gW—SCq.
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Answer. Let {&m, + mién, } be a weakly convergent subsequence of S. By
Proposition 7.1.11, the sequence is bounded. Since ||, + mién, || = (1 +

m%)l/2 (or 1+ my if mg = ng) we deduce that my takes only finitely many
weak

values ry,...,7p. As &, —— 0, this implies that the only possible limit of
the sequence is some &,.. Thus

Sw=sed = S U {&, }n.

In particular, 0 ¢ S"7*% " On the other hand, since &n xeaks 0 as already
——w—seq
—w—seq

mentioned, 0 € S

(7.1.18) With S as in Exercise 7.1.17, show that 0 € SRGSERS

Answer. Let N be a basic neighbourhood of 0. We have N = {n € H :
l(n,vj)| <1,j=1,...,s}forsomewvy,...,v, € H. Since {{,} is orthonormal,
we can choose m such that |[(&m,v;)| < 4,7 =1,...,s. And then we can
choose n such that [(&,,v5)] < 5=, j = 1,...,s. Then [(&n + m&n,vj)| <
% + % =1, and so &, + m&, € N. If we denote these numbers by my,ny,
we get a net {£,, + mn&ny } in S that converges weakly to 0.

(7.1.19) Let p € (1, 00]. Consider the sequence {g,} C L?[0, 1] given by
gn(t) = sgn(sin(mnt)).

Show that {g,} converges weakly to 0, but {g,} does not con-
verge pointwise to 0.

Answer. The fact that g, # 0 a.e. is simply the fact that the sine is nonzero
a.e. As for the weak convergence, given 0 < a < b < 1, the function g, will
have integral equal to zero on any interval [25=2 2k] So all that survives on

n
the integral are the integrals from a to the closest number 2k7;2

b 2
<z

In other words, (gn,1[4) — O for all @ < b. This immediately extends to
linear combinations, so {g,, f) — 0 for all step functions f. As step functions
are uniformly dense in the continuous functions, and the continuous functions
are dense in L]0, 1], we know that the step functions are dense in L9[0, 1].
Then, given £ > 0, for any f € L9]0,1] there exists a step function f; such

and from the

last 2;] to b. This gives us
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that || f — foll; < e. This implies that (note that ||g, |, <1 for all n)
lim sup [(gn, f)| < limsup [{gn, fo)| + limsup [|lgn | [lfo = flls < &

By the Limsup Routine, (g, f) — 0.

The pointwise limit already fails at ¢ = 1/2, for the sequence {g,,(1/2)}
takes the values 0,1, —1 infinitely often. Also, when ¢ is irrational the se-
quence {sinnnt}, is dense in [—1,1], and so the limit does not exist a.e.

(7.1.20) Generalize the idea in Remark 7.1.13 to construct an example
of a weakly-convergent unbounded net in ¢#(N) for p € [1, 00).

Answer.  We consider the set R = {n'/%, : n € N}, where ¢ is the
conjugate exponent to p and {e,} is the canonical basis. Suppose that

0¢ RU(Z ()£ (N)). Then there is a weak-open neighbourhood of 0

W={f: g f)l<1: j=1,...,N}

with W' N RU(W(N)’W(N)) = @, where we are using Proposition 5.6.3. So for

each n € N we can find an index j, € {1,..., N} with
1< [{gj,.n' 9eq)].

Then
co N 00 1
Zng‘q_ZZ|g],€n *ZZ|g]aen ZZE
j=1n=1 n=1 j=1 n=1

It follows that 0 € RU(EP(N) AN )).

7.2. The weak* topology

(7.2.1) Show that the natural embedding ¢ : X — X** given by ¢(x) =
Z is a linear isometry.

Answer. Linearity follows from

var +y)(9) = glax +y) = ag(z) + g(y) = au(z)(g9) +(y)(9), g€ X"
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As this works for all g, we we t(ax +y) = au(z) + t(y).
Isometry: this was already done in (7.2). We have

12]] = sup{|2(g)| : g € &7, |lgll = 1} = sup{|g(z)| : g € &, |lgll = 1} = [|=]|
by Corollary 5.7.7.

(7.2.2) Show that the sets N(x1,...,zk;€), where x1,...,z; € X are
linearly independent and ¢ > 0, form a base for o(X™*, X).

Answer. We will show that these neighbourhoods generate the same open

sets than the “non-linearly independent” neighbourhoods. If z1,...,x, are
linearly dependent, after reordering and removing duplicates we may assume
that the first x1,...,z, are linearly independent, and that x,1,...,2, are

linear combinations of those, say

n
Tr4j = E CikTE-
k=1

Then, for any ¢ € ™,

p(era)l < 3 el le(an)] < (Z |cjk|> max{jp(er)] : k=1,...,r}

k=1 k=1
If we put ¢ = max{(>_,_; |¢jx]) : j=1,...,n—7}, then
N(z1,...,zp;e/c} C N(z1,...,zp5€}

As these “linearly independent” neighbourhoods are also part of the original
base, they generate the same topology.

(7.2.3) Prove Lemma 7.2.2.

Answer. Let ¢, € X* with ¢ # . By definition, this means that there
exists © € X with p(z) # ¥(x). Let § = |¢o(x) — 1 (z)|/2. The the open sets

Ve =271 (Bs(p(x)), V=271 (Bs(v(x)))
are disjoint, p € V,, 1 € V.

(7.2.4) Prove Proposition 7.2.3.
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weak™

Answer. Assume first that ¢; —— ¢. Fix x € &, and let € > 0. Since
27 Y(B:(¢(z))) is a weak*-open neighbourhood of ¢, there exists jo such that,
for any j > jo, ¢; € 271 (B:(p(z))), which means exactly that |p;(z) —
p(@)] <e. So pj(x) = p(z).

Conversely, if p;(z) — ¢(z) for all z € X, let V be a weak*-open
neighbourhood of ¢. Then there exists g € X', € > 0, ¢ € C, such that ¢ €
251 (B-(c)) C V. Since p(x0) € B:(c), there exists ¢’ < ¢ with B./(p(z0)) C
B.(c). So ¢ € iy (Be(p(x0)). Since pj(xo) — ¢(xo), there exists jo such
that, for all j > jo, |¢;(z0) — ¢(x0)| < €', which means that for j > jo we

weak™

have ¢; € @5 (B (p(x0))) C V. As V was arbitrary, ¢; —s ¢.

(7.2.5) Prove Proposition 7.2.6 (Hint: take a good look at the proof of
Proposition 7.1.11). Show also that the completeness of X is
crucial and cannot be dispensed with.

weak™

Answer. Let {¢,} C X with ¢, —— . For any & € X, we have by
definition that ¢, (z) — ¢(x). The numeric sequence {¢, (z)} is convergent,
and thus bounded. Then

supq{|en(z)| : n € N} < o0

for all x € X. By the Uniform Boundedness Principle (Theorem 6.3.16),
which applies since X is complete ,we get

sup{||¢n|l : n € N} < o0.

For the case where X fails to be complete, consider X = c¢gg. Then X* =
?1(N). For each n € N, let ¢, = nd,, which can be seen as the element
ne, € (*(N). Then ||¢,|| = n, but lim, ¢, (x) = 0 for all x € ¢y since = has
only finitely many nonzero entries.

(7.2.6) Let X be a normed space and {p, } a weak*-convergent net in
weak™

X* with ¢, —— ¢. Show that ||| < liminf, ||¢y|. Find
an example where the inequality is strict.

Answer. We have, by definition of the norm in X'*,
lell = sup{lp(z)]: =€ X, ||X] <1}

For any = € X with ||z| < 1, since |¢n ()| < |l¢nll, and choosing a subnet
{¢@n, } such that limg ||¢y, || = iminf, ||on]l,

|o(2)] = lim |pp (2)] = lim |gn, ()] < lim[|pn, || = lim inf [[on]].
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For an example, it was shown in Example 7.1.6 that an orthonomal basis on

an infinite-dimensional Hilbert space is a sequence {,} with ||€,| = 1 for all

k K*
n and &, —= 0. As Hilbert spaces are reflexive, we also have &, ———— 0.

(7.2.7) Prove the assertions in Examples 7.2.7.

Answer. For the weak convergence ¢; ek 0, take x € ?1(N). Then
(ej,x) = Z ej(k)ry =x; —0,
k

since ), |zk| < oo.
Now when we consider e; € ¢!(N), the weak*-topology is given by the
elements of ¢g. For x € cg,

eJ, Zej Jrr =x; —0.

For weak convergence, we can now use any x € £*°(N). If we take z = 1oy,

then
1, j€2N
<€j,$> = .
0, j¢2N

so the limit doesn’t exist.
Consider, for each n € N, the element y,, = %2?21 e; € K. For any

X € Cg,
n n

1 1 .
0= 13 e = 3200
=1 =1
Given ¢ > 0, there exists jo such that |x( )| < e/2 for all 7 > jo. Then

’I’Lo+1
It now follows that, for n b1g enough, [(y,,z)| < e. So <ymx> — 0. Thus
0eK"”
When we consider the weak topology, the dual is £>°(N) and now we
can take z = 1. Now, for any y € K, we have

n

=(0,z) < % <1l= % Z(e]—,x>.

j=1
The above says that the functional 1 strictly separates K “ and {0}. Thus
0¢K".
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(7.2.8) Let X = £1]0,1], so that its dual is X* = £°°[0,1] (see Exer-
cise 5.6.11), and put

M ={x € X*: suppz is countable}.

Show that M is closed in norm and in the weak topology, and
that it is dense in the weak*-topology.

Answer. Since X* with the norm topology is a metric space, we can deal with
sequences instead of nets. So let {x,,} C M be a Cauchy sequence. As X* is
complete, there exists x = lim z,, € X*. If S,, denotes the support of x,, put
S =, Sn. Then, as xz(k) = lim, z,(k) for each k (from |z(k) — z, (k)| <
|lx — || ), we have that suppx C S, which is countable; thus € M. Then
M is closed in norm. As M is convex (in fact, it is a subspace), its weak closure
agrees with its norm closure (Theorem 7.1.16), so M 3 =

In the weak* topology, though, M is dense. To see this, fix z € £*°[0, 1].
A weak*-neighbourhood of z is of the form

W ={ye=[0,1]: {(y—2),w;)| <1, j=1,...,m}.
where wy, ..., wy, € £10,1]. Let S = U;”:lsuppwj, and let * = z|g (that
is, (k) = z(k) if k € S, and 0 otherwise). Then x € M and z € W (the

latter, because ((z — z),w;) = 0 for all j). This shows that there exists a net
{zs} C M such that z, — z in the weak*-topology.

(7.2.9) Let X be a finite-dimensional normed space. Show that X is
reflexive.

Answer. Since dim X' < oo, the closed unit ball is compact (Corollary 5.2.4).
Then the closed unit ball is weakly compact, and X is reflexive by Proposi-
tion 7.2.21.

(7.2.10) Complete the proof of Lemma 7.2.17 by showing that if (i) is
false, then a & v(B5¥(0)).

Answer. The negation of (i) means that there exists £ > 0 such that for all
x € B{¥(0) there exists k € {1,...,n} with |¢r(z) — ax| > e. Let

d = dist (o, y(Bi* (0)) = dist (a, V(Bf((())).
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Since d is an infimum, there exists © € B{* (0) such that ||o —(z)|| < d + §.
By the above there exists k such that |¢g(z) — ag| > . Then
e
e < lon(@) —arll < lv(2) —all <d + 3,
and we obtain that d > 5.

(7.2.11) By Goldstine’s Theorem the unit ball of ¢ is weak*-dense in
the unit ball of ¢>°(N). Given f € ¢*°(N) with ||f|| <1, find a
net {g;} C co such that [|g;|| =1 for all j, and g; — f in the
weak*-topology.

Answer. Define g, = emi1 + 2 ny f(n)en. Then g, € co (it is in cgo,
actually). For any x € El(N)

(F = 9o )| = |(F(m) = Da(m) + Y- Fl)m)| <23 la(n)] ——=> 0
n>m+1 n>m

since z € ¢}(N).

(7.2.12) Let X be a normed space, and ¢ : X* — C a weak*-continuous
linear map. Use the Closed Graph Theorem to show that ¢ is
bounded (This is not hard, though it is not the easiest way to
prove this).

Answer. Let {f,} C X* such that f,, — f and ¢(f,) — ¢. By the weak*-
continuity,

¢ =limp(fn) = ¢(f).

So the graph of ¢ is closed, and ¢ is bounded by the Closed Graph Theorem
(Theorem 6.3.12).

(7.2.13) Let X be a normed space and 9 € X** nonzero. Show that

weak™

there exists {z,;} C X with Z; —— % and ||z;|| = ||| for all
J.

Answer. Assume without loss of generality that |[¢|| = 1. By Theorem 7.2.18

weak™

there exists {z;} C X with ||2;|| < 1and 2; —— 1. Fixe > 0. By definition
of the norm, there exists g € X* such that ||g|]| = 1 and ¢(g) > 1 —e. Since

1> [z > g(z) = (g) > 1 —¢,
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there exists j(¢) such that ||z;|| > 1 —¢ for all j > j(¢). That is, ||z;]] — 1.
Then z; = z;/||%;|| satisfies ||z;|| = 1 and for any g € X*

21(9) = () = §2 — 9()) + alz5) — v(9) 0.

7.3. Polars and Prepolars

(7.3.1) Show that if X C X is a subspace, then
X={peX": p(x)=0 forall z € X}.
Similarly, show that if Y C X* is a subspace, then
Yo={zeX: p(x)=0 forall p € Y}.

Answer. Let ¢ € X°. Since X is a subspace, given any = € X we have
nx € X for all n € N. Then

1> |p(nz)| = np(@)|.
As n is arbitrary, ¢(z) = 0. The other inclusion is trivial.
Similarly, if © € Y,, for any ¢ € Y we have |p(z)] < 1. AsY is a
subspace, we get n|o(x)| < 1 for all n, and so ¢(x) = 0.

(7.3.2) Show that
[BY(0)]° = B1(0)*", [B1(0)¥"] = Bi(0)*.

Answer. We have
[BF(0)]" ={pex*: |p)| <1, ||lz|| <1}

={ped: Joll <1} =B (0)*".
Similarly,
[BiO)*], = {z e X: |p(@)] <1, [lo] < 1}

={zeX: |z| <1} = B1(0)¥*.
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(7.3.3) Prove Proposition 7.3.2.

Answer.

(i) The inequality |p(x)| < 1 survives convex combinations, multiplica-
tion by scalars of absolute value at most 1, and pointwise limits on
x.

(ii) The inequality |¢(z)| < 1 survives convex combinations, multiplica-
tion by scalars of absolute value at most 1, and pointwise limits on

©.
(iii) If ¢ € X9, then |p(x)] < 1 for all # € Xo; in particular, for all
x € X1, 80 p € (X7)°.

(iv) If € (Y2)o, then |p(z)| < 1 for all ¢ € Ys; in particular, for all
v €Y7. Thus z € (Y1),.

(v) Let z € (U] Y]) . If o =", tipr with each ¢ in some Y; and
tr >0 forall k, >, tp =1, then

Z@k(w)‘ <D tler(@| <Yt =1.
k k k

So x € (conv U Y]) . The reverse inclusion is automatic by (iv).
N o
J

(vi) Let ¢ € U; X7. Then ¢ € X7 for some jo. If € (); Xj, then
z € Xj, and so |¢(z)] < 1.
For the reverse inclusion, let X = X* = C. Take X; = {0,1},
o

X, = {0,2}. Then X; N X» = {0}, so (mj X]-) = X* = C, while
X¢=D, X¢=1iD.

(vii) Let ¢ € (; X7. If z € U; Xj, then x € X}, for some jo, and
so |p(x)] < 1 since p € X3 . Conversely, if ¢ € (U] Xj>o7 then
lo(x)] <1 for all x € Xj, for all j. In particular ¢ € X7 for all j.

(viii) The inequality |p(z)| < 1 is weakly continuous on z (and the weak
closure of the ball agrees with the norm closure by convexity) and
weak*-continuous on ¢.

(7.3.4) Prove Corollary 7.3.5.
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Answer. Since X,Y are subspaces, cb X = X, ¢cbY =Y. If X is dense in
X, by Proposition 7.3.4 (X°), = X = X. This says that each functional in
X? is zero on all of X, so X° = {0}. Conversely, if X° = {0} then again by
Proposition 7.3.4 X = (X°), = X.

If Y is weak*-dense in X*, then by Proposition 7.3.4 z* = " = (Yo,)e.
This means that every f € a* is zero on Y,, so Y, = {0} by Hahn-Banach
(Corollary 5.7.19). Conversely, if Y, = {0}, then by Proposition 7.3.4 Y =
(V)" = {0} = &*.

(7.3.5) Let X be a normed space, and K C X a subspace. Show that
K°° = JXKw , where Jy is the usual embedding of X’ in X**.

Answer. We have that K°° is weak*-closed by Proposition 7.3.2, so JXKw* C

K°°. Conversely, let & € K°°\ Jyx K “" be nonzero. By geometric Hahn—
Banach (Theorem 5.7.18) and Proposition 7.2.10, there exists ¢ € X* such
that ®(¢) = 1 and ¢|x = 0. But then ¢ € K° and & ¢ K°°, a contradiction.

Thus K°° = Jv K .

7.4. Spaces of Continuous Functions

(7.4.1) Show that Cy(T) is complete.

Answer. This is the usual argument that uniform convergence of continuous
functions is continuous, together with the vanishing at infinity part.

So let {fn} C Co(T) be Cauchy. As {f,.(t)} is Cauchy for every t € T
and C is complete, from |f,,(t) — fm(t)] < |[fn — fmlleo We deduce that the
pointwise limit f(¢) = lim,, f,(¢) exists. And the convergence is uniform: if
e > 0is given and || f,, — fin|| < € when n, m are big enough,

() = Fn(B)] =i | (t) = fn (£)] < i sup || fro = fon]| < &

Fix e > 0 and s € T. There exists n such that ||f — f,]| < €/3. As f, is
continuous, there exists § > 0 such that |f,(t) — fn(s)| < e/3if [t — 5] < 0.



7. SPACES OF CONTINUOUS FUNCTIONS 323

In such case,
£ = FOI S 170 = FaOl+ 1Fal) = Fual)| + Fuls) = FO < S+ 5+5 =<

So f is continuous. Similarly, there exists K C T compact with |f,| < /2
on T\ K. Then, fort e T\ K,

LFOI< () = ful®)] + [ fu()] < % T % <e

So f vanishes at infinity, which shows that f € Cy(T") and, as a consequence,
that Cy(T') is complete.

(7.4.2) Show that if T is locally compact Hausdorff, then Cy(T) sep-
arates points: that is, given s,t € T with s # ¢, there exists

f € Co(T) with f(s) # f(t).

Answer. As T is Hausdorff, there exists V open with s € V|t ¢ V. Applying
Urysohn’s Lemma with K = {s} and V, there exists f € C.(T) with f(s) =1
and f(t) = 0.

(7.4.3) Show that if X, Y are topological vector spaces, the following
statements are equivalent:

(i) Cr(X) and Cr(Y') are isomorphic as rings;
(ii) Cr(X) and Cr(Y) are isomorphic as real algebras.

Answer. Only one implication needs to be proven. So suppose that T' :
Cr(X) — Cgr(Y) is a ring isomorphism. For any n € N we have I'(nf) =
T(f+---+ f) =nlf. We also have, for n € N, T'((—n)f) + T(nf) =T0 =
0, so I'((—n)f) = —T'(nf) = (—m)T'f. For nonzero m € Z, mI'(f/m) =
T'(mf/m)=Tf. Hence for any q € Q, written as ¢ = n/m,

T(qf) =T((m/n)f) = "Tf =qT .

If f >0, we can write f = g2 with g = \/f. Then I'f = I'(¢?) = (I'g)? > 0.
So T preserves order. Fix r € R and sequences {p,}, {¢,} C Q with p,, " r,
Gn 7. For any f > 0 we have p,f <rf < q,f. Then

pul'f =T(pnf) <T(rf) <T(gnf) = gul'f.
Taking limit we get rI'f < T(rf) < rI'f and so I'(rf) = rI'f. For arbitrary
f we can write f = f* — f~ and the additivity of T gives T'(rf) =T(rf*) —
[(rf~) =rTf; so I is real linear.
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(7.4.4) Show that the function d defined on (7.22) is indeed a metric,
and that it induces the topology of T

Answer. If d(t,s) = 0, then f,(¢t) = fn(s) for all n; using the density,
f@) = f(s) for all f € C(T). Then by Urysohn’s Lemma (Theorem 2.6.5),
s = t. The triangle inequality follows directly:

dt,s) = 27" fult) = fu(s)]

<27 ) = fu()| + [ falr) = fuls)]

n=1

=27 fult) = fu(M) + D (1) = fuls)]

=d(t,r) + d(r, s).
There is no issue manipulating the series as they converge absolutely and
uniformly. That d(¢,s) = d(s,t) follows from |f,(t) — fu(s)| = |fn(s) — fu(t)].
So d is a distance.
If d(tj,t) — 0, then for each n we have f,(¢t;) — fn(t). Fix € > 0; as
{fn} is dense in the unit ball, if f € C(T) and ||f|| < 1 then there exists n
such that ||f — fn|| < e. Then

|f(t) = FOL < NFE) = falt)] + [fa(ty) = fa(O)] + 1 fult) — f(2)]

< 2||f - an + ‘fn(tj) - fn(t)‘
Then limsup; | f(¢;)— f(t)| < 2¢. As e was arbitrary, we get lim; f(t;) = f(t).
This also works for arbitrary f € C(T') as we can scale it into the unit ball.
Then t; — t by Urysohn’s Lemma (Theorem 2.6.5).

Conversely, suppose that t; — t. Fix € > 0 and choose ng such that we
have } -, ., 27" < e/4. Choose jo such that, for j > jo, | fn(t;) = fn(t)| <e/2,
n=1,...,n9. Then, when j > jo,

no no
d(ty,t) =D 27" [falty) = fOI+ D 27" [falty) —fB) < 327" 545 <e.
n=1 n=1

n>ngo

Thus d(t;,t) — 0.

(7.4.5) Prove that a compact metric space is separable.
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Answer. For each n, we have T' C | J,op Bi/n(t). By compactness, there exist
o1y tn k(n) such that for each t € T' there exists j with |t — ¢, ;] < 1/n.
Then (J, {tn,1;- -, tn k) } is countable and dense.

(7.4.6) Let {ks}ser C Co(R) be the family of functions ks (t) = st(1+
s?t?)~1. Show that the algebra generated by {k} dense in
Co(R).

Answer. We want to apply Stone—Weierstrass. The functions are real-valued,
so A is selfadjoint. They separate points, for if x # y, we can assume without
loss of generality that « # 0 (otherwise, switch roles) and consider ki (x) # 0;
since ks (t) - 0 we may choose s so that ks(y) < |k1(z)|. So the algebra

A generated by the {ks} and 1 is selfadjoint, and it separates points; but
it does not vanish nowhere! Indeed, as ks(0) = 0 for all s, we have that
9(0) = 0 for all g € A. Then if f(t) = 5, for instance, f € Co(R) and

|f = glloe > £(0) — g(0) = 1.

(7.4.7) Let S, T be locally compact Hausdorff spaces. Show that
Co(S x T) ~ spanl'l Cy(8)Co(T),

where the isomorphism consists of identifying each product fg
with the function (s,t) — f(s)g(t).

Answer. If we write a(f, g) for the function (s,t) — f(s)g(t) as above, let

A= span{a(f,g) : [ € Co(9), g€ Co(T)}.

Tt is clear that A is an algebra, for a(f1, g1)a(f2, 92) = a(f1f2, g192). Suppose
first that S, T are compact. Then S xT is compact. We have 1 = «(1,1) € A.
Also, A is selfadjoint for a(f,g)* = a(f*,¢*). And, given (s1,t1), (s2,t2) €
S x T by Urysohn’s Lemma there exists f € Co(S) with f(s1) =1, f(s2) =0.
Then a(f,1) takes the value 1 at (s1,%1), and 0 at (s2,t2). Then Stone-
Weierstrass guarantees that A is dense in C(S x T)).

When at least one of S and T is not compact, given (s,t) € S x T we
can still get f € Cy(S) and g € Co(T) with f(s) = g(1) = 1. Then a(f,g) is
nonzero at (s,t) and so A separates points.

(7.4.8) Show that ¢p = Cp(N).
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Answer. We know that ¢ = {¢g : N — C: lim, g(n) = 0}. The compact
sets in N are the finite sets, so g € Cy(N) if and only if lim,, g(n) = 0.

(7.4.9) Show that the bounded set R = {f € C([0,1] : 0 < f <
1, f|[%71] = 0} in C[0, 1] admits no supremum.

Answer. Let g be an upper bound for R. Then g > 1 on [0,1/2] and g > 0
on [1/2,1]. As ¢g(1/2) > 1 and g is continuous, there exists § > 0 such that
g(t) > 1 forall t € (3,4 +6). Use Urysohn’s Lemma to construct h € C[0,1]
with 0 < h < %, h = 0 outside of (3,4 + 6), and h(1/2 4 6/2) = 1/4. Then
g—h<g,g—h>1onl0,3]and g—h >0on [1/2,1]. So g — h is an upper
bound for R and so g cannot be a least upper bound.

(7.4.10) Let T be an extremally disconnected topological space, and
U,V C T disjoint open subsets. Show that UNV = &.

Answer.  Because T' is extremally disconnected, both U and V are open.
From Exercise 1.8.32 we get U NV = @. And as U is open, we can apply
Exercise 1.8.32 again toget UNV = .

(7.4.11) Prove Lemma 7.4.29 by modifying the proof of Lemma 5.7.3
appropriately.

Answer. Since vy and Z are linearly independent, Z + Rvg = {cvg+2: ¢ €
R, z € Z}. Fix 21,22 € Z; then

S(z1 4 z2) < q(z1 + 22) < q(z1 + vo) + q(z2 — vo),
and we deduce that
S(z2) — q(22 —vo) < =8(21) + q(21 + vo) (AB.7.1)

This can be done for all 21,22 € Z, so by the order-completeness of C(T")
(via Proposition 7.4.27) we conclude that there exists d € Cgr(T) with

d =sup{S(z2) — q(vog — 22) : 20 € Z}.
By (AB.7.1) we also have
d< 1Hf{*S(Zl) + q(’Uo + Zl) D21 € Z}
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Now define the linear map S(cvg + 2) = c¢d 4 Sz. Then ran S C Cg(T) and
S|z =S. Fix ce R\ {0}, z € Z. Suppose first that ¢ > 0. Then

S(cvg +2) =cd+ Sz = c(d—i—S(g)) < c(—S(%) +q<v0—|— g) —i—S(E))
= q(cvy + 2).
Similarly, if ¢ < 0,
S'(cvo +z2)=cd+ Sz=(—c) (—d—i—S(_i))

C

< (= (-5(5) +ao( 5 -w)+5(5))

= gq(cvp + 2).

(7.4.12) Prove Proposition 7.4.30 by modifying the proof of Theorem 5.7.4
appropriately.

Answer. Let F be the family of all (W', S"), where W' is a subspace of V with
Wcw', S : W — Cgr(T) extends S and S'(z) < ¢(x) for all z € W’; the
family F is trivially nonempty as (W, S) € F. In F, we consider the partial
order (Wl,Sl) < (WQ,SQ) if Wi € Wy and S2|W1 = 5. Let {(W],Sj)} be a
chain in F; put W’ = | ; W;, which being an increasing union of subspaces is
a subspace of V, and let S : W' — Cr(T') be given by S’z = S;z if x € Wj.
The compatibility given by the order guarantees that S’ is well-defined. It
is clear that (W', S") € F and it is an upper bound for the chain. Then, by
Zorn’s Lemma there exists a maximal element (Z, S) in F. If Z C V, we can
use Lemma 5.7.3 to contradict the maximality of (Z,S). So Z =V and S is
the desired extension. The condition S < ¢q comes for free since every element
in F satisfies it.

(7.4.13) Prove Theorem 7.4.31 by adapting the proof of Theorem 5.7.5
appropriately.

Answer. In the real-valued case, we use Proposition 7.4.30 to get S : V —
Cr(T) with S|y = S and S(z) < g(x) for all z € V. Because g is a seminorm
and thus ¢(—z) = ¢(z), for any € V we have the inequality S(—z) <
q(—z) = q(z); this we may write as —q(z) < S(z). Together with S(z) <
q(z), this gives us |Sz(t)| < g(z) for all t € T and hence ||Sz|s < q(z).
Now consider the complex case. Let S; be the real-valued, real-linear
map given by (S12)(t) = Re(Sx)(t), t € T. Then |(S12)(t)| < |(Sz)(t)| <
q(z) forallz € W and t € T, so we can apply the previous part of the proof to



328 CHAPTER 7

obtain S : V. — Cg(T) with S;|w = Re S and |5 (z)| < q(x) for all z € W.
Using Lemma 5.7.1 (note that pointwise evaluation of a function is a linear
functional), define a new map (Sx)(t) = (S1)(t) —i (S1(iz))(t), t € T. Then,
if z € W, (Sz)(t) = Re (Sz)(t) — iRe (S(iz))(t) = (Sz)(t). Now fix x € V.
Let |(Sz)(t)| e’ = (Sz)(t) be the polar form of the complex number (Sz)(t).

Then |(Sz)(t)| = e ?(Sz)(t) = (S(e"x))(t). Since (ReS(e"z))(t) <
q(e”x) = q(x),
|(S2)(t)] = (S(e™"2))(t) = (Re S(e ")) (t) < q(a).

(7.4.14) Let T be a discrete topological space. Show that ST is ex-
tremally disconnected without using Proposition 7.4.34. To
show that an open set V C 8T has open closure, consider the
function f = lynsr) € C(6(T)).

Answer. Let V' C BT be open and let f : T — C be f = 15-1(vns(r)) =
lynsry © 0. Then f is continuous since T' is discrete and every function is
continuous. By the universal property (7.18) of the Stone—Cech compactifi-
cation there exists f € C(BT) with fod = f. If v € V, there exists a net
{v;} CV Né(T) with v; — v. Then

flo) = lijm FOHv))) = Tvnsr) (v) = 1.
By the continuity, f(v) =1 for all v € V. Conversely, if w € BT\ V then
there exists a net {w;} C §(T") with w; ¢ V. Then

flw) = lim FO6™Hw))) = Lvnser) (w;) = 0.

Thus f = 13, As f only takes the values 0 and 1 and f is a limit of values of f,

we also have that f only takes the values 0 and 1. Then V = (f)~'(Bj2(1))
is open and BT is extremally disconnected.
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(7.5.1) Show that ¢ : Y — R is convex if and only if

¢(i%‘) < itj o(y;) (7.1)

forall y1,...,yn and all t1,...,t, € [0,1] with } . ¢; = 1.

Answer. The converse is just the case n = 2. So suppose that ¢ is convex,
Yiy-oosYn € Vs t1,. oty € 0,1], and ), ¢; = 1. We may assume without
loss of generality that ¢; > 0 for all j. The proof goes by induction. The case
n = 2 is the hypothesis. So assume that (7.1) holds for n — 1. Then, with
c= 22;11 ti, the numbers ¢ /c, ..., t,/c are convex coefficients and thus

¢(§:tjyj) = ¢(tnyn + gtjyj) = ¢><(1 —C)yn +c f(tj/c)yj)

n—1

< (1= oln) + o X (45/0;)

j=1

< (1= () + e 3 (13/6() = 3 troluy)

An alternative proof can be obtained by defining
Co ={(y,r): dy) <r}.

One then uses the convexity of ¢ to show that Cy is convex. Then one
considers the point (y;, ¢(y;)) € Cy, and by the convexity of Cy

(thijztﬂ(yj)) € Cy.

Which is precisely (;5( > tjyj) <Dt (yy)-

(7.5.2) Show that if X locally is convex, then any extreme point of the
convex set K C X is a boundary point of K.
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Answer. Tt is enough to show that interior points are not extreme. Suppose
that « € K is interior. Then there exists an open, convex, balanced, neigh-
bourhood of 0 such that t+V C K. Let y e V. Thenz+yecxz+V C K,
and

z=3(@+y) +3@-y),
so x is not extreme.

(7.5.3) Let X be a real or complex vector space and Y C X. Show
that convY is the smallest convex subset of X that contains
Y.

Answer. Let Z C X be convex with Y C Z. The convexity of Z guarantees
that convY C Z. Then convY C ([{Z : convex,Y C Z}. As convY is
itself one of the Z, we get

convY = ﬂ{Z : convex, Y C Z}.

(7.5.4) Prove Proposition 7.5.8.

Answer. Tt is not obvious how to go directly from (ii) to (iii) without passing
through (i). So we take the less direct approach.

(i) = (ii) This is the definition of extreme point.

(ii) = (i) Suppose that © = ty'+(1—t)z’ with ¢ € (0,1) and ¢/, 2’ € X.
Suppose, without loss of generality, that ¢t > % Let y =9 and z = 2z — y/'.
We have, by convexity,

z=2z—y =2t—1)y +2(1 —t)2' € K.
Note that the condition ¢ > % guarantees that 2¢t — 1 and 2(1 — t) are convex
coefficients. By definition
r=3(y+2),
so by hypothesis that y = z = 2. As ¢/ =y, we have
o = z—ty  (A-ty _

(1-1%) (1-1¢)

Thus z is extreme.

(i) = (iii) f y,z € K \ {z} and ¢t € [0,1], then ¢ty + (1 — ¢)z # x since
x is extreme; so ty + (1 —t)z € K\ {z}.

(iii) = (i) Suppose that x is not extreme. The there exist ¢t € (0, 1)
and y,z € K\ {z} with ¢ =ty + (1 — t)z. Then K \ {z} is not convex.
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(7.5.5) Let C C R™ be convex, and w € R™\ C. Show that there
exists v € R"™ with [|v]] = 1 and a € R such that (w,v) < «
and (z,v) > « for all z € C. This can be done via Hahn-
Banach, but an elementary proof is desired.

Answer. The closure C of C is convex and the result follows if we prove it
for C. So we may assume without loss of generality that C is closed. Because
C' is closed the distance between w and C is attained (proof: there should be
elements that are at almost the distance from w; take a closed ball centered
on w that contains these points, and by cutting C' with this ball we may
assume that C' is compact, and a sequence of points approaching the distance
will have a limit; or use Lemma 4.3.4).

Let ¢ € C with |jw — ¢|| = dist(w,C). Put vg = w — ¢. For any z € C
we have ||w — z|| < |Jlw —¢||. For any z € C and t € (0,1) we have ||lw —¢|| <
|lw— (tc+ (1 —1t)z)||. Using that w— (tc+ (1 —t)z) = w —c+ (1 —¢)(c — 2),

o — > < Jw — ¢+ (1~ t)(c — )|
= flw— el + (1= )?le — 2[> + 20w — ¢, (1 - £)(c — 2)).
This simplifies, as t < 1, to
(w—c,c—2) > —5 (1-t)lc— 2|

As t can be chosen arbitrarily close to 1, this gives (w — ¢,c — z) > 0 for

all z € C. This gives us (vg, z) < (vp,c¢) for all z € C. Put v = —vy and
a = (v,c). Then (v,z) > a and
(v,w) = (v,w —¢c) + (v,¢) = —||lw—¢||* +a < a.

Finally, we can replace v with v/||v|| and « with o/||v]|.

(7.5.6) Let K C R™ be compact and convex. Show that K has an ex-
treme point. (Hint: choose to points that realize the diameter,
and show that they are extreme).

Answer. We use the Euclidean norm, so R™ is a real Hilbert space. Let D =
sup{|lz —y|| : x,y € K}. Since K is compact this has to be a maximum. So
there exist 2,y € K such that D = ||z—y||. Now suppose that z = § 21+ 3 z».
Then ||z —y|| < D = ||« — y|| and similarly |25 —y| < ||z —y||. Then, using
the Parallelogram Identity (4.2), that still works in a real inner product space,

1 1
2l = yl* > ller —ylI* + llv2 = yl* = 5 lor + 22 = 2017 + 5 |21 — 22

=2llz — y[|* + o1 — 22|
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Tt follows that |z1 — 22| = 0, so 1 = x5 and x is extreme.

(7.5.7) A hyperplane is a subset H C R of the form z + V, where
V' C R” is subspace of dimension n — 1. Show that H C R™ is

a hyperplane if and only if there exist & € R and v € R™ such
that H = {x e R" : (z,v) = a}.

Answer. Suppose that H = z+ V. As dimV = n — 1, we have that
dimV+ = 1. So V! = Ruw for some unit vector v. For any w € H we have
w—2z € V,s0 (w—2zv) =0. Let « = (z,v). Then (w,v) = a. And if
(w,v) = «, then (w — z,v) = 0, which implies that w — z € V.

Conversely, suppose that H = {z € R" : (z,v) = a}. Let V = {x €
R™ : (z,v) = 0. This is a subspace of dimension n — 1. Fix hy € H and
vg € V, and let z = hg — vg. For any = € H,

(x — z,v) = (x,v) — (ho,v) + (vo,v) =a—a+0=0.

Sox—z € V,and so x € z+ V. And this also works the other way, if
x=z+w with w € V, then (x,v) =asoz € H. Thatis, H=2z+V.

(7.5.8) Let C' C R™ be convex. A supporting hyperplane for C is
a hyperplane H C R™ such that

(a) C is on one of the two half-spaces determined by H; namely,
there exists o € R such that (z,y) > « for all x € C and
y € H;

(b) HNOC # 2.

Show that for each z € JC, there exists a supporting hyper-
plane H for C such that x € H.

Answer. If we provide H for C, it works for C as well. For each n € N there
exists v € B1(0) such that =, = 2+ L v ¢ C. Apply Exercise 7.5.5 to x,, and
C'; so there exists a,, € R and v, € R™ such that

<xna Un> < ap, <27'Un> = Qp, zeC.

From ||v,|| = 1 we get o, < (x,v,) < ||z]]. And

1
an 2 (T, 0n) 2 =[[za onll = (=] = =) = (=[lz]| = 1).

If follows that {a,} is a bounded sequence, and so it admits a convergent
subsequence to an element . Also, as ||v,| = 1 for all n, the sequence {v,}
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admits a convergent subsequence to an element v. Then, as x,, — =,
(r,0) <a, (n0)>a, zeC.

Now let 5 = (z,v) and let H be the hyperplane H = {y € R™ : (y,v) = S}.
Then = € H and for any z € C' we have (z,v) > a > f.

(7.5.9) Let C' C R™ be convex, € 9C and H a supporting hyperplane
for C' at x. Show that H is convex and that Ext(H N C) C
Ext C.

Answer. It H={z: (z,v) = a}and hy,hy € H, t € [0,1],
(thy + (1 — t)ha,v) = t{hy,v) + (1 — t){he,v) = ta+ (1 — t)a = «,

and H is convex. Then HNC is convex. Let x € Ext(HNC). If x = ty+(1—t)z
with y,z € C and t € [0, 1], we have

a={x,v) =t{y,v) + (1 —t){(z,v) > ta+ (1 —t)a = a.

This forces (y,v) = (z,v) = a, and so y,z € HNC. But then y = z = x, and
r € ExtC.

(7.5.10) In Example (7.5.1), show that K is convex and establish Ext K.

Answer. The proof depends on how one defines what a regular polygon is.
So we will stay with an intuitive argument. The convexity is clear, as any
points joined by a segment will have the segment inside the closure of the
polygon.

Regarding extreme points, for any x € int K, any line through it will
touch the boundary at two points: then x is a convex combination of those
two points, and thus not extreme.

Any point in the middle of an edge in the boundary is a convex combi-
nation of the corresponding two vertices, so not extreme.

Any line through a vertex either goes into K, or along an edge, or
doesn’t touch K other than at the vertex. In all three cases the vertex cannot
be in between two points of K. So vertices are extreme.

(7.5.11) In Example (7.5.2), show that K is convex and establish Ext K.
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Answer. For the convexity, suppose that ¢ € (0,1) and v?+w? < 1, u?+22 <
1. With z = (v,w), y = (u, 2), we have ||z|| <1, ||y|]| <1. Then

[t + (1 = t)yll < tllzl| + A =Dyl <t +1 -t =1,
so tx 4+ (1 —t)y is in the unit disk.
For the extreme points, if ||| < 1, then z = ta’ + (1 — t) 0, where
t = ||lz|| and 2" = x/t. So only the circle can have extreme points. And if
|z|| =1 and = = ty + (1 — ¢)z with ||y|]| <1, ||z|| < 1, then
L= [lzf <tllyll + (1 =)=l < 1,
which forces ||y|| =1 and ||z|| = 1. Now we have
1=ty + 1= t)z]* = ly]* + (1 = 1)* [[2]]* + 2t(1 — 1) {y, )
<ErA-t)2 421 -t)=(t+1-t)*=1.

In particular we get (y,z) = |ly|| ||z||- By Theorem 4.2.2; there exists ¢ € R
with y = ¢z. Then |¢] = 1. And = = ty + (1 — t)cy forces ¢ = 1 as above.
Then y = z = x and z is extreme.

(7.5.12) In Example (7.5.3), show that K is closed, convex and establish
Ext K.

Answer. K is closed, since its complement is {(z,y) : y < 0}. Given such
(z,y), the ball B_,/5(x,y) is entirely contained in {(z,y) : y < 0}, which is
then open.

Convexity: if y > 0 and w > 0, then ty + (1 — ¢t)w > 0 for all ¢ € [0, 1].
So t(z,y) + (L —t)(v,w) = (tz + (1 —t)v,ty + (1 —t)w) € K.

Extreme points: given any (z,y) € K we have

so (x,y) is not extreme.

(7.5.13) In Example (7.5.4), show that K is convex and establish Ext K.

Answer. Convexity: if y > 0 and w > 0, then ty + (1 — t)w > 0 for all
€ [0,1]. So t(x,y) + (1 —t)(v,w) = (tx + (1 —t)v,ty+ (1 — t)w) € K. If
y > 0, then
t(z,y) + (1 —t)(x1,0) = (tx + (1 — t)x1, ty).
For t = 0, we get (z1,0) € K. For t > 0, the second coordinate is ty > 0, so
t(z,y) + (1 —t)(z1,0) € K.
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Extreme points: given any (z,y) € K with y > 0 we have

(@,y) =3 (@ -1y +3@+1y),
so (z,y) is not extreme. Suppose that (x1,0) = t(z,y)+ (1 —t)(v, w) for some
€ (0,1]; if y > 0 and w > 0, we get the impossible equality ty+( t)yw = 0.
So y = w = 0. We also have 1 = tx; + (1 — t)v, so (1 — t)x; = (1 — t)v and
v = x1. Thus (z1,0) is extreme.

(7.5.14) Show that, in the complex plane ExtD = T. ]

Answer. This is of course the same as Exercise 7.5.11, but we include here
an argument using the language of complex numbers.
Write A = re?. If r < 1, let § = 15=. Then

A=1 (r+5) Q(r—é)ew

S0 A is not extreme.
When r = 1, if € = a + 8 with |a| < 1 and || < 1, then

1=le?| < 3lal+ 3181 <1,
so |a| = |B] = 1. We would have e’ = 1™ + 1 ¢ which we may write as
_ 1 ,i(n=0) o 1 i(v—0
| = Li0) | 1 giv—0),

The real part of this equality is 1 = 3 cos(n — 6) + 3 cos(v — ). As both

cosines are at most 1, we obtain 1 = cos(n — 8) = cos(v — ), which gives
n=0+2kr, v=0+4+2jr, and thus a = g = A\

(7.5.15) In Example (7.5.9), show that K is convex and establish Ext K.

Answer. Any unit ball with respect to a norm will be convex: if || f|], [lg]| < 1,
then

[tf + A =t)gll <t fll+ T =Dlgl =1+1 -t =1
As for the extreme points, if f € Co(R) and ||f|| < 1. Given e = 3, there
exists n such that |f(z)| < % for all || > n. Let g € Co(R) be continuous,
with suppg C [n,n 4+ 1] and |g|| = 3. Then |f £ g| < 1, and so f =
L(f+9)+3(f—g) with f£g € Cy(R), and so f is not extreme.

(7.5.16) In Example (7.5.10), show that K is convex and establish
Ext K.
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Answer.  Suppose first that 6 = 31 + 1y (it is enough to use t = 3
by Proposition 7.5.8). Because ¢ is nonnegative, we immediately see that
Imp; =0, j =1,2; and by the Hahn Decomposition (Theorem 2.10.13) we
conclude that pq,ps are positive. Recall from Theorem 2.9.2 that p; and
e are regular. Let C C T be closed, with t ¢ C'. By Urysohn’s Lemma
(Theorem 2.6.5) there exists g € C(T') with g(¢) =0 and g|c = 1. Then

0= 9(t) = big = 5 m(C) + 3 1m2(C).

So 11 (C) = p2(C) = 0. As by regularity we can write T'\ {t} as an increasing
union of compacts K,, with t & C,,, it follows that u; = ps = §;. If we consider
instead Ad;, the above argument carries the same. So A\d; : |\ =1} C Ext K.

Conversely, suppose that supp |u| contains at least two points ¢; and
to. By definition of support there exist open sets Vi, Vs with |u|(V1) > 0
|| (V2) > 0. Let ¢t = |u|(V4) € (0,1). Define measures

m=t"plv, ne=(1—t)"" plv,.
Then [|n;|| = [;|(T) <1, j =1,2, and

p=tm+(1—1t)n

[N~}

and g is not extreme.

(7.5.17) Prove Proposition 7.5.6.

Answer. A simple observation is that if ||z]| < 1, |ly|| < 1, and ||tz + (1 —
t)y|| =1 for some ¢ € (0,1), then ||| = ||y|| = 1. This follows from

L=tz + (1 = Dy[| < tllz + A =Dyl <t +1 -t =1
Then ¢(1 — ||z|)) + (1 = ¢)(1 — ||ly|]|) = 0, and as this is sum of nonnegative
terms, they both have to be zero and hence ||z|| = |ly|| = 1.

One can show that (¢) (in the form “||(u+v)/2]| = 1 for ||ul] = ||v]| =1
implies u = v”) is equivalent to

Izl =lyll =1, lta+ (1 -yl =1 = =z=y (AB.7.2)
(proof at the end).
(1) = (ii): if we have ||z + y|| = ||z|]| + ||ly||, we can rewrite this as

H [ O ] I H _
el + Tyl ell ™ el + Tyl Tl
Now (AB.7.2) applies and we get that z/||z| = y/||y||-
(1) = (i1i): let ¢ € X* and z,y € X with ¢(z) = ||z|, ¢(v) = ||yl
By scaling = and y if needed, we may assume that ||¢|| = 1. Then

2]l + Iyl = ¢(z) + ¢(y) = ¢z +y) < [z +yl.
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This gives us equality in the triangle inequality, and so by (i¢) we have that
y = Az with A > 0. Then
Miyll = Ao(y) = ¢(Ay) = é(x) = [|=]].
As|lz]| =yl =1, we get A=1 and so y = =.
(#4i) = (i): Suppose that u,v are unit vectors with [|“32|| = 1. Use

Hahn-Banach to construct ¢ € X* with ||¢| = 1 and ¢(u + v) = ||u + v||.
Then

2= ¢(u+v) = ¢(u) + o(v) < |8l |ull + o]l [[o]] = 2.
As in the observation at the beginning, this forces ¢(u) = ¢(v) = 1. Hence
o(u) = |lul|, #(v) = ||v||, and then by (i7i) we have u = v.

We finish by proving (AB.7.2). This is first done by induction, where
the base case is (i), for t = k/2". The inductive hypothesis is, for fixed n and
k=1,...,2",

2] =yll=1, |[£z+(1-L)y[=1 = z=y. (AB.7.3)
If we now assume (AB.7.3) and we have ||z|| = |ly|| = 1and k € {1,...,2" "1},

[zt 2+ (1= z) | = 1,
we assume without loss of generality that & < 2™ (otherwise we switch the
roles of z and y). We can write
k k E(TtY k
L=z e+ (1= gm) vl = 15 (557) + (1= 20) vl

In principle we only know that H%”H < 1, but the observation at the be-
ginning gives us that ||L;y|| = 1. Then the inductive hypothesis (2) gives
us

Tty
2
After having all dyadic t, one can get to arbitrary ¢ € [0,1] by continuity of
the norm.

=y, whichisx =y.

(7.5.18) Show that || - ||, is strictly convex for 1 < p < oo, while || - ||1
and || - || are not strictly convex.

Answer. For 1 < p < oo, if x,y € (P(N) and ||z + yll, = ||zl + |yllp,
we have equality in Minkowski’s Inequality (2.45). Looking at the proof of
Corollary 2.8.10, this means that the inequalities in the proof are equalities.
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In particular we get

-+ yllh = ok + ynl ok + yel”™!

k
- Ti||Tk + Ykl™ Ykl ok + yelP™
] Fon el + 3 e o+ ol
k k
1/p 1/p
= lally (3 b+ el @)+ gl (3 fon + el D)

k k
The second equality forces |z + yr| = |xx| + |yx| for all &, and so yr = A\pag
for Ay > 0. The equality in the third and last equality is equality in H lder’s
inequality for the pairs of functions z, |z+y|P~! and y, |z +y[P~!. But equality
in H lder implies, looking at the proof of Theorem 2.8.8, pointwise equality
on Young’s inequality for the normalized versions of the functions. As the
logarithm is strictly convex, we get

|lzkl et yelP™t
Izl Mz +ylP=tlg Iyl

Then
lyllp
|I’k|, keN,
2y
SO0 A\ = ”ZHP for all k. That is, y = Az for a certain A > 0. Then || - ||, is
P
strictly convex by Proposition 7.5.6.
For ||-||1, we have |le1]|1 = ||e2|l1 = 1, and ||e; +e2||1 = 2, so not strictly
convex.
For || ||, lle1lloc = lle1 + e2loc = 1 and |le; + (€1 + €2)|lco = 2, s0 not
strictly convex.

Aelor| = yx| =

(7.5.19) Let X, Y be normed spaces and V' € B(X,)) an isometry.

(a) Show that if V' is surjective, then V maps the set Ext B;¥ (0)
onto Ext BY(0).

(b) Show that if V' is not surjective, the above may fail, i.e.
construct an example of a linear isometry that maps an
extreme point to a non-extreme point.

(¢c) (This one may be a little harder because we want the same
domain and codomain; but examples exist that are not con-
voluted) Find a Banach space X with Ext B{f(0) # @,
an isometry V € B(X), and e € Ext B;¥(0) such that
Ve ¢ Ext B (0).
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Answer.

(a) Suppose that V' is surjective, and @ € B{* (0) is extreme. If Vo = 1 y/+3 2/
with ||y'|| < 1, ||Z/|| < 1, by the surjectivity there exist y,z € X with

y' =Vy, 2 = Vz. Because V is isometric, y, z € B{*(0). Then
1 1 1 1
Ve=5Vy+5Vz= V(§y+§z).

By the injectivity of V', we get that x = %y + %z As z is extreme,
y=z=ux,and hencey =Vy=Vzx, 2/ =Vz=Vua.
If y € BY(0) is extreme, let z = V= 1y. If 2 = sy+gzforyzeX,

then y = % Vy+ % Vz,and Vy,Vz € BY(0). As yis extreme, Vy = Vz =
y = Vz. Then the injectivity of V' gives us z = y = x, and so z is extreme.
So V is surjective from the extreme points to the extreme points.

(b) Let X be any Banach space such that Ext B{*(0) # @. Let V : X — X®co
be given by Vz = &0, where on = @ ¢y we consider the norm ||z @ y| =
max{||z||, ||ly||}- If e € Ext m, then Ve = e ¢ 0 is not extreme, since
e@0=3(dl)+3(ed(-1)and edl]| =|es (-1)]| =1

(c) Let X = ¢°°(N). Let V € B(X) be the linear map induced by Ve = ez
on the canonical basis. Then V is an isometry. Consider 1 € %; then
1 € Ext B{*(0) and V1 =}, ea;, is not extreme, since V1 = 3 (e1 +V1)+
1(—e1+ V1), and |[eg + V1| = || — e + V1| = 1.

(7.5.20) Prove Exercise 5.6.5 using convexity ideas. That is, show that ¢
and ¢g are not isometrically isomorphic as Banach spaces (Hint:
show that the unit ball of co has no extreme points, while the
unit ball of ¢ does, and prove that extreme points are preserved
by an isometric isomorphism)

Answer. Suppose that v : ¢ — ¢g is an isometric isomorphism. Let us show
that v preserves extreme points in the unit ball. If = € ¢ is extreme in the
unit ball of ¢ and y(x) = tz+ (1 — t)w, with z,w € co, ||z]| < 1, [Jw| <1, and
t € [0, 1], then since « is onto there are zp, wo € ¢ with y(z0) = 2z, y(wo) = w,
and we have y(x) = y(tzo+ (1 —t)wp). As + is isometric, ||wp|| < 1, ||20]] < 1.
From z being extreme we get then that zy = wg, and thus z = w, making
~(x) extreme.

The claim now is that x € c is extreme in the unit ball if and only if
|x,,| = 1 for all n. Indeed, if |z,,| =1 for all n, and = ¢tz + (1 — t)w with ¢,w
in the unit ball, then for each n we have z,, = tz,, + (1 — t)w,,, which forces
Zp = Wy, since x,, is extreme in the unit disk; so z = w = = and z is extreme.
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Conversely, if |z,,| < 1 for some m, let § = (1 — |z,,|)/2 and let 2 be equal to
x with the exception of z,, = z,, + J, and w equal to x with the exception of
Wy, = &, — 0. Then x = (2 + w)/2, and z is not extreme.

In ¢, for any x there exists m (many, actually), with |z,,] < 1. Now
we can repeat the argument from above to show that x cannot be extreme.

(7.5.21) Is convexity of K; used in the proof of Lemma 7.5.147 Where?

Answer. Yes, it is used. The last line in the proof uses that conv({J | K,) =
a(T x Ky x -+ x Kp,). And that is where convexity is used. An element
of conv(J;Z, K’-) a priori not necessarily of the form ), ¢;z; with z; € Kj;
it actually is, but that’s because the K; are convex. Indeed, an element
of conv(|J", K,) is a convex combination of elements of the K, but there
might be more than one elements per set; that is, we have something of the

form
V1 Um
T = (Zhﬂl?a‘) +eet <Z tm,jfl?m,j>,
=1 =1
where t11...,tm,0,, > 0 with ZT 1 tr1 = 1. But, since each Kj is convex, if
we define s, = E;-J;l tr;, then s1,...,s,, are convex coefficients and
V1 " Um ¢
1,j m,j
' (Z 81 1:1,;) et <Z Sm zm’j>7
Jj=1 Jj=1
and the elements in brackets belong to K, ..., K,, respectively, so s is of the

desired form.

(7.5.22) Let X be a TVS, K C X, and z1,22,... € K. Show that

Z 2_kack € convK.
k=1

Answer. Since Z 2% =1 —-2"™ we have that
k=1

m

27 Mxy 4 Z 2 %2 € conv K,
k=1

o0
and it converges to Z 27 kg
k=1
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(7.5.23) Prove Lemma 7.5.14 in a straightforward way, that is without
using the fact that a continuous image of compact is compact.

Answer. Consider a net {z;};, with z; € conv({J/-, K,). Using that the
sets K1,..., K,, are convex, we may write

m m
x; = thrxjr, where t;, € [0, 1], th,« =1, and z;, € Kj.
r=1 r=1
If y € conv U;”:l K, we may write y = o S Spe Yre, With s > 0,
Yre € K,y and 3000 S0 s, = 1. Then, letting s, = Y_,27 s,0 € [0,1] (and
omitting those terms where s, = 0),

b=3e (S20),

=1
where 37" 22 =1, 50 35,2 =t y,y € K, by convexity; and
m  m,
DI ) S
r=1 r=14¢=1

Going back to x; = Y." | t;x ., by compactness of [0,1] and K7, ..., Ky,
we may successively choose convergent subnets {¢;,,}r C [0,1] and {z;,, }x €
KJ, r=1,...,m. Let t, = limyt;,,, v, = limpx;,,, r = 1,...,m. Then

m m
Yo tr = hmk Yo tir =1, and

m
E trx, = hlgn g tjprZjpr = hin Tjy -
r=1 r=1

So the net converges and conv(|J/-, K,) is compact.

(7.5.24) For Hilbert spaces, we proved in Lemma 4.3.4 that given a
closed convex set K and = ¢ K, the distance between x and K
is achieved, and it is achieved at a unique point. The same is
not true for an arbitrary Banach space. Let X = C[0, 1], with
the supremum norm, and let

K={geC[0,2]: /Olg—/Ingl}

Show that K is closed and convex, that dist(0, K) =
that [|g|| > 3 for all g € K.

, and
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Answer. We have that K is closed and convex, since it is the preimage of a
point by a bounded linear functional. Clearly 0 ¢ K. For g € K, we have

1 2 2
1= [o= [ o= [ 1ol <20l (AB.7.4)
0 1 0

S0 ||gllee > % for all g € K.
Now suppose that [|g||cc = 3. Then both inequalities above are equali-
ties. From the last inequality now turned equality,

2
0= [ gl gl
0

As the integrand is non-negative, |g| = ||g]lcc =
(AB.7.4), now turned equality, is now

[Gogef (oo

Looking at the real parts,

Ale—Rw)+AQG+Rw>=Q

As f% < Reg < % both integrands are non-negative, which forces Reg = 35
on [0,1] and Reg = —1/2 on [1, 2]. But g is continuous and so is Re g, making
this is impossible. Thus ||g/|o > 3 for all g € K.

It remains to show that the distance from 0 to K is actually 1/2, that
is, that we can find g € K with ||g|| as close to 3 as desired. The above
reasoning showed that the distance would be achieved by a function that is
1/2 on [0,1], and —1/2 on [1, 2]; of course this would not be continuous, which

is the point. But we can get as close to 1/2 as follows. Let

1

5. The first inequality in

1

1 1 1 1 1

§+5+ﬁ<x—1+;), OSIES].—E
(@)= -s-2f(e-1-1),  1-l<a<i+d

1 1

-1, 1+ <z<2

This g, was constructed as consisting of three segments: namely the lines
joining

1 1 1
)7 (]- + ﬁv _5)7 (27 _5)

(
Th =1 ~ L
en ||gllec =35 +c~ 35+
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7.6. The Cantor Space

(7.6.1) Show that 7, as in the proof of Proposition 7.6.4, is a continuous
bijection.

Answer. It n({gm}) = n({hm}) this means that gi(r) = hy(r) for all k,r.
This says that g = hy, for all k, and so {gm} = {hm}. So 7 is injective. Given
h € 2V define, for each k, g : N — {0,1} by gr(r) = h(r). Then n({gm}) = h
and so 7 is surjective.

For continuity, if {p,} C (2Y)Y and p, = 0, this means that

pe(n)(m) £—> 0 for all n, m.
— 00

Then
1(pe) (nk,r) = pe(k)(r) ——— 0

for all k,r, so n(p¢) — 0. Hence 7 is continuous.

(7.6.2) Let X,Y be topological spaces and « : X — Y a homeomor-
phism. Define o/ : XY — YN by oN({z,}) = {a(x,)}. Show
that o! is a homeomorphism.

Answer. We define (= )N : YN — XN by (o Y)N({y,}) = (o= (z,,)}. Then
Vo (a N =idyw and (™ 1)N o N = id xn, so aX is bijective.

If a net {p;} C X" converges to p € XV, then p;(n) — p(n) for all n.
Then

a(pj)(n) = a(p;)(n) 0

by the continuity of a. An analog computation shows that (a~1)N is contin-
uous, so o is bicontinuous.

(7.6.3) In the proof of Proposition 7.6.2, it is claimed that using v :

7N j—
T — D and the homeomorphic embedding of D into [0,1]2
one gets a continuous injective 7 : T — [0, 1]Y, homeomorphic
onto its image. Write the details to justify these assertions.
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Answer. Let n:D — [0,1] be given by
. a+1 b+1
nativ) = (5775 ).
This map is linear, so it is continuous by Corollary 5.2.5 (alternative, show
that convergence is D is equivalent to convergence of the real and imagi-
nary parts). As 7 is injective and continuous with compact domain, it is a
homeomorphism onto its image by Exercise 1.8.38. So, using Exercise 7.6.2,

Nov:T — ([0, I}Q)N is a homeomorphism onto its image.

N .
Let p: ([0,1]2)" — [0, 1]N be given by p({(sn,tn)} = (s1,t1, S2,t2,...).
Since we consider pointwise convergence in both spaces, p is a continuous in-

jection, and by the compactness of ([O, 1]2)N (by Tychonoff, Theorem 1.8.24)
we get from Exercise 1.8.38 that p is a homeomorphism onto its image. Then

p=ponov:T—[0,1N

is a continuous homeomorphism onto its image.
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Fourier Series and Hilbert Function Spaces

8.1. Fourier Series

(8.1.1) Let f(t) =t, t € [-m, 7). Show that

n

1)k
Sf,n(t)zz( 1) ksmkt.

k=1

Answer. As fis odd, f(0) = 0. For k # 0,

PP B L B 2 s K VY O D LA G DLas
f(k)_%/_,rte R T Somik ik

To form Sy, if we put together the terms with k and —k we get (note that

(1 = (=D
(_1)k+le—ikt (_1)k+1eikt B (_1)k+1 ikt ikt
i(—k) m T w @ e
_1)k+1 _1\k+1
= ( 2{ 2isin kt = 2l ? sin kt.

345
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Thus
_ "~ (—1)k+L sin kt
k=1
(8.1.2) Let f(t) =t*, t € [-m, 7. Show that
2 = 4(— coskt
k=1
Answer. We have -
Flo) = -2 Pa ="
dirpi J_ 3
For k # 0,
by L [T e ke g, 1 2te T 21t
f(k)_mr/_wt e
To form Sy, if we put together the terms with k and —k we get
2(71)ke—ikt 2(71)kezkt B 4(71)19
1) 2 = —z  C0s kt.
Thus N
72 4 coskt
Sf n = ? +
k=1
(8.1.3) Let f(t) =e', t € [—m,n]. Show that
__sinh7 - 2(—1)*sinh 7 (cos kt — k sin kt)
Sranlt) = =5 Jr; m(1+ k2)
Answer. We have .
poy L t 5, sinhw
f(o)_%/_ﬁe dt = ST
For k # 0,
. T ™ ) (1—in)t |™
_ 1 ¢ —ikt g, _ L (1—ik)t g, _ _©
Fk) =5 eend 27r/_7re d=sa—m|
_ (=DE(em—e ™) (=1)Fsinhw  (—1)*sinh7 (1 +ik)
o2r(1 —dk)  w(1 —ik) (1 + k2)
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To form Sy, if we put together the terms with k and —k we get
N , . ) Ve )ikt ikt
f(—k‘)e_zkt I f(k)elkt _ (=1)*sinhw (1 —ik)e (=1)*sinh 7 (1 + ik)e

(1 +k2?) m(1+ k2)
= S (=™ 4 (14 i)e™)
_ (=1)"sinhz

T8 (2coskt — 2k sin kt).

Thus

n
sinh 7 2(—1)*sinh 7 ( cos kt — k sin kt
Spa(t) = STy § 2D sb ).

2
2 — (14 k?)

(8.1.4) Let f : [—m, 7] = C be given by f(t) = sgn(t). Show that

4 N sin(2k — 1)t
Sit) =2 > %k—1
k=1
If available, use graphing software to display St (t) for n =5,

n = 50, and n = 500.

Answer. We have

™ 0 ™
poy L —ikt 5, L —ikt 1 —ikt
f(k) = 27r/ sgn(t)e " dt = 27T/ e "t dt + 2”/0 e "t dt

e—ikt |° e—ikt |™ 1 N 3
=T Torik| T Tomik o 2mik (1= (D" = ()" +1)

2
1 W) i k odd
- - -

Then, as only the odd coefficients are nonzero,

k even

8

Sp(t) = f( = D)l g f(—2k 4 1)e D!
_ = 2 [ (2k—1)t (2k 1)]
Ti(2k — 1)
k=1
= 2 oy, 4 e~ sin(2k — 1)t
= ;7(2k71)2151n(2k Nt = - ;7%71 .

Now, the pictures.
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/< A

m WY
S¢n(t) when f(t) = sgn(t), Syn(t) when f(t) =sgn(t),
n= n = 50

St n(t) when f(t) = sgn(t), n = 500

Another picture, showing St 500(t) more globally:
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i
—
St n(t) when f(t) = sgn(t), n = 500
(8.1.5) Mimicking Example 8.1.7, show that
oo
L=
kt 90"
k=1
Answer. We use f(t) = t2. We have, for k # 0,
fy =L Tkt gy — L p2ibe ’ + 3 ! 2te"kt dt
2 J_ . —2mik 2mik
_ 1o il ol ik " R A
T 2wk € k2 te wk? J_ dt
_ 1 —1kt " _ 2(71)k+2
s el G
—T
Also
A 1 T 2 T
f(O)_ﬁ[ﬂt ="
and . .
2
915 = [ #tae=22
—T
Now (8.3) gives us (putting together the terms corresponding to k and —k,

as they are equal),

5

5 _2W< +Zk4)

2m
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Solving for the series we get

4

o0
ZLJL

B4 90
k=1

(8.1.6) Let m,n € N. Show that, as functions,
cos™t sin" t € span{acoskt + bsinkt : a,b € R, k € N}.

Answer. By Lemma 8.1.2 we have that cos™t sin”t € span{acoskt +
bsinkt: a,b € C, k € N}. Now if
¢
cos" t sin"t = Z ay, cos kt + by sin kt,
k=0
as the left-hand-side is real, we may replace a; and by with their reals parts
and the equality still holds.

(8.1.7) Let
ft) =
-t —r<t<0
Use f and Corollary 8.1.13 to show that there exists ¢ > 0 such

n
sin kx
that ’; -

{”;f, 0<t<m

< c for all n and all x.

Answer. If we show that the series is the Fourier series of a function of
bounded variation, the result follows from Corollary 8.1.13. The function f
is of bounded variation, as it is piecewise continuous on a compact set.

The Fourier coefficients are f(0) = 0 and for n # 0

0 T
Flh) = -2 L“e—iktdt+i/ L;te—iktdt
0

o a2 27
__ [ te~iktqp — 1 /0 ekt dt—i—}/ﬂ ekt dt
i | 1) 4/,
1 teikt|™ 1 ekt 0 1 ekt |™
I I e (R e
(G A T G ) L G D L I
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When we write the Fourier series, the corresponding positive and negative
terms match like

ikt —ikt ikt _ ikt sin kt

2 Tk

e
2k 2i(—k)
Hence, as f(0) = 0,

_le
Tk

(8.1.8) Show that lim,, || D,||; = co.

Answer. We have, since sint < t for t > 0,

s s . l t
1Dall > [ 10l = [T EE 2N g
0 0 2sin 3
T | o 1 (nJrl)ﬂ' .
Z/ sin (n + 3)t gt — / 27 | sint| gt
0 ¢ Jo ¢

(8.1.9) Let f € L'[—m, 7] such that f is even. Show that S¢(t) is of
the form .
Se(t) = Zak cos kt,
k=0
where
1 (7 1 (7
ao = 5- 77Tf(t)dt, ap = — 77rf(t) cosktdt, k>1.

Answer. Using that f is even and the substitution t — —¢,

N

fem =g [ s ra= L[ fenetta = f)
Then
Fk)e™ + f(—k)e ™ = f(k)(e™** + e~ %) = 2f(k) coskt.
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Thus
ekt Z?f cos kt.

/7; F(t) (e + e ™) dt = 2177/7; £(t) coskt dt.

(8.1.10) Let f € L'[—m,n] such that f is odd. Show that Sf(¢) is of

the form -
= Z by, sin kt,
k=1

where .
by, = 1/ F(t) sin kt dt, k>,

Answer. Using that f is odd and the substitution ¢t — —t,
. 1 T . 1 s . R
_ I —i(—k)t - _ _ —ikt -
Jk) = /,,, F)e P ar = - L /,7, F(—t) e dt = — (k).

Then
Flk)e™ + f(—k)e ™ = f(k) (™t — e7*) = 2if (k) sin kt.
Thus -
Sy(t) = Z flk)et + f(—k)e ikt Z 2if (k) sin kt.
k=1

F) = f(=h) _ L/W F(8) (e =€) dt = —z—/ f(t) sinkt dt.

Thus
/ f(¢) sinkt dt.
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(8.1.11) Given f,g € L[, 7], consider the convolution
(fx9)(t)=[| [f(z)g(t—2)dz,

where f, g are considered extended periodically to [—2, 27].

Show that f/*\g(n) =27 f(n) g(n).

Answer. Below, Fubini (Theorem 2.7.12) applies because f,g € L'[—m, 7.

‘We have
Frgn) = / (f *g)(t) e~ dt

o
/ f(@) g(t — ) duw e e~ =) gy

s

— iﬂ/ f(x) e~inT o / g(t — m) e—in(t—z) gy
/ f fzna: dx / g(t) efint dt

= f(n)2mg(n).

(8.1.12) Use the following steps to show that the function

F(t) = %sm [(2’“ +1) |t|} t € [0, 7]
k=1
is in C[—m, 7] and {S},,(0)} diverges.

(a) Show that f is continuous.

Use Exercise 8.1.9 to write S¢( a cos kt, where
7t
k=1

o0

Z] A 2?15

j=1

3w

ap =

and .
Mo = / sin [(Qh + 1)%] cos kt dt.
0
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h n
1
(c) Show that ,;_0 A > > log h and ,;_0 Ai,p > 0 for all n, h.

(d) Conclude that there exists a sequence {n;} such that

Sf,nj (0) — 00,
by showing that
F=1
Stom_1(0) = 22 log 2.

Answer.

(a) The series for f converges uniformly by comparison with >, k% The ex-
tension to [—m, 7] satisfies the same bound, and the extension is continuous
at 0 since f(0) = 0.

(b) We have, using either Dominated Convergence or Fubini,

/ Z—sm 29 —|—1) }cosktdt
2 > 1 g - j3—1 t .
;ZF sin {(22 —|—1)§} cos kt dt
j=1" 70
2 = 1
;ZﬁAkyys,l.
j=1

(¢) We have
Aop = / sin [(2h+ 1)% cos kt dt
o 2

:1/ sin<2h+1+k)t+sin<2h+1fk>t dt
2 /o 2 2

1 1 2h +1
= + — )
2h+2k+1  2h—2k+1  (2h+1)% — 4k2
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When k£ < h this gives us A, > 0 and hence ZZ:O Aip > 0ifn < h.
When n > h,

1 1
22’\“ Zzh+2k+1+ < 2h — 2k + 1

n+h h

1 1
:sz+1+ > 2% + 1

k=h k=n—

n+h

1
= >
il Z hr1 ="

k=n—h
This last estimate also allows us to do
2k+3

QZ’\’“’ 2h+1 Z2k+1 2/2 7dt

k+1

4h+3
= / n dt = log(4h + 3) > log h.
1

(d) Now we have

2171 00
2 1 21
Sf,2j3’1(0) = Z ap = ; Z ﬁ >\k 2h3—1 Z ; ]7 Z )\k,213*1
k=0 k=0 h=1 k=0
> 2 i log(27°71) 27 __1 log 2 00
WJQ m 2 Jj—00

8.2. The Fourier Transform

(8.2.1) Let f € L'(R") and ¢ € R. Show that the Fourier transform
is linear, and that if g(z) = f(cz), then §(&) = I(j" f(%)

Answer. The linearity follows directly from the linearity of the integral.
We have, with the change of variables cx — x,

36 = [ flea)e > 6m) dp = L f (ﬁ).
Rn

lef* 7 \e
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(8.2.2) Let f € L'(R) and such that g : x — xf(x) is also in L!.
Show that f is differentiable and (f)'(§) = —2mig(&).

Answer. The two conditions on f allow us to apply Dominated Convergence
and differentiate under the integral symbol (properly, instead of taking limits
as h — 0 we need to work for sequences {h,}, but the result works for all
sequences and hence allows us to take the limit as h — 0). So

@wo:4mégﬂwfmwmz—%wa

(8.2.3) Let f € Ll(IAE{) differentiable with f’ € L'(R). Show that
f(&) = 2mig £(S).

Answer. Integrating by parts,
PO = [ F@eede=2mic [ fla)em da = 2mie f(6)
R R

(8.2.4) Let f,g € L'(R™). Show that
Fx9(©) = f(©) 46
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Answer. The fact that both f,g are in L'(R") allows us to use Fubini’s
Theorem. Then

Frale) = /Rn(f *g)(w) e 6 do = / Flx — 1) gly) e 2462 dy do

n JRn

= / fla—y)gly) e ™ da dy
n Rn

/ Rf(x—y e~ 2mHE) dg g(y) dy

e 2mHEHY) d g(y) dy

Il
%\\\
\\

o 2mi(€,7) dz g(y) e 2mi&y) dy

(&) gly) e 2™ dy

*’»

I
>
—~
7Y
—
>
—
I
~

8.3. Hilbert Function Spaces

(8.3.1) Show that if a € ¢3(N) then f =), a,2™ is analytic on D.

Answer. For each z € D the series converges, for

i > 1/2 , X 1/2 2™
| S ol s () (S ) <l 725
n=m n—k k=m

The estimate shows that the convergence is uniform in any proper subdisk of
D. This guarantees that we can differentiate term by term, and hence f is
analytic.
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(8.3.2) Show that if f,g € B,(D) and f = >, an2", g = Y, bp2",
then

(foobp = 22l

n=0

Answer. Since |z| < 1 for all z, the uniform convergence allows us to write
— 1 _
g) = Z anbm, - /D 2"z dz.
n,m

Assume without loss of generality that n > m. When n > m, 2"z™ =
2™ |z|™ and so if z = re® then z"2™ = r*t™ =Mt Hence

1 1 2 1
— / SMEM 1y — 7/ / ,,,n—i—m—i—l ei(n—’m)t drdt =0,
TJp TJo Jo

since the integral of the exponential is zero. When n = m we get

1 1 2m 1
= / |2]*" dz = f/ / 2t e dt = ——
™ Jp T Jo 0

(8.3.3) Show that the Bergman space is a Hilbert function space (that
is, complete and point evaluations are bounded), and that the
set {2"}22 , is orthogonal and total.

Answer.
We have

(2", 2™ p = l/ 2"z dm(z)
m™Jp

27 1
_ l rn+7n+1 eit(n—m) dr dt = 2 )
™t Jo n+m+1 """

If (f,z")p = 0 for all n, then f =0, and so {z"} is orthogonal and total.
Given z € D and f € L2(D), for any r € (0,1) Cauchy’s Formula gives

(reft jett
27T’/T wfz 271"/ et t‘ (8.1)

S%o (e nw<¢*(/|< apa)” s
(8.3)

us
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Squaring both sides, multiplying by r, and integrating from 0 to 1, we get
£GP <am [ 17 = amF .
D

So z — f(z) is bounded for each z € D.
It remains to check that L2 (D) is complete. If { f,, } is a Cauchy sequence
in L2(D), then by the above estimate

[fn(2) = fm(2)| < Am || fn = finll -

So the sequence is uniformly Cauchy, which guarantees that the limit exists
and it is analytic and in L?(D). The only non-obvious part of the last sentence
is that the limit f is square integrable. We have

£) = Fn)] =1 | (=) = f(2)] < Linsup o = fnll

Choosing m sufficiently big, we can make the left-hand-side as small as we
want. Now we can do, using Fatou’s Lemma,

1= Full = % [ 1) = fule)dim = L [ timint [£(2), = f () di

< liminf ||, — f — m|?

and this goes to zero with m.

(8.3.4) Let p € [1,00], and consider the corresponding Hardy space
HP (D), that is the space of analytic functions f(z) = ", an2"
on the disk, such that a € ¢P(N). Show that ||f]| = lirri Il frllp

r—

is a norm, and that H?(D) is complete with that norm.

Answer. By assumption lim,_,q || f||, exists.
We do p < oo first. Suppose that ||f|| = 0. This means that

/ " fret)Pdi = 0

for all » € (0,1). Let z € D. Choose any r with |z2| < r < 1. By Cauchy’s
Integral Formula,

|f(z)|:’271ri T% 2#’/ e

1 " it
Sm[ﬂ|f(re )| dt

(2m)V/ |
27 (r — |z\

[Frllp =0
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So f = 0. When p = oo, if ||f|| = 0, this means that ||f,||cc = 0 for all
r € (0,1). Then ‘
|f(re™)] < [ frlloo-

By the maximum modulus principle, |f(z)] < [|fr]lo as long as r > |z|.
Taking the limit as r — 1, we get that |f(z)| =0, so f = 0.
We have [[Af[| = Tim 1 [Afr]| = [Al[|f]]. And

1+ gll = T £, + gellp < lim Il + Tim llgelly = 171+ gl

It remains to show that HP is complete. Suppose that {f,} C HP is
Cauchy. The same estimates we used above show that there is ¢ > 0 such
that |f(2)] < c||fr|lp as long as r > |z|. In that situation,

|fn(2) = fn(2)| < cll(fn = frm)rllps
and so {f,(z)} is uniformly Cauchy in D and thus convergent to an analytic
function f. As we can do this for any r < 1, we get that f € A(D). And
because the convergence is uniform in rID for any r, we have that || f||, =
limy, [|(fr)rllp- From [|[foll = Ifmll] < | fn — fill, we get that the number

sequence {||f»||} is Cauchy, and thus convergent, say ||f.|| — ¢’. Fix ¢ > 0.
Choose n such that || fr — (fn)rll, < e and ||| fn]| — | < e. Then

1 fello = < T < el = Nl [+ T lle = 1 fall T+ Il = €]

<2+ [ (fa)rllp = [1fnll]-

It follows that
limsup ||, ]}, — ¢ | < 2,
r—1

for any € > 0, showing that lim,_,q || f, ||, = ¢/, and f € HP.

(8.3.5) Show that D(D) is a Hilbert function space, and find its repro-
ducing kernel and its feature map.

Answer. Let us first determine the inner product. Given f(z) = > anz"™
and g(z) =), bp2",

= bo S b l n—1_m—1 _ 7 - anbn
(f,9) = agbo + Z anbm /Dz z dz—aobo—f—z —

™ T
n,m=1 n=1

We have f/(z) = > 77 na,z""*, so

£ = Y anz = 70)+ 30 " < (1 k),

n=1
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where

sn—1,.n

ho(w) =1+ *—" =1 —%log(l—éw).
n=1

n

(8.3.6) Let H be a Hilbert Function Space over X with reproducing
kernel k, and Ho C H a closed subspace. Show that Hg is a
Hilbert Function Space over X and that its reproducing kernel
if given by ko(z,y) = (P(kz), P(ky)), where P is the orthogonal
projection onto Hj.

Answer. The elements of Hgy are in H, so points evaluations are bounded.
Given x € X, the Riesz Representation Theorem guarantees that there exists
k! € Ho such that g(x) = (g,k.) for all g € Ho. We also have, that f(z) =
(f, k) for all f € H. As Pg =g for all g € H,

<gvklz> = g(z) = (Pg)(x) = (Pg, kz) = (g, Pkz).
This occurs for all g € Ho, hence kI, = Pk,. And then
kO(xay) = <k’;7k/> = <PkIaPky>'

Y
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Bounded operators on a Banach space

9.1. Linear operators and continuity

(9.1.1) Show that if T,.S € B(X) and both T'S and ST are invertible,
then both T and S are invertible. Find an example where T'S
is invertible, but neither 7" nor S are.

Answer. Such an example is discussed at the beginning of Section 6.2.
Namely, let X = ¢2(N), and

Tz = (x9,23,...,), Sz = (0,21, 2, ..).
Since ||Tz| < ||z|| and ||Sz|| = ||z| for all z, we have T, S € B(X). Also,

TS =1, but ST # I (T is not injective!). So neither T nor S are invertible,
even though T admits a right inverse and S a left inverse.

(9.1.2) Show that if dimX < oo, then any linear 7' : X — X is
bounded.

363
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Answer. Because dim X < oo, all norms are equivalent (Theorem 5.2.2).
Counsider the norm p(z) = ||| + ||Tx||. Then there exists ¢ > 0 with ||z| +
ITall < clle]l. Thus |Tz] < (c — D]l

(9.1.3) Show that if dimranT < oo, it is not necessarily true that T
is bounded.

Answer. Using the ideas at the end of Section 4.5, we may construct an
unbounded linear functional f : X — C. Then Tz = f(x)zo is a rank-one
operator that is not bounded.

(9.1.4) Let X be a normed space and A € B(X) invertible. Show that

- (| Az|]
Al A7 = sup { o @y € &, el = iyl }-

Ayl
Answer. For any x,y with ||z|| = ||y|| we have, with z = Ay,
[Az]| _ [[A=]| flyll _ Az] A" 2] -1
= = < A A .
[l = el DAl = el g = AT
Now fix £ > 0. Then there exists x, z such that
HA%‘H A~ 2| -
> (Al - > [|A7TH —e.
] Il
By rescaling z if needed, we may assume that |A71z| = ||z||. Withy = A1z,
[Az|| _ [ A=]| [|A” 2]

gl = ey e > (A= AT =),

As ||z|| = ||ly|l and this can be done for each e > 0, this shows that

_ Az
Al A~ =sup { ol = ol .

(9.1.5) Let X, Y be normed spaces and T : X — Y linear, injective,
and such that T'(B{¥(0)) = BY(0). Show that T is isometric.

Answer. If x € X with ||z|| <1, then Tz € By( ), so ||[Tz|| < 1. This shows
that T is bounded and ||T|| < 1. Fix z € X with ||z = 1. If |[Tz| < 1,
let ¢ = 1/||Tz|| (note that Ta # 0 by the injectivity of T'). Then ¢ > 1 and

|T(cx)|| = 1. But |jcz|| = ¢ > 1, so cx ¢ B;¥(0); and by hypothesis there
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exists ' € Bi¥ (0) with T2’ = T(cx), contradicting the injectivity. It follows
that ||Tz|| = 1. Now for arbitrary nonzero z,

7z = e |7 (5 )| = Dl

(9.1.6) (this exercise does not require sophisticated ideas but it is far
from trivial; we include it here because it is where it corresponds
topic-wise, but it likely requires more experience with operators)

Let X be a Banach space and T € B(X). We define

numbers
a(T) = min{k € N: ker T* = ker T**1}
and
d(T) = min{k € N : ranT"* = ran T**1}.
(a) Show that if both a(T") and d(T) are finite, then they are
equal.

(b)If n = a(T) = d(T), show that ranT" is closed and that
H=ranT" @ kerT".

Answer. Let m = a(T), n = d(T). We always have the inclusions
kerT C kerT? C kerT® C - C ker T™

and
ranT DranT? DranT> D --- D ranT".

(a) Note that ker TP = kerT™ for all p > m. Indeed, if z € ker T™%2 \
ker T+, then T™+2z = 0, while 72 # 0. Then Az € ker T™*1 \
ker T a contradiction. Similarly, ranT? = ranT™ for all p > n; indeed,
if y € ranT"*then y = T"*!z; and T"2z € ranT™ = ranT"*! so T"z =
T+ for some w and then y = T 2w € ran T 2.

Suppose that m > n. Then

ranT” =ranT"t"  and kerT™ = ker 7™,

Let 2 € kerT™. We have T™2 € ranT™ = ranT™t!, so there exists
w with Tz = T lw. We have 0 = T™Hlg = T™+2w. Thus w €
ker %2 = ker 7™, which means that 7™ !z = T™w = 0. This shows
that ker 7™ C ker 7! and hence they are equal, a contradiction. We
have shown then that m < n.

Now suppose that m < n. Let x € ranT™ \ ranT™!. Let w € X

such that x = T™w. We have T™ Ty — T™w # 0 for all y € X; that
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is, Ty —w & kerT™ for all y € X. As kerT™ = kerT™, we get that
0# T (Ty —w) = Ty — T"w. But T"w € ranT" = ranT"*1, a
contradiction. Thus m = n.
(b) We note first that ran 7™ Nker T™ = {0}. If x = T"w and 7"z = 0, then
T?"w = 0. As ker T?" = ker T™ we get that 0 = T"w = x.
Fix € X. Since ranT" = ranT?" there exists z € X with T"z =
T2z, Let w=x—T"2. Then T"w = T"x —T?"z = 0 and so w € ker T™.
Sox=T"z+w with T"z € ranT"™ and w € ker T™. Thus
X =ranT" @ ker T".

Now we get that ranT™ is closed by Proposition 6.3.10.

(9.1.7) Show that (9.2) does indeed correspond to the operator-block
matrix form of ST

Answer. We have

(TS)i; = P.TSP; = ( zn: PkTPh) ( Zn: PgSPj)
=1

h=1

=Y PTP,SP; =Y TinSh;.
h=1 h=1

(9.1.8) Prove Proposition 9.1.3.

Answer. If TX, C Xy, then Ty, = P,TP; = 0. Conversely, if T5; = 0, then
TPix=T1Pix+ T Pix =T 1 Pix C &;.
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9.2. Banach Algebras and the Spectrum

(9.2.1) Prove that for every a € A, the resolvent p(a) is open.

Answer. By definition of spectrum, if A is not unital we need to work on the

unitization of A. So we assume without loss of generality that A is unital. Let

A € p(a). Then a—AI € GL(A). For any p € C with |u—A| < ||(a—XI)~Y[ 71,
la = AL —(a = pl)|| = [p = Al < [[(@ = AD) 7|7

By Proposition 9.2.2, a — uI € GL(A), so u € p(a). This shows that every

A € p(a) is interior, so p(a) is open.

(9.2.2) If A = M,(C), and a € M,,(C), show that the spectrum o(a)
consists of the eigenvalues of a.

Answer. For a — Al to be non-invertible, an equivalent condition is that
there exists nonzero v € C™ with (A — AIv = 0; that is, Av = Av. So A is an
eigenvalue precisely when A — A is not invertible.

(9.2.3) Let a € £°(N). Show that o(a) = {a(n) : n € N}.

Answer. If A = a(m), then (a — \)b has zero as its m'" coordinate, so a — A
cannot be invertible. Thus {a(n): n € N} C o(a), and as o(a) is closed,
{a(n): n e N} C o(a). Conversely, if A & {a(n): n € N}, then there exists
d > 0 with |a(n) — A] > 6 for all n. Then 1/|a(n) — A| < 1/0 for all n, which
shows that b(n) = 1/(a(n) — A) gives b € £>°(N), and so a — A is invertible.

(9.2.4) Let f € L>*°(X, X, ). Show that o(f) = essran f.

Answer. We can write the essential range F of f as
E={zeC: u({z: |f(z)— 2z <e}) >0 foralle > 0}.
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Suppose first that A & E. Then there exists € > 0 such that |f(z) — A > ¢
a.e. Thus g = ﬁ € L>(z), as |g| < L ae. It follows that f — A has inverse
g, and so A € o(My).

Conversely, suppose that A € E. Then u({|f — A\| < 1/n}) > 0 for all
n € N. Let h,, = lg5_xj<1/n}- We have h,, € L>(X), ||k, = 1 for all n,
and ||(f — A)hn|| < 1/n — 0. This shows that f — A is not invertible: if we
had g € L>*(X) with g(f — A) =1, then

g
1= [l = llg(F = Mhall < gl 1(F — Mha < 120
for all n € N, a contradiction. Thus A € o(f).

(9.2.5) If T is compact Hausdorff and A = C(T'), show that for any
f € A we have

Answer. Note that f(T) is compact. If A & o(f), then there exists g € C(T)
with g(f —A)=1. Forany t € T,

1

t)— AN = —— >1|g].

£0) =M = >

So A & f(T).
Conversely, suppose that A € f(T'). So there exists t € T with A = f(¢).
If f — X had an inverse g, we would have

L=g®)(f(t) =) =0,

a contradiction.

(9.2.6) Let T be a locally compact Hausdorff space, and A = Co(T).
Show that the unitization A of A is C(Tw), the continuous
functions on the one-point compactification of T'.

Answer. By the uniqueness of the minimal unitization (Proposition 9.2.21)
it is enough to show that C(T') satisfies that there exists an isometric mono-
morphism 7 : Co(T) — C(T) such that 7(Co(T)) is a maximal ideal.

Let 7 : Co(T) — C(T) be given by w(f)(t) = f(t) for t € T and
7(f)(00) = 0. The fact that f € Co(T) makes 7(f) continuous on C(T).
Because 7 is given by pointwise evaluation, it is a homomorphism. And
[ (NI = max{0,{[f ()] : t € T}} = max{[f(t)] : t €T} = [f], somis
isometric. Since 7(f) = {g € C(T): g(o0) = 0}, 7(Co(T)) is an ideal. And
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for any g € C(T) we have g — g(co)1 € 7(Co(T)), s0 g € g(c0)1 + 7(Co(T));
hence the codimension of w(Cy(T)) is 1.

(9.2.7) If T is locally compact Hausdorff and f € Cy(T'), show that
a(f) = f(T) = {0} U f(T).

Do this is two ways: directly, and by using characters.

Answer. Fixe > 0. There exists K C T, compact, such that | f| < e on T\ K.
As f(K) is compact, we have that f(T) = f(K)Uf(T \ K) C f(K)UB:(0) C
f(T)U B.(0). Then

FT) < [V AT UBL(0) = f(T) U (] B=(0) = £(T) L {0}

e>0 e>0

We also have 0 € f(T), so f(T) = f(T) U {0}.

Now for the spectrum. By definition of the spectrum we need to work
on the unitization of Cy(T"), which is C'(Ts) by Exercise 9.2.6. So we consider
f € C(T) with f(o0) = 0.

Using characters: by Proposition 7.4.7 and Proposition 9.2.24 we have

o(f) ={f(t): t e TyU{0} = f(T)U {0} = f(T).

Directly: Exercise 9.2.5 gives us

o(f) = [(Ts) = f(o0) U F(T) = {0} U f(T).

This also gives the equality {0} U f(T) = f(T).

(9.2.8) Let R be a unital ring, and ay,...,a, € R. Show that if
ara; = ajay for all j, k then aq - - - a,, is invertible if and only
if each a; is invertible.

Answer. Suppose that a -- - a,, is invertible. Because we can commute the
elements, it is enough to show that a; is invertible. Let b be an inverse to
aj ...Gm. So baj ...a, = 1, which we may rewrite as (bas ...am,)a; = 1, so
a1 has a left inverse. Also ai...a,,b = 1, which shows that a; has a right
inverse. Then a; is invertible, as the existence of a left inverse ¢ and a right
inverse d guarantee that they are equal and thus an inverse to a;: if ca; =1,
ard =1, then
c=cl =caid=1d = d.

For the converse, if ay, . .., a,, are all invertible, then a,! - - - afl is an inverse
for a1 -+ am,.
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(9.2.9) Prove Proposition 9.2.2.

Answer. Assume first that a = 1. As ||1 — b|| < 1, the series > po (1 — b)*
converges: indeed, the tails satisfy

1-p|™
(1—b)k H< 1 plf < L2t =0m
| S Z =8 < =

k=m

Then, with ¢ = Y72 (1 — b)¥,

oo

c(1-b)=1=be=> 1-bF=c—1,

k=1
showing that ¢b = bc = 1, and so b is invertible with b= = ¢
For arbitrary a now,

11 —a='bll = a~ (a =) < [la™*|[ fla— bl <1.

By the above, a='b is invertible, so b = a(a~'b) is invertible.

(9.2.10) Complete the proof of Proposition 9.2.23 by showing that if
J C A is maximal and 7(a) is the unique scalar such that
a+J =7(a)lq+ J, then 7 is a character.

Answer. Froma+b+J=71(a+b)lg+Janda+b+J=a+J+b+J=
(t(a) + 7(b))Ia + J, the uniqueness gives 7(a + b) = 7(a) + 7(b). Similarly,

T(ab)lg+J =ab+J = (a+ J)(b+J)
= (t(a)Ia+ J)(T(O) 4+ J) = 1(a)7(b)1a + J,

and then the uniqueness gives 7(ab) = 7(a)7(b).

(9.2.11) Use Lemma 9.2.20 and Proposition 7.4.13 to give an alternative
proof of Proposition 7.4.6.

Answer. Let ¢ : C(T) — C be a character. We know from Lemma 9.2.20
that ker ¢ is maximal. In particular, it is closed. By Proposition 7.4.13 there
exists a closed Ty C T such that kero = {f : f|lr, = 0}. Because ker ¢ is
maximal, necessarily T} is a singleton, for otherwise we can remove a point a
get a larger ideal. Thus Ty = {to} for some ¢ty € T. As f — p(f) € ker ¢, we
get that f = o(f) + h, where h € ker ¢. This means that h(tg) = 0, and so

f(to) = o(f) + hito) = w(f).
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(9.2.12) Consider the Banach algebra A = ¢*°(N) and K C C compact.
Show that there exists a € A with o(a) = K.

Answer. Let Q = {¢gn} be dense in K (use Exercise 7.4.5, or the fact that
C is separable and metric together with Proposition 1.8.5). Let a € A be
an = qn- By Exercise 9.2.3,

o(a) =Q =K.

(9.2.13) Show that (M, (C)) = @.

Answer. Let 7 : M,(C) — C be linear and multiplicative. Consider the
canonical matrix units {Ey;}. We have, for k # j,

7(Ek;j) = 7(ErrEr; Ejj) = 7(Ejj Epe Erj) = 7(0) = 0.
And
T(Exr) = 7(Ex;Ejx) = 7(Erj)T(Ej,) = 7(0)7(0) = 0.
So the only linear and multiplicative map M,,(C) — C is the zero map.

(9.2.14) Let A, B be unital Banach algebras and 7 : A — B a unital
homomorphism. Show that, for any a € A, o(7(a)) C o(a).

Answer. Let A € C\ o(a); then there exists b € A with b(a — A 4) = 4.
Thus

m(b)(mw(a) = AMla) = m(b(a — Ma)) = La,
so A € C\ o(n(a)). Thus C\ o(a) C C\ o(n(a)).

(9.2.15) Consider the Banach algebra A = M,,(C). Fix e > 0 and define

o100 --- 0 o010 --- 0
001 -0 001 --- 0
e T - K
000 --- 1 o0 o0 --- 1
000 --- 0 e 00 --- 0

Show that o(4,,) = {0}, 0(B,) = {w: w" = ¢}, and ||A, —
B,| =e.
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Answer. The matrix A,, is upper triangular, so det(A, — AI,) = (=1)"A"
and hence o(A,) = {0}. For B,, calculating det(B,, — AI,,) along the first
column we get
det B,, = (—1)"A\" — (=1)"e.

Thus the characteristic polynomial of B, is A" —¢, and so 0(B) = {w: w" =
€}. As for the norm, A,, — B, = ¢ E,1, and so |4, — B,|| = ¢ ||En1]| = €.

An alternative way to find the spectrum of B, is to look at the eigen-
vectors. If B,x = Az, this gives the equalities

To = ATy, T3 = AT, * Tp = ATp_1, ET] = ATp.

We cannot have A = 0, for it would force z; = 0 for all k. Similarly, we cannot
have z; = 0, for it would propagate to x; = 0 for all k. So we may assume
without loss of generality that z; = 1, and then 2 = A*~! and A" = ¢.

(9.2.16) Let £ > 0. Use Exercise 9.2.15 to construct operators

4,BeB(Pcr)
n=2
such that
IlA- Bl =, o(A)={0}, spr(B)>1-c.

Answer.
Fix m € N such that 1 —e'/™ < e. We construct, acting on the Hilbert
space H = @, C", the operators

P SR

n=2 n=2
Then
|A— B =sup |4, — B[ = ¢,
o(A) = UU(An) = {0},
and

U(B):Uo(Bn):U{w: wr=¢, n=1,...,m}.

In particular €'/™ € ¢(B) for all n, which implies spr(B) > 1 — ¢.
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9.3. The Riesz Functional Calculus

(9.3.1) Let X be a vector space, T : X — X linear and A € C, z €
X such that Tax = Az. If (2 — T) is invertible, show that
(zI —=T) lz=(2— )1z

Answer. Note that zI—T invertible implies that z # A; for ker(AI—T") # {0}.
We have (21 — T)x = zo — Tx = zo — A\v = (2 — \)z. Applying (21 — T)~!
to both sides and multiplying both sides by (z — \)~! we get

(I =T) te=(z—\)"ta.

(9.3.2) Let A be a Banach algebra and a € A. One can define the
exponential exp(a) by functional calculus,

exp(a) = % / e (2I —a) tdz
8!

™

for some curve « that contains o(a). One can also define the
exponential via the usual series

= a
Z;?
a

Show that the series makes sense in A, and that exp(a) = e®.

Answer. We have

Z lla ’“II < Z Hallk.

This last sum is a tail for the series of the usual exponential, so the partial
sums for e® are Cauchy in A. As A is complete, the limit e* exists.

>

k=n
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Let pn(2) = > p_o %7 On any bounded set p,(z) — e* uniformly. As
the functional calculus is a continuous homomorphism,

exp(a) = 2;/ lim p,(2) (2 —a)"'dz = lim L/pn(z) (21 —a)tdz

n—00 n—o0 2mi

(9.3.3) Let A be a Banach algebra and a,b € A.

(a) Show that if a,b commute (that is, ab = ba) then 2> =
evel.

(b) Show an example where e?*? £ ¢¢?

Answer.

(a) When ab = ba, the proof of e?*? = e%e® runs exactly like the numerical
case (Exercise 1.5.6).

(b) Let A = M5(C), and
2

10 b [0 1
“=lo ol “lo ol
From a* = a,

- 0
eazlg—&—z:%:[g—&—(e—l)a: {8 1].

k=1
Similarly (a +b)? = a+b, so

b —1
—12+2:a+ =1+ e—l)(a—l—b):[g 61 ]

And b =0, so

Thus

(9.3.4) Prove Theorem 9.3.5.
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Answer. By construction, pr(A) = 0 for all A € o(7T). Then, for a simple
curve 7 that surrounds o (7)),
1 _
pr(T) = 5~ /pT( ) (214 =T) " dz =0

by Proposition 9.3.6, since pr agrees with 0 on o (7).

(9.3.5) Let X be a Banach space, S,T € B(X), and f € H(T). Show
that if ST = T'S, then SF(T) = f(T)S.

Answer. From (z1—-T)S = S(zI—-T), by multiplying both left and right with
(2I-T)~! we get that S(21—T)~! = (2I-T)~1S. Then, since multiplication
by an operator is continuous, we have

- 2Lm/f(z) S(zI —T) " dz

2m/f ) (2] = T) 'S dz = £(T)S,

Another way to prove the assertion is to note that as f(z) = lim, p,(2)
uniformly for polynomials p,, we have that f(T") = lim,, p,(T), and then

Sf(T) = lim Spy(T) = lim p,(T)S = f(T)S,

where the commutation Sp, (T') = p,(T)S is straightforward from commuting
S with T repeatedly.

1 0 3
(9.3.6) Let T = |2 1 2|. Find matrices A and B such that A* =
0 0 2

T3, and T = eB. Are they unique? (This evercise is not really
related to Riesz Functional Calculus)

Answer. The characteristic polynomial is pr(\) = (A — 1)%(A — 2). We have
that, seeing it in block form,
T= [X y} .

0 2
If we put
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M z+w
then VIW = {0 1 ] So
VTVl — [)0( Y+ (22— X)z]

We want y + (2 - X)z=0. As (2 - X))~ ! = B ﬂ,we get that z = {:g}
We have
0 2

This allows us to answer the question by answering the questions for X and
for 2, by assuming—before conjugating back with V~! and V—that

S|

VTVt = [X 0} .

0 a 0 b
so » 5
0 et 0
4 _ A7 B _
A_[O aé}’ € _{O ebl’}’

We need as to be a fourth root of 8, and by = log2. The characteristic
polynomial of X is px(\) = (A —1)2. So if eP* = X, this means that for
each eigenvalue pq, o of By we have by the Spectral Mapping Theorem that
e*i = 1. So both eigenvalues of By have to be zero. This means (thinking
of the Jordan form) that B; = SE;5S~! for some invertible matrix S. Then
X =B = SeFr28-1. And since E%, = 0,

X=eBr =8eP1287 = §(I+ Ep)S ' =1+ SE;,S ' =1+B;.
So we need By = X — I = 2FE5;. That is,

0 0
n=l )
This means that the only possibility for By such that ePo = VTV~ is

0 0 O
Bp=12 0 0
0 0 log2

and so the only possibility for B such that e = T is

1 0 3o o o 1 0 -3
B=V'B,V=1|0 1 8|2 0 0 2 1 -8
0 0 1[0 0 log2] |0 O 1
[0 0 3log2
=12 0 8log2—6
0 0 log 2
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. . b .
For the equation A} = X3 if A? = {CCL d] then the equality (A7)* = X?

a*+bc bla+d)] 1 0
[c(a+d) d2+bc} o {6 1} '

From c¢(a + d) = 6 we know that a 4+ d # 0; then b(a + d) = 0 implies b = 0.

Thus a®> =d?> =1,and as a +d # 0, a = d = £1. Then ¢ = +3, depending

on the sign of a. So we get two possibilities for A7, namely

2,110
A=t [3 o).
Repeating the argument for the square root of this we get
1 0
A== {3/2 1} ‘
Then Ag such that Aj = (VTV=1)3 = VT3V ~1is
a 0 0
Ay = [3a/2 a 0 |, ae€{— 1,1}, we{l,—-1,i,—i}.
0 0 2Y%w
And then
[1 0 3 a O 0 1 0 -3
A=V1AVv =10 1 8 |3a/2 a 0O 0 1 -8
00 1[0 o0 2Y%w] [0 0 1
10 2Y%x3w—3a]
= [3a/2 a —27a/2+2%/%0],
0 0 214w

fora € {—,1,1} and w € {1,—1,4,—i}. So there are eight possibilities for A.

(9.3.7) Let X be a Banach space and T' € B(X) such that ¢(T) is not
connected.

(a) Show that o(T") = K7 U K, with K7, Ko compact and dis-
joint.
(b) Show that there exist closed subspaces X;, Xy C X such

that X = &1 & X and SX; C X} and SXy, C Ay for all
S € B(X) such that ST =T'S.

(c) Denote Ty = T'|x, € B(X1) and To = T'|x, € B(X3). Show
that O'(Tl) = Kl and O'(TQ) = KQ.
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(d) Prove that there exists S : X — X} @ Xs, invertible, with
T=SToT)S.
Answer.

(a) By assumption there exist disjoint open sets V, W C C such that o(T') =

(Vno(T)u(Wno(T)) with both components nonempty. Let K; =
VNno(T), Ko =WnNo(T). Let {V;} be an open cover for K;. Then W
and the {V}} form an open cover for o(7T"). So there exist ji,..., jm such
that K; C Vj, U---UYVj it follows that K; is compact. Similarly, Ks is
compact.

(b) The function 1y is holomorphic on the open set VU W. As both compo-

nents are nonempty, 1y takes both values 0 and 1 on o(a). Then 1y (T')
is a projection with o(1y(T)) = 1y (o(T')) = {0,1}, so it is proper. Simi-
larly, 1y (7T') is a proper projection. As 1y (T)+ 1w (T) =1 on VUW, we
have that 1y (T)+ 1w (T') = Ix (this is contained in (ii) in Theorem 9.3.2).
Now let X1 = 1y (T)X, Xy = 1w (T)X and we have X; + Xy = X, for any
x € X can be written as x = 1y (T)z + 1w (T)z. The sum is direct, for if
r € X1 N Xy, then

We have that X; is closed, for if {z,} C A} is Cauchy, then x,, — z for
some x € X since X is Banach; and since 1y (T') € B(X) is bounded,
1y (T)x = lim, 1y (T)x, = lim, , = x and hence x € X. Similarly, X,
is closed. From Proposition 6.3.9 we get that this sum is topological. If
ST =TS8, then S1y(T) = 1y (T)S by Exercise 9.3.5. For any x € &},

St = Slv(T)J} = 1\/(T)S.T e A
So SX; C X;. Similarly, SX; C Xs.

(¢c) Let w € C\ K;. Them the function g(z) = w — z is nowhere zero on

K1, and by compactness there exists ¢ > 0 with |g(z)| > ¢ on K;. Then
g(z) # 0 on an open set that contains K7, which guarantees that 1/g €
H(T1). Then (1/g)(T) € B(Xy) is the inverse of ¢(T) = wl — T and
so w ¢ o(Ty). Conversely, suppose that w € K;. As w € Kj, the
operator wly, — T|x, is invertible by the argument we just did. If we
had that wly, — T|x, is invertible, then wl — T would be invertible by
Exercise 6.3.10, a contradiction. Thus w € o(T1). An analog argument
shows that o(T5) = K».

(d) Let S : X — X &1 Xs be given by Sz = (1y(T)x, 1w (T)x). The operator

S is bounded, for
15| = [11v (T)=]| + 1w (T[] < ([I1v () + 1w (T)]]) 1]l
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Tt is injective, for Sz = 0 implies that 1y (T)z = 1w (T)x = 0, and then
z = 1ly(T)x + lw(T)x = 0. And it is surjective, for if z; € X; and
o € Xy, then (z1,z2) = S(z1 + x2). By Theorem 6.3.6, S is invertible.
We have

STz = (1y(T) T, 1w (T)Tx) = (T1y(T)z, Ty (T))
= (T11y(T)z, Tolw (T)x) = (T1 © Ty)Sw.
Thus ST = (T1 & T»)S. As S is invertible, ' = S™1(T1 & T»)S.

(9.3.8) Let A be the Banach algebra C(X) for compact Hausdorff X.
Let f € Aand g € H(f). Show that g(f) =go f.

Answer. Since g is holomorphic, it is a uniform limit of polynomials. As
the holomorphic functional calculus is continuous, it is enough to show that
p(f) =po f for any p € C[z]. And by linearity on both sides it is enough to
assume that p(z) = 2* for some k. Now (po f)(x) = f(z)* = p(f)(z). Thus
pof=p(f)=T(p).

(9.3.9) Prove Proposition 9.3.8. ]

Answer. The matrices T} are exactly what comes out of applying an r-fold
version of Exercise 9.3.7. The direct sum 77 & - - - @ T, can be seen as blocks
in the diagonal of T. We can form S =51 ® .- ® 5.

For each j, Nj = T; — AjI,, has spectrum {0}. This means that the
characteristic polynomial is p,;(z) = z"/. Then N;-lj = pn,;(N;j) = 0 by
Cayley—Hamilton (Theorem 9.3.5).
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9.4. Adjoints

(9.4.1) Let X, Y be Banach spaces and T' € B(X,)). Show that if T
is bounded below, then ran T is closed.

Answer. Let {y,} be a Cauchy sequence in ranT', with Y,, — y (this y exists
since Y is Banach). For each n there exists z,, € X with y,, = T'z,,. Since
Zn — Zm| < c|Txn — Tzm|| = cllyn — ymll

and the sequence {y, } is Cauchy, it follows that the sequence {x,,} is Cauchy.
As X is Banach, there exists © € X with z,, — x. Since T is bounded,
Tr =limTx, =limy, =y.

(9.4.2) Let T € B(X). Show that the map T +— T* is linear and
anti-multiplicative.

Answer. We have, for g € Y* and z € X,
(T + aS) gl(z) = (T + aS)z) = g(Tx) + ag(Sz) = (T" + aS™)g)(x).

As this holds for all x and all g, we get (T + aS)* = T* + aS*.
T eB(X,Y)and S € B(Y, Z), then for g € Z*

[(ST)"g)(x) = g(5Tx) = (57g)(Tx) = (T"S"g)(z).
So (ST)* = T*S*.

(9.4.3) Given T € B(X,Y), show that its adjoint T* is bounded, and
that [|7[| = |[T].

Answer. Given g € y*, we have
[T*gll = sup{|T"g(z)| : =€ X, =] =1}
=sup{|g(Tz)|: € X, |z =1}
< |IT[Hlgll,
so T* is bounded and || T*| < ||T.
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Given z € X, we have (using Corollary 5.7.7)

ITz]| = max{|g(Tz)| : g€, llgll =1}
= max{[T"g(z)|: g€, [lg =1}
<7 ],

so [T < 1 T]].

(9.4.4) Let T € B(X,)) be an isometric isomorphism. Show that T
is an isometric isomorphism.

Answer. The isomorphism part follows directly from Corollary 9.4.9. Also,
for g € V¥,

179l = sup{[T"g(z)| : = € X, ||z]| =1} = sup{lg(Tz)| : = e X, [lz] =1}
=sup{lg(y)[: y €V, llyll =1} = |lgll

and T™ is isometric.

(9.4.5) Let X, Y be normed spaces and T' € B(X,)). Show that
1772 = [T, reX.

Answer. Using just definitions,
[T 2| = sup{|(T™*2)g| : g € V", llgll =1}
=sup{[Z(T7g)[: g €7, llgl =1}
sup{[(T"g)z|: g €V, [lgll =1}
=sup{|(9(Tz)|: g€, |lgll =1}
[Te]|-

(9.4.6) Let T € B(X,)). Show that if X is reflexive, then T** = T.

Answer. Since X is reflexive, any element of X** is of the form &, with
z € X. Then

(T*i)g = 2(T*g) = T*g(z) = g(Tx) =Tz g.
Thus T** = T.
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(9.4.7) Use Proposition 9.4.2 to give an alternative proof of Proposi-
tion 7.2.10.

Answer. If T € (X*,0(X*, X)), this means that I' : X* — C is o(X*, X)-
continuous. By Proposition 9.4.2, there exists S : C* — X such that I' = S*.
We have C* = C. Let x = S1. Then

L)X = S*(¥)A = ¢(Ar) = P(z)A, Y e’ AeC,

and so I' = 2.

(9.4.8) In the context of the proof of Proposition 9.4.10, show that
92,1l = Il lyll-

Answer. We have

92,4 (T)| = [(Tx)y| < [T [yl < 1T =] 4],

50 ||gz Il < |zl lyll. Conversely, fix e > 0 and choose f € Y* with || f|| =1
such that ||y|| < |f(y)| + €; and let T be the rank-one operator that maps x
to f € Y*. Then ||T|| = ||z| and

1924 (T)| = [(T)yl = ()] = [yl —e.

(9.4.9) Prove (v) and (vi) in Proposition 9.4.6 without using polars
nor prepolars.

Answer. (v) Suppose first that T is injective. If ran T* is not weak*-dense,
take g € X* \ ran T*; by Proposition 7.2.10 and Corollary 5.7.19, there exists
2o € Y such that #5(g) =1 and @o(T* f) = 0 for all f € Y*. Then
0=2ado(T"f) =T"f(y) = f(Tx)

for all f € Y*. By Corollary 5.7.7 we obtain Tz = 0, and then xqg = 0 by
injectivity; a contradiction. So ranT™ is weak*-dense in X*.

Conversely, if ranT* is weak*-dense in X'* and Tz = 0, then for any
f € X* we have f = limT*g; for some net {g;} C Y* and the limit in the
weak*-topology. Then

f(z) =limT*g;(x) = lim g;(Tz) = 0.

As f was arbitrary, we conclude by Corollary 5.7.7 that x = 0, and T is
injective.
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(vi) Assume that T* is injective. If ranT is not dense, there exists
y € Y \ranT. By Hahn-Banach (Corollary 5.7.19) there exists g € Y* with
g(y) =1 and g(Tx) =0 for all z € X. But then 0 = g(Txz) = T*g(x) for all
x, 80 T*g = 0. As T is injective, g = 0, a contradiction. So ranT is dense.

Conversely, if ran T is dense in Y and T*g = 0, then g(Tz) = 0 for all
z; as ranT is dense, g(y) =0 for all y € Y, so g = 0 and T* is injective.

(9.4.10) The following is a “counterexample” to Proposition 9.4.2. Find
the mistake.

Take Y = cog C X = (*(N); so we consider the 1-norm
on Y. Because Y is dense in (1(N), we have X* = Y* =
0°°(N).

Define S : Y* — X*, that is S : £>°(N) — {=°(N),

by
Sw:(zwéf),o,o,...).

n

Ifw; — 0 weak®, this means that ) w;(n)x(n) — 0 for
all v € X. In particular ), w;—g") — 0, and it follows
S is weak*-weak* continuous. If we had S = T, with
T € B(X,Y) this would mean that, for each w € £>°(N)

and x € X,

(Sw)x = w(Tx).
This translates to
S 2 _ S ) (T2) ().

n2
n n

As this should work for all w € £, it follows that we

need
Tr = (ig)) .

But then Tx ¢ Y for any nonzero x, and so T ¢&
B(X,Y).

Answer. Inspired by Remark 7.2.8.

The problem lies in the assertion that S is weak*-continuous. It is not.
The sequence {-3} is not in Y! For k € N, let wy, € ¢>°(N) be given by
wy = ijk ker. Then wy — 0 weak®, since any sequence in ) is eventually
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zero, but

wi(n) k 1 _
S =Y ek [ =1
n n>k
So Swy, does not converge weak* to zero.

(9.4.11) Let X,), Z be Banach spaces, S : Y — Z linear, and T €
B(X,Y). Use Lemma 9.4.5 to show that if ST € B(X, Z) then
S is bounded.

Answer. Suppose that y, — 0 and Sy, — z. Using that T is surjective,
choose x,, € X such that Tx,, = y,, n € N. Applying Lemma 9.4.5 to T" and

{2}, we get
0 < aall < ml|Tal| = m .

As y, — 0, this shows that z,, — 0. Knowing this,
z = lim Sy,, = lim STx,, = 0,
n n

the last equality by the continuity of ST. Now the Closed Graph Theorem
implies that S is bounded.

(9.4.12) We use notation from Section 9.3. Let X be a Banach space,
T € B(X),and f € H(T). Show that f(T*) = f(T)*.

Answer. Since the Riesz functional calculus is continuous and f is a uniform
limit of polynomials, it is enough to show that equality for polynomials. As
polynomials are linear combination of monomials and taking adjoint is linear,
it is enough to show the equality for a monomial. When f(z) = 2", we have
for any ¢ € X* and any x € X

(f(THe)z = ((T*)"p)a = (T*)" o) (Tx) = = o(T"z) = (f(T)"p)a.
Thus f(T%) = f(T)*.
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9.5. The Spectrum of a Linear Operator

(9.5.1) Let T' € B(X), a, 8 € C. Show that o(aT + 8I) = ac(T) + 8.

Answer. If a = 0, both sides of the equality are 3; so we assume a # 0. As
al + B — (aX+ B)] = o(T — N),

T — M is invertible if and only if oT + I = (aX + B)I is invertible. So
o(aT + 8) = ao(T) + 5.

(9.5.2) Let X be a Banach space with dimension (finite or infinite)
at least 2. Given a,b € X linearly independent, let Xy =
span{a,b}. Show that

(i) there exists p € X* with p(aa + 8b) = 5;

(ii) there exists a bounded surjective projection P : X —
Xo;

(iii) the linear operator T : X — X given by Tx = ¢o(Px)a
is bounded;

(iv) o(T) = {0};
(v) there exists T' € B(X) with || T|| = 1 and spr(T") = 0.

Answer.

(i) Define a linear functional ¢ : Xy — C by o(aa+5b) = 5. Since X
is finite-dimensional, ¢q is bounded. By Hahn—Banach, there exists
p: X = C, bounded, with ¢|x, = ¥o.

(ii) Similarly, there is a bounded linear functional ¥ € X* such that
¥(aa + Bb) = a. Now define P : X — X by Pz = ¢(z)a + ¢(z)b.
Then P is a bounded operator and P|x, = idx,.

(iii) This is just the estimate
lp(P)all < [p(Pz)[ [lall < el 1P[Hlall [l]-
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(iv) Let X; = ker P. It is a closed subspace, since P is bounded. For
any x € X, we have

r = Pz + (v — Px),

so X =X+ X, If x € Xp+ Xy, then 2 = Pz, and 0 = Pz = P?x =
Pz =x,s0 Xy, N Ay = {0}.

(v) We have ||Tz[| = |p(Pz) [|lal| < [[¢[l[|P[ el |2/, so T is bounded.

(vi) Suppose that A € C\ {0}. We proved that * = aa + b + ¢, with
¢ € ker P. Then

(T—XM)x=Tz—Xx=(8-Aa)a— Apb—Ac.
The map
S(ra+sb+c)=—1(r+35)a—tsb— 3¢

/

is easily seen to be an algebraic inverse for T'— AI. Since T — Al
is bounded, by the Inverse Mapping Theorem 6.3.6, the linear map
S is bounded and T — A is invertible. So o(T) C {0}; as it is
nonempty, o(T") = {0}.

A more direct argument can be done with more knowledge about
compact operators. Since T' is compact, by Theorem 9.6.13 every
nonzero element of the spectrum is an eigenvalue. Actually, since T’
is finite-rank, it is not hard to see it even without Theorem 9.6.13.
So if A € o(T) \ {0}, we have ¢(Pzx)a = Az for some nonzero z. In
particular x = aa for some o € C. Then the equality becomes

Aaa = o(Px)a = ap(a)a = 0.

Thus @ = 0 and # = 0, showing that A cannot be an eigenvalue.
Thus o(T) = {0}.

(vii) With the operator T from above, the operator T/ = T'/||T|| satisfies
IIT"|| =1 and spr(T”") =0

(9.5.3) Let X’ be a normed space and T € B(X). Show that if there
exists nonzero p € C[z] such that p(T") = 0 then T admits an
eigenvalue.

Answer. We may assume that T' # 0, for if 7' = 0 then 0 is an eigenvalue
for T

Let ¢ € C with least degree such that ¢(7') = 0 (the existence of g is
guaranteed by the existence of p). Then all roots of ¢ are eigenvalues for
T. Indeed, given A with ¢(\) = 0, we may write ¢(t) = (¢t — \)r(¢) with
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degr < degq. The minimality of ¢ guarantees that r(T') # 0. We may write
q(T)=0asr(T)T = Ar(T). Asr(T) # 0, choose v such that w = r(T")v # 0.
Then Tw = Aw.

(9.5.4) Let X be a normed space and T' € B(X). Suppose that p € C[z]
satisfies p(T') = 0. Show that there exists a root of p that is an
eigenvalue for T'. Are all roots of p eigenvalues of T'7 Provide
roof/counterexample.

Answer. Exercise 9.5.3 shows that some root of p is an eigenvalue of T,
because the minimality of ¢ guarantees that ¢ divides p. Indeed, by the
division algorithm we have p(t) = q(t)s(t) + r(t), where degr < deggq. Since
q(T) = p(T) = 0 we get that r(T) = 0, and then the minimality of ¢ forces
r = 0. Then ¢ divides p and so the root of ¢ that was found in Exercise 9.5.3
is also a root of p.

It is possible for p to have roots that are not eigenvalues of 7. For a
trivial example, let T' = Iy. Then the polynomial p(t) = (¢t —2)(¢—1) satisfies
p(T) =0, but 2 is not an eigenvalue for T

(9.5.5) Let X be an infinite-dimensional normed space. Show that
there exists T' € B(X') such that p(T") # 0 for all p € C[z].

Answer. By Exercise 9.5.3, if p(T') = 0 for some polynomial then T has an
eigenvalue. Thus if T" has no eigenvalues, it cannot be zero under any polyno-
mial. We saw in the text that the unilateral shift S has no eigenvalues; then
p(S) # 0 for all p € C[z]. Another common example is T' € B(C[0,1]) given
by (T'f)(t) = tf(t); again this operator has no eigenvalues (Example 9.5.7).

(9.5.6) Let X be a normed space and T' € B(X). Suppose that p(T) #
0 for all p € C[z]. Does this imply that T has no eigenvalues?

Answer. No. Consider the unilateral shift S as above, say acting on ¢!(N),
and form T = 1® S, acting on C & ¢*(N). Then p(T) = p(1) & p(S), so it is
nonzero for all p. But 1 is an eigenvalue for T'.
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(9.5.7) Let X be a Banach space and X7, X C X subspaces with X =
X1 DXy, Let T € B(X) such that TX; C X} and TXy C As.
Show that
o(T) = o(T|x,) Uo(T|a,).

Answer. Tt is enough to show that T is invertible if and only if 77 = T'|x,
and Ty = T'|x, are invertible. Suppose that T is invertible; then there exists
S € B(X) with ST =TS = Ixy. AsTX) +TX, = X and TX; C X} for
j = 1,2, it follows from T invertible that TX; = X7 and TX> = Xs. Applying
S we obtain X; = SA; and Xy = SX5. Then S|, is an inverse for 77 and
S|, is an inverse for Tb.

Conversely, if S1, S5 are inverses for T} and T5, respectively, then S; &S5
is an inverse for T'.

(9.5.8) Write the details of Example 9.5.6.

Answer. When p < oo,
[ Myz||} = Z b(n)z(n)[” < [blI%, Z lz(n)[” = [Il1% NIzl

So | M|l < ||b]]so- leen e > 0 there exists n such that |b(n)| > ||b|lcc — €
Then
[blloc =& < [b(n)| = |(Msen)(n)] < [[Myenllp < [[Mol|
As this can be done for all € > 0, we get || M| = ||b]|co. A similar idea works
when p = oco.
Now we work on the spectrum. Since Mye,, = b(n)ey, {b(n) : n} C
op(My). If dist(X, {b(n) : n}) >0 > 0, then we can from a € £*°(N) where
1
a(n) = TOESS
Let A be the multiplication operator induced by a. Then
1
[A(My, — AT)x](n) = b(n) — A (b(n) = N)z(n) = z(n).
Thus A(M, — M) = I. Similarly, (M, — M)A = I, showing that A & o(M,).
Thus o(Mp) C {b(n): n}, and then o(Mp) = {b(n): n} since it is closed
and it contains b(n) for all n. Suppose that A € o,(M;). Then there exists
nonzero x € ¢P(N) with Myz = Azx. At the level of entries this looks like

b(n)x(n) = Azx(n).
For any n such that xz(n) # 0, we have A = b(n), showing that o,(M,) C
{b(n) : n}, giving us o,(My) = {b(n) : n}.
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When A € o(T) \ {{b(n) : n}, we have that ker(M, — A\I) = {0}.
By being in the closure of {b(n) : n}, there exists a subsequence {b,, } with
bn, - A. For each k we have ||e,, || = 1, and

|MyT = ADen, || = ba, = Al ——0.

Thus M, — Al is not bounded below, showing that A € o4, (Ms) (s0 Agp(Mp) =
o(My), as it also contains the eigenvalues), and also that ran(M, — AI) is not

closed. For any z = }°7_, ¢je; € coo, we have

T = chej = (M, — )\)(Z b(njj— 5 e]-).
=1 j=1

Then cgg € ran(M,—AI) and ran(M,—\I) is dense, implying that A € o.(M,).

(9.5.9) Show that 0,(T), 0.(T), and o.(T) are mutually disjoint.

Answer. By definition, 0,(T) N0, (T) = 0,(T) Noe(T) = @. And o,(T) N
o.(T) = @, since in one case T — A is required to have dense range and in
the other it is require not to have it.

(9.5.10) Prove the relations (9.15), (9.16), and (9.17).

Answer. If X € 0,(T), then there exists nonzero = € ker(T — AI). Nor-
malizing, and since the kernel is a subspace, we may assume that ||z| = 1.
Now take x,, = x for all n, and the definition of A\ in the approximate point
spectrum is satisfied.

Now suppose that A € o.(T). By definition, A & 0,(T). If A & 04,(T),
it means that T'— AI is bounded below: there exists ¢ > 0 with ||(T'—AI)z|| >
cl|z||. Then T — AT has closed range by Exercise 9.4.1; with dense and closed
range then T would be surjective, a contradiction. So A\ € 04,(T). By
definition, A € 0,-(T'), s0 0c(T) C 04p(T) \ (o,(T) Uop(T)).

Conversely, if X € 04,(T) \ (6,(T) U 0,(T)), then T — Al is injective
(because A & 0,(T)), it has dense range (because A & 0,(T)), and it is not
bounded below (because A € 04,(T)). So T — AI cannot be surjective (as it
would be invertible and thus bounded below). So T'— AI has dense range but
it is not surjective, and A € o.(7T).

We have o,(T) N (0,.(T) Uo.(T)) = & by Exercise 9.5.9. And also
o-(T)No.(T) = & by definition, since either the range is dense or it is not.
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Given any A € o(T), either A € 0,(T), or T'— AI is injective. In the latter
case, as T'— Al is not invertible, it cannot be surjective; so either the range
of T'— Al is not dense, giving A € 0,.(T), or T — A is dense but not closed,
giving A € o.(T"). Thus
o(T)=o0p(T)U o, (T)Uo(T).
Also, given A\ € o(T), either T'— AI is bounded below or not. If it is not

bounded below, then A € 0,,(T); if it is bounded below, its range is closed
and so it cannot be dense and A € o,(T).

(9.5.11) Prove the relation (9.18).

Answer. If T — A is not invertible and it is not bounded below, then A €
oap(T). If it is bounded below, then it is injective and its range is closed.
As such, it cannot be dense: if it were, T — AI : X — ran(T — AI) would be
bijective with a bounded inverse and so it would be invertible, a contradiction.
So, we have shown that if (1) \ 04p(T) C 0,(T), s0 0(T') = 00p(T) U (T).

(9.5.12) Construct an example where o4, (T) N o, (T) # 2.

Answer. Take T € B(X @ X) to be T = S @ 0, where S is chosen so that
there exists A € 04, (5) \ 0,(5)—for instance, S could be the unilateral shift.
Then T'— A = (S — AI) @0 is not bounded below, and its range is not dense.
Thus A € 04,(T) N o, (T).

(9.5.13) In the context of Example 9.5.9 calculate explicitly S(T — AI)
and (T'— AI)S for A € [0,1].
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Answer. Fix f € C[O 1] We have

[S(T = A f](x) = / £(s / s(s) ds

— 1’—

—ﬁ//ﬂs)dsdt]
e L
=sz?+5/ o [
el 1o
e L

1
= f(x) —|-(x_)\)2[/0 zf(s)ds —sf(s)ds — (x — s)f(s)ds

= f(z).
Hence S(T — \I) = 1. Similarly7 denoting C' = [(T — A\I)Sf](x)

S
= f2)— /f yir+ | IO g

‘/0 o, S0
—t) - [Crwars [ [Cr [t s
— 1) - 5 [Crwaes [ L% a- [ A5 - e

= f(x).
Thus (T — A\I)S =

(9.5.14) With T the left unilateral shift as in Example 9.5.10, show that
dimker(T — M) =1
for all A € D.
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Answer. Suppose that T'x = Az. In coordinates, this is

(x2,23,%4,...) = (A1, Axo, A3, .. .).
If A\ = 0, this gives o = 23 = -+ = 0, so kerT = Ce;. When A # 0,
we get £o = ATy, T3 = ATy = A%z, and in general Tht1 = Aexi. Hence
x € ker(T — AI) if and only if

z=x(MA N3 ).

The condition |A| < 1 guarantees that z € (?(N). And we have ker(T'—\I) =
C(\A2,.00).

(9.5.15) Let X = L?(—00,00) and let T' € B(X) the translation opera-
tor

(T5)(x) = f(z+1).
Find the norm and the parts of the spectrum of 7.

Answer. From
1765 = [ 1+ D o= [ 5@ do = 113
— 0o —0o0
we get that ||T|| = 1. More than that, T is an isometry. As T is invertible
(with (T71f)(x) = f(x — 1)) we have that o(T) C T by Proposition 9.5.15.
Let us try to find eigenvalues. If A € T and T'f = Af, then we have f(x+1) =
Af(x) a.e. This forces f(x+k) = )\kf( ) for all k € Z, and if we write A = %,

k+1
1918 =t [ 1512 = 5 |- / o+ B2 de
k=—m

k=—m

_ /\Qk/ f(z |2 2cos2m6’/ If(z |2dx

i 2 cos 2mb
1413 = tim / 2 = tim Zeov2me

m—>oo 1

does not exist (the computation is different if § = 0, that is A = 1, but in that
case the integral is simply unbounded). So 0,(T") = @. Let us now adapt the
trick from Example 9.5.12. Fix p € T. Let V,, € B(X) be the operator

‘/Mf = Zunfl[n,n+1)

neEZ

SO
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As |pu| = 1 we get that V is a bijective isometry, i.e. a unitary. And we have

(V*TV) f(2) = VT " £(2) L) (@)

neZ

neE”Z

—V* Z pf(x+1) 1p_q ()

neEZ

—y* Z p" T f @+ 1) gy (@)
nez
= u(Tf)(x).

This gives us that o(T) = o(V*TV) = uo(T). So o(T) is invariant for
rotations, and hence o(T) = T. As every point is a boundary point, o,.(T) =
T. Since T is a unitary then 7-! = T*. For any A € T,

ran(T — M) = ker(T — )t = {0}t =&

So T — AI has dense range. In summary,

o(T)=T
op(T) =2
oap(T) =T
o (T) =2
o.(T)=T

(9.5.16) Let X = L?(0,00) and let T' € B(X) the translation operator
(TF)(z) = f(z+1).
Find the norm and the parts of the spectrum of 7T'.

Answer. We can use several ideas from the answer to (9.5.15). From

||Tf|\§=/0 |f(ff+1)|2dw=/1 (@) da < |13

we get that ||T| < 1; if we take any f € L%(0,00) and supported on [1,0),
then ||T'f[|2 = || f[l2, and so || T[] = 1. As for the spectrum, initially we know
that o(T) C D. If we look for eigenvalues, if A € D and

f= Z M 1k k)
k=0
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then for £ > 0

Tf Z/\ Lprsny(z+1) = Z)\ Ti—1.1)
k=0
N gy () = A f(2).
k=0

So A € 0,(T). Then D C o(T) C D and hence o(T) = D. As every boundary
point is an approximate eigenvalue (Proposition 9.5.5), we have 4,(T) = D.

IfAeTand Tf = Af, then we have f(x + 1) = A\f(x) a.e. This forces
flz+ k) =M f(x) for all k € N, and if we write A\ = e,

m m—1 k+1 m—1 1
2= lim 2= 2= k)2 d
1915 = tim_ [ 1] > | > [ 1@ s
m—1
Z )2 / \f(z |2 2C052m9 / f(z |2 dz.,

=0
SO

i 2 cos 2mb
1918 = i [ 172 =t 22

m~>oo -1
does not exist (the computation is different if # = 0, that is A = 1, but in
that case the integral is simply unbounded). So ¢,(T") =D. For any A € T,

ran(T — M) = ker(T — AI)* = {0}* =

So T — AI has dense range. In summary,

o(T)=D
op(T) =D
oup(T) =D
or(T)=2
o.(T)=T

(9.5.17) Let p € (1,00) and T € B(LP[0,1]) be the Hardy operator as
in Example 9.5.22. Show that ||T|| = ¢ and find o(T'), o,(T),
or(T), 0c(T), and oqp(T). (This exercise is mostly computa-
tional, but nailing the right ideas and performing all the com-
putations will possibly not be a trivial task; so this exercise and
Ezercise 9.5.18 should be seen more as a minor project rather
than a couple of exercises)
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Answer. It was proven in Example 9.5.22 that ||T]| < q. We will see below
that spr(T) = ¢, and thus ||T|| = ¢, since ¢ = spr(T) < ||T|| < q.

Let us look for eigenvalues first. If Tf = 0, then f = 0 a.e. by
Exercise 2.5.6 (or Exercise 2.11.2); so T is injective. Since T is injective, any
eigenvalue will have to be nonzero. So suppose that A € C\ {0} and Tf = Af
for some nonzero f. We can write, when 0 < y < =,

@ = sl = |5 [ f——/
< / A2 -2 [

<i(@-wrs ) 151,

This shows that f is continuous for all z > 0. Gomg back to A\f =T f, now
the integral is differentiable by the Fundamental Theorem of Calculus, and
hence f is differentiable for all z > 0. We can now differentiate

rof (@ / /,

Af(@) + Az f'(x) = f(2),

to get

which we can rewrite as

1 =N f(x) = Azf'(z) =0
This is a first-order linear differential equation, with solution f(x) = x
(and multiples of it, of course). For A to be an eigenvalue of T we need this
f to be in LP[0,1]. And for this we need Rep(1/A — 1) > —1. Equivalently,

1/A—1

1 1 1
Rex >1-— T (AB.9.1)
Writing A = a + b, then the inequality becomes
a 1
PEE g

This in turn is a® + b? < qa, of (a — 4)* + 62 %. In terms of A, this is
IAN—4| < 2, or A€ Bys(q/2). That is,

op(T) = By/2(q/2).
This shows that T' is not compact, for its set of eigenvalues is uncountable
(see Theorem 9.6.13). Now let us try to find (T — A)~!. Necessarily, \ &
By /2(q/2), which is equivalent to Re < %, which we also write as Re —  +
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1> 1% > 0. Suppose that g = (T — AI) f; we want to express f in terms of g.
Assume initially that f and g are differentiable. We have

ote) =A@ + 3 [

which we may write as

rg(x) = —Aa f(z) + / “F

Differentiating,
(zg(2))" = (1 = N f(z) — Az f'(2).
Using the integrating factor z—/*,
w7 A (wg(@)) = (1= Na 2 f(a) = Aa™ VA f (@) = [-aa ™A f ()]
Integrating (and using that —Rel/A+1 > —1/¢+ 1= 1/p > 0 to evaluate
the right-hand-side at x = 0)

/ Vg0 dt = —Aa VA f(2).

0
Solving for f and integrating by parts,

fla) = _%xl/k—l |:t—1/)\+1g(t)

T x

+§/ t_l/’\g(t)dt]
0 0

Lo [
) X Jo

1 1 R A
:—Xg(a:)—ﬁxl/)‘ 1/ t=12g(t) dt.
0

This last expression does not require g to be differentiable, and Re (—1/A) >
—1/q together with g € LP[0,1] guarantee—via Holder—that the integral
exists. It is also in LP[0, 1], for the first term is, and the second terms satisfies
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the following (we use Minkowski’s Integral inequality (2.47)):

1 x P 1/p 1 x P 1/p
</ a:l/’\*l/ til/)‘g(t)dt dac) = (/ /xl/)‘*ltfl/)‘g(t) dt dz)
0 0 o |Jo
1 1 P 1/p
= (/ / v_l/’\g(vsc) dv dx)
o |1Jo
1 1 1/p
S/ (/ vRep/)‘g(vzﬂpdz) dv
0 0
1 1 1/p
:/ U‘Rel//\</ |g(vx)|pdm) dv
0 0
1 v 1/p
:/ v‘RCl/A</ vt |g(t)|pdt> dv
0 0
1 1 1/p
</v1/PRel/A</ |g(t)|pdt> dv
0 0

1
gy [ oA
0

S
7R0§ Illp

Q=

Note that, since Re% < %,

which justifies the evaluation of the integral.
We claim that, for A & B, /2(q/2),

_ 1 1 IR
(T — )" tg(x) = 9@ — 33 /A1 /0 t= 2 g(t) dt (AB.9.2)
We have just shown that this is a bounded operator on LP[0,1]. Let us apply

T — M to it. If h denotes the expression in (AB.9.2), with Fubini’s use to be
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justified below,
1

(—)\I+T)h:g(x)+lzl/>‘71/ til/kg(t)dt——/ g
A 0 Az Jo

N 51/)‘71/ =Y g(t) dt ds

Nz J, 0
— g+ 2t [Cegma- L [
A 0 Az f
R Y A R W T\
v /o /t s t g(t)dsdt
— g+ 2t [Cegma- L [
A 0 Az f,
1 ¢ /X 11/A\,—1/x
v /0 (z /Mt g(t)dt
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Also, if g = (T — M) f,

(T =AD ) = =3 (T = ADf)w) = o ST - AD (0 dt

*flgp*l ’ x
——3ot [ s+ 1)

T t
—%xl/A_l/ t_l/A_l/ f(s)dsdt
A 0 0

n lxl/,\—l/ VA f(¢) dt
A 0

——lx_l ’ x
=5t [ s+ pw@)

—%xlﬂ_l/ / t=YATf(s) dt ds
0 s

n lxl/)\—l/ VA f () dt
A 0

——lx_l ’ x
=3t [ r0as pw@)

n §$1/>\71 /1(3371/,\71 — s VA f(s) ds
0

+§x1“*1/ t=YAf(t) dt

0
= f(@).
So (AB.9.2) is indeed an expression for (7' — A\ )~1.
We have thus shown that By,5(q/2) = 0,(T) C o(T) C By/2(q/2), and
hence o(T') = By/2(q/2).
The justification for two uses of Fubini above (as in Theorem 2.7.16)
comes from

| [ e Alglaeds = [ st g deds
0 0 0 0

x s 1/q
< Hng/O sRel//\—l (/O t—Req/)\dt> ds

<43 f‘{‘zHl},\)l/q /m sRel/A=1 1/qg—Rel/X ;o
—Regq 0

_ qllgllp 1/q
= 7(1—Req/>\)1/‘1w < 00,
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and

xT t xT t
| [ isolasae = [ ement [ dsa
0 0 0 0
x t 1/11
s/ t—Rel/*—ltl/Q(/ |f(s)|pds) dt
0 0

1
< Hng/O et/ A= e gy = e !glﬂi%.
q
When A € 0B,/2(q/2), we know that T'— I is injective since A & o,(T).
For any n € {0} UN we have T'(z") = n%rlx" So, as long as \ # %_H—
which cannot happen when A € 9B,/2(¢q/2), as the only real values are 0
and ¢ > 1—the operator T'— A\ maps C[z] onto itself. In particular, it has
dense range, since C|z] is uniformly dense in C[0,1] by Stone-Weierstrass
(Theorem 7.4.20) and C10, 1] is dense in L?[0, 1] by Proposition 2.8.18. Thus

o(T) = By/2(a/2),  op(T) = By2(q/2),
0o(T) = 0By a(q/2),  on(T) = 2.

Also, 04, (T) = By/2(q/2) since every point is either in the point spectrum or
in the boundary (Proposition 9.5.5).

(9.5.18) Let p € (1,00) and S € B(LP[0,00)) be the Hardy operator as
in Example 9.5.22. Show that ||.S|| = ¢ and find o(S5), 0,(95),
and 0,4,(5). (See the disclaimer in Exercise 9.5.17)

Answer. As usual, we write ¢ = p’%l. First thing is to check that Sf €

L?P[0,00) for any f € LP[0,00), and that S is bounded. We have, using
substitution first and Minkowski’s Integral inequality second,
p 1/p
dx)

sl = ([T[2 [ swaf a) "= ([7] [ s
< [ ([ imra) o= ([ ora)

1
- p
Wl [ 577 ds =Ll = alfl
0 p

We will see below that spr(S) = ¢, and thus ||S|| = ¢.

The computation for the eigenvalues is exactly the same as in the case of
LP[0,1] (Exercise 9.5.17). So any eigenvector will be a multiple f(z) = x'/2~1.
But no power of = can be integrable on [0, c0), and hence 0,(S) = @.
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Now let us try to find (S—AI)~!. Suppose that g = (S —AI)f; we want
to express f in terms of g. Assume initially that f and g are differentiable.
We can repeat the argument from the case L?[0, 1], and so

VN zg(z)) = [-Az™ VL f ()] (AB.9.3)
Consider first the case where Re + < % (that is, A is outside of the disk

Bg/2(q/2)). In this case we have t~1/* integrable at 0, since —Re1/\ +1 >
1/p > 0, and hence

/I YA tg(8)) dt = =NV f(a).

0
Solving for f and integrating by parts,

f(l‘) — _%xl/k—l {t_l/)‘+1g(t)

+X/ t=2g(t) dt]
0 0

= —% /A1 [ac_lp‘“g(x) + %/ t_l/)‘g(t) dt}
0

1 1 Y
:fxg(z)fpxl/)‘ 1/ =Y 2g(t) dt.
0

This last expression does not require g to be differentiable. It is also in
L?[0,00), for the first term is by definition, and the second term satisfies (we
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use Minkowski’s Integral inequality (2.47))

oS T p 1/p o] T p 1/p
(/ xl“*l/fl“g(t)dt dx) = (/ ’/xl/’\ltl/)‘g(t)dt dx)
0 0 o IJo
00 1 p 1/p
= (/ ’/ v~V g(va) dv dw)
0 0
1 o) 1/p
S/ (/ vRep/)‘g(vzﬂpdx) dv
o \Jo
1 [eS) 1/p
:/ v_Rel/’\</ |g(vx)|pdx) dv
0 0
1 o'} 1/p
z/ v‘RCl/A</ v_1|g(t)|pdt) dv
0 0
1 oo 1/p
:/ ul/PRel/A</ |g(t)|pdt> dv
0 0

1
gl [ oA
0

= m llgllp

The condition Re% < % guarantees that we can evaluate the integral at the
end. So we claim that, for A € B, /2(q/2),

(8 = AD)"Yg(r) = — glx) = 35 2V / 1) dt (AB.9.4)
0
We have just shown that this is a bounded operator on LP[0,00). The
computation that (S — X)(S — AI)~! = (S — XI)7}(S — M) = [ is exactly
the same as was done in Exercise 9.5.17, so we omit it.

So far, this shows that o(S) C By/2(q/2). For A € Bgy/a(q/2), we
now have Re % > é, which makes the antiderivative of the right-hand-side of
(AB.9.3) vanish at co. This suggests integrating between x and co. So we
get

(S = AD)Lg(a) = — gla) + 35 2 / t~Yg(t)dt  (AB.9.5)

Let us apply S — AI to it. If h denotes the expression in (AB.9.5), with
Fubini’s use and that h € LP[0, 00) to be justified afterwards (note also that
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the region where we apply Fubini requires us to split it in two integrals),

(=M + S)h = g(z) — %xl/**l/ =Yg (t) dt — Ai/ g
T T Jo

1T e [T,
+)\2x/0 s / t g(t) dtds

S

1 YA Y
—gla) =32 [P [

0
1 x t /2 /2
1/A—1,-1
+>\2x/0 /Os t g(t)dsdt
1 T 1,1
+T2x/z /0 SUYATL YA (1) ds dt

1 IR e 1" IR
:g(a:)—xxl/)‘ 1/ t I/Ag(t)dt—ﬂ/ g+ﬂ/ g(t)dt
x 0 0

R Y W
+>\x/m x /Nt g(t)dsdt

=g(x).
Similarly, if g = (S — ) f,

(8 =AD"y = =1 (T = ADf)(x) + 55 2/ / TV - AD f() dt

1 T 1 3 e3¢} B B t
:f(x)—ﬂ/ F0) dt + o 2 1/ (1A 1/ F(s) ds dt
0 T 0
_%xl/)\—l/ t—l/)\f(t)dt
1 [ 1 IR A R
:f(x)—g/ f(t)dt+px1” 1/ / t=YATLf () dt ds
0 0 x
+%x1/“/ / t7YATLf () dt ds
_ %xlﬂ_l/ VN F (1) dt
1 [" 1 *
:f(x)——/ f(t dt—|—fx1/>‘_1/ z VX f(s)ds
R ARIOLES 0 (5)

+%x10—1/ s_l/Af(s)ds—ixl/)‘_l/ YA L(t) dt

= f(x).
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This means that o(S) C 0B,/2(q/2).

We need to justify Fubini’s last use, and that h € LP[0,00). As we are
only concerned with the second term in (AB.9.5) we have, using the same
substitutions as before and Minkowski’s Integral Inequality,

P 1/p
dx)

oo o) p 1/p oS} oo
(/ ‘/ e A g () dt da:) = (/ ’/ v g(vz)dy
0 T 0 1
o] oo 1/p
§/ </ v~ Rep/A |g(vx)|pdx> dv
1 0
o0 . 00 1/p
:/ ’U_Re>\</ |g(vx)pdx> dv
1 0
o0 N 00 1/p
:/ p~/PRex (/ g(t)|”dt> dv
1 0

o0
gl [ oA
1

llgllp 50
1 1 )
Rex — a

so h € LP[0,00).
As for Fubini (used both times as in Theorem 2.7.16),

// |sY A=Y 2 g(t)| dt ds
0 s

:/ sRel/)\fl/ tfRel/)\ \g(t)|dtds
0

S

T . oo 1/q %) 1/p
s/ stw—l(/ t‘Req//\dt> (/ g(t)pdt> ds
0 s s

z 1-Regq/A 1/q
< Rei—1($
<ol [ ()

_ llgllp g dllgllpat/e
= i s ds = . T < 00
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[e'e] t [e'e] t
/ / |t_1/’\‘1f(s)|dsdt:/ t—Rel/H/ £ ()| ds dt
x 0 T 0

o0
< / t—Rel/)\—l tl/quHp
xr

—fly [ e g

1/g—Rel/A
Ul .

1_1
Re 5 p

and

Finally, let us show that o(S) = 0B,/2(¢q/2). Fix A € By/2(q/2); that
is, Re% > é. Let g =t"1 1[1,00) € LP[0,00). We have

o] 00 p o0 [e%e} p
/ ‘ / 2T g () dt | da = / ‘ / gt/ A=A dt‘ dx
0 T 0 max{z,1}

00 [ed] p
:/ :L,Rep/)\fp/ tll/)\dt‘ dx
0 max{z,1}
00 p
:/ gRep/A=p )\max{:v,l}fl/A dx
0

1 AP
> |)\‘p/ (ERep//\_pdx — ‘ ‘
- 0 p(Res —1+1)
_ AP
p(Rex — 1)
Hence, if we express (AB.9.5) as (S — Al )g = —A"1g + A\72h, where we just
estimated the p-norm of h,

1S =AD™H = llgll; 1S =AD" glly = llglly Il = A~ g + A%All,
> [lgll (A2 l1R ]l — 1A llgll)

_ AL _
> ol (2 - )

pir(Ret 1)
(AB.9.6)
Now consider A € 0B,/2(¢q/2); that is, Re1/A = 1/q or A = 0. Choose a
sequence {A\,} C By/2(q/2) with A, — X. If we assume that (S — XI)~! is
bounded we have, using Lemma 9.2.11,
(S =) ™H = (S = AD)THI = (S = (A + (A = ADI = (S = A) 7|

(S = AD)~1)1?

< —
- ‘)\n >\| 1_‘)\n_)\‘ H(S—)\I)_lH n—oo

0.
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If follows that {||(S — An,I)~ ||} is uniformly bounded for n big enough,
contradicting (AB.9.6). So S — Al is not invertible and A € ¢(S). Thus
o(S) = 0B,/2(q/2). We have found that

U(S) = 8Bq/2(q/2)7 UP(S) = ®7 Uap(S) = 8Bq/2(Q/2)7

the last equality due to Proposition 9.5.5.

(9.5.19) Let X' be a Banach space and T' € B(X), surjective. Let J =
kerT. Show that T : X/Y — X given by T'(z +Y) = Tz is
linear, bijective, and bounded.

Answer. Linearity is automatic since T is linear: for
Tar+y+Y)=Tlax+y) =aTe+Ty=aT(x+ )+ T(y+)).

IfT(x+y) =0, thisis Tr =0 and so xz € kerT = Y, so z+) = 0. Also,
since T' is surjective, for any y € X' there exists € X with y = Tz, and so
y="Tz="T(x+)Y), and T is surjective.

It remains to show that 7' is bounded. Suppose that , + Y =z + ).
Fix ¢ > 0. Then there exists ng such that ||z, — 2z + Y| < § when n >
ng. By definition of the quotient norm for each n there exists y, € )Y with
|, — = + yn|| < . Then for each n > ny

[T — Ta|| = [IT(@n —x + ya) | < T [|en — 2 +ynll < [Te.

Thus Tx,, — Tx and T is continuous.

(9.5.20) Let X be a compact Hausdorff space and ¢ : X — X contin-
uous. Let T : C(X) — C(X) be given by Tf = f o). Show
that

(a) T is injective if and only if 9 is surjective;

(b) T is surjective if and only if % is injective.

Answer. Suppose that 1 is not surjective. Because v is continuous and X
is compact, ¥(X) is compact. So X \ ¢(X) is a nonempty open set. Choose
a continuous function f with f = 0 on ¥(X) and f # 0 on X \ ¥(X); then
Tf =0 and T is not injective. Conversely, if ¢ is surjective and T f = 0, this
is foy =0 and so f = 0, making T injective.

If 4 is not injective, there exist tg,t; such that ¥(tg) = ¥(t1). If
f € C(X) issuch that f(tg) # f(¢1) (which exists by Urysohn’s Lemma), then
f # Tg for any g; thus T is not surjective. Conversely, if ¢ is injective, then
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¢ is a homeomorphism X — ¢(X) (Exercise 1.8.38). By Tietze's Extension
Theorem (2.6.9) there exists n : X — X with no¢(x) = z for all z € X.
Given f € C(X), let g = fon € C(X). Then Tg = f, and thus T is
surjective.

(9.5.21) With the notation of Example 9.5.20, show that

Z}\k} ng _ Z}\k <2k+1t

= PPN O

Answer. Using that
(ngo)(t) = (2k+1t - 1) 1(2*’»‘*1,2%] + 1(2*’@,1] (t)7

we have

ZAkR’“gO (2t = 1) 111/2,1(2)

+ Z A (2R — 1) 1 gkmr gmng (8) + Lo 1y(2)

k=1
= Z )\k (2k+1t — 1) 1(2—k—1,2—k} + Z M 1(271'71] (t)
k=0 j=1
=D MA@ - 1) 1ok ok +Z)\J 212 K19kt
k=0 Jj=1
e .
= Zx\k 2k+1t 1(2 k=1 9k (t) + Zl(g—k—172—k](t) Z A
k=0 j=k+1
[e'e) k+1
pr—y Z)\k (2k+1t - 1) 1(2—k—1,2 k + Z 1(2 k—1 2 k: )\ )\

— A
= Z AF (2k+1t -1+ ﬁ) 1(2—k—172—k](t)

k=0

= Z/\k (2’“*% 2’\> Lig-r-1,9-41()
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9.6. Compact Operators

(9.6.1) Let X,Y be Banach spaces with at least one of them equal
to £1(N), and let T € B(X,Y). Show that T is completely

continuous.

eak

Answer. Suppose first that X = ¢1(N). Let {z,,} C X with z,, — 0. By
Proposition 7.1.22, z,, — 0; as T is bounded, Tz, — 0. So T is completely
continuous.

When Y = (1(N), let {z,} C X with z, weak, 0. As T is bounded,
Tz, weak (because ¢ o T € X* for all p € Y*). By Proposition 7.1.22,
Tz, — 0, and T is completely continuous.

(9.6.2) Let (X, A, 1) be a measure space with finite measure, 1 < p <
oo, and 1/p+1/qg=1. If k : X xX — Cis an A A-measurable
function such that

sup{ [ 1K@l dut) s 2 € X} <,
X
show that

(kD)) = [ ki) dut)
defines a compact operator on LP(u). (Hint: use complete

continuity and reflexivity)

Answer. Let
e=sup{ [ Ibwn)itauty): o x}
X
Suppose that f, — 0 weakly. This means that for every g € L9,
[ fgdu—o.
X

In particular, for each x

/ k(z,y) fn(y) du(y) —0
X
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Since a weakly convergent sequence is bounded, there exists b > 0 with
| fullp < 0 for all n. By Holder’s Inequality,

/a
‘/ z,y) fuly) du(y ‘ (/ [k(z, y)|? du( )> | fullp < b9

Because we are in a finite-measure space, a bounded function is integrable.
Then, using Dominated Convergence,

nKmm:L(éu%mn@mmm

so K is completely continuous, and as LP is reflexive, K is compact by Propo-
sition 9.6.5.

pdu(m)—>0. (9.1)

(9.6.3) Consider the multiplication operator M, as in Example 9.5.6.
Show that M, is compact if and only if b € ¢.

Answer. Suppose first that b € ¢y. For each m € N let b, be the truncation
of b to its first m coordinates. Fix ¢ > 0 and choose k such that |b(j)| < e
for all 7 > k. Then My, is finite-rank and

b(n)x(n), n>k
(M, — My, )a)(n) = |

0, otherwise
It follows that [|[(My — my, x| < el|z| for all z, and so ||My — M, || < e.
This shows that M, is a limit of finite-rank operators, and hence compact by
Proposition 9.6.2.

Conversely, suppose that b & c¢g. Then there exists § > 0 and a subse-
quence {by, } such that |b,,| > ¢ for all k. For each k, e,, = T(% enk). As
.
5| €n, | < 671, the sequence {ey, } is in My(Bs-1(0)). As [en, —en,|| =1
nE

for all £ # j, the sequence does not admit a convergence subsequence and
hence M, is not compact.

(9.6.4) Let T : (*(N) — ¢*(N) be the linear operator induced by

1
Ten = ntl €n+1, n € N.

(a) Show that T is bounded on cg, so that it extends to all of
¢?(N) and is bounded.

(b) Show that 7' is compact.
(c) Show that T is quasinilpotent.
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Answer.

(a)Ifx =)' | xpe,, then

m 2
T2z =3 Ll < a2

(n+1)2 —

So ||T|| < 1 and, since cqp is dense in ¢*(N), T € B(¢*(N)) by Proposi-
tion 6.1.9.

(b) For m € N, define

m

me:Znﬁll.

n=1
Then T,, is finite-rank for all m, and

> 2 e 2
_ 2 _ Tn _ |24
I =Tl = || 3 Eren| = X

n=m-+1 n=m-+1

oo

2 1
<l Y

n=m-+1

SO
e’}

1
1T — Tl < Z m

n=m-+1
Therefore T is a limit of finite-rank operators, and thus compact.

(¢c) Since T is compact, any nonzero element of its spectrum has to be an
eigenvalue. If Tx = Az, this means that z; = 0 and
x”L
n+1
Inductively, this forces z,, = 0 for all n. So A is not an eigenvalue. Thus
o(T) = {0}. As T is injective, 0 is not an eigenvalue either.

= )\$n+1.

(9.6.5) Show that F(X,Y) and K(X,)) are subspaces of B(X,)).

Answer. Since a scalar multiple of a set is scalar if and only if the set
is compact, it is clear that for nonzero «, o1 is compact if and only if T is
compact. Now suppose that S, T € K(X,)). Since (S + T)B1(0) C SB1(0)+
T B;(0) and a closed subset of a compact is compact, all we need to do is show
that a sum of compact sets is compact. So suppose that K7, Ko are compact.
We can proceed in two ways here. One is to notice that Ky + Ky = g(K; x Ks),
where g is the continuous function g(z,y) = z + y and K; x Ky is compact
(easily, checked, or we can use Tychonoff for overkill); see Exercise 1.8.37
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for the fact that a continuous image of compact is compact. Another way
is to use Proposition 1.8.19. If {z;} is a bounded net in B;(0)* then there
exists a subnet {x;} such that {Sz; } is convergent. Now we can use the
compactness of T' to obtain one further subnet {x;~} such that {Tx;/} is
convergent. Then (S + T')x;~} is convergent and S + T is compact.

As for finite rank, a sum of finite-dimensional spaces is finite-dimensio-
nal, so a sum of finite-rank operators is finite-rank. And scalar multiples do
not change the rank.

(9.6.6) Show that if R € B(Z,X) and T € K(X,)Y), then TR €
K(Z,¥). And if S € B(),Z) then ST € K(X,Z). Show
also that analog results hold with T € F(X, ).

Answer. Cousider first the case T' € F(X,Y). AsranTR C ranT, we get
that TR € F(Z,Y). And since dimranT < oo and linear dependence is
preserved by a linear operator, ST € F(X, Z).

If T' is compact, using that R is bounded we have RB;(0) C Byg)(0).
Then

TRB1(0) € TBym(0) = | RI TB:(0).
The set on the right is compact since T is compact, and then the set on the

left is a closed subset of a compact set, so compact. Thus T'R is compact. As
for ST,

ST (B1(0)) € STB1(0).
As S is continuous, it maps compact sets to compact sets (Exercise 1.8.37)
so the set on the right is compact. The set on the left is thus a closed subset
of a compact set, thus compact; so ST is compact.

(9.6.7) Let X be a normed space and J a (not necessarily closed)
nonzero ideal. Show that F(X) C J.

Answer. Let T € J be nonzero. This means that there exists € X
such that Tz # 0. Let R € F(X) be rank-one. Necessarily R is of the
form Rz = ¢(z) w, for some ¢ € X* and w € X. Use Hahn-Banach (as in
Corollary 5.7.6) to obtain ¢ € X* with o(Tz) = 1. Let S € B(X) be the
operator Sz = ¢(z) z, and V the operator Vz = ¢(z)w. Then
VTSz=p(z)VTx = p(2)Y(Tx)w = p(z)w = Rz

for all z € X. And so R=VTS € J, showing that F(X) C J.
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(9.6.8) Let T' € B(X). Show that if ranT is finite-dimensional, then
T is of the form (9.32).
Answer. Let x1,...,x, be a basis of ranT. Given x € X, we have Tx =

" c¢i(x) z;, where the coefficients c;(z) are uniquely determined by the
j=1Cj J j
linear independence. Since

n n
> cilax+y)z; =T(ax+y) = aTz+Ty =Y (ac;(z) +¢;(y)) z;,
=1 =1
we get again from the linear independence that ¢;j(ax +y) = ac;(x) + ¢;(y),
so each c; is linear. We also have that c; is bounded, because ¢; = 7; o T,
where ; is the map ﬂj(Z?ﬂ rjz;) = r;; this map is bounded because it is a
linear map on a finite-dimensional space (Exercise 9.1.2).

(9.6.9) Let X, ) be infinite-dimensional Banach spaces, T € K(X, ).
Show that T is not bounded below on any infinite-dimensional
subspace Xy C X.

Answer. Suppose that |Tx| > ¢||z| for all z € Xy and some ¢ > 0. By
Theorem 5.2.9 the unit ball B{*(0) is not compact, so there exists § > 0 and
a sequence {z,} C X with ||z,| =1 and ||z, — || > ¢ for all n,m. Then

T2y — Txpm|| > cl|zn — zm|| > ¢d >0

for all n, m, showing that {Tz,} is not Cauchy. Hence T is not compact.

(9.6.10) Let V € B(L?[0,1]) be the Volterra operator defined above,

Vi@ = | f

As mentioned, knowing that V' is compact and has no eigen-
values, it follows immediately that o(V') = {0}. Prove this fact
explicitly by calculating (T — AI)~! for any \ # 0.

Answer. We want to solve the equation g = (T'— AI)f in terms of f. We
will initially assume that g is differentiable. Differentiating the equality we
get that differential equation

g =f-=Xr.
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We can rewrite this as
g(@) = A= /@) + (@) = A" (7 f ()
Hence

f(z) = e*/* (c - i/oz e g (1) dt)

for some scalar ¢. Evaluating at x = 0 we get ¢ = f(0). From g = (T — \I)f
we have g(0) = —\f(0). Integrating by parts,

fla) = e (- %9(()) B §/0 g (1) )
a0 a)
_ e (- %9(0) _ %efz/Ag(x) + ig(o) _ % /Ow e Pg(t) dt )

1 e [T
— 3o - 55 [ e Pty
By FERA

- 1 1 _
= e (= 9(0) = 5 g0

That is,

(= A7 l(e) = =3 4) - S [P a

The expression works for any g, differentiable or not. It is bounded, for if
Rel/A#0

1 1 x 2
_ 1 1 . _
=AD" 7B = o [ e+ o e [ ey a
0 0 0

1 1 .
sann%WugH% [y [ e avas
X
= ol + ol [ e [
0

1
1 A/ —
= a9l = s ol [ M (@A~ 1 o
A

1 2 1 2( L/ 2Rel/A )
— - 1-— -1

1 1 2\Rel/)\\ 41
S 2 + 1 2 + 2 || ||2
A2 2[Re g IAP 4[(Re £[)* [A|

And when Re1/X\ = 0, the exponentials all have absolute value one, and we
get

dx

2
Iolf < 2 gl



CHAPTER 9

So (T — M)~ is bounded. Finally, although it follows from the derivation, a
straightforward computation shows that (T — X\I)~1)(T — XI)f = f.

(9.6.11) Let X = (*(N) and {)\,} C C with A, — 0. Show that there
exists T € K(X) with o(T) = {\,}.

Answer. Let - -
T(Zakek) = Z AnQp €.
k=1 k=1

Because the sequence {\,,} is convergent, it is bounded; there exists ¢ > 0
with |A,| < ¢ for all n. Then, for z =Y | axex,

[ee] 2 e o]
Z AnGnen|| = Z ‘)‘n|2 |O‘n‘2 < ? ||33H2
k=1 k=1

So T is bounded. If T;, is the finite-rank operator

T, ( i ak:ek) = i )\nanena
k=1 k=1

I T2|* =

then

(T = To)all* =Y Al laxl® < sup{|Aef* = & = n} ).
k=1
Thus ||T — T,|| < sup{|Xx|] : k > n} which shows that T = lim, T,,. By
Proposition 9.6.2, T' is compact. We have
Ten, = Apén,

so {A\n} Co(T). If A#0and A & {\,}, there exists 6 > 0 with |\ — A,| > §
for all n. Let S be the operator

oo oo 1
S<kz:1 Oékek> = ]; X, — ) nén

Then S is bounded with || S| = sup{|A\, — A|7*: n} <571 And

oo

S(T — M)z = S(TAI)(Zakek) = z )\nl_)\()\n —Nape, = .

k=1 k=1
Similarly, (T'— AI[)S = I, and so A € o(T). So o(T) = {\,}.

(9.6.12) Let X be a normed space and E € B(X) an idempotent. Show
that E has finite-rank if and only if it is compact.
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Answer. If E is finite-rank, then E is compact by Proposition 9.6.2. Con-
versely, if E is not finite-rank, use Riesz’s Lemma (5.2.8 as in the proof of
Theorem 5.2.9 to produce a sequence {Exz,} € EX with |Ez,| = 1 and
|Ex,, — Exyp|| > 1/2 for all n,m. Let z, = Ex,, n € N. Then {2,} C B¥(0)
and ||Ez, — Ezy|| = |Ex, — Exp|| > 1/2 so the sequence does not admit a
convergence subsequence. Hence E is not compact.

(9.6.13) Let X be a normed space and Xy C X a nonzero finite-dimen-
sional proper subspace. Show that there are uncountably many
idempotents F € B(X) with Xy = EX.

Answer. The answer does not depend on X being infinite-dimensional; it
works for any proper subspace of any normed space. Fix a basis {eq,...,e,} of
Xp. Use the argument Exercise 5.7.2 to construct agq,...,a, € X" such that
ai(ej) = O ex. Since X is proper, there exists a unit vector y € X'\ Xo. For
each t € [0,27), define B(cy) = e'le, B(ex) = 0 for k = 1,...,n, and extend
to f € &* by Hahn—Banach. Now let E; be the idempotent
Ei(2) = 3 (anla) + B(a)) ex.
k=1

Then E; € B(X), E;X = Xo, E? = E;. And for s # t we have E;y = e'ly #
ey = Eyy, so E, # E;.

(9.6.14) Let X be a Banach space and E € B(X) an idempotent. Show
that ran E and ran(I — E) are closed.

Answer. Let {Ex,} be Cauchy. Then there exists x € X such that Fz,, — x.
As F is bounded, Ex,, = E(Ex,) — Ex. Hence ran E is closed. And I — F
is also an idempotent, so its range is closed.

(9.6.15) Let E € B(X) be a finite-rank idempotent. Show that E* is a
finite-rank idempotent and that dimran F = dimran E* = n.

Answer. For g € X* and z € X', we have
(B*E*g)x = (E*g)(Ex) = g(B*x) = g(Ex) = (E*g)z.
As this holds for all x € X and all g € X*, we have the equality (E*)? = E*.
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If dim E = n, fixing a basis {e1,...,e,} of ran F we have

Ex = Z ag(z)eg
k=1

for certain coefficients oy (), ..., a,(2). The linear independence of the basis
(or, equivalently, the uniqueness of the representation of an element of ran F
in the basis) gives us that each oy is linear. Let i € X* such that Si(e;) =
dxj e (as in the proof of Exercise 5.7.2, one defines these functionals on ran F
and extends by Hahn—-Banach). Then

lak(@)| = [Be(Ex)| < [|Bkll |1E]| 2],
so ay, € X* for all k. Now

(E*g)z = g(Bx) =Y _ ar(z)g(er),
k=1
for all g € X* and all z € X. Thus

E*g=> gler) a.
k=1

So ran E* C span{aj,...,a,}. We also have
E*Br = ay,
showing that ran F* = span{ay,...,a,}. So dimran E* = n.

Conversely, suppose that dimran E* < oco. By the above, dim ran E** =
dimran £*. By Proposition 9.4.6 and Exercise 7.3.5,
ran E** = (ker E*)° = (ran E)°° = Jy ran EY

Since the closure of Jy ran F is finite-dimensional, then Jy ran E is finite-
dimensional. Then
ran B** = Jyran E.

As Jy is an isomorphism, dimran £ = dimran E** = dimran E*.

(9.6.16) Let X be a vector space and P,@ : X — X be idempotents.
Show that if ker P = ker @ and ran @ C ran P, then P = Q.

Answer. From ran (@) C ran P we have that for any = there exists z such
that Qz = Pz. Then (I — P)Qx = (I — P)Pz = 0. So Q = PQ. Since
(I —Q)x € kerQ = ker P, we get that P(I — Q)x = 0. Then P = PQ. Tt
follows that Q = PQ = P.
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9.7. Fredholm Operators

(9.7.1) In the proof of Corollary 9.7.8, show that T7; : X1 — ) is a
bounded linear bijection.

Answer. Since Ti; is a restriction, ||T11]| < ||T]|. Suppose that z € X; and
Tz =0; thisis Te =0,s0 z € kerT = Xy, As X1 N Xy = {0} we get that
x = 0 and T7; is injective. Given y € )y = ranT, there exists x = x1 + 22
with Tx = y. Then y = Tz, with 7 € &;. So T1; is linear, bijective, and
bounded.

(9.7.2) In the proof of Corollary 9.7.8, show that ran Q = ker T

Answer. We have, for x € ker R,

T11 T12 —TﬁlTlg.’I} 7T12l’ + T12I 0
TQI‘ = = —1 =0.
T21 T22 T —T21T11 T12.’L' + ngl‘ Rx

So Q(ker R) C kerT. Given = € kerT, by (9.36) we have that x5 € ker R.
And by (9.35) we have that z; = —T1_11T121'2. Then

= [T _fe]

Z2 T2

(9.7.3) Let X be a Banach space, T € B(X) Fredholm, R € B(X)
invertible. Show that RT and T'R are Fredholm.

Answer. We have ker RT =ker T, ker TR = R~ 'ker T, ran RT = R(ranT),
ranTR =ranT.

Another way is to notice that by Proposition 9.7.7 there exists S such
that I — ST and I — T'S are compact. Then I — (SR™Y)RT = I — ST, is
compact, as is [ — RT(SR™Y) = R(I — ST)R~!. Similarly, I — TR(R™1S) =
I — TS is compact, as is [ — R"'STR = R~(I — ST)R.
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(9.7.4) Let T € B(X,Y) and Z € B(Y, Z) be Fredholm. Show that
ZT is Fredholm.

Answer. By Proposition 9.7.7 there exist S € B(Y,X) and R € B(Z,Y) and
compact operators K1, Ko, K3, K4 such that

ST =1y + Kq, TS =1y + Ko, RZ =1y + K3, ZR=1z+ Ky.
Then

(SR)ZT = S(RZ)T = S(Iy + K3)T = ST 4+ SK3T = Iy + (K7 + SK3T),
so SR is a left-inverse for ZT modulo the compacts. Similarly,
ZT(SR)=Z(TS)R=Z(Iy+ K2)R=ZR+ ZK3R =1z + (K4 + ZK3R).
Then Proposition 9.7.7 guarantees that Z7T is Fredholm.

(9.7.5) Let X be a Banach space, and Xy, X} subspaces with XoNA; =
@ and X = Xp+ X (that is, X is the direct sum of Xy and A}).
Let T' € B(X) such that TXy C Xy, TX; C X1. Let Ty = T'|x,,
Ty = T|x,. Show that T is Fredholm if and only if T and T}
are Fredholm, and that

IndT =1Ind 7Ty 4 Ind 7.

Answer. We have kerT = kerTy + kerTy. Indeed, if z € kerT, we have
r = xg + x1 for unique xg € Xy, x1 € X1. Then 0 = Tx = Toxg + T1x1. As
Toxo € Xy, Thix1 € Xy, the uniqueness of the decomposition (coming from
Xo N X1 = {0}) gives us that Taxg = Txy = 0; that is ker T’ C ker Ty + ker T7.
Conversely, if z¢ ker Ty, z1 € ker T, then T'(zo+ 1) = Tozo+T121 =040 =
0, and so ker Ty + ker T} C ker T

We also have ran T = ran Ty +ran T, with ran Ty Nran 77 = @. Indeed,
Ty = Toxo + Tlxl.

Also,

X/(ranT) ~ X/ranTy @ X/ ranTy.
For this, consider the map v : X/(ranT) — X/ranTy @ X'/ ran T} given by
Y(xz+ranT) = (xo +ranTy, 1 + ranTl).

This is well-defined: if x —y € ranT, then xg — x¢ € ran Ty, 1 —y; € ranT.
It is linear. It is injective: if zg € ran Ty, x1 € ranTy, then zg 4+ x1 € ranT.
And it is surjective: (zo +ranTp,z1 +ranTy) = y(xg + x1 +ranT).

In summary, we have proven that

dim ker T" = dim ker Ty + dim ker T,
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and

dim X /ranT = dim Xy/ran Ty + dim & /ran 7.
It follows that T is Fredholm if and only if both Ty and T3 are Fredholm, and
IndT = Ind Ty + Ind T7.

(9.7.6) Let X be a Banach space and T' € B(X') Fredholm. Show that
the following statements are equivalent:

(a) there exist S, K € B(X), with S invertible and K compact,
such that T'= S + K

(b) Ind T = 0.

Answer.

Suppose first that T = S 4+ K, with S invertible and K compact, by
Corollary 9.7.14 we have Ind7T = Ind(S + K) = Ind S = 0, since ker S = {0}
and coker S = {0}.

Conversely, suppose that IndT = 0, then dimker7T = dim cokerT.
By Corollary 9.7.8 we have decompositions X = X} @ Xy = Y1 @ Vs, with
T|x, : X1 — Y invertible and dim X5 = dim Vs. Let V : X3 — Ys be a linear
bijection, and form S : X — X by

Tx, xeX
Sz =
Ve, xei

Then S is a linear bijection, and it is bounded because T" and V are. By the
Inverse Function Theorem (6.3.6), S is invertible. Let K =T — S. Then

Ty T |Tu 0 _ |0 JAD
To1 Tao 0o Vv Toy T =V}’

is compact, as it is finite-rank.

|
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9.8. Schauder Bases and Basic Sequences

(9.8.1) Let X be a Banach space and E = {e,} a Schauder basis.
Show that P, is linear and bounded.

Answer. By the unique representation property of F, if
QSZZCkek, yzzdkek
k k

and A € C, then

Ar+y = Z()\Ck + dk)ek.
k
Then

n

P,(Ax+y) = Z(Ack +di)er = A Z crer + Z dier, = \P,x + P,y.
k=1 k=1 k=1

As P, is finite-rank, it is bounded (Proposition 9.6.2).

(9.8.2) Let X be a Banach space and E = {e,} a Schauder basis.
Show that bg < oo.

Answer. Fix ¢ € X. Then P,z — z. This implies that ||Py| — ||z, so
the sequence {||P,z||} is bounded. By the Uniform Boundedness Principle,
sup{|| Pl : n} < cc.

(9.8.3) In the proof of Proposition 9.8.2, show that ||-||; is a seminorm.

Answer. ||z|p > 0 by definition. Given A € C,
Azl = sup{[| oAzl n} = A {[|Paz]| = n} = [A]fl2]]s-

If z,y € X we have |P,(z 4+ y)|| < ||Pz|l + | Pyl by the linearity of P, and
the triangle inequality. As the supremum is subadditive, we get ||z + y|[, <
1z]ls + llyl[-
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(9.8.4) Let X be a Banach space and E = {e,} a Schauder basis.
Show that E is also a Schauder basis for the Banach space

(@ - el)-

Answer. Since || - || is equivalent to || - || by Proposition 9.8.2, we get that
(X,] - |l») is a Banach space and that the series ), crej converges in || - ||,
precisely when it converges in || - ||. So the same coefficients will represent x
in terms of E both in || - || and | - ||s, and the uniqueness is preserved. So F
is a Schauder basis for (X, ]| - ||s)-

(9.8.5) Fixt; =0,t,=1,and t3 < --- < t,, € (0,1). Let D,, C C[0, 1]
be set of piecewise linear functions with nodes at each ¢;. Show
that D,, is a subspace and that dim D,, = n.

Answer. 1t is enough to find a basis of n elements. Fix f € D,,. Let g; = 1.
Then f —b1g1 € D, and (f1 — b1g1)(0) = 0 if we take by = f(t1). Let g2 be
the piecewise linear function with g2(t1) = 0, g2(t2) = 1. Then if by = f(t2)
we get f —b1g1 — bags € Dy, and f — bygy — bage € D, is 0 at t1 and at to.
Continuing like that, each time one more point is brought to zero. So after n
steps.

F=> f(tr)gn-

1

(9.8.6) Let X' be a Banach space and {e,} a sequence of nonzero el-
ements satisfying (9.39). Show that {e,} is linearly indepen-
dent.

Answer. Suppose that 37, aje; = 0. By (9.39) we have

n
arl lexl] = larenll < ¢ - azes| = 0.
j=1

So a; = 0. Repeating the argument we obtain successively that a; = 0 for all
j. So {e,} is linearly independent.
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(9.8.7) Let X',Y be Banach spaces, Xy C X, Vo C Y (not neces-
sarily closed) subspaces, and T : Xy — )y a bounded linear
invertible operator. Show that there exists a unique extension
T : Xy — Y, that is still invertible. In other words, a bounded
isomorphism of subspaces extends to an isomorphism of their
closures.

Answer. The existence of the extension comes from Proposition 6.1.9. All
we need to check is that this extension is invertible if 7' is. So fix z € Xj.
Then there exists a sequence {z,,} C Xy with 2, — 2. We have, since the
extensions are bounded,

(T) ‘Tz = lim(T) " 'Tz, = lim(T) ' Tz, =limT Tz, = limz, = z.

So (T)~'T = idy,, and similarly we get that T(T)~! = idy,.

(9.8.8) Show that any subsequence of a basic sequence is a basic se-
quence.

Answer. It is enough to show that a subsequence of a Schauder basis is a
basic sequence. Let {e,} be a Schauder basis for the Banach space X, and
let {e,,} be a subsequence. Put Xy = spanlll {e,, : k}. If {P,} are the
basis projections for {e,}, let Qi = Py, |x, € B(Xp); this requires checking
that Q. acts on X, which should be clear since

14 ¢ Y
Qk<zcjenj> = P, <ch6”.7‘) = chpnk,enj
J=1 j=1 j=1

€ span{en,, ..., en, } € Xo,
since Py, (en,) is either 0 or e,,. Being a subsequence of a sequence of basis
projections, {Q} satisfies (ii) in Lemma 9.8.3. And since
QrXy =span{en,,...,en, },
we also have dim Qi Xp = k. So by Lemma 9.8.3 {Qy,} are basis projections for
the Schauder basis {ej,, }1 of Xp. This means that {e,, } is a basic sequence.

(9.8.9) In the proof of (i) = (ii) in Proposition 9.8.9, show that S is
bijective.
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Answer. The equivalence of F and F guarantees that if > ; @j€;j converges, so
does > ;@ fj. Together with the uniqueness of the coefficients, this guaran-
tees that S is well-defined. The uniqueness of the coefficients also guarantees
allows us to similarly define T": 3~ a; f; — >_; aje;, which is an inverse for
S. Hence S is bijective.

(9.8.10) Show that

(a) co = co Doo co, Where [|(2,y)]loo = max{[lz]lco, [¥lloo };
(b) ¢(N) ~ ¢?(N) &, ¢?(N), 1 < p < 00, where
G, )l = (lll? + llyl12) 7.

In both cases the isomorphism can be made isometric.

Answer. Consider v : ¢cg — cg @ ¢g given by

Y(x1,29,...) = (1, 23,...) D (T2, 24, . ..).
Linearity is easy to check. For the isometry, recall that the sup norm on ¢
is actually a maximum.

|7(2)]] = max { max{|wop_1] : k}, max{|zor|: k}} = max{|ay|: k} = [z|.

We can use the same + in the ¢?(N) case. Now we can do

> > 1/p > 1/p
Iy(@n e, ) = (D lwaeal+ > aael?) = (3 leal?) " =l
k=1 k=1 k=1

(9.8.11) Show that

() co = (@c())%, where H @xn

neN

= max{||z,|e : n};
(b) ¢P(N) ~ @KP(N), 1 < p < o0, where

= » 1/p
@] - (5 i)
n n=1

In both cases the isomorphism can be made isometric. The only
difficulty of this exercise compared to Fxercise 9.8.10 is having
to deal with sequences of sequences and not getting swamped by
the notation. If needed, it might help to use x(k) for the k'!
entry of x.
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Answer.

(a) Let N =J,, Ly, be a partition of N into countably many infinite sets, and
for each n let o, : N — Ly, be a bijection. Let v : co — P, <y co be given

by
~v(x) = @ Z 0oy
n
Linearity of v is automatic, since it occurs component wise. For the isom-

etry,
(@)l = sup{lle o anll: n € N} = supsup [z(an (k)]

= sup{lz(k)[: k} = ||
For the surjectivity, if z : N — ¢ satisfies ||z(n)|lcc — 0, let  be given by
z(k) = z(n)(a, * (k)), where k € L,,.
Then, noting that y(z)(n)(h) = z(a,(h)),
(@) () (h) = 2 (h)) = 2(n)(c (n () = 2(m) (),

and so y(z) = z and ~ is surjective. The fact that ||z(n)||cc — 0 is used
to guarantee that x € ¢g.

(b) We can use the same . Now

@, = (Z Iz o ann;z)l/p -(zx |:c<an<k>|p)1/p ~ izl

(9.8.12) Corollary 9.8.13 is a result due to Mazur, but the proof of-
fered is not the original one. Here we will outline the original
argument.

(a) Given a normed space X and V C X a finite-dimensional
subspace, and given ¢ € (0, 1), show that there exists ¢ € X
with ||z|| = 1 and such that

Izl < (1 + )]z + Az, 2eV, AeC.  (9.2)

(Hint: find an e/2-net for OBY (0), bounded linear func-
tionals that are 1 at each point of the net, and take x in the
intersection of the kernels)

(b) Given € > 0, show that there exists 6 > 0 such that

o0

[[a+62 ) <1+e
k=1
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(c) Use Proposition 9.8.6 to prove Corollary 9.8.13, by using
(a) inductively.

Answer.

(a) Since B} (0) is compact (by Corollary 5.2.4), there exist vy, ..., v, such
that 9B} (0) C U; Be/2(v;). By Corollary 5.7.7, there exist ¢1,..., ¢, €
X* with ¢;(v;) = 1, j = 1,...,r. By Proposition 5.5.12, there exists
z € [ ker p; with [|z]| = 1.

Since 0 < € < 1 we have ¢ — 2 > 0. Then 2+ 2¢ — ¢ — €2 > 2, which
is (2—¢)(1+¢) > 2, and it can be written 1 —&/2 > 1(1 +¢).
Now, given z € V with ||z|| = 1, there exists j with ||z — v;| < /2.
Then
€
Iz + Azl =l + Azl = [l = vyll = [0j(v; + Az) = 5

€ 1

27 1+¢’

yielding (9.2) for ||z|]| = 1. For z = 0 there is nothing to prove, and for
arbitrary z € V we have, applying (9.2) to z/||z|| and A/|#]|,

=1

1<(1+e)‘

z A
e
lzll Izl

and the general form of (9.2) follows.

(b) Taking logarithm,

log [T(1+627%) = log(1+527%) <Y s27% <o
k=1 k=1 k=1

So, for any n,
n

[[a+627F) <e
k=1
Now choose § > 0 and small enough so that ¢® <1 +¢.

(¢) Choose § > 0 such that [];_, (146 27%) < 1+e. Fixz1 € X with [|z1] = 1.
Apply (9.2) to V = span{z1} to obtain x5 € X’ with ||z3|| =1 and ||z|| <
(1+6271) ||z + Az2|| for all 2z € span{z;1}. Inductively, given x1,...,z,
unit vectors with [|z|| < (1 +627%)||z + Az ]| for 2z € span{zy,..., 25 1},
we get T,11 € X with ||z, 1|l = 1 and ||2]] < (1 4+027"" Y|z + Azpaa]|
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for all z € span{zy,...,z,}. Now, for any c € CY and n < m,

E CrT

n+1

E CrTk
k=1

(146277

<. ﬁ 14+627F icwk
k=n k=
<(l+¢) zm:cmck .
k=

By Proposition 9.8.6 we get that F = {z,,} is a basic sequence and the
estimate gives by <1+ €.

(9.8.13) Let X, Y be Banach spaces, Xy C X a subspace with dim Xy =
oo, and T' € S§(X,Y). Show that there exists a normalized
basic sequence X = {z,} C Xy with bx < 2 and such that
| T2y, || <27 for all n.

Answer. In the proof of Exercise 9.8.12, the elements x,, of the basic sequence
come out of ﬂ?zl ker ¢;. From Exercise 5.5.12 we know that said intersection
is always infinite-dimensional. As T is strictly singular, it is not bounded
below on (_, ker ¢; and so we can choose z,, with |[z,[| = 1 and [|Tz,| <
27",

(9.8.14) Let X, Y be Banach spaces and T' € B(X,Y). Show that T €
SS(X,Y) if and only if for every infinite-dimensional subspace
Xy C X there exists an infinite-dimensional subspace X; C &}
with T'|y, compact.

Answer. Suppose first that T € SS(X,Y). Fix an infinite-dimensional
subspace Xy C X. By Exercise 9.8.13 there exists a normalized basic sequence
{x,} C Xy with | Tz,|| < 27" for all n. Let X; = spanl'l {z, : n}; then
{zn} is a Schauder basis for it. If { P} are the basis projections for {z,}, let
T, = TP,. Then T, is finite-rank, so compact. Given x = Z;’il cjx; with
|lz|| = 1, by Proposition 9.8.2

les] = [ef ()] < 2bx < 4,
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and then
(T =Tzl = | > eTa;l| < > gl Ty < Y 27942 =272,
j=n+1 j=n+1 j=n+1

So ||[T'—T,|| = 0 and T'|, is compact.

Conversely, suppose that T is not strictly singular. Then there exists
an infinite-dimensional subspace Xy C X with T bounded below on &jy. This
makes T" bounded below on any infinite-dimensional subspace of Xy, and
hence it cannot be compact there.

(9.8.15) Let X', Y be Banach spaces. Show that
(a) SS(X,)) is a norm-closed subspace;

B)if T € SS(X,Y) and S € B(Y,Z), R € B(Z,X), then
ST € S§(X,Z) and TR € SS(Z,X);

(c) K(X,Y) C S§(X,)).

Answer.

(a) Given nonzero A € C and T € SS(X,)), it is clear that T is bounded
below on a subspace if and only if AT is, so AT € SS(X,)Y). And the
operator 0 is strictly singular, so A = 0 works too. If S,T € SS(X,))
and Xy C X is an infinite-dimensional subspace, by Exercise 9.8.14 there
exists an infinite-dimensional subspace X; C X such that T'| x, is compact.
Applying again Exercise 9.8.14 but now to S and Xj, there exists an
infinite-dimensional subspace X5 C A} such that S|x, is compact. Then
(T + 5)|x, is compact, and so by Exercise 9.8.14 we get that T+ S €
SS(X,)).

It remains to show that SS(X,Y) is closed. Suppose that {T},} C
SS8(X,Y) is Cauchy. By B(X,)) being a Banach space there exists T =
lim T;,. We want to show that T € SS(X,)). By passing to a subsequence
we may assume that | T—T,| < 277!, Fix Xy C X, infinite-dimensional
subspace. For each n, as T,, is strictly singular there exists x,, € Xy with
|lzn|l =1 and || T2, || < 27" 1. Then

1Tzn]| < (T = To)wnll + [ Ton|| < 2ty =27

So T' is not bounded below in Xy. As this can be done for any Xy, T €
SS(X,Y), and thus SS(X,)) is closed.

(b)If T € SS(X,Y) and S € B(Y, Z), fix an infinite-dimensional subspace
Xo C X. Then there exists {z,} C Ay with ||z,|| = 1 for all n and
Tz, — 0, since it is not bounded below. Then STz, — 0, so ST €
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SS(X,Y). Suppose that TR ¢ SS(Z,X); so there exists an infinite-
dimensional subspace Zy C Z and ¢ > 0 such that |TRz|| > ¢||z|| for all
z € Zy. So R is injective on Z; and dim RSZy = co. We have

C

T(Rzx)| > c|lz|| = — || RZ||,
IT(Rzz)|| = ¢| II_HRHII |

so T is bounded below on RZj, a contradiction. Hence TR € S§(Z, X).
(¢) That K(X,Y) C SS(X,)) is Exercise 9.6.9.

(9.8.16) Show that B(cp) has a unique non-trivial (closed, double-sided)
ideal.

Answer. Let J C B(co) be an ideal, and let T € J \ §S8(cp). By definition,
this means that there exists an infinite-dimensional subspace X C c¢g such
that T'|x, is bounded below. By Proposition 9.8.21 there exists an infinite-
dimensional subspace X; C X, that is isomorphic to ¢g. As Ty, is bounded
below, ranT|x, is closed (Exercise 9.4.1) and so T, is invertible onto its
range by the Inverse Mapping Theorem (6.3.6). Then ranT|y, ~ X} ~
o, and so ranT|y, is complemented by Corollary 9.8.34. Let P € B(co)
be a bounded projection onto ranT|y, and S € B(cg) be given by Sz =
(T|x,)"*Px. Let R : ¢y — X1 be an isomorphism, so R € B(cp). And let
R’ € B(cp) be given by R'z = R~1Quz, where Q € B(cp) is a projection onto
Xi. Then R'STR € J. But, as Rx € X,

R'STRx = R'(T|x,) 'TRx = RRr = R 'R =z = I,

so I, € J and then J = B(cy).

We have thus shown that any closed proper ideal of B(cg) satisfies
J C 8S8(cp). As J necessarily contains the finite-rank operators, we get
from Propositions 9.8.5 and 9.8.30 and Exercise 9.6.7 that

’C(Co) = f(CO) cJcC SS(CO) = ’C(Co).

Hence J = 8S(cp) = K(co) = F(co) is the unique non-trivial closed ideal in
B(C()).

(9.8.17) Show that if }, x) and >, yx converge unconditionally, then
so does ), (axy + yi) for a € C.

Answer. Let € > 0, and let x,y be the limits of the series respectively By
hypothesis there exist finite sets Fy, Gg, such that for any finite sets F' D Fy,
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G D G,
e g
lr-Xel <o Xl <5
keF keG
Then, if H D Fy U Gy,

(l g
“am+y— Z (a$k+yk)H < |CL|H33_Z%H + Hy— ka < 2a| to=
k kch keFy

0

(9.8.18) Let X be a Banach space, and {z;} C X. Show that if Zxk

converges absolutely, then it converges unconditionally.

Answer. Fix € > 0. Then there exists ng such that Z lzkl] < e. Let
k>ngo

Fy={1,...,n0}. For any F} CN\FO,

| X o] < X towl < X lawl <<

keF, kEFy k>ng
So the series converges unconditionally.

(9.8.19) Let X be a finite-dimensional Banach space, and {zx} C X.
Show that if Z xj, converges unconditionally, then it converges

absolutely.

Answer. Consider first the case where X = R. Let G = {k: z; > 0}. Then
Yo=Y n
k keG

converges by (v) in Proposition 9.8.27. Similarly, Zx; converges. Then
E

Sloul = Yt 42
k k

converges. When X = C, we have |Rexy| < |zy|; then )", Rex) converges
unconditionally, and similarly for >, Im ;. Then

Zxk = ZRexk +iZImxk
k k k

converges unconditionally. Finally, consider the case where X is an arbitrary
finite-dimensional Banach space. By Theorem 5.2.2 we may choose a norm
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that suits us. Let eq,...,e, be a basis for X, and consider the norm
H Z%‘%‘H = laj|
Jj= Jj=

Let us write
n n
T = E ak,;€5, T = E a;€;.
j=1 j=1

Using the definition of unconditional convergence, we will then have

n n
’ah* E ak,h’ < E ’aj - E ak,h‘ = H E aje; — E :ak,jej
keF j=1 keF j=1 keF
:Hx— g zkH<€.

keF

Thus the series ), aj,; is unconditionally convergent for each j. By the

previous part, it is absolutely convergent. Thus Z |ak, ;] < oo and then
k

ZH%H —ZZIamI —ZZ\%;I < 00

k g=1 j=1 k

(9.8.20) Let p € (1,00). Find a series in ¢?(N) that converges uncondi-
tionally but not absolutely.

n
1
Answer. Consider the sequence {z,}, where z, = Z Wek' Then the

k=1
sequence converges to

Z 1
z = %ek,
k
1
_ Yo E N
HZ Zn”pi kP n—oco 0

k>n
But the series does not converge absolutely, for

Slied, - Si-

since
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9.9. A Brief Excursion into Injectivity

(9.9.1) Let X be a Banach space and ) C X a closed subspace that is
not complemented. Let Z = (X®1X)/K, where K = {(y, —vy) :
y € Y}. Show that X © 0 and 0 @ X are complemented in Z
but their intersection is not.

Answer. Let P : Z — X @0 be given by P((a,b) + K) = (a + b,0) + K.
To see that P is well-defined, we have that (a +y) + (b —y) = a + b. The
linearity is automatic. And

1P((a,0) + K)|| = [l(a +b,0) + K| = nf{[[(a + b+ y, —y)[| : v € £}
=inf{lla+bd+yl+yl: v e} =lla+b|
<infflla+yl[ + 16—yl y € K} = [l(a,0) + K.

So P is a norm-one projection. Then X & 0 = PZ is complemented and a
similar argument shows that 0 @ & is also complemented.

Let us look at (X¥@0)N(04X) in Z. These would be the classes (a, b)+K
such that there exist z1,22 € X with (a,b) + K = (x1,0) + £ = (0,22) + K.
That is, b=21 —a € Y, a = x2 — b € ). This can be rephrased as a,b € ).
In other words,

(Xo0)Nn0eX)=Ye0=00)Y.

Suppose that @Q : Z — Y @ 0 is a bounded projection. Fix x € X and let
(a,b) + K = Q((x,0) + K). As (a,b) + K € Y® 0, we have a +b € Y.
If we consider two elements of the form (a,0) + K = (da/,0) + K, we have
(a — d’,0) € K, which implies that a — o’ = 0. So there is a unique Rx € )
with Q((z,0) + K) = (Rx,0) + K. The uniqueness gives us R?> = R and,
together with the linearity of @, it forces R to be linear. Also, by the triangle
inequality

[(Rz,0) + K|l = inf{||[ Rz + y|| + [l : y €V} = | Rz
So
[ Bz|| = [[(Rz,0) + K[| = [ Q((x,0) + k)|
< QU Iz, 0) + Kl = [|QI nf{[lz + yll + llyll - y € Y}
=1l =l
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and R is bounded. This would make ) complemented in X, a contradiction.
Thus (X @ 0) N (0@ X) is not complemented in Z.

(9.9.2) Let X be a Banach space, (j,7) an injective envelope for X,
and KC a Banach space with g : J — K an isometric isomor-
phism. Show that (g o j,K) is an injective envelope for X.

Answer. Let ¢ : K — K a contractive linear map with ¢»ogoj = goj. Then
g loyog:J — J is a contractive linear map with

(97 topogloj=glo(pogoj)=glogoj=j
As (j,J) is an injective envelope for X, we get that g=' o ¥ o g = idj(x).
Then 1) = go g=! = idx and hence (g o j,K) is an injective envelope for X'

(9.9.3) Show that 4, as in the proof of Theorem 9.9.16, is a linear
isometry.

Answer. We have X = (> (N), Y = L*°[0,1], with i : X — Y given by

an

2n+1 Zn]

Given z,y € X,

i(fﬂﬂ/)l[ 1 ;]:(xnﬂ/n)l[ L1
2n+1’2n 2n+1°'2n

=i(df)1[ 1 ;]H(y)l[ L 1]

2n+1’'2n 2n+1’2n
This works for all n, so i(x +y) = i(z) +4(y). Multiplication by scalars works

we have i(2)(t) = z,. Thus [i(2)]c < [|2]|co-

similarly. For ¢t € [Tl-ﬁ—l’ i ,
Given € > 0, there exists n with |z,| > ||z]|cc —€&. Then, with t € [%H, 2171]
2]l — & < faa] = i(2) () < [|i(2)] co-

As this can be done for all € > 0, we obtain that ||i(z)|c = ||#]c for all
rekX.
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10

Bounded operators on a Hilbert space: Part
I

10.1. Adjoints

(10.1.1) Prove the uniqueness of the adjoint of T € B(H).

Answer. Suppose that R, S are adjoints for 7. This means that

(€, Rn) = (T€&,n) = (£, Sn), £&,meH.

So (Rn — Sn,&) = 0 for all £ € H. Then Ry = Sn by Lemma 10.1.1. And
this occurs for alln € H,s0 R=S.

(10.1.2) Let H = C2. Let {&1,&} be the canonical basis, and T' the
operator induced T& =0, Té = &;.

(a) Find them matrix form of 7" and T™* with respect to the
canonical basis. Confirm that 7* is the conjugate transpose.

433
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(b) Find the matrix form of 7" and T* with respect to the basis
m = &1, 2 = & + &. Is the matrix of T* the conjugate
transpose of the matrix of 77 Why?

Answer.

(a) When we represent an operator as a matrix with respect to a basis, the
columns are the coefficients of the images of each element of the basis. Let
us first find 7. We have T¢; = 0, T¢ = Xy, so

(T (a1 + BE2), Y& + 0&2) = (o + B2, T(v&1 + 062)) = (a1 + BE2, 061)

OZS = <a527751 + 6§2>7
so T*&1 = &, T"é5 = 0. Hence

01 . oo
e s ]
(b) We now have Ty =T& =0, and Tne = T(§1+&2) = £ = —m +12. Also,
T*m =T =& = —nu +n2, and Ty = T*(&1 + &§2) = o = —m1 + 12

Therefore
0 -1 . -1 -1
T_[O 1]’ T_{l 1]'

The matrix for T is not the conjugate transpose of the matrix of T,
because we are dealing with a basis that is not orthonormal.

(10.1.3) Let H a Hilbert space and Ho C H a dense subspace. Let
B :Ho x Hy — C be a bounded sesquilinear form. Show that
B admits a unique extension to a bounded sesquilinear form
B:H x M — C, with | B|| = || BJ|.

Answer. Let &,n € H and {&,},{n.} C Ho sequences with &, — & and
Nn — 1. Let ¢ > 0 with ||€,]| < ¢ and ||n,|| < ¢ for all n. We have

|B(€n>77n) - B(€m>nm)| S ‘B(&unn) - B(§n7”7m)| + ‘B(&unm) - B(&ma”m)'
= [(B(&n> = 1m)| + |B(En — Ems )|
< ABI 1€l mn = mall + I B[ 7m [ [1€n — &l

< C”BH (Hnn - 77m|| + Hgn - gmH)

It follows that the sequence of numbers {B(&,,7,)} is Cauchy, so its limit
exists and we denote this limit by B(£,n). This is well-defined, in the sense
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that if £/, — & and 7], — 7, then the same estimate as above gives us

[ B(&nsmn) = B i)l < eI BI (I = m |l + 1€ — €411)
and so the limit does not depend on the sequences and only on § and 7. The
sesquilinearity of B is now automatic, for we have

B(f + Av,n) = lim B(&, + Avn, ) = im B(&,, 1) + Alim B(vy,, ny)

= B(&,n) + AB(v,n).

And a similar computation for the conjugate linearity on the second factor.
The fact that B extends B is a consequence of the independence of the limit,
for given £ and or n in Hy we can choose the respective constant sequences
for them. Finally,

B m)| = lim [B(&n, )| < lim sup [[ B[ [&n | llna ]l = 1B €] fn]l-

As B extends B, this shows that ||B|| = ||B|.

(10.1.4) Let T € B(H), where dimH < oo. Show that if 7T = I if
and only if TT* = I.

Answer. Since T*T = I, T is injective. Indeed, if T¢ = 0, then £ =
T*T¢ = 0. So T maps an orthonormal basis to a basis, which means that
dimranT = dim H. Thus T is surjective. As T is invertible, from T*T = I we
get T~ =T*TT~'=T* SoT* =T""! and in particular TT* =TT~ ' = 1.

The argument for TT* = I is the same, since this can be seen as
Y*Y =1, where Y = T*. And T* is invertible if and only if T is.

(10.1.5) Let H, K be Hilbert spaces of the same dimension, and {£;},cs
and {n;};es be orthonormal bases for H and K respectively.
Show that the assignment U : §; —— f; induces a unique
bounded linear operator U € B(H, K) and that U is a unitary.

Answer. Since U has to be linear we have, for each finite F' C J,

U(chfj) = chnj.

jEF jEF

[r(X el =2 el = | 3 e
JEF JEF JEF
So U is isometric on the dense subspace span{e; : j € J} and so it extends
uniquely to U € B(H,K) by Proposition 6.1.9. The extension will also be

Then
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isometric by continuity. Finally, given 5 fi € K, we have
>l =U( X ees).
J J

so U is surjective. That is, U is a unitary.

(10.1.6) Let K C H be a closed subspace and ¢ : K — H the inclusion.
Show that ¢* is the orthogonal projection onto K.

Answer. Since i : K — H, we have i* : H — K. Let £ € K*. Then for any
nek
(i"€,m) = (& i(n)) = (&m) = 0.
Soi*=0on K+. If € K andn € K,
(i"€m) = (&;m)-
So (¢ —i*¢,n) = 0 for all n € K, which shows that & — i*¢ € K+. So
¢ —i*¢ € KN K+ = {0}, showing that i*¢ = ¢ for all € € K.

(10.1.7) Let H be a Hilbert space and &,n € H with ||| = ||n||. Show
that there exists a unitary U € B(H) such that U¢ = .

Answer. Let {{;} be an orthonormal basis such that &;, = £ for some jo
(for instance, complete £ to an orthonormal basis by choosing an orthonormal
basis of {¢}1) and let {n;} another orthonormal basis with 7;, = . Then
the unitary induced by U¢{; = n; has U = n.

(10.1.8) Let H be a Hilbert space, and consider the direct sum H &
H. But instead of considering the natural Hilbert space norm
1€ M = (IEI? + 7]2)/2, we consider the norm [|(&,7)]lx =
€Il + |Imll. Since these two norms are equivalent, H &1 H
(with || - |J1) is a Banach space. Show that there exist ele-
ments (§,7), (§',7") € H &1 H with [|(§,n)[| = [[(£,7)] but
such that no linear isometry maps (¢,7) — (¢',n’) (compare
with Exercise 7.5.19).

Answer. We will first characterize the linear isometries on H ©; H. Let V
be such an isometry. Being a linear operator on H & H, we can think of V'
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as a 2 X 2 matrix of operators. That is,
A B
v-[e 5l
with A, B,C, D € B(#). That is,
V(&,n) = (A + Bn, C¢ + Dn), Enen.

Note that since |[(£,7)]]2 < [[(€&,)]l1 < vV2|(&,1)]|2, the bounded operators
on ‘H @ H are the same regardless of the norm.
Since V is an isometry, we have

€1l + [l = V(&) = [[(AS + Bn, C& + Dn)|| = |AS + Bnl| + |C€ + D],
Taking n = 0,

€1l = 1Ag]l + legll, e (AB.10.1)
Taking £ = 0,
[l = 1 Bnll + [[Dnll, neH. (AB.10.2)
Taking n = A with ||€|| = 1, and || = 1,
2= [[(A+ AB)|| + I(C + AD)¢], EeH. (AB.10.3)

Combining (AB.10.1), (AB.10.2), and (AB.10.3) for £ € H with ||¢]| =1 we
have

[AE] + [ BE[ + 1 CEN + D€ < 2 = I(A+AB)E[| + [[(C+ AD)E]|. (AB.10.4)

This implies equality in both triangle inequalities, so for any & € H and
Al=1

[AEI + 1Bl = 1A+ AB), (Gl + [1DE] = [I[(C + AD)E]|. (AB.10.5)

We now work with A, B since the computations for C, D are entirely analo-
gous. Squaring, expanding, and cancelling square norms in (AB.10.5),

Re A(BE, AS) = || BE|| [|AE]], §eH, A=1 (AB.10.6)
By using A =1, —1,4, —i we get that
B[ | Ag] = 0, e (AB.10.7)

and analogously
ICEl 1 DEl = 0, e (AB.10.8)
When A¢ = 0, we get from (AB.10.1) that ||C¢|| = ||£]|; then (AB.10.8)
implies that D = 0. Similarly, when B¢ = 0 we get that [|[DE|| = ||£]] and
then C¢ = 0. So either

[AE]| = || D] = 0, 1C€ll = 1Bl = 1]l (AB.10.9)

or

JAE]F = I DI = 1], 1C¢E]l = [ BE| = 0. (AB.10.10)
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Suppose that (AB.10.9) occurs for a certain £ and (AB.10.10) for », both
nonzero. For & 4+ n, we have

[AE+ )l = Al = lIll, 1B+l = B[ = lI<]l;

so £+ satisfies neither (AB.10.9) nor (AB.10.10). This proves that V satisfies
either (AB.10.9) or (AB.10.10) for all £. In other words, the possibilities for

V are N
0 0 B
V—{O D}’ or V—[O 0]

with A, B,C, D € B(H) isometries.

Now it is easy to find the counterexample. Fix £ € H with ||£]| = 1 and
consider the elements (&,0) and (£/2,£/2). With V of the first form we need
to have

(£/2,€/2) = V(£,0) = (A¢,0),
and this forces £ = 0. With V of the second form the problem is the same:
(£/2,£/2) = V(£,0) = (0,C¢)

and we get £ = 0. So no linear isometry (surjective or not) can map (§,0) to

(£/2,€/2).

10.2. Numerical Range and Numerical Radius

(10.2.1) Let T € B(H). Show that W(T*) = {X : X\ € W(T)}, and
w(T) = w(T™).

Answer. We have (T*¢, &) = (T€,&), which gives us the first equality. As
the two sets W(T') and W (T*) contains the conjugates of the other set,

w(T*) =sup{|A|: Ae W(T*)} =sup{|A\|: e W(T)} =w(T).

(10.2.2) Let H be a Hilbert space and T € B(H). Show that w(T)
defines a norm on B(H), equivalent to the operator norm; con-

cretely,
w(T) < |IT]| < 2w(T).
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The second inequality requires Proposition 10.3.3 and a basic
knowledge of selfadjoint operators.

Answer. We have w(T) > 0 for all T by definition. If w(7T) = 0, then
(T¢,€) =0 for all £ € H, and then T'= 0 by Lemma 10.1.1.
We have

w(AT) = sup{|(AT¢, &) : £ € H, [I€] =1} = [AMw(T).
And, since [((T1 +T2), §)] < [{(T1&, ] + (T3¢, )1,
W(Tl —|—T2) < W(Tl) +w(T2)

As for the inequalities, from [(T€,€)| < ||T| ||€]|* we get w(T) < ||T||. And,
since Re T is selfadjoint,

IReT|| = sup{[(ReT'¢,&)[ : [[€]] = 1} = w(ReT).
Similarly, |[Im7|| = w(ImT'). Then
IT| = |IReT +ImT| <|Ret|| + |ImT|| = wReT) + w(ImT)
< ReT|| + [Im T < 2| T].

(10.2.3) Let B € B(H) such that || + ¢BJ|| < 1. Show that B = 0.

Answer. Let £ € H with ||€|| = 1. Then
[144(BE, &) = (I +iB)E, )| < Iy +iB| < 1.

Hence (B&, &) = 0. As € was arbitrary (after scaling), polarization gives us
that B = 0.

10.3. Selfadjoint Operators

(10.3.1) Let T € B(H) and o, € C. Show that W(aT + 8I) =
aW(T) + 8.
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Answer. 1If ||€]| = 1,
(T +pI)E &) = a(T¢,§) + B.

(10.3.2) Let T € B(H) and A € C. Show that T is normal if and only
if T'— A\I is normal.

Answer. Suppose that T' is normal. Then
(T = AND)*(T = N) = (T* = XI)(T — X) = T*T + |A\* I — 2Re AT*
=TT* + |A\*T —2Re \T* = (T — \)(T* — \I)
= (T = XI)(T* — \I).

So T'— AI is normal. Conversely, if we know that T'— AT is normal, then by
the above T'= (T — M) — (—A)[ is normal.

(10.3.3) Prove Proposition 10.1.8.

Answer. For any &,n € H,
(T +aS)°¢,m) = (& (T + aS)n) = (&, Tn) +a(§, Sn)
=(T7¢,m) + (@S™&m) = (T™ + as")¢, n),
so (T + aS)* =T* + aS*. Also,
(T*)"&,m) = (£, T™n) = (T€,m),
so (T*)*=T. For TS,
(TS)*&m) = (&, TSn) = (S"T"E,n),
showing that (T'S)* = S*T*. If ST* = T*S = I, taking adjoints we get
TS* = S*T = I, so T is invertible; and similarly T' invertible implies T*

invertible. The same computation shows that (T%)~! = § = (T~1)*. And
from this we get that 7' — AI is invertible if and only if 7% — I is invertible.

(10.3.4) Let T € B(H) be normal, £ € H and H1 C H be the subspace

Hy ={p(T,T%)¢ : p € Clz,y]}.
Show that Hi is invariant for both 7 and T*.
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Answer. Fix n € Hi. Then

(T, p(T,T*)&) = (n, T*p(T,T")§) = 0.
So Tn € Hi. The argument for T* is entirely similar.

(10.3.5) Recall that an operator T € B(H) is said to be bounded
below if there exists k£ > 0 with [|T¢]| > k||| for every & € H.
Show that the following statements are equivalent:

(a) T is bounded below;
(b) T' admits a left inverse;

(¢) T is injective and has closed range.
(Hint: use the Inverse Mapping Theorem,).

Answer. (a) = (c) If To = 0, then ||lz[| < £ ||Tz| =0, so T is injective. If
{T,} is Cauchy, then

Zn — Zmll < % 1T2n — zmll,

so {x,} is Cauchy. So there exists x = lim, x,. As T is bounded, Ta =
lim,, Tx,,. So the range of T is closed. 7 (¢) = (b) T is bounded and bijective
onto its range. By the Inverse Mapping Theorem there exists S : ranT — H
such that ST = I.

(b) = (a) If S € B(H) and ST = I, then ||z|| = ||ST=| < ||S||||Tx],
so T' is bounded below.

(10.3.6) Let T be a diagonal operator. Find T* and show that T is
normal.

Answer. We have T¢; = a;¢; for a certain orthonormal basis {{;}. Then

(T785,8k) = (&5, TEk) = (&5 k) = 05(&55 Ek) = (@55, )
As this can be done for all j, k, T* is the multiplication operator by {&;}.
And then
(T*T€;, 6x) = |og (&5, &x) = (TT* &5, &)

(10.3.7) Show that a diagonal operator T is selfadjoint if and only if all
its diagonal entries are real.
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Answer. If T =T, from Exercise 10.3.6 we conclude that a&; = «; for all 7,
so aj € R for all j. Conversely, if a; = @; for all j then T* =T

(10.3.8) Let T" as in (10.3). Show that T is injective, selfadjoint, with
o(T) =10,1] and 0,(T) = @.

Answer. This was done in Example 9.5.8. With ¢(t) = ¢, we have that
o(T) = ¢([0,1]) = [0,1] and 0,(T) = @ since g is not constant on any set of
positive measure.

(10.3.9) Let H be a Hilbert space and £,n € H.

(a) Show that it is possible to choose &, 1 in such a way that no
selfadjoint T satisfies T¢ = 7, even if both are nonzero.

(b) Show that there exists T' normal with T¢ = 7.

Answer.

(a) An easy case where a selfadjoint 7" might not exist is to take £ = 0 and
1n # 0. Even with both nonzero we can take = i£, and then ¢ would be
an eigenvalue for T, so it cannot be selfadjoint.

(b) Let & = ¢/|l¢]) and a = (n, &), B = [ — a1 .. Then & = (5 — a&1)/B is
a unit vector orthogonal to &1, and n = a&; + 5&s.
We want T¢ = 7, so we must have
1 1
o= e = ey le + %)
This means that, as a 2 x 2 matrix with respect to the orthonormal basis
{&1,&} of span{&, n}, the first column of T is /|||, 3/]|€]|- This suggests

we define _
1] «
TEy = & + — &,
S = g g
This way we have T = HO‘T”IQ + S, where S is the operator S& = %52,
S&Q = H%Igl SO
1 [o 6]
S=— 15
€l [ﬁ 0

is selfadjoint. So we have written T" as a sum of a normal and a selfadjoint,
so T' is normal.
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10.4. Positive operators

(10.4.1) Show that if T': H — H is linear and (T¢,£) > 0 for all £ € H,
then T is bounded.

Answer. By the usual identification between H and H*, our operator T'

satisfies the hypotheses in Proposition 6.3.15. So T" is bounded.
Alternatively, we can repeat the argument from Proposition 6.3.15 in

the current context. Suppose that =, — = and Tz, — y. If we show that

y = Tz, then the Closed Graph Theorem guarantees that T is bounded.
Given z € X,

0<(T(xn—2),xn—2) = (Txn,xn) + (Tz,2) — (Txpn,z) — (T2, 2,).
Taking limit over n, and noting that convergent sequences are bounded (so
we can take limits on both arguments of the inner product at once),

0<(y,z)+ (Tz,z2)— (y,2) — (Tz,z) = (y,x — z) — (Tz,x — 2).
So (Tz,x — z) < (y,x — z). Note that z was arbitrary; if we write w =z — z,
then (T'(z — w),w) < (y,w), which we write as
Tz —y,w) < (Tw,w), we X.
In particular, (Tx — y,w) € R. Given any w € X, the inequality also works
for +w/n, which gives us
tn(Tz —y,w) < (Tw,w), we X, neN.

This forces (I'z — y,w) = 0. As this occurs for all w € X, we have shown
that Tx = y.

(10.4.2) Let S, T € B(H) be positive with S + 7 = 0. Show that
S=T=0.

Answer. We have 0 < S < S+ T =0, so S = 0. Properly, these inequalities
show that (S¢,€) = 0 for all £, and then [|S1/2¢||? = 0 for all &, which gives
S'/2 = 0 and hence S = 0. The same argument works for T'.
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(10.4.3) Let A € B(H) be positive and invertible. Show that A'/? is
invertible.

Answer. There exists a unique B € B(H) with B2 = A. We have B(BA™!) =
AA~' =1, so B has a right-inverse. We also have that B commutes with A,
for AB= B3 = BA,and so BA™! = A7'B. Then (BA~Y)B = AA"'B?> = 1.
So B is invertible.

(10.4.4) Prove Proposition 10.4.3.

Answer.
(i) We have (A€, &) < [[A[ I€]1* = (| A]l € €).
(ii) For any & € H,
(TAT™E, &) = (AT™E, T7E) < (BT"E,T7€) = (I'B*¢,€).
(iii) Let £ € H. We have, with n = A71¢,
(A71¢,€) = (n, An) > 0.

(iv) If A < I, then (A €) < (£,¢) = ||€]|>. By Proposition 10.3.3,
IA]l < 1. The converse is (i).

(v) Suppose that A > ¢l with ¢ > 0. Then (A, &) > (c&, &) = cl€])?
for all € € H, and so W(A) C [¢,00). By Proposition 10.2.3, o(A) C
[c,00) and so A is invertible. We also have, since A'/2 is invertible
and A > cl,

Afl _ 071/21471/2(CI)(671/2A71/2) < 671/2A71/2A(671/2A71/2) _ 671 I

(10.4.5) Let T,.S € B(H), with S invertible. Show that 7' > 0 if and
only if $*T'S > 0.

Answer. It T > 0, then S*T'S > 0. Conversely, if S*T'S > 0 with S
invertible, then for any £ € ‘H

(T¢, &) = (TS(S71€),8571¢) = (S*TS(571¢), S7'¢) > 0.
SoT > 0.
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(10.4.6) Let T' € B(H,K). Show that T* exists by using block matrices
over H @ K and Theorem 10.1.6. For this, consider X € B(H ®
IC) with X21 =T and X11 = 0, X12 = 0, X22 =0.

Answer. Let X = [g 8] € B(H & K). By Theorem 10.1.6, X* exists. We
cannot finish by using Proposition 10.4.12, for we don’t know that T™ exists.
Write A
. B
X+ = { A D] .
Since X = P,X P we get X* = P X* Py, which tells us that only (X*)13 is
nonzero. That is, there exists S € B(K, H) such that
« [0S
= 9]

Given £ € H and n € K,

o= (3 )2 15)-wro

So S =T%.

(10.4.7) Let T € B(H) with 0 < T < I. Show that T2 < T. ]

Answer. From I —T > 0 we have TY/2(I — T)T'/? > 0. Thisis T —T? > 0.

(10.4.8) Show an example of positive S,T € B(H) such that S < T but
S? £ T?. (Hint: examples already exist on dimension 2)

Answer. The matrices will have to fail to commute. We can take
1 0 2 1
<o =)
1 1

11
eigenvalues are 0,2). But

e R R

So det(T? — S?) = —1, showing that at least one eigenvalue is negative.

Then T — S = [ } > 0 (it is positive because it is selfadjoint and its
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(10.4.9) Let S, T € B(H) be positive and such that ST = T'S. Show
that S/271/2 = T1/251/2,

Answer. Since T/? is a limit of polynomials on I — T, we get that ST'/? =
T'28. And now, using that S'/2 is a limit of polynomials on (I -29),
51/2T1/2 _ Tl/QSl/Q.

(10.4.10) Show an example of T € B(H) such that ranT is not closed.

Answer. Fix an orthonormal basis {e,} and let Te, = %en. Then ranT
is dense, since e, € ranT for all n, but ranT is not closed (for instance,

{1/n}, €ranT).

(10.4.11) Let T € B(H). Show that || T¢|| = |||T}¢| for all £ € H,
and that |T'| is the only positive operator in B(H) with that
property.

Answer. We have
ITE|[* = (T¢, TE) = (T*TE, &) = (|T1*¢, &) = || TV

Now suppose that [|T¢]| = || S¢|| for all £ € H and that S > 0. With the same
computations as above we obtain

(T°T = §2)&,€) = 0.

As T*T — S? is selfadjoint, Proposition 10.3.3 implies that S? = T*T. And
S >0,s0 S = (T*T)"? =|T).

(10.4.12) Let V € B(H) be a partial isometry with P = V*V and Q =
VV*. Show that V = QV P.

Answer. This can be deduced from Proposition 10.4.10, but here is a simple
direct argument. We know from Proposition 10.1.10 that ker V = ker V*V =
ker P = (In — P)H. So V(I, — P) = 0. That is, V = VP. And then
V=VP=VV*V =QV.
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(10.4.13) Show that when dimH < oo the partial isometry in Proposi-
tion 10.4.11 can be chosen to be a unitary, at the cost of losing
the condition on the range.

Answer. Write T = V/|T| as in Proposition 10.4.11. Since V : ranT* —
ran T is a surjective isometry (due to the finite-dimension, dense range equals
surjective), we also have that their complements have equal dimension. Let
W : (ranT*)* — (ran T)* be a unitary, and form U = V +W. As V and W
are partial isometries with orthogonal initial and final spaces, U is a unitary.
And U|T|=V|T|=T.

(10.4.14) Show that if T = WZ = VS with W, V partial isometries with
V*V = [fanZ] = [fanS] = W*W, VV* = WW* = [fanT, and
Z,S>0,then W=V and Z=S.

Answer. We have T*T = ZW*W Z = Z?, and similarly with S;s0 S = Z =
|T| by the uniqueness of the positive square root (Proposition 10.4.4). Then
W =V as in the proof of Proposition 10.4.11.

(10.4.15) Let T' € B(H) be invertible. Show that if T'= V|T'| is the Polar
Decomposition, then |T'| is invertible and V is a unitary.

Answer. We know that T™ is invertible too. Since V' is a partial isometry
with initial space ran T* = H and final space ranT = H, we get that V is an
isometry: V*V = I. Same argument but with V* shows that VV* =1 s0o V
is a unitary. Now |T'| = V*T, invertible.

(10.4.16) Give an example of T' € B(H), and decompositions T'= VR =
WS, with R,S > 0 and V,W partial isometries, such that
R # S and V # W. Explain why this does not contradict the
uniqueness in Proposition 10.4.11.

Answer. Let H = C? and T = Ey;. Then Proposition 10.4.11 gives T' = V|T)|
with ‘T| =V = E11. Now let S = E11 + E22 and W = E11 + E33
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(10.4.17) Let T € B(H). Show T can be expressed as T = WA with A
positive and W a unitary if and only if dim ker 7" = dim ker 7.

Answer. Assume first dim ker T" = dim ker 7. By the Polar Decomposition,
we have T = UA with A= |T| >0, and U € B(H) is a partial isometry with
kerT = ker U = ker A.
The operator U*U € B(H) is a projection with
ker U*U = ker T = ker A.

Soran U*U = (ker U*U)* = (ker A)+ = ran A. This implies that U*UA = A.
Thus
T*T = A*U*UA = A*A = A%
Also
ker U* = (ranU)* = (ran T)* = ker T*. (AB.10.11)
Since dim ker T' = dim ker T, and by mapping an orthonormal basis to
another, we can construct a partial isometry V : kerT'— ker T*. Define

W=U+V.
By (AB.10.11) we have that U*V = 0. Then
WW =U*U+V*V+2ReUV =UU+ V'V =1y
The equality with the identity is due to U*U being the projection onto ran A,
and V*V being the projection onto ker7 = ker A = (ran A)*. Similarly,
since ran U* = (ker U)L = (ker T')*, we have VU* = 0. Then
WW*=UU"+VV* = Iy.
The last equality now holds because UU™* is the projection onto
ran UU* = (ker UU*)* = (ker U*)* = (ker T%)*,

and VV* is the projection onto ker T*.

Finally, we have VA =VU*UA=0,s0 WA= (U+V)A=UV.

For the converse, if T'= W A with W a unitary, as W maps ran A onto
ran T, it also maps (ran A)* = ker T’ onto (ranT)+ = ker T*.

(10.4.18) Let T € B(H), invertible. Show that |T'|| = ||| = 1 if and
only if T is a unitary.

Answer. We have
IT*T| = |TI> = T~ * = 1T~ T~ = |71 (T~ = I(T*T) 7.
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So S =T*T is a positive invertible operator with ||S|| = ||S~!|| = 1. Since S
is positive, we have ||S|| = max o(S) (Proposition 10.3.3). Also,
1=|S"" =maxo(S™) =max{A~': A€ o(S)} = (mino(S)) .
So maxo(S) =1 = mino(S). Then o(S) = {1}. As ||S|| = 1, we have for
any £ € H with ||£]] = 1,
(5€,6) <1=(&¢)
SoI—-S >0. Also, o(I —S) = {0} (Exercise 9.5.1). Then |[I — S| =0
by Proposition 10.3.3. So S = I; that is T*T = I. Now we can repeat the
argument for T, to obtain TT* = I; thus, T is a unitary.
A more direct argument is the following: given £ € H with ||€|| = 1,

1= (£, =(T7'T¢, T7T¢) = ||T7'T¢|* < |Tx|* = (T¢, T¢).
Also,
(T¢,TE) = ||TE|? < |I€N* = (&,€) = 1.
Thus (T€,TE) = (£,&) for all £ (as we can always scale to 1). This shows that
T*T = I. Repeating the argument for T we get that T7™* = I.

(10.4.19) Let S, T € B(H) be positive. Show that o(ST) C [0, 00). Does
this imply that ST is positive?

Answer. By Proposition 9.2.15 we have that
o(ST) c (82152 U {0},

and so o(ST) C [0,00) since S/2TS'/2 > 0 by Proposition 10.4.7. Tt is not
necessary that ST is positive, though, even in finite dimension. For instance

let
1 1 1 0
e R
Then S >0, T > 0, but
1 2
-]t

is not even selfadjoint.

(10.4.20) Let T € B(H)™ with ||T|| < 1, and & € H such that ||T&] =
l€o]]. Show that T¢, = &, and that T = P + Ty, where P is a
projection and Ty € B(H) satisfies | To]|| < ||€|| for all nonzero
EeH.
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Answer.
Since T is selfadjoint, 72 > 0. We also have 7% < I by Proposi-
tion 10.4.3. Now

0 < |I(1 = T*)"2¢))* = (1 = )¢, €) = l|€]1* = | T¢]1* = 0.
Thus (I —T?)'/2¢ =0 and so (I — T?)¢ = 0. This we can write as
I+TYI-T)=0.
By Exercise 9.5.1 we have that o(I + T) C [1,00), so I + T is invertible.
Hence (I —T)¢ = 0, which is T = &.

Let L ={n: |T¢| = |l€ll} = {n: Tn = n} C H. By the above
this is a nonempty subspace, and it is closed by the continuity of T. Let
P be the orthogonal projection onto L. Define Ty = T(I — P). Then T =
TP+ T — P) = P+ Ty. For nonzero n € L+ = (I — P)H, we have
ITonll = Tl < Il for otherwise if | 77| = ||| then n € L.

(10.4.21) Let S, T € B(#), both positive, and with ||.S|| < 1 and ||T]] < 1.
Show that ||S — T < 1.

Answer. We have 0 < S, T < I by Proposition 10.4.3. Then
—I<-T<S-T<S<I.
Given & € H, this means that
(£ < ((§=T)§,§) < (&,6).

Then Proposition 10.2.3 implies o(S — T') C conve (S —T) C W(S—T) C
[—1,1]. Therefore |S — T|| = spr(S — T) < 1 by Proposition 10.3.3.

(10.4.22) Prove Proposition 10.4.12.

Answer. We have (T%)y; = PT*P; = (P;TFP;)* = (Tjr)*.
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10.5. Projections

(10.5.1) Let P € B(H). Show that P*P = P if and only if P = P* =
P2

Answer. If P*P = P, then P* = (P*P)* = P*P = P, and
P? = (P*P)(P*P) = P*P =P.
Conversely, if P = P* = P? then P*P = P? = P.

(10.5.2) Let P € B(H) be a projection. Show that ker P = P1H and
that Pt is the orthogonal projection onto (PH)*.

Answer. If P€ = 0, then P16 = € — PE = €, so &€ € PYH. Conversely, if
€ = PL¢, then PE = P(I — P)é =0, s0 & € ker P. Hence ker P = P+H
We have (PH)% = (ran P)! = ker P* = ker P = P1H.

(10.5.3) When H = C?, we can identify B(H) with M>(C). Find all
orthogonal projections and all idempotents.

Answer. Let us start with the projections. We could play with equations
as we will do with the idempotents, but let us try something else. The only
rank-0 projection is 0, and the only rank-2 projections is the identity I5. It
remains to characterize the rank-1 projections. These are rank-one operators,
so they are of the form P = xy*, with x,y nonzero. From P* = P we obtain
yr* = zy*. Evaluating at x we have ||z||?y = (y*2)x; as neither z nor y is
zero, this tells us that x and y are colinear. Write y = Ax. Then P = Azx*.
From P? = P, we have Azz* = \?||z||?xz*. So A = 1/||z||?, which is the
same as assuming that ||z| = 1.
The vectors x € C? with [|z|| = 1 are of the form

r=(Vte? V1 —te"), t e [0,1].
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J— * \/Eeig —10 —i'y
P=zxx [\/ﬁem [Vte VI—te ]

t Vit — 2 ei0-7)
TVt =20 1—t
t V=12
:[mk 1_t } €10,1], A e T.

For an idempotent E = [(Z Z] , the equation E? = E translates to

a=a’+be, (a+d)b=1b, (a+d)c=rc, d = d? + be.

We consider two cases.

eIfb=c=0, then a,d = +1. So

+1 0
E= [ 0 il] '
e If b or c is not zero, we get a +d = 1. Both a and d are solutions of
the quadratic equation t? — ¢ + bc = 0. Then
3£ 35 V1—4be b ]
c

E= L LT )

b,ceC.

(10.5.4) Let T' € B(H) be normal, and T # 0, # I. Show that T is a
projection if and only if o(T) = {0, 1}.

Answer. If T? = T, then by Spectral Mapping (Proposition 9.2.9) we have
that A2 = X for all A € o(T). Thus o(T) C {0,1}. If o(T) = {0}, then T =0
by Proposition 10.3.3, a contradiction. If o(T) = {1}, then T = I again by
Proposition 10.3.3. Hence o(T") = {0,1}.

Conversely, suppose that o(T') = {0, 1}. By Spectral Mapping (Propo-
sition 9.2.9), T? — T is a normal operator with o(T? — T) = {0}. Thus
T? — T = 0 by Proposition 10.3.3.

(10.5.5) Show that the projections are extreme points in the set B(H )]
of positive operators with norm at most 1 (it is actually true
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that the projections are the only extreme points, but that will
have to wait until Exercise 12.4.4).

Answer. Let P be a projection and suppose that P = tA + (1 — t)B with
A, B>0and t € [0,1]. If £ = P¢ and ||£]| =1,

1= (P, &) = t(A,€) + (1 = 1)(B&, &) < t||Al + (1 - )| B| < 1.

As all terms are nonnegative, the equality in the inequalities forces (A¢, &) =
1. Similarly, if P§ = 0 then

0 < (A& + (1 —)(BE, &) = (PE,§) =0.
Arguing as above, we get (A£,£) = 0 when P§{ = 0. We can write this
as (PAPE &) = (Pg,¢€) for all £ € H. Using Polarization, it follows that
PAP = P. That is, P(I — A)P = 0. As I — A > 0, we can write this as
(I — A)Y2P)*(I — A)/?2P =0. So (I — A)'/?P =0, and so (I — A)P =
which is P = AP = PA (the last equality, by taking adjoints). Then, as A
commutes with P,

A=PA+(I-AP=P.

Similarly, B = P and so P is extreme.

(10.5.6) Show that the converse of Proposition 10.5.6 is false. That is,
find projections P,Q € B(H), unitarily equivalent, and such
that |[P — Q| = 1.

Answer. Let H = (*(N) and P = Yok Boror. Let U = 37, Eop_19k +
E2k,2k—1~ Then

*
UU = E Eop—12kE2j_12j + Eop_1.20F2; 251
k,j

+ BEopor—1E2j—1,25 + Eopor—1E2525—1

= Z Eop—108—1+ Eapor = 1.
%

As U is selfadjoint, it is a unitary. And

UP = (Ear-1.2r + Bok k1) Baj2; = ZE% 1,2k
k.j

(I-P)U = Z Eok—1,0k-1(E2j—1.2; + Eajoj_1) = ZEQk—1,2k~
k,j
Then UP = (I — P)U. And U is a unitary, so UPU* = I — P. But |P —
(I=P)=l2p-1]=1.
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(10.5.7) Prove Proposition 10.5.9.

Answer. Let P = /\j Pj. By Exercise 10.5.2 we know that Pt is the orthog-

onal projection onto (PH)*. That is, P is the orthogonal projection onto
(using Exercises 10.5.2 and 4.3.12)

1
(ﬂ PjH) = span | | P;"H.
J J

Hence P+ = /\PjL. The second equality follows by taking | on the first

J
one.

(10.5.8) Let P, @ € B(H) be projections. Is is true that P = P A Q +
P A Q*? Provide either a proof of a counterexample.

Answer. No, it’s not true in general. Let H = C2,
172 12 10
P= {1/2 1/2}’ @= [0 0}
Then PAQ = P AQ* =0, so the equality does not hold.
The equality P = P A Q + P A Q* occurs precisely when P and Q
commute. Indeed, if P = P A Q + P A Q*, multiplying by Q on the left
and separately on the right, we get QP = P A Q = PQ. Conversely, if

PQ = QP, then PQ = P A Q@ (this can be seenby showing directly that PQ
is the orthogonal projection on PH NQH), so

PAQ+PAQ*=PQ+PQ+*=PQ+Q+) =P

(10.5.9) Let {P;} C B(H) a family of projections. Show that

v(\/ B =\ upu
J J

Answer. Let P = \/j P;. This is the projection onto spanll'l Uj PyH. We
have
span! | | JuP,Uu*H = span! | JUP;H = U spanl'l | | P,
J J
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So P" =\/; UP;U" is the orthogonal projection onto UPH. As UPU" is also
an orthogonal projection onto UH, the uniqueness gives us P’ = UPU*.
Another way to prove the equality is to use that fact that P is the

supremum of the family of projections. Then one sees that U PU* is the least
upper bound for {UP;U*}.

(10.5.10) Let #H be a Hilbert space and {P;} C B(#) an increasing net
of projections such that \/j Pj = I5;. Show that for all { € H
we have lim; P;§ = &.

Answer. Write H; = P;H. Then the hypothesis is that U’Hj is dense in

J
H. Given ¢ > 0 there exists jo and &y € H;, with || — &l < €. When
k > j we have P,P; = P; by Proposition 10.5.3. Hence, for j > jo we have
Pj&o = PjPj &0 = Pj,&o = &o so & € H;. Using Proposition 4.3.8,

1€ = Piéll < 11§ = &oll <&
Thus P;¢ — &.

(10.5.11) Let P, R € B(H) be projections. Show that
PVR+(IM —P)/\(IM —R) = Ip.

Answer. We have (PH U RH)* = (PH)* N (RH)*. This says that
Imq —PVR=({Unm—P)N({Irm— R).
Hence PV R+ (Ipm — P)AN(Ipm — R) = I

(10.5.12) Let H be a Hilbert space. Show that there exists an increasing
net {P;} of finite-rank projections with \/; P; = I,.

Answer. Let {&k}rex be an orthonormal basis for H, and put J = {F C
K, finite}, ordered by inclusion. Define, for j € J, H; = span{{; : k € j}.

Then {{} C U'Hj, SO \/Pj =Iy.
J J
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(10.5.13) Let M be a Hilbert space and {P;} an increasing net of projec-
tions with P;§ — & for all £ € H. Show that for all T € B(H),

TNl = sup{[|1P5TP5] = j}-

Answer.  We always have ||P;TP;|| < ||P;||?|T|| = ||T||. Fix € > 0. Then
there exists & € H with ||£]| = 1 and ||T¢]|| > ||T'|| — e. By hypothesis there
exists j with £ — P;¢|| < e. Then if j is big enough so that || P;§ —¢|| < € and
1P TE —T¢| <e,

1P, TPl = || T + (PTPE — PTE) + (P16 - TE) |
> | T¢|| — | PTP;§ — PTE|| — | PyTE — T¢|
> || €|l - |7l | Py — €Il — | T — T¢|
> 7€) — A+ | Tl)e > 1T — (2 + | TI])e.

As this can be done for all € > 0, we get that sup{||P;TF;| : j} > ||T], and
thus we have the equality.

(10.5.14) Let T, P € B(H) with P a projection, such that (I3y—P)T (I —
P) = 0. Show that |(T¢, &) < 2||T|| || P£|| for all £ € H with
1€l < 1.

Answer. We have
(T¢, )| < (T€, P& + [(T€, (Ig — P)S)]
< (T€, PO| + (TP, (I, = P)§)| + (T (Ipg = P)E, (In — P)S)|
= [(T¢€, PO + (TP, (I — P)§)
SATIIPEN+NTINPEN | (T = P)EN < 2(T || PE]|-

(10.5.15) Let T € B(H)", o,8,v € R with 0 < v < a < B3, and
P,Q € B(H) two projections that commute with 7" and with
each other, and such that

aP <PT<BP, 0< (I —P)T <~(Iy-P),
0<

aQ < QT < B, (In— Q)T <~v(Inu — Q).
Show that P = Q.
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Answer. We have
a(ly — P)Q < (Iy — P)TQ < ~(In — P)Q.

As v < a, (I — P)Q = 0. That is @ = PQ, which is to say that Q@ < P. As
the roles of P and @) can be reversed, we also have P < () and hence P = Q.

(10.5.16) Let P, @ € B(#) be projections.
(a) Let T=1— P — Q. Show that TP = QT.
(b) Show that if [P — Q|| <1, then T is invertible.
(c) Show that if ||[P — Q|| < 1 then
dimran P = dimran @, dimran(f — P) = dimran(I — Q).
(d) Conclude that there exists a unitary U with UPU* = Q.

This proves the result of Proposition 10.5.6, but without writ-
ing U as an expression depending on P and Q.

Answer.
(a) We have TP = P — P — PQ = —PQ, and QT = Q — QP — Q = —QP.
So TP = QT.
(b) We have
T°=(I-P-Q*=I-P+Q—-(I-P)Q-QUI—P)
=I-P+Q-Q+PQ-Q—-PQ=1—-(P-Q).
Then || —T?|| = ||P — Q|| < 1, and then T? is invertible by Proposi-

tion 6.2.3. Then T is invertible (otherwise we would have 0 € o(T) and
then 0 € o(T?)).

(c) We have just shown that T is invertible. Hence P = T~!QT. And

dimran P = dim PH = dim T 'QTH = dim QTH = dim QH = dimran Q.
We also have ||(/ — P) — (I = Q)|| = [|[P — Q|| < 1, so the above applies to
show that dimran(I — P) = dimran(l — Q).

(d) Let {zi;}er, {&. vek, {eta;};cs, {eta),}rex be orthonormal bases for
PH, (I — PYH, QH, (I — Q)H respectively. The equalities of the ranks
allow us to use the same index sets J and K for P and Q). Let U be the
linear map induced by U¢; = n; and U¢&;, = n, for all j,k. Then U is a
unitary by Exercise 10.1.5.
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(10.5.17) Regarding Remark 10.5.7, show that U = (P+Q —1I)|P+Q —
I|7! is a unitary and that UPU* = Q.

Answer. Since P + @ — [ is selfadjoint, we have
U'U=|P+Q—I""(P+Q—-I?*P+Q—1I"
=P+Q—-I""1P+Q—-IPIP+Q—1I|""=1I
and, since a selfadjoint operator commutes with its absolute value,
UU*=(P+Q-IDP+Q~I[*(P+Q~1)=[P+Q—I*(P+Q~1I)
=|P+Q—-I1")P+Q—-1IP=1.

When we see U as g 75'0 , the equality U PU* = (@ is a direct computation.
To check the other expression,
¢z cs 1 [cr c¢sT?

cs s?2—1I| —|CS —-C?
_[Cr+ 287 0

0 C2?8? + 4
[C?(C? + S?) 0
| 0 C?(S? +C?)
Hence |[P+Q —I|=C,since C >0. Also P+ Q—-1=—(I—-(P—-Q))is
invertible since ||P — Q|| < 1, so C is invertible. Then

(pra-nipre-17= |5y G- 5.

(P+Q—-1)?=

} =C? .

10.6. Compact operators

(10.6.1) Let T' € B(H) be normal, £ € H. Show that [|T*¢|| = [|T¢]|.
Use an example to show that the equality is not necessarily
true when 7' is not normal.
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Answer. We have
IT*¢||* = (T*€, T*€) = (TT*E, &) = (T*TE, &) = (T, T€) = |TE|*.
The typical counterexample was given in the text:
0 1 0
=0 -l

Then Tn =7, but T*n = 0.

(10.6.2) Let T € B(H) be normal. Prove the inequality |T¢|* <
| T2€|| ||€]|, and use it to show that if T2 is compact, then T is
compact. Show, with an example, that normality is crucial as
a hypothesis for both assertions.

Answer. We have, using the Cauchy—Schwarz in equality and Exercise 10.6.1,

IT€||* = (T*T¢, &) < ITTE| gl = 1T ll€]l-
Let {T¢,} be a sequence with [|&,]| < 1 for all n. Since T? is compact, the
sequence {T2¢,} admits a convergent subsequence {T2¢,, }. Now

||T§nk - Tfnj H2 = ||T(§"k - fnJ)HQ
< 2T26n, — T2, |
which shows that {T¢,, } is Cauchy. Thus T is compact.

(10.6.3) Prove the identity (10.10).

Answer. Given v € H,

(61 @m) (X2 @n2)v = (v,m2) (§1 @ M)&2
= (v,m2) (€2,m) &1 = (§2,m) (&1 @ m2) v

(10.6.4) Given a rank-one operator {n*, show that
(En")* = ne*. (10.1)
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Answer. Given v € H,

((€n*)v,v) = (v, (€n")v) = (v,n) (v,€) = ((r, €)n,v) = (" )w,v).
Then polarization gives (10.1).

(10.6.5) Write a complete proof of Proposition 10.6.1.

Answer. In all of (ii),(iii),(iv),(v) it is clear that the image of T is finite-
dimensional, so they all imply (i).

(iv) = (v) Using Gram—Schmidt on &, ..., &, we obtain an orthonor-
mal basis {1,...,&,. The coefficients come from & = 37, c;&k-

(i) = (iii) Let &;,...,&, be an orthonormal basis of the image of T
Then

TE =Y (T&.&) &  E€H.

k=1
As T is bounded, the map £ — (T, &) is bounded. Then, by the Riesz Rep-
resentation Theorem (Theorem 4.5.4) there exist 7}, ..., 7, with (T'€, &) =

(€5
(iii) = (ii) Trivial.
(i) = (iv) Since T € F(H), by (iil) we can write

T:ka®77;c~

k=1
Then, by Exercise 10.6.4,

T = 0 @&
k=1

This shows that 7™ is finite-rank, so by the implication (i) = (iii) we can
write

T = (66

k=1
with 71, ...,n, orthonormal. Then
TE = (& m) &
k=1

(10.6.6) Show that the operator T from (ii) in Examples 10.6.5 is well-
defined, and that it is a limit of finite-rank operators.
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. . . n

Answer. On a linear combination £ =3 =1 c;&; we have
n 2

> - ¢i&

J

el =z (Z%) =R S e = e
J=1 j=1 j=1

It follows that ||T|| <1 on the dense subspace span{¢; : j} and so it admits
a unique bounded extension to H by Proposition 6.1.9. If we let T;, be given

by
T,¢ = Z (€&)¢

then T,, € F(H) and
2

-z =|r( ¥ eg)| = ¥ F <Lyl
j=n+1 Jj=n+1

Hence |T — T,/ < % and T = lim,, T),.

(10.6.7) Fix an orthonormal basis {,} for H and define
TE = Z (€5 &) €t

(a) Show that T' € K(H);
(b) find T*;
(c) show that ker T*T = {0} and that ker TT* = C&;.

Answer.

(a) We need to show that T is a limit of finite-rank operators; this will be
true if the series converges in norm. For this,

|3 feeen] =3 mhesr <ia Y &
= k= k=m

As the series for ]?12 converges, its tails are Cauchy, and hence the series
for T converges in norm.

(b) Using Exercise 10.6.4 and the fact that taking adjoints is conjugate-linear,

k=1

k=1
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That is,

oo

=3 % (€ Err1) k-

k=1
(c) We have
EonEeon =m0 )W) =) W ¢

We can now calculate directly,

T*T¢ = Z (& ® Erp1)(Erir @ E)E = Zkg (€,6x) &

So T*T¢ =0 1f and only if (£,&,) = 0 for all k, which is equivalent to
& =0. That is, ker T*T = {0}. On the other hand,
. 1 1
TT*¢ =) 25 (6 &) Grr = ) 75 (€. 6k G
k=1 k=2
Tt follows that & € ker TT*. And if TT*¢ = 0, we get that (£,&) = 0 for
all k > 2,s0 & € C&;.

(10.6.8) If T' € F(H), show that T* € F(H).

Answer.  Let € € H. By (10.9), T¢ = 377, ¢ij (€, mi) & Now

(T*€,€) = (£,T¢) = _Z G m) (€,&5) = _Z G (6,&) (i, €)
= <_Z czj<s,sj>ni,g>.

With ¢ arbitrary, the Polarization Identity (Proposition 4.2.6) allows us to

conclude that T*¢ = 7 =16(&, &) mi, so T* € F(H) by Proposition 10.6.1.

(10.6.9) Let H be a Hilbert space and {n;},;cs an orthonormal basis.
For each finite F' C J, let Pr be the orthogonal projection onto
span{¢; : j € F'}. Show that, for each £ € H, ||(T—PrT)E|| —
0, (T = TPp)¢|l = 0, and [|(T — PrTPp)¢|| — 0.
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Answer.  Write § = . ¢;n; with ¢ € ¢%(J). We have, since {|(T€,n;)|} €
2(J),
(T = PeT)E|* = (I — Pe)TE|* = Y (T¢,m;)]
J¢F
And

(T — TPp)¢||> = |T(In — Pr)é|?
<ITIP I (Ta = PR)EN? = 1T D 16 mi))?

JEF
Now we get

(T = PpTPp)¢|| < [(T' — PrT)S|| + [|(PrT — PrTPp)é|
< (T = PeT)E| + [(T — TPp)S|| — 0.

Less computationally, one may note that Pr& — &£ for all £ € H. Then
PrT¢ — TE and, since T' is bounded T Pré — TE.

(10.6.10) Show that for T' € K(H) and {{;} an orthonormal basis,
lim T¢; = 0.
J

Answer. Assume first that T'= € ® n. Then
€@ m &l = €, mel < el 1.6 —— 0

by Parseval’s Equality (4.13). It follows automatically, via Proposition 10.6.1
that T¢; — 0 for any T € F(#). For arbitrary T' € K(#), give € > 0 there
exists S € F(H) with ||T'— S|| < e. Then

IT& 1 < 1T = 9)& 1 + 1151 < e + (151

Then limsup || T¢;|| < e. As we can do this for all £ > 0, the limit exists and
j—oo
equals zero.

(10.6.11) Prove that whenever # is infinite-dimensional, any finite-rank
operator T € F(H) has non-trivial kernel.

Answer. If T has trivial kernel, then it is injective. An injective linear
map takes linearly independent sets to linearly independent sets. So given an
infinite orthonormal set {&,} C H, the image {T'¢;} is a linearly independent
subset of the image of T
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Another way to prove this is by using Proposition 10.6.1. If

T = Z<a nk> gka
k=1

we get that {n1,...,n,}+ C ker T

(10.6.12) Let H = ¢*(N). Define operators
T(ay,as,...) = (al,“—;,%‘*,...),
S((lh(lg7 . ) = (0, ai,as, .. )
Prove that T is an injective compact operator with
o(T) ={0,1,1/2,1/3,.. .},

and that R = ST is an injective compact operator with o(R) =
{0}. Conclude that Z = R* is a non-injective compact operator
with dense range and o(Z*) = {0}.

Answer. If Ta = 0, then ax/k = 0 for all k, so ax = 0 for all k£ and a = 0; so
T is injective. Since

T = Z Ak Bk,
k=1
we get from Lemma 10.6.11 that o(T") = {0,1,1/2,1/3,...}. We have
Ra = STa = (07a1,%,%3,...).
Then R is injective (direct proof, or we notice that R here is the T from
Exercise 10.6.6 and 0 = ker R*R = ker R). Being compact, the nonzero
spectrum of R has to consist of eigenvalues, but if Ra = Aa, this gives
0= Aa1, a1 = dag, a2 =2MXag, ---

and so a = 0; this shows that o(R) = {0}.

The operator R* is not injective, for

<R*61; a> = <61a Ra’> = 07

so e1 € ker R*. Hence R* is compact (adjoint of compact), not injective, and
its adjoint (the operator R) has spectrum {0}. As for the range, ranR* =
(ker R)* = {0}+ = H, so R* has dense range.

(10.6.13) Let H be a Hilbert space with dim H > k and
A= {0,)\1,...,)\k} c C.
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Show that there exists T € K(H) with o(T) = A. J
Answer. Let &,...,&; be pairwise orthogonal unit vectors in H and let P;
be the orthogonal projection onto C¢&;. Let
E
T=> \P
j=1

is a finite-rank operator with o(T)) = A. The reason 0 € o(T) is that T
cannot be invertible, for it has rank at most k and dimH > k, so T is not
surjective (and, hence, not injective either).

(10.6.14) Let H be an infinite-dimensional Hilbert space and {\;} C C
be a sequence with lim A, = 0. Let A = {0} U{Ax}. Show that
there exists T' € K(H) with o(T) = A.

Answer. Let {{} be an orthonormal basis and form T = 772, ; P}, with
P; the orthogonal projection onto C¢;. Then T € K(H) and o(T) = A by
Lemma 10.6.11.

(10.6.15) What is the relation between the operator in Exercise 10.6.6
and the operator in Exercise 10.6.127

Answer. The operator T from Exercise 10.6.6 and the operator R from
Exercise 10.6.12 are the same.

(10.6.16) Write the explicit form of (10.11) in the case where T is a
diagonal matrix.

Answer. If T is diagonal, then T' = Z?=1 T;; Ej;. That is precisely the form
the Spectral Theorem gives.

(10.6.17) Show that if T is normal then o (T) = |Ax(T)].
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Answer. By the Spectral Theorem we can write
T =Y M(T)Pr.
k

Then
T = (T%)"? =3 [\l P
k
By Corollary 10.6.28, 0. (T) = | A (T")] for all k.

(10.6.18) Prove Proposition 10.6.19. ]

Answer. Write T as in (10.11) and f(T) as in (10.12). Let u & f(o(T)).
As f(o(T)) is compact, there exists § > 0 such that pu — f(Ag) > 0 for all k.
Then one can readily check that

R 1
[A(T) = pl] ™ = ;7f@k) — b

0
is bounded, since m < %, and it is the inverse of f(T') — uI. Thus

1 & o(£(T)), showing that o(f(T)) < f(o(T)).

Conversely, if u € o(f(T)), then f(T) — pl is invertible; this implies
p# f(Ag) for all k. Tt also implies that p # f(0) limyg f(Ar) (the limit exists
and is the only accumulation point of the sequence by the continuity of f),
because otherwise f(T) — uI would be compact and thus not invertible; this
shows that u & f(o(T)).

(10.6.19) Let T' € B(H) be a positive compact operator. Show that
¢ eranT <= there exists C' > 0 such that

(€&, m] < CITnll, ne ™.

Show by example that the condition can fail for £ € ranT.

Answer.
If £ € ran T, then there exists £’ with £ = T¢'. Then

(&, m] = KTE m) = K& Tm)| < 1€ T
Conversely, suppose that there exists C' > 0 with

[(&m| < CITn|| (AB.10.12)
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for all n € H. By Theorem 10.6.12 there exists an orthonormal set {n;} such
that for all £ we have

TE= Au(€m) .
k

If ' L ny for all k, then T’ = 0, which implies (£,7') = 0. So we can write
& =Y, iy for appropriate coefficients ;. We have

Sk (y Z>

el
>l e
k=1 "k
for all n, and hence the full series is convergent. This allows us to define
= € H, and it is immediate that T¢ = &.
¢'= Z WL ;

(Z IV ’7’“>

This implies that

As for the example where the condition can fail, fix an orthonormal
basis {n;} and let T = >, 1 (-,nx) nk. Then T is compact, positive, with
dense range since it is injective. The element £ =", %Uk is not in ran T, as
& = T¢ would require the coefficients of £ with respect to the basis {nx} to
be all 1, which is impossible. If (AB.10.12) held for all 7, we would have

oo 0o 0o 00 1/2
Z;=<£,Zink>§CHZiTnk C(Zk{;) :
k=n k=n k=n k=n

But, comparing with integrals,

o] 2
(Z8) (L) o
k2 — dx — 3
k=n > nt1 T _ (n+1)? _ 3n
1 - > 1 dz Bl (n+1)2
Z iz ot 3n3
k=n )

which is unbounded. So C cannot exist.

1
72 1k
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(10.6.20) Show that if V' is the Volterra operator on L2[0, 1], its adjoint
V* is given by

V*f(s):/ f(t)dt, f € L?0,1].

Answer. We have

(V*f»!J):(f,Vg):/ f(s)/osg(t)dtds

0
:/ol/tlf(s)dsg(t)dtz</t1fg>~

1
V*f(s):/ f(t)dt, ferL?o,1).

(10.6.21) Let T' € K(H) and let T = V|T| be its Polar Decomposition.
Show that |T'| € K(H).

Answer. Because V*V is the projection onto the closure of the range of T*
and |T| = (T*T)'/2, we have V*V|T| = |T|. Then |T| = V*V|T| = V*T €
K(H) since K(H) is an ideal.

(10.6.22) Let H be an infinite-dimensional Hilbert space. Use the Po-
lar Decomposition to show that the unit ball of K(H) has no
extreme points.

Answer. Let T € KC(H) with ||T|| < 1. By the Polar Decomposition and
Exercise 10.6.21, we can write T = V|T|, with |T| positive and compact. By
the Spectral Theorem (Theorem 10.6.12) we can write

|T| = Z >\kPk7
k=0

where the sequence {\;} converges to zero. So there exists j such that P; # 0
and 0 < \; < 1. Let § = (1 — \;)/2. Then |T| = 1 T} + 1 T5, where

Ti=\ =P+ > AP, To=(+8)P+ Y MP
k#j k#j
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Both T} and T are selfadjoint compact operators with eigenvalues in [—1, 1],
so [|[T1|| €1 and ||T3]| < 1. And then we can write

T=V|T|= VT + VT

Since V*V|T| = |T| (as seen in the answer to Exercise 10.6.21), if we had
VT, = VT, we would have V*VT; = V*VTy. After cancelling the parts that
are equal, this leads us to (A; — 6)V*V P; = (\; + §)V*V P;, which reduces
to V¥V P; = 0. This gives V*V|T| # |T|, a contradiction. So T} # T and T

is not extreme.

(10.6.23) Let H be an infinite-dimensional Hilbert space. Show that
K (H) is not a dual by using Exercise 10.6.22 and Krein-Milman
(Theorem 7.5.11).

Answer. Suppose that C(H) = X* for some Banach space X. Then we
have a weak*-topology on K(H) and in particular the unit ball is compact
in this topology (by Banach—Alaoglu, Theorem 7.2.13). Then Krein-Milman
(Theorem 7.5.11) shows that the unit ball of IC(H) is the closed convex hull
of its extreme points; as the unit ball in K(#) has no extreme points (Exer-
cise 10.6.22), we conclude that () is not a dual.

(10.6.24) Let T' € K(H) be normal. Show that conve (T') = W(T).

Answer. We know from Proposition 10.2.3 that conve(T) C W(T'). Now fix
A€ W(T). So A = (T¢&, &) for some unit vector £&. By the Spectral Theorem
(Theorem 10.6.12) there exists an orthonormal basis {{;} such that

T=> P
k

where Py is the rank-one projection onto (Cﬁk Then

A= (T¢,€) = ZAksfk ) (€rs E5) leskw

From ¢ = 1 we get that Y, [(£,&)[*> = 1. Fix € > 0 and choose m
such that Y, (&, &)|* < e. Let ap = [(£,&)]* for k = 1,...,m and

Um41 = D s 1€ &2 Then ay, ..., a1 are convex coefficients and

m+1

D=7 ] = | 3016 &P = Ans)| < 1= Ansale < (1417 e
k=1 k>m
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I Ase >0 can be chosen arbitrarily small, this shows that A € ¢onvo (7).

(10.6.25) Let H be a Hilbert space with an orthonormal basis {n;},c.
For each k,j € J, let E}; be the rank-one operator that maps
Eyjn; = ni. Explicitly, Ey;& = (£,m;) nk. These operators are
called matrix units and satisfy the relations

EyjEqy = 05,0 Exyp. Ep; = Eg;j. (10.2)
Using notation we have also discussed, Ey; = nyn; .
(a) Prove the matrix units relations (10.2).

(b) Show every Ey; is a partial isometry and {Ey } are pairwise
orthogonal mutually equivalent projections.

(c) Let T € B(H). Show that there exist unique numbers
{tr;}r,jes such that

T =ty Exj, (10.3)
k.

where the series converges pointwise (if coming from a later
chapter, the series converges sot).

Answer.

(a) This was done in (10.10) and Exercise 10.6.4. Here is the argument in the
given notation. Given £ € H,

EyjEapé = (Eav&;n3) e = (€, 1) (as 15) M
= 05,a(§ M) Mk = 6.0 Erpk.
And
As §,n € H are arbitrary, E}; = Ejy.
(b) From (10.2),
EiijEv; = EjpEyj = Ejj,  EwjEp; = ExjEj = Egg.

By Proposition 10.4.10, Ey; is a partial isometry and Ejyy, is a projection
(the projection part can obtained directly from the matrix unit relations).

(c) For each k,j € J, let ty; = (Tn;j,me). Fix £ € H, so & = Zj c;n; with
c € 2(J). The idea of what we need to do is in Proposition 10.6.2. Fix
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€ > 0 and choose F' € J, finite. Let Pr be the orthogonal projection onto
span{n; : j € F}. Then

|76 =3ty Bt | = | X esTms = > tag Ekng
k J k

JEF JEF

= | Yo temdTns = > T (€om) e

J kjeF
= 1> &mi) (Tngome) me — > (Tnjomie) <€777j>77kH
ko kjEF
= | Y2 t6msd T e = (T Py, P (€ ) e
k,j k,j
= Z<€a ;) (T — PeT Pr)n;, nx) 77kH
k,j

= [t m) (@ = PeTPey; | = 1T — PeTPR)E)

J
< (T = PeT)E|| + |(PrT — PrT Pr)¢||
< (T = PeT)E|| + (T = TPr)E]|
—0

by Exercise 10.6.9. The double series above can be manipulated freely
because we do not exchange the indices and everything converges.
For the uniqueness, if ' =3, j trjEr; then

<T7757777‘> = <ZtkjEkjnsan7‘> = <Ztks77k7nr> = trs-
k,j k

10.7. Trace-Class Operators

(10.7.1) Proving the inequality |Tr(T)| < Tr(|T]) in (iii) of Proposi-
tion 10.7.5, it is tempting to get a direct proof by using

[{T&n: &n)| < (IT1En: En),
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from where the inequality would follow directly. Show that this
inequality does not hold in general.

Answer. Let H be any Hilbert space with dimH > 2, and let {¢,} be an
orthonormal basis for 7, with the usual associated matrix units {Ey;}. Put

3 1
T = Eqo, f=§§1+§§2~

Then |T| = E22 and

we.e) =Y 1o (rje.e).

w

(10.7.2) Let ¢ : X — C be linear and positive, that is ¢(T) > 0if T > 0.
Prove the Cauchy—Schwarz inequality

p(S*T)| < @(S*8)2p(T*T)"/>.

Answer. The form [S,T] = ¢(S*T) is sesquilinear, and so the proof of
Cauchy—Schwarz (Theorem 4.2.2) applies.

(10.7.3) Show that if dimH = oo then the inclusions F(H) C T(H) C
KC(H) are proper.

Answer. Fix an orthonormal sequence {{;} for H. Define the operators

S, T € B(H) by
Se=3" (6.6 & Te=3 C (6.6 &
k k

Then S is trace-class but not finite-rank, and 7" is compact but not trace-
class. This can be verified directly because both S,T are positive, and then
Tr(S) = Y, 2 < o0 and Tr(T) = >, + = oo. Finally, S is not finite-rank
because & = S(k;) € ran S for all k.

(10.7.4) Show that 7 (H)* = B(H); that is, show that there is an iso-
metric isomorphism I' : B(H) — T (H)* such that I'(T)(S) =
Tr(T'S).
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Answer. We define I' : B(H) — T(H)* by T'(T)(S) = Tr(T'S). This map is
clearly linear. We have | Tr(T'S)| < ||T|| ||S]l1, which shows that ||I(T)| <
IT||. If &€ € H with ||£]] = 1 and ||T¢]| > (1 — ¢)||T|| for some € > 0, let
S = ”T—lgﬂg(Tf)*. Then S is rank-one, so trace-class, with ||S|| = 1. And
calculating over an orthonormal basis whose first element is &,
Te(ST) = {gr €(TE)'TE.€) = [Tl = (1 )T

It follows that |T'(T)|| = ||T||. So I'(T) is isometric. It remains to show that I’
is surjective. Fix ¢ € T(H)*. Consider the sesquilinear form [, n] = ¥ (&{n*).
Since |[&,n]| < |¥|| €] |Im]l, from Proposition 10.1.5 there exists T' € B(H)
with ¢ (&n*) = (T¢,n). If S € T(H) is positive, by the Spectral Theorem we

can write
o0
S=Y Né&&
j=1
for an orthonormal basis of eigenvectors for S. Then

B(8) =D N w(EE) =D N (T€.&5)
j=1

j=1
=Y (T, \&) = D (T€;,9¢;) = Te(ST).
j=1 j=1

As any S € T(H) can be written as a linear combination of four positive
trace-class operators, the equality Tr(T'S) = ¢(S) holds for all S € T(H).

(10.7.5) Let T' € B(H). Show that if A # 0 then ker T'Nker(T — AI)" =
{0} for all n.

Answer. If n € ker T Nker(T — AI)™, then (T'— A\I)n = —An, and iterating
we get

(=1)"A"n = (T = AI)"n = 0,
and so n = 0.

(10.7.6) Show that dimker(T" — AI)" < oo for any T compact, A €
C\ {0}, and n € N.

Answer. We have

n—1

(T— )\I)n _ (_1)n>\n1+ E (n> (_1)j)\jT7z—j _ (_1)n)\nl+ S,.
; J
j=0
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with S compact. Then, if g = (=1)"TI\" ker(T — M\)" = ker(S — ul) is
finite-dimensional by Corollary 9.6.14.

(10.7.7) Show that if ker(T — AI)" = ker(T — AI)"*! then ker(T —
A)"*t* = ker(T — M)™ for all k € N.

Answer. Suppose that ker(T — AI)" = ker(T — AI)"*1, and let v € ker(T —
AI)"**. Then, since n = (n+1)+(k—1) we have that (T —\I)*~1v € ker(T —
M)+ = ker(T — A\I)™, which implies that v € ker(T — AI)"T*~1. Iterating
this we get that v € ker(T' — A\ )™. Hence ker(T — M\ )"** = ker(T — A\ )™ for
all k e N.

(10.7.8) Let H, K be Hilbert spaces and T : H — K, S : K — H linear
and such that T'S € T(H), ST € T(K). Show that ST and T'S
have the same nonzero eigenvalues, with ax(ST) = ax(T'S) for
all A € o(ST) \ {0}. Conclude that Tr(7'S) = Tr(ST).

Answer. We know that ST and T'S, being compact, have all their nonzero
elements of the spectrum as eigenvalues (Theorem 10.6.8), and that nonzero
elements of the spectrum are the same for both (Proposition 9.2.15; the proof
there is phrased in the context of an algebra, but all that matters is that we
can multiply).

Let & € ker(ST — AI)* be nonzero. We can write this as

" (k
> () AF=I(ST)I ¢ = 0.
i=0 M
Then T¢ # 0, for otherwise the equality above becomes A*¢ = 0, a contra-
diction. This shows that 7' is injective when restricted to | J,, ker(ST — \I)*.

We also have that T¢ € |J, ker(T'S — AI)*. Indeed, from (T'S — AT =
T(ST — M) we get by induction ('S — AI)*T = T'(ST — A\I)* for all k, and
then (T'S — M)*T€ = T(ST — A )*¢ = 0.

Thus T is an injective map from J, ker(ST — A)* into |, ker(T'S —
AD)*, and hence ay(ST) < a)(T'S). As the roles of S,T can be exchanged,
Ck)\(ST) = O[)\(TS).

The equality Tr(T'S) = Tr(ST) now follows from (10.27).
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(10.7.9) Let S € B(H). Show that S*S € T(H) if and only if SS* €
T(H).

Answer. Let S = U|S| be the polar decomposition of S. Suppose that
S*S € T(H). Then

SS* =U|S|?°U* = US*SU* € T(H)

since T(H) is an ideal. The converse is shown by exchanging the roles of S
and S*.

(10.7.10) Let S € T(H). Show that
inf{||S + R||; : Tr(R) =0} = |Tx(S)|. (10.4)

Answer.
For any R with Tr(R) = 0 we have
| Te(S)] = [Te(S + R)| < [|S+ Rl
Hence | Tr(S)| < inf{||S + R||1 : Tr(R) = 0}.
Fix ¢ > 0. By Proposition 10.7.9 there exists F' € F(H) with ||S —
F|; < e. Writing F as in Proposition 10.6.1, we see that F' acts on the
subspace Ho = span{&;,nr : k}. This allows us to apply Schur’s Triangu-

larization (Proposition 1.7.14) to get (after expansion to the whole space)
an orthonormal basis in which F' is triangular. Say the orthonormal basis is

{&k}, s0
k-1
F&, = A&y + Zakjfj

j=1
and Aq,...,\, are the nonzero eigenvalues of F. Now form the finite-rank
operator R where
k—1
Rfk:_Akfk—Zakjij k:2,...,n
j=1

and .
Rfl = ( — A+ Z)\]>§1
j=1

Then Tr(R) = 0 and
IF + Ry = || Te(F) Ev | = | Te(F)].
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Then
| Tr(S)] > |Te(F)| —e=|[F+ R|1 —e > ||+ R[1 — 2
> —2¢ +inf{||S + R||; : Tr(R) =0}.

As this can be done for any € > 0, we get that | Tr(S)| > inf{|S + R||: :
Tr(R) = 0}.

(10.7.11) Let {&,}, {n»} C H such that
Y lall? < oo, > lmall? < co.

Use Proposition 10.7.12 to show that the operator S =" &1}
is trace-class.

Answer. First we check quickly that S € B(#H). This is because

e = \ S enteomd| < S el Il el

< (S 1e?) " (X ) el

n

Fix an orthonormal basis {v,, }. Then

S 1SV V) =D 1Y s vi) (k)
k k

n

=33 v 1)
n k

= Z (Z |<§nyl/k>|2)l/2(z |<Vk>77n>|2>
n k A

=Sl el < (S al?) () < oo

As the computation would be the same under any reordering of {1, }, we have
shown that ) (Svp,v,) converges for any orthonormal basis {v,}. Hence
S € T(H) by Proposition 10.7.12.

< S5 v ki)

n k

1/2
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(10.7.12) Let T'S be as in (10.28) and let z1,. . ., 2, € C with |z;| < 1 for
all j. Show that there exists an orthonormal basis {{;} such
that the diagonal of T'S in said basis begins with z1,..., z,.

Answer. We have T'S = Zk Esk—1 2k, where the matrix units come from the
orthonormal basis {n;}. Write z; = r;e"% the polar form. Let

§ = T;/Qefiej Naj—3 + 7”31-/2 Majz + (1= 2r))" % 0y, J=1...,n

Then &, ...,&, are orthonormal and

(T9)&.6) = Eor—1,2685. &)
k

= <7a]1'/2774j7377']14/2€_i9j Naj—3 + r;/z Naj—2 + (1 —2r)Y 2y 1)
1/2 1/2 _.9.
=r;""r;%e 05 = z;.
Then we finish by extending {1, ...,&,} to an orthonormal basis.

(10.7.13) Let &, € H. Show that
1€n* (12 = [I€]] lInll- (10.5)

Answer. Let @ be the projection onto Cr; that is, @ = W nn*. We have

&n*| = (€ &™) = |I€] ™) = 1€l Inll @2 = II€]! IInl| Q-
Then
1En* 11 = Te(|€n™]) = €] Inll Te(Q) = [I€]] 7]

(10.7.14) Let &,n € H be unit vectors and P = ££*, Q = nn* the corre-
sponding rank-one projections. Show that

[P = Qllx =2v1—[(& )

Answer. We have
(P-Q)*=P+Q—2Re PQ,
and
Tr(PQ) = Tr(€€ m*) = Te(Emm*€) = "¢ = |(&,m)[*.
Since P, (@ are rank-one, P — @) has rank at most 2; so it has at most two
nonzero eigenvalues, say «, 8. The equality Tr(P —Q) = 0 forces § = —a. As



478

CHAPTER 10

P—Q is selfadjoint, the eigenvalues A1, A2 of |P—@Q)| are the square roots of the
eigenvalues of (P — Q)?; that is, \; = |a?|'/2 = |a, Ay = |8?|Y/? = |a| = A\
Then

6 — ¥l = [P = Qllr = M + X2 = 2)\ = V2(2)3) /2
V224 =vam((P-Q)2)"?
= V2 Te(P + Q- 2Re PQ)V/2 = v2 (2 — 2/(&, n)2)/*

=21 = [

(10.7.15) Let H be a Hilbert space. Show that the Banach space T (H)
is separable if and only if H is separable.

Answer. Suppose that H is separable. By Proposition 10.7.9 it is enough to
show that F(H) is separable. Let {v,} be a countable dense subset in H. Fix

e > 0and T € F(H). By Proposition 10.6.1 we can write T = ngn,’; for

k=1
certain &, mp € H, k=1,...,n. Let ¢ = max{||&| + ||mx|| : %k} + 1. For each
k choose ny, my such that ||v,, — &l < e/(2en) and ||vi, — nxl| < €/(2¢n).
Then, using (10.5),

n
HT B Z Vg Vma ||
k=1

n
< Z ||fk771: - VnkymkHl
k=1

M:

1667k = &kt L+ €0V, — Vnivin, [l

b
Il
—

I
NIE

1€k I = v |+ [l [ 168 = v |

b
Il
—

IA
bl
-
I

?l\)

38
Il
o

This shows that the countable set

n
C= {Zunku,ﬁlk :n,ng, mg €N, kzl,...,n}
k=1

is dense in T (H).
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Conversely, if H is not separable then there is an uncountable orthonor-
mal basis {zi;} C H. Then the set of rank-one operators {{;{} is uncount-
able, and by Exercise 10.7.14

€565 — &éilli =2,
so T(H) cannot be separable.

(10.7.16) Let H, K be Hilbert spaces and U : H — K a unitary. Show
that A € T(H) if and only if UAU* € T(K).

Answer. Fix A € T(H). This means that Tr(]A|) < co. Because U is a
unitary, |[UAU*| = U|A|U* (simply check that (U]A|U*)? = (UAU*)*U AU,
and recall that the positive square root is unique). Let {n; } be an orthonormal
basis of K. Then {U*n;} is an orthonormal basis for H. Hence

Tr([UAU™|) = Te(U[A|U*) = > (U[A[U*n;,n;)

J

= > (AU n;, U ;) = Tr(|A]) < oo
j

So UAU* € T(K). The converse follows immediately by using that U* is a
unitary.

(10.7.17) Let H, K be Hilbert spaces and U : H — K a unitary. Show
that Tr(UAU*) = Tr(A) for all A € T(H) (this is slightly less
trivial than it looks, since we are using the trace in two different
spaces).

Answer. This follows from Exercise 10.7.8 but we offer here a short ad-hoc
proof. Fix A € T(#H). By Exercise 10.7.16, UAU* € T(K). Now we can do
the same computation as in Exercise 10.7.16. Let {n,;} be an orthonormal
basis of K. Then {U*7;} is an orthonormal basis for H. Hence

Te(UAU*) = Y (UAU™n;,m5) = Y _(AU™n;,U;) = Tr(A).

J J






CHAPTER

11

C*-Algebras

11.1. C*-Algebra Basics

(11.1.1) Prove the statements made in Remark 11.1.3.

Answer.

e M, (C) is separable since it is finite dimensional.
® ¢ is separable, since we can form the countable dense subset
span{(q +ip)e, : ¢,p € Q, n € N}.

e />°(N) is not separable because it contains the uncountable subset
{0, I}N, and any two elements in it are at distance 1, so there cannot
be a dense countable subset.

e We can embed ¢*°(N) in B(#H) as multiplication operators over a
fixed orthonormal basis, so B(H) cannot be separable when dim H =
00.

481
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(11.1.2) Show that the norm defined in (11.1) is submultiplicative.

Answer. We have
(s A) (b 2) | = sup{llabe + Noe + pac + Apiel = Jel] = 1}.
Since |labc + Abc + pac + Aucl| = ||a(be + pc) + A(be + pe)l|, we get that
(@, A) (0, )| < limsup [ (@, M| [|be + pell = [(a; M6, w)]]-

el <1

(11.1.3) Show that if z € A satisfies bz = 0 for all b € A, then z = 0.

Answer. We have x = (a, ) for some ¢ € A and A € C. The condition
bz = 0 looks like ba + Ab = 0. Then

I(a”, M|l = sup{la™d + Ab]| : b€ A [b]| < 1}]
= sup{|lba + \b|| : be A, |b] <1} =0.
Thus (a, \)* =0, and then (a, ) = 0.

(11.1.4) Show that if A is a C*-algebra, unital or not, then
I, M| = max {|A), supd lab+ Mo = 1] < 1}}.

defines a norm that makes A a C*-algebra, and that when A
is not unital we recover A as in Proposition 11.1.4. (Hint: at
some point you will possibly need the fact that the norm on a
C*-algebra is unique)

Answer. If ||(a, A)|| = 0, then |A| =0, and
0 = sup{llab + Ab|| - [|b]] <1} = sup{llab] : (o] <1} > [lal|,
so a = 0. The homogeneity follows easily since
l1e(a, M| = [l (ua, pA)|| = max {|pAl, sup{||pab + pAb]| = [|b]] < 1}}
= |ul ll(a, M-
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For the subadditivity,
I, A) + (@', X)[ = lI(a+a’", A+ )|
= max {|A + X|,sup{|[(a + a" )b+ (A + N)b| : []b]| <1}}
< (@, M+ [I(a’, A,

where we are using that the absolute value, the norm of A, and the supremum
are subadditive. Now the submultiplicativity. We have

(@, \)(a', X)|| = [[(aa’ + Aa’ + Na, AX)]|

max {|\N'], sup{||aa’b + Aa’b + N'ab+ ANb| : [|b]] <1}}
max {|A| X[, sup{[la(a’b + N'b) + A(a'b+ Xb)|| = [}b]] < 1}}
max {|A|[X'], [[(a, A) || sup{la’d + N'b] : bl < 1}}

max {[A] [N, [[(a, DIl X1} }

< l(a, Ml (@', Al

And now we have, with the same idea as in the proof of Proposition 11.1.4,
I(a; M[? = max {|A[*, sup{[lab + Nb[|* = [[b]| < 1}}

= max{|)\|2,sup{\|(ab—|— Ab)*(ab+ Ab)|| - ||b]] < 1}}
= max {|A]?, sup{||b*a*ab + Ab*ab + Ab*a*b + [A|*b*b|| : ||b]| < 1}}

IN

= max {|A|*, sup{[|b*(a*ab + Xab+ Aa*b+ |A]D)| : [|b] < 1}}

< max { ||, sup{[la*ab + Xab + Aa*b+ |A]*b] = ||b] < 1}}

= [l(a”a + Aa + Xa™, AP)I| = [[(a, 2)* (a, M|

< (@, A)* [ I(a, M-
Then when (a, A) is nonzero we can cancel and we get ||(a, A)|| < ||(a, A)*]|.
As the roles can be exchanged, this becomes an equality and so

(@, MIZ < 1@, A)*(a, M < (@ ) [ (a, M| = I, V)]

Thus [|(a, \)[[ = [|(a,A)*(a, A)]].

When A is non-unital we know from Proposition 11.1.4 that sup{|lab+
Ab|| = ||b]| < 1} defines a norm on A. Being a subalgebra of A, and because
the norm on a C*-algebra is unique, we get

max{|)\|,sup{||ab+ Ab|| 2 |IB]] < 1}} = Sup{||ab+)\bH2 Co| < 1}
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(11.1.5) Show that the inequality
|A| < sup{|lab+ Xb| : ||| < 1}, acA,

holds when A is non-unital, and fails when A is unital.

Answer. When A is non-unital, we have by Exercise 11.1.4 that sup{|ab +
Ab||2 1 ||b]| < 1} defines a norm on A. Being a subalgebra of A, and because
the norm on a C*-algebra is unique, we get

max {|A|, sup{[lab+ Ab|| : ||b]| < 1}} = sup{|lab+ Ab[|* : [|b]| < 1}.
In particular,
|\l < sup{||ab+ Ab||? : [|b]| < 1}.

When A is unital we can take a = I 4, A = —1, and the inequality above
becomes 1 = |A| < 0.

(11.1.6) Show that, for any a € A, o(a*) = o(a). ]

Answer. If a — M 4 is invertible, then a* — A\ 4 = (a — A 4)* is invertible by
Eq. (11.3).

(11.1.7) Let {A,};cs be a family of C*-subalgebras of a C*-algebra A.
Show that [, A; is a C*-subalgebra of A.

Answer. Let B =) ; A;. Being an intersection of algebras, B is an algebra.
If b € B, then b € A; for all j, and so b* € A; for all j, which means that
b* € B. So B is a *-algebra. As C*-algebras are closed, B is closed being an
intersection of closed sets. So B is a closed *-subalgebra of A; that is to say,
a C*-subalgebra.

(11.1.8) Let A be a C*-algebra and a € A. Show that C*(a) is equal to

{p(a,a*): p non-commutative polynomial with p(0,0) = 0}.

Answer. Let

B ={p(a,a*): p non-commutative polynomial with p(0,0) = 0}.
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Being the closure of a x-subalgebra of A, it is a C*-subalgebra of A that
contains a. Hence C*(a) C B by definition. On the other hand, p(a,a*) €
C*(a) for any non-commutative polynomial with p(0,0) = 0, as C*(a) is a
x-algebra. So B C C*(a), and therefore C*(a) = B.

(11.1.9) Let A be a C*-algebra such that every normal element has
spectrum consisting of a single point. Prove that A = C.

Answer. Let a € A be normal with o(a) = {\}. Working in the unitization
if needed (which is a condition to define o(a)), we have that b =a — A4 is
normal and o(b) = {0}. By Lemma 11.1.10, ||b|]] = spr(b) = 0, so b = 0 and
hence a = A\ 4. As the normal elements span A by Proposition 11.1.13, we
get that A = C.

(11.1.10) Show that if .4 is not unital then (A)* ~ A* @, C.

Answer. Let I': A* &1 C — (A)* be given by

[L(e, M](a, ) = o(a) + Ap.
The map T is clearly linear, and it is injective, for if I'(p, A) = 0 this means
that ¢(a) + Ap = 0 for all @ € A and all p € C. Taking a =0, u = 1 we
get that A = 0, and then p(a) = 0 for all a, so ¢ = 0. T is also surjective:
if ¢ € (A)*, then we can define 1 4(a) = ¥(a,0) and A\ = (0,1) and we get
['(¢4,\) = 1. And T is continuous. Indeed, the identity map id : A®;C — A
satisfies
lid(a, )| = [[(a; Ml 4 < llall + Al = [I(a, M1,

so it is a bounded bijection. By the Inverse Mapping Theorem (6.3.6) the
inverse is bounded, which implies that there exists ¢ > 0 such that |la||+|A|] <
c|l(a, V)| for all a € A, A € C. Then

[0 (e, M (a, )| = |p(a) + Apl
< (leell + [A]) max{|[all, A}

< cll(@, Ml ll(a, W,

showing that |T'(¢, A)|] < ¢|(¢,A)]]1 and T is bicontinuous again by the
Inverse Mapping Theorem.
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11.2. The Gelfand Transform and

the Continuous Functional Calculus

(11.2.1) Let a € A be selfadjoint and let v = €!*. Show that v* = e~%.

Xk k
Answer. By definition, v = Z %. The operation of taking the adjoint is
k=0
an isometry; in particular, it is continuous. Hence

E 17a _ (Z a ) (72 )a __ _—ia
vo= <Z k! > - Z k! Z k! =¢€ :
k=0 k=0 k=0

(11.2.2) Show that if A is an abelian C*-algebra then I'(A) = {T'(a) :
a € A} C Cp(X(A)) is a closed, selfadjoint subalgebra that
separates points and vanishes nowhere.

Answer. From I' being a x-monomorphism we know that I'(A4) is a C*-
subalgebra of Cy(X(.A)). So it is closed and selfadjoint. If vanishes nowhere,
because given 7 € X(A) it is nonzero and so there exists a € A with 7(a) # 0,
which is a(7) # 0. Finally, if 7= 75, this means that there exists a € A with
71(a) # T2(a); this is a(m1) # a(m), so T'(A) separates points.

(11.2.3) Let A be a C*-algebra, a € A and f € C(o(a*a) U{0}). Show
that af(a*a) = f(aa*)a.

Answer. We have a(a*a) = (aa*)a. Inductively, if a(a*a)™ = (aa*)"a, then

a(a*a)"™! = a(a*a)"a*a = (aa*)"aa® = (aa*)"a.
It follows that ap(a*a) = p(aa*)a for all p € Clz]. Now if f € C(o(a*a) U
{0}) = C(o(aa*) U{0}), by Stone-Weierstrass (Corollary 7.4.23) there exists

{pn} C C|z] such that p, — f uniformly. Then

af(a*a) = liTILn apn(a*a) = liTrlnpn(aa*)a = f(aa™)a.
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(11.2.4) Let A be a C*-algebra and a € A be normal. Let A € C\ o(a).
Show that dist(A,o(a)) = [[(a — M 4) 71| 7%

Answer. As a is normal, ||la|| = max{|a|: a € o(a)}.
Let g(t) = 1/t. Since 0 & o(a — Al 4), we have that g € C(a — Al 4).
Then

— M) = ! - = :
o= A= T =201 = Mol ~ maxtlo@1+ 1 € ola =)}

- min{g(lt) cteo(a— )\IA)}
=min{[t| : t € o(a—Aa)}

= min{|t — A : to(a)} = dist(\, o(a)).

(11.2.5) Let A, B be C*-algebras and p : A — B a *-homomorphism.
Let A denote A is A is unital, and A if A is not unital,
and do similarly with B. Show that there exists a unique *-
homomorphism p : A — B, unital onto its image, that extends

p-

J

Answer. If A is unital, there is nothing to be done, as we take p = p and
p: A — p(A) is unital; the uniqueness is trivially true from A = A. So we
assume that A it not unital. We define

50, \) = pla) + M.
This is linear:
pla+b, \+p) = pla+b)+(A+p)lp = pla)+A Ig+p(b)+u g = pla, \)+p(b, 1);
and multiplicative, for

p((a, ) (b, 1)) = plab+ Xb+ pa, A) = p(ab + Ao+ pa) + Al
= (pla) + N 5) (p(b) + plg) = pla, \)p(b, p).
Also,
p((@A)) = pla”. %) = pla”) + X g = (pla) + A Ig)" = ((a, V)"

So p is a x-homomorphism, and p(a,0) = p(a) by construction.

If v : A — B is another unital *-homomorphism that satisfies v(a, 0) =
p(a), then

v(a,\) = v(a,0)+ Iv(0,1) = p(a) + A = p(a, \)
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I sov=p.

(11.2.6) Let A, B be C*-algebras and p : A — B a *-homomorphism.
Prove that for all a € A, o(p(a)) C o(a) U{0}. The zero can
be omitted when p(A) is not unital, and also when A, B are
unital and p is unital. The zero cannot be omitted in general.

Answer. To talk about the spectrum we need to work on the unitization.
By working on A and B as in Exercise 11.2.5, we get to assume that A, B are
unital and that p is unital onto its image. If a — Al 4 is invertible, then so is
pa) = My = pla — A 4) in p(A). Thus o,4)(p(a)) C o(a).

If p(14) = Ig, from Proposition 11.1.12 we have o5(p(a)) = 0,4)(a),
and hence op(p(a)) C o(a).

And when p(I4) # I, Proposition 11.1.12 gives us

o8(p(a)) = op(a)(a) U{0}.
For an example that the zero cannot be omitted in general, let A = C,
B = C? and p(a) = (a,0). Then for any nonzero a € C we have o(a) = {a},
while o(p(a)) = {0, a}.

(11.2.7) Let A, B be C*-algebras and p : A — B a *-homomorphism.
Given a € A normal and f € C(o(a)U{0}), show that f(p(a))
makes sense and that f(p(a)) = p(f(a)).

Answer. By Exercise 11.2.6 we know that o(p(a)) C o(a) U {0}. So f is
continuous on o(p(a)) and thus f(p(a)) makes sense. From Stone—Weierstrass
(Theorem 7.4.20), the two-variable complex polynomials on z and z are dense
in C(o(a)U{0}). So there is a sequence {p, } of such polynomials with p,, — f
uniformly. As mentioned after Definition 11.2.7, we have

f(a) =limp,(a,a®),

and similarly with p(a). By proposition: *-homomorphisms:pre2 p is bounded,
SO

£(p(@)) = limp, (p(a). p(a)*) = lim p(py (@ a")) = pllimp, (a,a%)) = p(f(a)).
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(11.2.8) The Banach algebra A = {f € C(D) : analytic on D} is not a
C*-subalgebra of C(D) because it does not contain adjoints for
non-scalar functions. Show that A fails to be a C*-algebra in
a deeper sense: it is not isomorphic to C(X) for any compact
Hausdorff X, even if the isomorphism is not required to be
isometric.

Answer. The idea one can use is that A does not contain divisors of zero,
while any C*-algebra of dimension at least 2 (that is, any C*-algebra that
is not C) contains divisors of zero. Indeed, if dim C'(X) > 2 then X has
at least two points. Using Urysohn’s Lemma (Theorem 2.6.5) we can con-
struct g1, g2 € C(X) with disjoint supports. So g1g2 = 0 everywhere, so the
isomorphism would have to map one of them to zero.

(11.2.9) Let v € A be a selfadjoint partial isometry (that is, v* = v, and

v? is a projection). Show that there exist projections p,q € A

with p¢g =0 and v =p — q.

2 2

Answer. Since r = v? is a projection, from r? = r we get that sigma(v?) C
{0,1}. Therefore o(v) C {—1,0,1}. The function f(t) = 1}y, is continuous
on o(v), so we can use functional calculus to define p = f(v). By the Spectral
Mapping Theorem (Corollary 11.2.8) we have o(p) = {0, 1}, so p is a projec-
tion (p? = p and p is selfadjoint by construction). We can similarly define
q = —g(v), with g(t) = 1(_0); then ¢ is a projection. As f(t) + g(t) =t on
o(v), we have v = p — ¢. The condition pg = 0 follows from f(t)g(t) = 0.

11.3. Positivity

[ (11.3.1) Let a € A. Show that |Real < |la] and [[Imal < |a].

I Answer.  We have 2|Real = |la + a*|| < |la]| + ||a*]| = 2||a||. Similarly,
2[mall = lla = a*[| < fla]l + [la*[| = 2{[a]-
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(11.3.2) Let A be a C*-algebra. Show that I 4 is an extreme point in
the closed unit ball of A.

Answer. Suppose that I4 = 3 (a+b) with [la]| < 1 and ||b]| < 1. Considering
the real part we have I4 = % (Rea+Reb). Weget 0 = (Ix—Rea)+(I4—Reb),
and both terms are positive by Corollary 11.3.8 since ||[Real| < |ja]| <1 and
the same for b. It follows that Rea = I 4 and Reb = I4. Then

1= Jall* = lla*all = [[(1a + ilma)* (La + ilma)|| = || L4 + (Ima)?].

This implies that 14 + (Ima)? < I4, and so Ima = 0. Similarly Imb = 0,
and so a = b = I 4 and I 4 is extreme.

(11.3.3) Let a € A™. Show that its positive square root is unique.

Answer. Let b= f(a), where f(t) = t'/2.

If c € AT and ¢® = qa, then ¢ = f(c?) = f(a) = b. The first equality
can be seen by writing f as a uniform limit of polynomials on ¢? (as in
Remark 7.4.17).

(11.3.4) Let A be a C*-algebra and a,b € AT. Show that if b < a, then
bL/2 < gl/2,

Answer. We may assume without loss of generality that A is unital. Suppose
first that b is invertible. Then so is a, as 0 € o(a), and we have

a"Y?pa1? < I4.
Hence [|b'/2a=1/2|| < 1. By Proposition 9.2.15,
(a4 20V = o (b1/2q 12,
Thus
la= 401214 = spr(a=/4bH 20~ 1) = spr(b"/2a=1/?)

< Hb1/2a71/2H <1.

This implies a=1/4p2/2¢=1/4 < I 4, and so b1/2 < al/2.

When b is not invertible, we have shown above that (b+ 2)1/2 < (a +
1)1/2So it is enough to show that (b+ 1)¥/2 — /2 and that a limit of
positive operators is positive. We have, since everything commutes,

I+ )2 =02 = L+ )2 4627 < Yo,
n n n

n
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using that (%)1/2 <(b+HY2 4 b2 and so ((b+ L)V2 +p1/2)71 < /n.
As for a limit of positive operators, if b, > 0 for all n and b = limb,,,
then for any character 7(b) = lim,, 7(b,) > 0, so o(b) C [0, c0).

(11.3.5) Show by example that it is not true in general that if 0 < b < q,
then b2 < a2.

Answer. Let A= M5(C), and
b— 1 0 121
~ 1o o’ “= 1o
We have b = b*b and a = b + e, where e is the matrix with all entries equal
tol;s0e= %62 >0, and a > 0. We have

Then

which is not positive (the determinant is negative, which implies that one
eigenvalue is negative).

(11.3.6) Let a € A be selfadjoint. Show that the following statements
are equivalent:

(a) a > 0;
(b) lvLa —all < v for all v > [lal|;
(c) there exists v € R with v > |ja]| and ||y 14 — al| < 4.

Answer. (a) = (b) Fix v € R with v > ||a]|. By Theorem 9.2.12 we have
o(a) C [0, ||lal]] € [0,7]. Then a < vI4 by Corollary 11.3.6, so v 14 —a > 0.
We also have Y14 —a < y14, for yI4 — (yIq4 —a) = a > 0. Hence 0 <
vI4—a <~Iy. By Corollary 11.3.6, o(yI4 — a) C [0,7], and then

v Ia = all = spr(y 14 —a) <.
(b) = (c) Trivial.

(¢) = (a) Wehave spr(yIa—a)=|vIa—a| <v. Soo(yIls—a)C
[—7,7], and then o(a) C [0,29]. Then a > 0 by Lemma 11.3.2.
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(11.3.7) Let A be a C*-algebra. A function f : [0,00) — [0,00) is
operator monotone if f(a) < f(b) whenever 0 < a < b.
(a) Use Corollary 11.3.7 to prove that f(t) = st(1 + st)~!
operator monotone for each s > 0.
(b) Prove that g(t) = tﬂ is operator monotone for all 5 € (0,1)
by considering g(t) = [;° fs(t)s™# 1 ds.
Answer.
(a) We have

(b)

st 1

1s(t) = 1+ st =1- 1+ st
If 0 <a <b then1+sa <1+ sb, so(1+sb)™t < (1+sa)~t by
Corollary 11.3.7. Then

fsl@)=Ta—(1+ sa)_1 <Iy—(0+ = fs(b).
) We have, with the substitution v = ts,

ﬂ st ﬂ v 1
-1
/ fs(t) ds-/0 7(1+8t)56+1ds—t /0 1+UU1+de

The improper integral converges both at 0 and oo because it the integrand
is of the form v~ and v=#*! respectively. So if

< 1
T:/O 1+vv1+5dv7

b=t [ -1 g
t g(t) 7’/0 fs(t)s s

We have f,(a)s™?~1 < fo(b)s~#1 for all s. This inequality will survive
through Riemann sums (valued on the C*-algebra). We will show that
the Riemann sums of an integral of a continuous function over a closed
interval converge uniformly. Indeed, if h is continuous on [1/R, R] and
e > 0 is given, since h is uniformly continuous there exists § > 0 with
|h(z) — h(y)| < € whenever |z — y| < 6. Let {s;} be a partition of [0, R]
with |s; —s;_1| < d. Then

]/ff( ds—Zfsa

we have

j)) ds

Sj

SZ/j () = f(sp)] ds < < R
j=1"8i-1
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If follows that if hp(t) = 1 fOR fs(t)s~P~1ds, then

hg(a) = lim > famla) A,
i=1
and hence hr(a) < hr(b). We also have that

o 51 R 51 1/R st 1
A1 s — “Algs| <
’/0 fs(t)s ds 1/Rfs(t)s ds| < ’/0 st AT ds‘
st 1
+‘/R 1+st5ﬁ+1ds

1/R S
St/ sfﬁds—k/ sP1ds
0 R

t 1
T -pRT R
and, as ¢ < [|b]|, the limit goes to 0 uniformly on R; that is, hp — ¢
uniformly. Then

0¥ = g(a) = lim hp(a) < lim ha(h) = g(t) = V°.

(11.3.8) Let A be a C*-algebra and a,p € A with a > 0 and p a projec-
tion (p = p? = p*). Show that a < p if and only if |ja| < 1 and
a =pa = ap. (When a and p are projections in B(H) this was
done in Proposition 10.5.3; now we rather similar arguments,
but they have to be entirely algebraic)

Answer. We can work on the unitization if needed. If a < p, then
0<(Ia-pla(la—p) < (La—ppa—p)=0.
Hence
0= (La—pla(la —p) = [a*(Ta = p)]" [a"*(La — p)],

SO al/z(IA —p) and then a(I4 — p) which is a = ap; taking adjoints, a = ap =
pa. Also, from 0 < a < p we get |ja]| < ||p|| = 1.

Conversely, if a = pa = ap and ||al| < 1, then a = pa = pap < ||a|| p* =
p.
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(11.3.9) Let A be a C*-algebra and a € A nonzero. Show that there
exist 7 € {1,—1} and s € {1,4} such that (Rersa)™ # 0.

Answer. Via Proposition 11.3.10 we can write
a=Rea+ilma=ay —ay+ilag — aq),

with ay,as,a3,a4 € A", a1as = asas = 0. Since a # 0, there exists j with
a; #0. If j € {1,2} we take s = 1 for a; is already in the real part; otherwise
we take s = i. Now sa has real part with a; either the positive part—in which
case we take 7 = 1—or as the negative part—in which case we take r = —1.
Now rsa = a; — ar + i(am — ay) for k,m,n € {1,2,3,4} \ {j} distinct, and
thus (Rersa)t = a;.

11.4. Ildeals and *-Homomorphisms

(11.4.1) Let A be a C*-algebra. Show that Z(A) is a C*-subalgebra of
A.

Answer. If ay,as € Z(A) and b€ A, A € C,
(a1 4 Aaz)b = a1b+ Aazb = b(a; + Aag), and aia2b = a1bay = bajas.

And from a1b* = b*ay, taking adjoints we get aib = baj. Thus Z(A) is a
x-subalgebra of A. If {a,} C Z(A) and a,, — a, then

ab = lim a,,b = lim ba,, = blim a,, = ba.
So Z(A) is closed, and it is thus a C*-subalgebra.

(11.4.2) Show the equivalence (11.8).

Answer. 1If lim; ae; = a for all a, then for a fixed a we have lim;a*e; = a*;
as the adjoint operation is continuous, lim; e;a = a.
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(11.4.3) If A is separable, show that it admits a countable approximate
unit (Hint: consider an increasing sequence of finite sets with
dense union)

Answer. Since A is separable, there exist subsets F}, C Fy C -+ C A with
U,, Fy dense. From Z as in Theorem 11.4.4, choose e; € Z with |la—ae|| < 1
for all @ € Fy; inductively, given ey, choose epy1 € Z with epy1 > e and
la — aepq1|| < 1/(k+1) for all a € Fy4q. So, for any a € J,, Fr, we have
that lim,, |la — ae,|| = 0. As |J,, F» is dense, lim,, ||[a — ae, || = 0.

(11.4.4) Let A be a C*-algebra and {e;} C A an approximate unit.
Show that lim; [[e;]| = limy [[€3]| = 1.

Answer. Since the approximate unit is monotone, if j < k then 0 < e; < ey,
and so |le;|| < |lex|| by Corollary 11.3.8. Then ¢ = lim; ||e;|| exists, and ¢ < 1
as |lej]| <1 forall j. Let a € A with ||a|]| = 1. Then |lae;|| < |le;]] < ¢, and
S0

1—c=|a] = [lae;|| < lla — ae;|| = 0.
Therefore ¢ = 1. For the squares, we simply note that ||e§\| = |le;||* since
they are positive.

(11.4.5) Let B C A be an inclusion of C*-algebras. Suppose that B has
an approximate unit {e;} that is also an approximate unit for
A. Show that any other approximate unit of 5 is an approxi-
mate unit for A.

Answer. Fix a € A and let {fi} be another approximate unit for 5. Then
la —afill <lla—ae;j|| + llae; — ae; fill + llae; fi — afill
= [la — ae;l| + lla(e; — e; fi)ll + [[(ae; —a) fil

< lla = aejl + lla(e; = e; fi)ll + llae; —af

Now
limsup ||a — afx]] < 2|la — ae;]|.
k

As we are free to choose j, we get that limy, |ja—af|| = 0. An entirely similar
argument (or, taking adjoints) shows that |la — fral — 0 for all a € A.
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(11.4.6) Let A be a C*-algebra and Ay C A a dense *-subalgebra. Let B
be a C*-algebra and 7 : A9 — B an injective *-homomorphism.
Show by example that 7 is not necessarily bounded.

Answer. Let A= C[0,1], B=C& C]0,1], and Ay = C[z], considered as a
subalgebra of A (so ||p|| = sup{|p(z)| : = € [0,1]}). Define 7 : Ag — B by

m(p) = p(2) & p.
This is clearly an injective x-homomorphism. Moreover, 7(Ag) is dense in B:
given (A, f) € B, let g € C[0,2] with g = f on [0,1] and ¢(2) = A. By Stone-
Weierstrass (Theorem 7.4.20) there exists a sequence {p,} of polynomials
with p, — g. In particular, w(p,) — (A, f).
But 7 is not bounded: consider ¢,(z) = ™. Then ||¢,|| = 1 for all n,
but [|7(qn )| = 2".

(11.4.7) Let A be approximately finite dimensional (AFD); that is,
A =, An, where A, C A,4; and dim A, < oo for all n.
Show that A has a countable approximate unit made out of
projections. (Hint: use that finite-dimensional C*-algebras are
unital Lemma 11.8.2)

Answer. Let p, be the identity of A,,, which exists by Lemma 11.8.2. Since
pn € Any1, we have p,i1p, = py, so they commute (by taking adjoints)

and—working momentarily on A—p, = ppy1PnPnt1 < Prnt1d jPnt1 = Pnti-
Fix € > 0. Given a € A, by hypothesis there exists ng and b € A,,, with
|la —b]| < e. Then, for n > n — 0,

la — apn| < |la = 0| + [|b = bpull + [[bpn — apn ||
= lla = bl + ||(b — a)pn||lleg2||a — b]| < 2e.

Thus lim,, ap,, = a

(11.4.8) Let A be a C*-algebra and {e;} an approximate unit for A.
Consider linearly independent elements bq,...,b, € A. Show
that there exists sg such that for all s > sg, esby,...,esb,, are
linearly independent.
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Answer. Suppose that there exists a subnet {s;} and, for every ¢, coefficients

1,y O with E o jes,b; = 0.
J

Since at least one coefficient is nonzero, we may assume that for each t the
largest coeflicient is 1. Then there exists at least one j with infinitely many
a;; = 1. By passing to a further subset, we may assume that there exists
j with oy ; = 1 for all ¢. Since each net {cy ;} of coefficients is bounded, it
admits a convergent subnet. After taking m subnets, we get ay,...,q,;, € C
with o ; — ;. Then

Zajbj = lipatyjestbj =0.
J
So, if by, ..., by, are linearly independent, there has to exist sy such that

eshi, ..., exbm

is linearly independent for all s > sg.

11.5. States

(11.5.1) Show that ¢ € A* is Hermitian if and only if ¢(a*) = ¢(a) for
all a € A.

Answer. If ¢(a*) = ¢(a), then for a selfadjoint we have ¢(a) = ¢(a*) = ¢(a),
so ¢(a) € R.

Conversely, suppose that ¢(a) € R for all selfadjoint a. For arbitrary
a, we have

¢(a) +¢(a”) = ¢la+a) €R,  i(¢(a) — ¢(a”)) = ¢(i(a —a”)) € R.
From the first equality we get that Im ¢(a*) = —Im ¢(a); and from the second
one we get that Re ¢(a*) = Re¢(a). Thus ¢(a*) = ¢(a

~—

(11.5.2) Let ¢ € A*. Let
p*(a) = p(a*).
Show that ¢* € A* and that ¢ + ¢* is Hermitian.
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Answer. We have
@*(Ba+b) = p((Ba+b)*) = p(Ba* 4+ b*) = B(a*)+@(b*) = Bp*(a)+¢*(b),

so ¢* is linear. Also |p*(a)| < |l¢ll la*]] = |l¢ll llall, so ¢* is bounded and
then ¢* € A*. If a = a*, then

p(a) + ¢*(a) = p(a) + p(a) = 2Re p(a) € R.
So ¢ + ¢* is Hermitian.

(11.5.3) Show that a positive linear functional is Hermitian.

Answer. Given a € A selfadjoint, we can write a = a¥ —a~ with a™,a™ > 0
(Proposition 11.3.10), and then ¢(a) = ¢(at) — p(a™) € R.

(11.5.4) Let ¢ € A* be positive, a,b € A with b > 0. Show that
lp(ab)| < [lalle(b).

Answer. We use Cauchy—Schwarz in the following way:
|p(ab)| = |p(ab'/2b1/2)] < o(b'/2a*ab/?) 2o (b)'/?

< llallo(6)'20(6)"/2 = Jlall (b).

(11.5.5) Let A be a unital C*-algebra and Ay C A a x-subalgebra with
Ip€ Ag. Let ¢ : Ag — C be linear and positive. Show that ¢
is bounded, ||¢|| = ¢(14), and ¢ extends to a state on .A.

Answer. Compared to Proposition 11.5.4, the presence of the unit makes all
the difference. Given a € Ay with |la]| < 1, we have that a*a < I4. Then,
using Cauchy—Schwarz,

o(a)|* < (La) p(a”a) < p(14)*.
Hence |p(a)| < ¢o(14) ||a|| for all a € A and so ||¢|| < ©(14). As p(I4) < ||l
we get ||¢|| = ¢(14). Now we extend by Hahn—Banach (Corollary 5.7.6) to
get ¢ : A — C with

18l = llell = ¢(La) = &(La).

Then ¢ > 0 by Proposition 11.5.4.
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11.5.6) Let e a C*-algebra and a € A. Show that
Let A be a C*-algeb d A. Sh h
lall = max{p(a*a)'’?: ¢ € S(A)}.

Answer. Suppose first that a > 0. By Corollary 11.5.8 there exists ¢ € S(A)
with ¢(a) = |lal|. We also have, for any ¢ € S(A), that |¢(a)| < |all; so
lall = max{p(a) : ¢ € S(A)}.

For arbitrary a € A,

lall = lla*al|'/* = max{p(a*a) : ¢ € S(A)}'/?
= max{p(a*a)/?: p e S(A)}.

(11.5.7) We outline here a proof of Proposition 11.5.16 and Corol-
lary 11.5.17 that goes another way. So let A be a C*-algebra
and ¢ € A* a Hermitian functional.

(a) Let K ={yp € A*: ¢ >0 and ||¢| <1}. Show that K is
weak*-compact and it separates points.

(b) Use the idea in Proposition 7.2.24 to show that A embeds
isometrically in C(K) in a way that preserves positivity.

(c) Show that o p~1: p(A) — C extends to a positive linear
functional ¢ on C(K).

(d) Use Theorem 5.6.15 and the Jordan decomposition of a
measure to conclude that there exist ¢, 0~ € S(A) and
non-negative scalars «, 8 such that ¢ = ap™ — Bp~.

Answer.

(a) That K separates points is Corollary 11.5.8. For the weak*-compactness
one can either repeat the proof of Proposition 11.5.15 now for {v,;} with
l¥;]l < 1 instead of equal to 1; or we notice that K = (T x S(A)), a
continuous image of a compact set, with y(\, ) = A.

(b) Let p: A — C(K) be given by (p(a))(¢) = ¥(a). This map is linear, and
it is isometric by Corollary 11.5.8. If a > 0, the ¢(a) > 0 for all ¢ € K,
so p(a) is a positive function.

(c) We extend by using Theorem 11.5.7.



500

CHAPTER 11

(d) By Theorem 5.6.15 there exists a complex measure p such that

mw=¢mm»=ﬁfmmM

Using the Jordan Decomposition on Re p and Im p we find finite measures
try, with r = 1,2,3,4 such that g = g1 = po +i(u3 — p14). Now we can
define ¢i(a) = [ p(a)du;, a positive bounded linear functional on A,
and normalizing we get ¢; = aiga; € S(A) for all j, where a; = [|¢}]|.

J

(11.5.8) Show that when A is non-unital Lemma 11.5.14 still holds if
we replace condition (ii) by the existence, for every ¢ > 0,
of positive z,y € A with x +y < I4 and o(x) > |¢| — ¢,
P(y) = ¢l —e.

Answer. (i) = (ii) Let w with |Jw|| = 1 such that p(w)—y(w) > |[¢—1| —e.
Because ¢ — v is Hermitian we may assume without loss of generality that
w = w*. Fix an approximate unit {e;} and fix j such that p(e;) > ||| — §
and ¥ (e;) > [|¢]| — §; also, because w = lim; ejwe; and , 1) are continuous,
by choosing j large enough we can also guarantee that ¢(e;we;) —1(e;jwe;) >
o — vl —=. Put
1 1
z =g (ej+ewey),  y=3 (e —ejwe;).
Then 2 >0,y >0, and  +y = e; < I4. We have

2[lell = 2¢(x) + 2[[9 ]l = 2¢(y) = 2[lell — wle; + e;we;) + 2[4 ||
— (e — ejwe;)
= llell = o(es) + 1ol — v(e;) + lle — ¥l
— (¢ = ¥)(ejwe;)
< 2e.

As the left-hand-side can be seen as the sum of the two non-negative term
2|le]l — 2¢(x) and 2||v|| — 2¢(y), we conclude that

lell = o(z) <e, [l = (y) <e

as desired.
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(ii) = (i) Let b=2x 4y, w =2 —y. We have [|b]| <1 and ||w| < 1.
And

lo =Dl < llell + 19l < Nleoll + 10 + 2¢ + 20(2) = 2llpl| + 2 +¢(y) — 2|
=de+ b+ w) + (b —w) — o] — ¥l
=de+ (= ¥)(w) + ¢ (0) — [loll +2(b) — ¥l
<de+ (¢ —9)(w)
<de+ e -l
As € > 0 was arbitrary, (o —¥[| = [loll + [[¢]].

(11.5.9) Let A be a C*-algebra and p € A a projection. Show that pAp
is a hereditary C*-subalgebra of A.

Answer. If z,y,z,w € Aand X € C,

pap + Apyp + (pzp)(pwp) = plpzp + Apyp + (p2p) (pwp)]p € pAp.

Together with (pxp)* = pax*p, this shows that pAp is a x-algebra. It remains
to show that it is closed and hereditary. For closed, if {pz,p} is Cauchy, then
by the completeness of A there exists « € A with pz,p — x. But then pzp =
limpx,p = z, so x € A. Finally, if 0 <y < pap, working on the unitization
we get (14 —p)y(la —p) = 0. This is [y"/*(La — p)]*y"/*(Ia — p) = 0, s0
yY/2(I4 — p) = 0, from where y(I4 — p) = 0; that is y = yp. Taking adjoints
we also get y = py, and so y = pyp € pAp.

(11.5.10) Let A be a C*-algebra and a € A*. Show that aAda is a
hereditary C*-subalgebra of A. Show by example that the
closure is needed in general.

Answer. If x,y,z,w e Aand X € C,
aza + Aaya + (aza)(awa) = alz + \y + za*wla € aAa.

And (aza)* = ax*a € aAa, so aAa is a *-algebra; its closure is then a C*-
subalgebra of A. As for hereditary, if 0 < b < c and ¢ € aAa, let {e;} be an
approximate unit for a.Aa. Working on the unitization, we have

0< (La—ej)b(La—e;) < (La—ej)e(la—ej).
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This gives us
61/ = b 2e; 1 = [|(1a = €;)b(La — ¢))
< NLa—ej)e(la —ej)| = [|e/? — ¢/ %e%.

Since ¢'/? = lim; ¢'/?e;, the above inequality implies that b'/2 = lim; b'/2¢;,
and so b = lim; e;be; € aAa.

As for the example, let A = C[0,1] and a(t) = t. We claim that a.Aa is
not closed. To see this, we will show that f(t) = t'/? is in a.Aa but not in a.Aa.
Indeed, consider the algebra cB = Cy(0,1]. By Corollary 7.4.23, aBa = a*B
is dense in B. Hence f € a2A. And we cannot have t'/2 = t2¢(t) for some
g € C[0,1]; for we would have, for t > 0, that 1 = t3/2 g(t), contradicting the
fact that the right-hand-side goes to 0 as ¢t — 0.

Another example can be A = K(H), and a = Y, + Ejy, for a fixed set of
matrix units {Ey;}. Then aAa = A, since a is strictly positive (alternatively,
one can show that Ej; € aAa for all k, j, and that the span of the matrix
units is dense in KC(H)). But every element in a.Aa is Hilbert—Schmidt, while
of course there are many compact operators which are not Hilbert—Schmidst.

(11.5.11) Show that the ideal generated by the identity function in C|0, 1]
is an example of a non-closed, non-hereditary ideal of a C*-
algebra. Use the example to give an explanation for why the
argument after Definition 11.5.19 fails in that case.

Answer. We have J = {t — tg(t) : g € C[0,1]}. This is an ideal, since it
is of the form hC]0, 1], where h(t) = t is the identity function. We need to
show that this is not closed. The norm closure of J is Jo = {f € C[0,1] :
f(0) = 0}. Indeed, given f € Jy and € > 0, choose 6 > 0 such that |f(¢)| < e
for all ¢ € [0,d]. Let g. € C[0, 1] the continuous function with g.(t) = f(t)/t
for all ¢ > ¢ and that goes linearly to 0 on [0,d). Then |f(t) —t g.(¢)| = 0 for
allt > 6. And for t < 6,
[f () —tg=(8)] < [f(B)] 4 6]£(6)/0] < 2e.

Hence ||f — hgelloo < 2¢, showing that f € J. As J C Jo, this shows that
T =Jo.

Consider the function g(t) = ¢ sin? 1/¢. This is in Jp. But it is not in
Jo, for if g(t) = tf(t), then f(t) = sin®1/t for all + > 0 and it cannot be
continuous at 0. And ¢(t) < ¢ for all ¢ while g ¢ J, showing that J is not
hereditary.

The reason the argument after Definition 11.5.19 does not work for our
J is that even though the map p: A — A/J is a x-homomorphism, it is not
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guaranteed that it maps positive elements to positive elements. The problem
is that the argument that p(a) > 0 if @ > 0 relies on writing a = b*b, and this
only works on a C*-algebra. The objects in the quotient are not functions,
and we cannot rely on pointwise evaluation to assess positivity. The spectrum
does not behave well on non-closed algebras either, so it cannot be used to
define positivity.

(11.5.12) Let A be a non-unital C*-algebra and~/~l its unitization. Show
that 1¥((a, A)) = X defines a state on A.

Answer. We have that v is unital by definition, and its linearity is straight-
forward. Also,

¥((a, ) *(a, A)) = ¢(a*a+ 2Re Xa*, |A]*) = [A* >0,
so v is positive. Then ||¢| = 1 by Eq. (11.2).

(11.5.13) Let B C A be C*-algebras with B hereditary and A non-unital.
Show that B is hereditary in A.

Answer. A positive element in A is of the form a = (c + M 7)*(c + 1) =
c*c+ 2ReAc* 4+ |A|21 4, for ¢ € A and X € C. Suppose that a < b for some
b e B. If p € S(A) is the state given by p(al;) = a and p|4 = 0 from
Exercise 11.5.12, then 0 < p(b — a) = —|A|%, so A = 0. This gives us a = c*c
and, as B is a hereditary subalgebra of A, from c¢*¢ = a < b we get that
a = c¢*c € B. Hence B is hereditary in A.

(11.5.14) Let a € A positive. Show that a is strictly positive if and only

=l
if {a(i T4+ a) } is an approximate unit for A.
n

Answer. Write

-1
en=a<llA—|—a> .
n

Suppose first that a is not strictly positive. Then there exists ¢ € S(A) with
»(a) = 0. We have

-1 -1
@(a(ibﬁ—a) )z(p(al/2<iIA+a> a1/2>§c<p(a):o,
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~1
S0 @(a(}lIA—i—a) ) = 0. Let b € A with ¢(b) = 1. Then

[(ben)| = le(bey/enl/2)] < p(en) p(lbey/?[?) = 0.
Thus
16— beall > lpb — bey)] = p(b) = 1.

So {be, } does not converge to b and {e,,} is not an approximate unit.

Conversely, suppose that a is strictly positive. Then {e,,} is an approx-
imate unit by the proof of Proposition 11.5.24. Here is another argument,
though. By Proposition 11.5.23, A = aAa. Let b€ A; fixe >0andlet c € A
such that ||b — acal| < e. We have

o(+a) b-v=o(f+a) o= (ra) (5 +a)

-1
n\n
Then, using that H%(% + a)—l” <1,
n n\n
< l(lIA—i-a) aca —i—Hl(llA-i-a) (aca—b)”
nin n\n
1/1 -1
< *(* A—i—a) acal| + ||aca — b||
n\n
1/1 -
< el |2 (2 2a+0) o]+
el
1+n

where the last estimate comes from functional calculus on a with the function

N+ = ke € oy fort€ 0.1]
Thus

i(i]A+a)1b—b“ <e

lim sup ‘
n

and, as € was arbitrary, we get that
-1
lim | 2 (2 +a) be —0.
n

n n
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(11.5.15) Let a € A positive with |la|| < 1. Show that a is strictly
positive if and only if {a'/"},, is an approximate unit for A.

Answer.  Suppose first that a is not strictly positive. Then there exists
¢ € S(A) with ¢(a) = 0. Using Cauchy—Schwarz we have, working on .4
with the unique extension of ¢,
4,0(&1/") < (,0(@2/”)1/2 <... QD(a2m/")2im.
If » > 1, then
pla”) = p(a?a"a'"?) < pla) = 0,
so p(a”) = 0. With m big enough so that 2 /n > 1, we have ¢(a®" /™) = 0,
and hence ¢(a'/™) = 0. Given b € A with ¢(b) = 1,
(plbat/ )| = [p(ba™/?"a/2")] < p(a/ )2 p( bt/ ) /2 = .

Then
16— ba'/™|| > |o(b— ba'/™)| = p(b) =1,

showing that ba'/™ does not converge to b.

Conversely, suppose that a is strictly positive. By Proposition 11.5.23,
A =ada. Let b€ A; fix e >0 and let ¢ € A such that ||b — acal]| < e. We
have

|aY™b — b|| < ||a*/™b — a*/"acal| + ||a*/"aca — acal| + |jaca — b
< [la*/™ || |6 — acal| + |leal| [la***/™ — al| + [|b — aca]
< 2+ [le] [la' /™ — al.

We will be done if we show that [|a'T!/™ — al|. For this, we use functional
calculus. Let f,(t) = t'*1/" —¢. Fix § € (0,1). When ¢ < 4,

|[fa(t)] = [/ — ] <6145 < 6% 0.
And when ¢ > 0, we have §1/n > 4, so
1

repy - |1 l/n—l’ <
|f"(t)|_’nt ~ nil—1/n’

and then for ¢ > § we have, via the Mean Value Theorem, some £ € [0, 1]

TAGIESTTAG - p—

So, given € > 0 we can choose § > 0 so that 62 +§ < € and n big enough
so that m < ¢, and then |f,(t)| < e. It follows that f, — 0 uniformly,

and so f,(a) — 0 in A. That is, [Ja'T'/" —a|| — 0. Then
lim sup ||a'/"b — b|| < 2¢

and, as this can be done for all £ > 0, lim,, |la'/™b — b|| = 0.
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11.6. Representations

(11.6.1) Let {#;} be a family of Hilbert spaces and let % = ¢p, the
¢? direct sum as in Definition 5.3.8. Show that  is a Hilbert
space.

Answer. We are given the norm and not the inner product, but knowing
seeing that if g € H the norm of g is [|g|| = >, llg(5)|I?, it is not hard to guess
that this norm comes from the inner product

(g.h) =Y _{9(3). h(4)-
J
A double use of Cauchy—Schwarz shows that |(g,h)| < |lg|/||#||. That the
product is sesquilinear follows from the sesquilinearity of the inner product
in each #H; and linearity of limits. The completeness of H was addressed in
Exercise 5.3.6.

(11.6.2) Show that in the proof of Theorem 11.6.2, the form (a+ L, b+
L) = [a,b] is well-defined and an inner product.

Answer. Ifd’ —a=10i € Landb'b=1,€ L,
[a’,b’] = [a—I— ll,b+ l2] = [a,b] =+ [ll,b] + [a,lg] + [11,12] = [a,b],.

so the definition of the form does not depend on the representatives. The
sesquilinearity follows from the sesquilinearity of the form:

[al + aag, by + ﬁbz] = @((b1 + Bb2)* (a1 + aag))
= p(biar) + Be(bsa1) + ap(biaz) + Bap(braz)
= la1, by + Blay, ba] + afag, bi] + Bafay, by).

Finally, if [a,a] = 0 this is ¢p(a*a) =0, s0 a € L and a + L = L, so the form
is an inner product.
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(11.6.3) If p, ¢ € S(A) with ¢ ~ 1, construct V and show the equality
(11.18).

Answer. We have ¢ = ¢(u - u*). Note that
Lou={au: p(a*a) =0} = {au: Y(u*a"au) =0} = Ly.
Define V(a + L) = au + Ly; this is well-defined since L, = L,u. We have
[Via+ L) = lou+ Lyl = (ua’an) = pla*a) = la+ Ll

so V is an isometry. As it has dense range it is isometric, V is a unitary.
Also,

my(a)V (b+Ly,) = my(a)(bu+Ly) = abu+Ly = V(ab+L,) = Vr,(a)(b+Ly,).

As A+ L, is dense in H, and the operators involved are bounded, we get
that my(a)V = Vi, (a) for all a. As V is a unitary this is my(a) = V*r,(a)V.

(11.6.4) Find an example of A, a € A, ¢ € S(A), such that ¢(a) =0
but 7, (a) # 0.

Answer. The assertion m,(a) = 0 is equivalent to ¢(b*a*ab) = 0 for all
b € A. So for instance take A = M3(C), and ¢(X) = X311, and A = F1s.
Then ¢(A) = 0, but for instance

(Tmp(A)(E21 + L), E1n + L) = (En1) =1,
so m,(A) # 0.

(11.6.5) Let A be a simple C*-algebra and 7 : A — B(H) a nonzero
representation. Show that m is faithful.

Answer. Since m is bounded by Proposition 11.4.9, ker 7 is is a closed bilateral
ideal. It cannot be all of A because 7 is nonzero; so ker 7 = {0} and hence =
is injective/faithful.

(11.6.6) Let ¢ € S(A), a € A. Show that 7,(a) = 0 if and only if
p(b*a*ab) = 0 for all b € A. Conclude that ¢ faithful implies
7, faithful. Show that the converse is not necessarily true.
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Answer. If m,(a) = 0 then 7(p(a*a) = 0 and this means that, for all b € A,
0 = (me(a)b, b§) = p(b*a”ab). (AB.11.1)

And the equality in (AB.11.1) also implies the converse. So, if ¢ is faithful
and m,(a) = 0, in particular 0 = ¢(a*a) = 0 and so a = 0.

Finally, we need to construct a non-faithful state with faithful GNS
representation. This is actually easy if we take A to be simple: in that
case any non-zero representation is faithful. We did this in the text with
A = M5(C) and ¢(a) = a11. Then

L= {ac M(C): (a*a)no}{{g ﬂ : w,zEC}.

So H, = A/L is 2-dimensional and is spanned by the classes of F1; and Eoy;
also,

(En, Bn) = o(En) =1,
(Ea1, Ea1) = p(E12F01) = 1,
(E11, E21) = p(E12E11) = 0.
So {E11, E21} is an orthonormal basis of H,. And
(Tp(a)Ern, E11) = ¢(Enabr) = ai,
(myp(a)Er1, Ea1) = ¢(E12aE11) = as,
(my(a)Ear, E11) = @(E11aE21) = a1z,
(mo(a)Eg1, Ega1) = @(E12aF51) = ass.

So using the orthonormal basis {F11, F21} on H,, we get that m, is the
identity representation, which of course is faithful.

(11.6.7) Let ¢ € S(A) be faithful, and a € A. Show that if 7, (a){, = 0,
then a = 0. We will give a name to this property in Sec-
tion 12.5: separating.

Answer. We have

pla*a) = (Tp(a”a)y, §p) = (Tp(a)ép, mp(a)y) = 0.
As ¢ is faithful, a = 0.
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(11.6.8) Let A be a C*-algebra, 7 : A — B(H) a representation, and
& € H. Let P € B(H) be the orthogonal projection onto w(.A)E.
Show that Pr(a) = 7(a)P for all a € A.

Answer. We have

(P(a)P)m(b)§ = Pr(ab)¢ = m(ab)§ = m(a)m(b)§ = m(a) Pr(b)S.
As{m(b)¢: b e A}isdensein PH, we get that Pm(a)P 7r( )P foralla € A.
When a is selfadjoint, taking adjoints we get Pm(a) = Pr(a)P = 7(a)P. And
as the selfadjoint elements span A, we get Pw(a) = 7(a)P for all ac A

(11.6.9) Let A be a C*-algebra and a € A. Show that there exists a
unique b € A such that a = bb*b.

Answer. We can think of A C B(H). Write a = u|a| the polar decomposition.
Recall that |a| € A but that in general u ¢ A. Let b = u|a|'/3. Since u*u|a| =
la| (because u*u is the orthogonal projection onto the closure of the range of
a*), we obtain u*ula|™ = |a|™ for all m € N, and hence u*up(a) = p(a) for
every p € C[z]. Taking limits we get u u|a\1/3 la|*/3. Then
bbb = ula)'/3|a|Puula)/? = ula| = a.

We haven’t shown yet that b € A. Note that |b]? = b*b = |a|'Pu*ula|*/? =
la|?/3. So |b| = |a|'/? € A. We have that ula| = a € A. Then ula|™ =
ala|™=1 € A for all m € N. Thus up(|a]) € A for all p € C[z]. By Functional
Calculus, if {p,} is a sequence of polynomials with p, (t) — t'/3 uniformly,
b = ula|"? = lim,, up,(|a]) € A.

As for the uniqueness, suppose that bb*b = cc*c. Then

1b]® = (b*bb*)bb*b = (c*ec™)ec* e = |c|°.

Functional calculus then gives us |b| = |c|. So b|b| = ¢|b|. Now since kerd =
ker b*b = ker |b|?> = ker |b|, we have that (kerb): = tan|b|. And from |¢| = |b]
we get that (kerc)t = (kerb)®. Given & € H we can write £ = & + ¢; with
& € kerb and &; € tan|b|. Write &; = limy, [b|n,. Then

b¢ = b&y = lim b|b|n, = lim ¢|b|n,, = c& = c£.

Thus ¢ =b.

The existence can also be shown without using representations and
using instead Proposition 11.3.11 to see that a = u(a*a)'/? for some u € A.
The construction of v in Proposition 11.3.11 allows one to check that v*u =
(a*a)'/3, and then vu*u = a.
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Here is a third argument using block matrices. Let

|10 a* Iz O
vl el I,J-
Then u is a unitary and u*ru = —r. As f(t) = t'/3 is contlnuous everywhere,
we have —r'/3 = —f(r) = f(-r) = f(u*ru) = v* f(r)u = u*r'/3u. So

/3 1/3

u = —ur'/?, which forces

13 _ |0 b
<[y 4]
for some b € A. Since
* * 3 * *
0 a ( 1/3) 0 b _ 0 b*bb
a 0 b 0 bb*b 0 |’
and so a = bb*b. For the uniqueness, if a = cc*c, we form
10 ¢
Tle ol
and then z is selfadjoint with 2z® = 7. Then z = f(2%) = f(r) = /3, and
hence ¢ = b.

(11.6.10) Let A be a non-unital C*-algebra and 7 : A — B(H) a rep-
resentation. Prove that there exists a (unique, if 7 is non-
degenerate) representation 7 : A — B(H) that extends 7. If 7
is faithful, so is 7.

Answer. Let 74 : A — B(H) be given by 74(a, ) = m4(a) + A I;. We have
Ta(ar + a2, M+ A2) = malar + a2) + (A1 + A2) Iy = Tala, A) + Tala, A2),
so 7 is linear. Similarly,
ﬁ((al, A1) (az, )\2)) = 7t(a1az + A2a1 + A1az, A1 \2)

= m(araz) + Aam(ar) + AMm(az) + Mo Iy

= (7r(a1) + A IH)( (a2) + A2 IH) = 7t(a1, \)7(az, \2),
so 7 is multiplicative. And

7((a,\)*) = 7(a*, X) = w(a*) + XNy = 7(a,\)".

Thus 7 is a representation, and it extends 7w by construction. When = is

faithful and #(a, A) = 0, we have 7(a) = —Aly. If XA # 0, then for any b € A
we have

7((Ata)b) = A w(a)7(b) = Iy (b) = 7 (b).
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As 7 is faithful, (A\~'a)b = b, and a similarly computation can be made on
the other side, showing that (A\~'a) = I4; but A was assumed not unital. It
follows that A = 0, and then 7(a) = 0 whence a = 0 by the faithfulness of .
So 7 is faithful.
As for the uniqueness, suppose that 7 is non-degenerate and p : A —
B(H) is a representation with p| 4 = m. We have p(a, ) = p(a,0)+Ap(0,1) =
m(a) + Ap(0,1). In A we have, for every a € At with |a| < 1, that (a, 0) <
(0,1) (this is Corollary 11.3.8). Then n(a) = 7(a,0) = p(a,0) < p((),l)
p(0,1) is a projection, it follows by Exercise 11.3.8 that p(0,1)w(a) =
for all @ € AT, and a fortiori for all a € A. Then p(0,1)7(a)é = 7(a)¢ f
a € A and ¢ € H; and because 7 is non-degenerate, p(0,1) = I.
Then, for any a € A and A € C,

pla,N) = p(a,0) + Ap(0,1) = w(a) + Ay = 7(a, N).

When 7 is degenerate the extension is not unique because p(0,1) can be
assigned to be any projection with range containing m(A)H.

11.7. Matrices over a C*-algebra

(11.7.1) Prove Proposition 11.7.1 (block matrices were already consid-
ered in Section 10.4).

/\
S
)_.\_/m

Answer.

(i) Let j be such that ||a;|| = max{||ax| : k}. Given € € H",

n 5 2 n n
| (3 B @ )| = llansell® < 3 llawl® )
k=1 k=1 k=1

n
< gl ST = llag 12 €]
k=1
So the norm is at most ||a;||. Now fix € > 0 and choose £ € H such
that [|€] = 1 and [|a;€|| > [la ] — e. Let € € H™ be the vector with
¢ in the j*" entry and zeros elsewhere. Then

\\(ZEkk®ak)6H lagél > (sl — )2
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n
This shows that H Z Eyy, ®akH > |laj|| —e. As € was arbitrary, the
k_

n
reverse inequality is proven, and so H E Eir ® akH = ||aj]|-
k=1

(ii) We have, since the matrix is selfadjoint and using what we have just

proven,
0 al? 0 al® aa* 0 . . 9

e - [e U 2wt -
(iii) If {L’:} Z >0, then for any £ € H

-aaso =4 5 &) =0

so a*a < b. Conversely, if a*a < b, then for any £, € H,

(12 ) - i

> [|€]J* + (bn,m) — 2(a”an,n)'/? €]
> (€11 + (om,m) — 2(bm, m)"/ €]
= (lell = {bm,m)*/2)% = 0.
(iv) Let &,n € H. Let € = (0,...,0,£,0,...,0),7=(0,...,0,1,0,...,0),
where £ is in the j position and 7 in the k£ position. Then
ars& ml = [(a& Ml < NalllIEN ] = llal €] Inll

As Jlag;|| = max{|(ar;&,m| = [[€]l = [Inl] = 1}, we get that [jax|| <
lall-

(11.7.2) Given a compact Hausdorff space T, show that the C*-algebras
A= M,(C(T)) and B = C(T, M,(C)) are canonically isomor-
phic, where the norm in B is given by

lylls = sup{lly(@)| : t € T}.

Answer. Since we know that a C*-algebra admits a unique C*-norm and
the given norm is a C*-norm, we do not have to worry about the norm. We
define I': A — B by

T(@) =Y ar;(t) Bx;.
k.j
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We have
I'(a+ IN))(t) = Z (akj (t) + by; (2) Ek] Z ax;(t) Ex; + Z br;(t) Ex;
k.j
=T(a)(t) + T(b)(t).
Also,
D)) = arj(t) Exj > bra(t) Eng = T(@)(t) T(D)(t).
k,j T8
And

Zaﬂf ) Er; =T(a)(t)"

So I is a #-homomorphism. If I‘( ) = 0, this means that ag;(t) = 0 for all ¢
and all £, 7, so ag; = 0 for all k, 7 and hence a = 0; thus I is injective. Given
y € C(T, My (C)), let a =3} yr;j(t) Exj. Then I'(a) =y and I' is surjective.
Thus I is a C*-isomorphism.

(11.7.3) Let A be a C*-algebra and J C M, (A). Show that J is an
ideal if and only if J = M,,(J) for an ideal J C A.

Answer. Let

J ={a: there exists @ € J such that (@), =a}.
Since addition of matrices and multiplication by scalars are entrywise, J is
a subspace. Given b € J and a € A, let b € J such that b is the 1,1 entry
of b. Then ab is the 1,1 entry of (Ey; ® a)b; that is, ab € J. Similarly,

ba € J and so J is an ideal. Assume initially that A is unital. Given any
b= ij bi; ® Eij € J, fix indices 7 and s. Then

T 3 (Byy @ L)b(Ea ® 14) =Y E1ExjBa @by = Ei ® by,
k’j
~ (AB.11.2)
showing that b,s € J. As r,s were arbitrary, b € M,(J). Now, given an
arbitrary element b € M, (J) the computation (AB.11.2) shows that bx; € J
for all k,j. So, for fixed r, s there exists ¢ € J such that b, is the 1,1 entry
of ¢. Then )
Ell & brs = (Elr ® IA)é(Esl ® IA) S j
Then
b= Z Ey; ® by = Z(Em @ I4) (11 @by;) (B @ 14) € J.
k.j k.j
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When A is not unital in the computations above, we replace 14 above
with elements from an approximate identity; for instance we get a net of
elements in J that converge to E11 ® b,s; and as J is closed, we are done.

Conversely, if J = M, (7J) for an ideal J C A, when we perform the
matrix product between and element @ € A and b € 7, all the terms will
have a factor from J, and so the result stays in M, (J), which is thus an
ideal. Note that we already know that M, (J) is a C*-algebra.

11.8. Finite-Dimensional C*-algebras

(11.8.1) Let A be a C*-algebra and p € A a projection. Show that p is
positive and that 0 < p < I 4.

Answer. By definition of projection we have p = p*p, so p is positive. We
also have ||p||? = |[p*p|| = ||p||, so if p is nonzero we get that |p|| = 1. Then
0 <p < I4 by Corollary 11.3.8.

(11.8.2) Let A be a C*-algebra and py,...,p, € A projections. Show
that the following statements are equivalent:

(a) p1,...,pm are pairwise orthogonal;

(b) Zpk < L.
k=1

Answer. If py,...,py are pairwise orthogonal, let p = >, py. Then p?=p
and p* = p, so p is a projection. By Exercise 11.8.1 we have that p < I 4.

The converse is proven in Proposition 10.5.5. The argument is entirely
algebraic, so it applies in any C*-algebra.
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(11.8.3) Let A be a C*-algebra, Ay, ..., A, € Cnonzero, and py,...,p, €
A pairwise orthogonal projections. Let

n
a= Z Ajpj.
j=1

Show that a is normal, o(a) = {A1,...,An} When > . p; = I
and o(a) = {0} U{A1,..., An} when > . p; # I4; and for any
function f: C — C,

n

@) =3 FO0y)ps.

Jj=1

Answer. The fact that py,...,p, are pairwise orthogonal gives a*a = aa*
by a direct computation. From (a— A;I14)p; = 0 we get that a — \;I 4 cannot
be invertible, and so {A1,..., Ay} C o(a). Conversely, if >°;p; # L4 and
A {\,..., A} is nonzero, let g = T4 — ijj, and put

Then b(a — Ala) = (a — A a)b=Ia,s0 A & o(a). When > . p; = L4, we get
g = 0 in the computation above, so b can be defined even if A = 0.

When f is any function, it is continuous on o(a) since it is a finite set.
In fact f agrees with a polynomial on o(a). The pairwise orthogonality of

the projections gives
n
a’k = Z A;?pjv
j=1

n
for any km and so by taking linear combinations we get that g(a) = Z g(A\j)p;
j=1
for any polynomial g, and thus for f too.

(11.8.4) Let A be a C*-algebra, A1, ..., A, € Cnonzero, and py,...,p, €
A pairwise orthogonal projections. Let

n
a= Z Ajpj.
j=1

Show that if a is a projection, then A\; =--- =\, = 1.
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Answer. Since a is a projection, o(a) C {0,1} (this follows from a® = a and
Spectral Mapping, Proposition 9.2.9). From Exercise 11.8.3 we know that
A1, ..., A € 0(a); since they are nonzero, necessarily A\; =1 for all j.

(11.8.5) Let A be a C*-algebra, A1,..., A, € C distinct and nonzero,
and also 1, ..., tm € C distinct and nonzero. Consider pro-
jections pi,...,pn, and qi,...,Gm in A with pyp; = qrg; =0
when k # j. Show that if

n m
Z AePk = Z Hiqj
k=1 j=1

then n =m and A; = pu;, p; = g; for all j.

Answer. We use Exercise 11.8.3. Let g be a polynomial with g(A;) =1 and
g(Ax) =0 for all kK > 2. Then

p1=g(a) = Zg(uj)qjv

By Exercise 11.8.4, g(u;) € {0, 1} for all j. If we have p1; # A; for all j, we can
choose g with g(u;) = 0 for all j and g(A1) = 1, giving us the contradiction
p1 = 0. Hence there exists j with p; = ;. By reordering if needed we may
assume that 3 = A;. Using a function g with g(p1) = 1 and g(u;) = 0 for all
j > 2 (possible since p1, ..., ., are distinct), we get p1 = ¢1. We may now
remove the first term, and repeat the argument with both sides starting from
2. Thus we inductively get ;1; = A; and g; = p;, after possibly reordering on
each step. If one side runs out before the other we would get 0 on one side
of the equality and a nonzero linear combination of projections on the other,
leading to a contradiction; so m = n.



CHAPTER

12

Bounded Operators on a Hilbert Space:
Part Il

12.1. Locally Convex Topologies in B(H)

(12.1.1) Let H be a Hilbert space. Show that the adjoint map T — T*
is wot-continuous on B(H).

Answer. Let {T;} C B(H) be a net such that T} s T € B(H). Fix
&,mn € H. Then

(T7€,m) = (Tjn, &) — (T'n,§) = (T"&,n).

wot

As this can be done for all choices of £, 7, we get that T; —— T

(12.1.2) Show that any bounded sot or wot Cauchy net in B(H) is
convergent.

517
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Answer. Since wot is weaker than sot, it is enough to show that a wot-Cauchy
net is convergent. Let {T;} C B(H) be a bounded wot-Cauchy net with
| T;]| < c for all j. Given &,n € H, we can consider the wot neighbourhoods
of 0 given by N, = {S € B(H) : [(S¢,n)| < e}, e > 0. So for each £ > 0 there
exists jo such that T; — T}, € N for all j,k > jo. This implies that the net
of numbers {(T;¢,n)} is Cauchy. Define [£,n] = lim;(T;&,n). As limits are
linear, this is a sesquilinear form. And it is bounded, for |[&, n]| < c||&|||nl-
By Proposition 10.1.5 there exists 7' € B(H) such that (T'¢,n) = lim;(T¢,n)

wot

forall{,neH,soT; ——T.

(12.1.3) Let H be a separable Hilbert space. Show that the sot and wot
are metrizable on the closed unit ball.

Answer. Since H is separable and subsets of separable metric spaces are
separable, B7{(0) is separable. Let {£,} C B}*(0) be a countable dense
subset and put

do(S,T) =Y 27" [|(S = T)&nll.
n=1
This is a metric in BF(H) (0). Indeed, ds > 0 and d4(T,T) = 0; and the
triangle inequality follows from the triangle inequality for the norm: [|(S —
7)Yl < |I(S = R)En|| + ||(R — T)&,||- Since both the sot topology and the

metric ds are translation invariant, we only need to deal with convergence at

0. Suppose that Tj %4 0. Fix e > 0 and choose ng such that 2™ > ¢~1

Then, since ||T¢,]| < 1 for all n,

(o]
dy(Ty,0) = 22 "||T§H\<Z2 MTGl+ Y 2Tl
n=no+1
no
<Z2‘"IIT£nH+ Z 27 =3 27 ||TG, | + 27

n=no+1 n=1

no
<) 2T, +e.

n=1
By the Limsup Routine, lim; ds(7};,0) = 0. Now, conversely, suppose that
ds(T3,0) = 0. Fix ¢ > 0 and £ € H with ||| < 1. As {&,} is dense, there
exists ng such that ||&,, — &|| < e. Choose jo such that dy(7},0) < /2.
Then, for j > jo,
T30 < NT58no | + 1T5(€ = Eno) Il < Tjénoll + & < 2"0ds(T5,0) + €
Then lim; || 7;£|| = 0 by the Limsup Routine.
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Now we need to consider the wot. With the same notation as above,
we define

(oo}
d’w(Sv T) = Z 2—n—m|<(S - T)fnvgmﬂ'
n,m=1
The fact that ||S], | 7|, l€~] € [0,1] for all n guarantees that convergence
of the series. With the same argument as for ds above we get that d,, is a

metric. If T} U0 we argue as above to get

no

d(Tj,0) < Y [(Tn, &m)| + 3,

n,m=1

and we conclude that lim; d,,(7},0) = 0 by the Limsup Routine. Conversely,
if we have d,,(7};,0) — 0 fix e > 0 and &, € H. We may assume without
loss of generality that ||€]] < 1 and ||n|| < 1. We can get ng and mgy with
1€ = &noll < € and || — &my || < &. Choose

(Ti€,m)] < 26 + (Tjéng, €mo| < 27070 dw (T, 0) + 2¢.
Then lim; |(T;&,n)| = 0 by the Limsup Routine.

(12.1.4) Prove the equalities (12.1):

ot wot

B(H B(H B(H
BY™0) =B 0)  =B7™(0)

Answer. Because each topology is successively weaker than the previous one,

we have
wot

B(H H B(H
BE(0) ¢ BE(0)"" ¢ BEM ()

—— 7 Wot
Now suppose that {7} C BB(H)(O) is wot-Cauchy. Exercise 12.1.2 guar-

antees that there exists 7' € B(H) with T} ', T. Bach T; is a wot limit of
anet {1}, }r with ||Tj x| <1 for all k. Then

(58, m| = im (T, )] < T sup |75 [ 1€ il < <] il

Then ||T;]| = sup{[(T3&,m)| = ]| = |Inll = 1} < 1. And then repeating the

————Wwot —_—
argument we get that [|T|| < 1. Thus Bf(ﬂ)(O) C Bf(H) (0), completing
the chain of equalities.

(12.1.5) Let {T}, }nen C B(H) such that T, =% T € B(#). Show that
{T,} is bounded.
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Answer. The idea we need was already used in the proof of Corollary 6.3.17.
Since {T,z} is a convergent sequence in a normed space, it is bounded.
Then
sup{||Tnz|| : n € N} < o0
for each z. By the Uniform Boundedness Principle (Theorem 6.3.16), there
exists k > 0 with ||T,,|| < k for all n.

(12.1.6) Let T € B(H), {&;} C H with dense span, and {T,} C B(H) a
net such that there exists ¢ > 0 with || T,|| < ¢ for all a.. Show

that if T, — T¢; for al j, then T, ﬂ) T.

Answer. Let £ € H. Fix ¢ > 0. By hypothesis there exists n € span{¢;}
with | —n|| < e. Then

(T = Ty)Ell < N T§ =Tl + [T — Tinll + | Tin — Tyl
<2c||§ =l + | Tn = Tinl| < 2ce + T —Tyn]|.

So limsup; [|(T'—T;)¢|| < 2ce. As e was arbitrary, the Limsup Routineimplies
that T;¢ - T€.

(12.1.7) Explain why the argument you used in Exercise 12.1.5 does not
apply to nets (as guaranteed by Remark 12.1.11).

Answer. The argument in Exercise 12.1.5 needs the fact that a convergent
sequence of numbers is bounded. The same is not true for nets of numbers,
so the argument does not apply. For a simple example, consider the net
{e7"} ez with the usual order in the integers. For an example that “feels
more like a net” let F the collection of all finite subsets of N, and let

|Fl, 1¢F
ap —
0, l1e F

Then ap — 0, as eventually 1 € F, but |ap| can be arbitrary large.

(12.1.8) Let K € K(H) and {T;} C B(#H) be a bounded net with

T; =%, 0. Show that IT;K| — 0. Show by example that
the assertion can fail if the net is unbounded.
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Answer. Suppose first that K is rank-one. Then K¢ = (£,n) nu for some
n,v € H. We have

IT5EEN = W& m Tl < 1 T3v [ il IE]-

Given € > 0 choose jo such that ||T;v|| < ¢/||n| for all j > jo. Then for
j > jo we have
1T K¢l < e €,

which means that ||T;K|| — 0. When K is finite-rank it is a sum of rank-one
operators, and we also get |7, K| — 0. For K arbitrary, by Proposition 10.6.4
there exists a sequence {K,} of finite-rank operators with ||[K — K,| — 0.
Fix ¢ with ||Tj|| < ¢ for all j. Then

1T K| < NT5(K = Kn) | + 1T K| < el K = K| + |5 Kl
which gives

lim sup [T, K || < ]| K — K.
j

As this can be done for all n, the Limsup Routine gives us that ||T;K|| — 0.
As for the example, let T; = \/nj (§,&n,) &n; as in Remark 12.1.12. Let

KE=> n 1 6) 6
for the same orthonormal basis as in the remark. Then
TKE =n)/"(€,60,) €,

So [|T; K|l = n;/ * is unbounded and cannot converge to 0.

sot

(12.1.9) Show that T; —— T if and only if Tr(S(Z;, —T)*(1; —-T)) — 0
for all S € F(H).

Answer. Suppose first that T; — T. Then ||(T; — T)¢|| — 0 for all £ € H.
Since S is finite-rank, we may write S = >_}" | &nj. Then

Te(S(Ty — 1)Ly — 1)) = Y Te(&uni(Ty — T)*(T; — 1))

=
—

[z L[]

(T; =T)&,(T; = T)m)

IN

(T = THEINIT; = T)nl[ — 0.

b
Il
—



522 CHAPTER 12

Conversely, if Tr(S(T; — T)*(T; —T)) — 0 for all S € F(H) and £ € H, with
S = £€* we have

(T = T)EN* = ((T; = T)"(T; = T),€) = Te(S(T; — T)*(T; = T)) 0.

(12.1.10) Let {7}} C B(H) with ||T}|| < c for all j and families {P;} and
{Q;} of pairwise orthogonal projections such that T; = Q; T} P;
for all j. Show that Zj T} converges sot.

Answer. As projections are positive, the series P = j P; converges sot by
Proposition 12.1.10. Then, for any £ € ‘H

€=Y_P¢  and ¢ = (1P
J J

Fix { € H and € > 0. Then there exists jo such that >_ - . | Pj€||? < e. Then
for any finite set ' C {j : j > jo}, as the Q; are pairwise orthogonal,

2
> me| =Y Imel? = Y I pel? < e Y 1Pl < e
JEF JEF JEF

JEF
This shows that the tails of the series are arbitrarily small, and so > i ;€
converges sot.

(12.1.11) Show that in Exercise 12.1.10 it is not possible to relax the
hypothesis on the projections to just 7; = P;T; (that is, it
is not enough for the ranges to be pairwise orthogonal, the
domains should be t00).

Answer. Let {E} ;} be the canonical matrix units on an infinite-dimensional
Hilbert space. Let T = E; 1. Then the ranges of the T} are pairwise orthog-
onal but the series ), Fj; cannot converge sot, as Ej1e1 = ¢; for all j, and
the series > ; €j cannot converge as all its elements have norm equal to 1.

(12.1.12) Prove Proposition 12.1.5. Use ideas from the proof of Propo-
sition 12.1.4 and Exercise 10.4.13. The idea in Exercise 11.2.3
will be needed, too.
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Answer. Fix a wot-neighbourhood W of 0: choose &1,...,&n,01,...,n € H
and put

W ={S € B(H) : [(S& mk)| <1}.
Let

L =span{&,....&n, M, 0}

Because dim L < co and dimH = oo, there exists a subspace L' C L+ with
dim I/ = dim L. We then have a natural identification of L + L’ with L2,
and we can consider operators on L? as 2 x 2 block matrices. Let @ be the
orthogonal projection onto L, and R the orthogonal projection onto L’. Let
V : L — L’ be a partial isometry such that V*V = Q, VV* = R (it exists
because dim L' = dim L). Let S = QT'Q. We define
Up = S+(Q—|S* )2V —V(Q—|S])/?+VS*V*, U =Up+(In—Q-R).

Then (to be checked at the end) UjUy = Q + R, and since Q+ R = Iy 1 on
the finite-dimensional space L+ L’ we also get that UgUjf = I 1. Therefore
U*U = UU* = I. And, since QUQ = QTQ,

(U =T)k,m) = (U =T)Q%, Qi) = (Q(U — T)Q&k, k) = 0,

showing that U — T € W, which is U € T + W. We have shown that for
every wot-neighbourhood W of T', there exists a unitary Uyy € T+ W. That
is, T' = limyy Uy is a wot-limit of unitaries.

As for the computation for Uy, using Exercise 11.2.3 and noting that

S*V=SV=QV=VR=0,
we have
UsUp = ISP + S*(Q — |S* )PV + V(Q — [S*P)V/2S + V(Q — |S*P) V™
+Q =[5> = (Q—ISP)V25 Vv = VS(Q — [S])/? + VS|PV
=|SPP+5%(Q—|S*) PV + V(Q - |S*) /28 + V(Q — |S* )V
+Q—[S]P = S (Q— S )PV = V(Q — |S*]) /S + VISPV
=VQV' +Q=R+Q.

(12.1.13) Show that Tj Yo, T if and only if Tr(ST;) — Tr(ST) for all
S e F(H).

Answer. By Proposition 10.6.1, any S € F(H) is of the form S = Y} | &
If T; — T wot, then for an orthonormal basis {v,} such that its first
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elements span the subspace span{ni,...,nm},

Tr(ST;) = Te(T;5) = Z T;8vn, V) = Z Z Ti&k, Vn) (Vn, M)

—> Z Z (T, Vn) (Un,mi) = Tr(TS) = Te(ST).

n=1k=1
Conversely, if Tr(ST;) — Tr(ST) for all S € F(H), then given £,n € H
<Tj§7 > = TT(SCTJ) - TI"(ST) = <T£77)>a

wot

where S =&n*. So T; —— T

(12.1.14) Prove Proposition 12.1.6.

Answer. We have
I(P; — P)E|I? = ((P; — P)*¢,€) = ((P; + P — PP; — PiP),€)

= (P&, &) + (P&, &) — (P;&, P§) — (P PE,€)
= 2(P;€,8) — 2(P;¢,§) = 0,
so P; %, P. For the case of unitaries,
I(U; = U)EN* = ((U; = U)*(U; = V), 6)
=(U;U; —U;U - U"U; + U V), §)
= (§,€) = (U& U;8) — (U;€,U8) + (£, €)
—2(¢,§) —2(U¢,U¢) =0,

ot
and so UjL)U.

(12.1.15) Find an example of a wot-convergent sequence of projections
such that its limit is not a projection.

Answer. Let H be a separable infinite-dimensional Hilbert space with or-
thonormal basis {{,} and corresponding matrix units {Ej;}. Let

1
P, = §(E11 + Evg + Ep1 + Eg).
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Then P}P, = Py for all k, and so P is an orthogonal projection. If £ =
Y Cnn, then

o>

Z CnCm <(E1k + Ekl + Ekk)§n7 €m>

n,m=1

DN =

(P — 5 Bun), &) =

Z em (k&1 + 1€k + iy Em)

m=1

N | —

ekt + c1ex + |ekl?) R 0.

N =

wot 1

So P, —— 35 E11. In light of Proposition 12.1.6, the sequence {Fy} does
not converge sot.

(12.1.16) Find an example of a wot-convergent sequence of unitaries such
that its limit is not a unitary.

Answer. We can use the exact same idea as in Exercise 12.1.15.
Let H be a separable infinite-dimensional Hilbert space with orthonor-

mal basis {¢,} and corresponding matrix units {Ej;}. Let

1
= —_(F E Ey1 — Egg).

\/i( 1+ Eiwe + Err — Erk)
Then UU, = UpU;; = I for all k, and so Uy, is a unitary. If £ = 3" ¢,&,,
then

U

(U~ 75 En)é.) = 5 2 cucin (B B = B )
1 o
=7 mZ::l m (k€1 + 1€k — kb, Em)
= \% (cwt + c1er — |ek)?) —0
So Uy et % E4,, which is not a unitary. In light of Proposition 12.1.6,

the sequence {Uy} does not converge sot.

(12.1.17) Show that the sot-closure of U(H) is the set of isometries.
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Answer. Suppose that {U;} is a net of unitaries and U; ', V. For any
§eH,

Vel = tim [[U5€]l = [IE]l,

so V' is an isometry.

Conversely, let V' € B(H) be an isometry. If dimH < oo, V is a
unitary and there is nothing to prove, so we assume dimH = oco. Let W =
{T': |(T-V),| <e j=1,...,n} be a sot neighbourhood of V. Let
Hi = span{&,..., &} and Ky = span{V¢&;,...,V¢,}. As H is infinite-
dimensional, dim H;- = dim K{ = co. By mapping an orthonormal basis of
Hi to an orthonormal basis of K- we induce a unitary W : Hi- — Ki. Then
U = V]y, ®W is a unitary; indeed, both Vg, and W are unitaries with
orthogonal ranges, so

UU =V, +W)Vin, + W) =V, Vi, + WW = Iy, + e = Iy,
and similarly UU* = I3. , we have
U-V)=V]u,& —-VE =0.

So U € W. This shows that given the family {W} of sot-neighbourhoods of
V', for each W we can construct a unitary U with U € WW. Thus there is a
net of unitaries that converges sot to V.

(12.1.18) Show that both sot and o-weak are weaker than o-sot, which
is weaker than the norm topology.

Answer. It ||T; —T|| — 0, then for any S € T (H) we have
| Te(S(T; = T)*(T; = T)| < 1Ty = T|* Tr(|S]) = 0.

o-sot

So the o-sot is weaker than the norm topology. If 7; — T ——— 0 and
S € T(H) is positive, then

| Te(S(T = Ty))| = | Te(SY/2 SVA(T — T7))]
< Tr(S)Y2 Te((T — T;)*S(T — T;)Y% = 0.
As the positive trace-class operators span 7 (H) (Lemma 10.7.4 and Propo-

o-weak

sition 10.7.5), we get that T; ——— T. Also, given { € H, with S = £&*
we have
Ty = T)E|1* = Te(S(Ty — T)*(Tj — T)) 0.

sot

So Tj —T.
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(12.1.19) Show that the sot and o-sot agree on bounded sets.

Answer. The sot is weaker than the o-sot, so we need to show that if 7T ELLLEN

T and ||Tj| < c for all j, then T} U, 7. Fix e > 0 and let S € T(#). By
Proposition 10.7.9 there exists Sy € F(H) such that ||S — Sp||1 < . Then
| Tx(S(T; — T)"(T; = T)| < | Tr (5~ S)(Ty = T)*(T; ~ T)|
| Te(So (T = T5)"(T; = T))|

< |IS = Solls 1Ty - T|I?

+ [ Te(So(T = T3)"(T; = T))|

<A e + | Te(So(T — T;)*(T; — T))).
Then limsup; | Tr(S(T; — T)*(T; — T))| < 4ce for all € > 0 and so

limsup | Te(S(T; — T)*(T; — T))| = 0,
J

which shows that lim; | Tr(S(T; — T)*(T; — T))| = 0. That is, T; - T..

(12.1.20) Let P,Q € B(H) be projections. Show that
Iy—PAQ=Iu—-P)V({Ix—-Q).

Answer.  Given a subset K C #H, we use the notation [K] to mean the
orthogonal projection onto span IC. We have

Iy —PAQ=[(PHNQH)"]=[(PH)"U(QH)"]
=[(Iy = PYHU Iy — Q)H] = (Iyy = P) V (Iyy — Q).

(12.1.21) For each k,j = 1, ..., n consider a net {Tx j o }o C B(H). Form
the n x n matrices To, = [Tk j -

wot

(a) Show that T, —* T in B(H") if and only if Tk ja —
Ty, ; for each k, j.

(b) Show that T, =% 7" in B(H™) if and only if Tk j.a ot
Ty, ; for each k, j.
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Answer. By the linearity of the topologies we may assume without loss of
generality that T' = 0.

(a) Suppose first that T, ¥ 0. Fix &,n e M, and let £ € H" be the vector
with ¢ in the j* entry and zeros elsewhere, and let 7 with 7 in the k"
entry and zeros elsewhere. Then

<Tk‘,j,o¢§7n> = <Ta€~7 "7> — 0.

wot

This can be done for any &, € H, so T} jo — 0.
Conversely, if T ;.o —% 5 0 for each k, 7, fix f,ﬁ € H™. Then

n

<T&ga M) = Z <Tk,j,afj,77k-> — 0.

k=1
Therefore T, w WL,
(b) Suppose first that T}, —, 0. Fix € € H, and let £ € H™ be the vector
with £ in the j* entry and zeros elsewhere. Then

n 2 o
1Tl < Y [Thsals|” = 17807 =0,
h=1

This can be done for any ¢ € H, so T} ;. s,
Conversely, if T} j 4 0 for each k,j, fix £ € H". Then

n n 2 n n
ITagl? =D (D Thjali| <D0 Tk jaéil* —0.
j=1 k=1j=1

k=1

Therefore T, 0.

(12.1.22) Let {P;}je; C B(H) be a net of pairwise orthogonal projec-
tions. Show that the series P = Zj P; converges sot, and
P=V,;P.

Answer. Since P; > 0 for all j, the net of partial sums is monotone non-
decreasing. Also, >, p Pj < Iy for all finite ' (since the sum is a projection).
Then the series converges by Proposition 12.1.10. Let us denote the limit by
P. We know that P is a projection since P2 = P by Proposition 12.1.13, and
P = P* because P is positive, being a sot limit of positives (even a wot limit
of positives is positive).
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If £ € U; P/H, then there exists j with P;{ = £ This gives us
P¢ = PP¢ = Pi¢ = ¢ Thus spanlll | JP;H C PH. Conversely, if

J

1
£ e <U] Pﬂ—[) ; then P;¢ = 0 for all j. This gives us >, P;€ = 0 for all

L
finite F', and taking limit P¢ = 0. That is, (spTﬂ'” UPj"H) C (PH)*,
J

which is the inclusion PH C J; PjH.

Alternatively, here is a direct argument to show the convergence. Let
V={T: |T&]| <1, k =1,...,m} be a sot-neighbourhood of 0. Form
an orthonormal basis {1 ¢};.cs, ¢ccr; U {r}» where each {n;}ecr, is an or-
thonormal basis for P;H. For each k = 1,...,m, by Parseval there exists a
finite set Fj, C Ujc, gey, (J,€) such that

S Hgmell? < 1.

(4,0) ¢ Fr
Put F={j: 3¢k, (j,£) € F. Then for any F' O F

| pal <|Zral = X Kemar<t
JEF’ jE€F

(3,0)¢Fr
for all k. This means that } ;. P; € V. As this can be done for any
sot-neighbourhood of 0, we have that the series converges.

12.2. Multiplication Operators

(12.2.1) Prove Proposition 12.2.2.

Answer.
(i) We have
[ M shll5 :/x [F12 1R dp < (| F11% 13-
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So My is bounded and || M| < ||f]leo. Now fix € > 0 and choose E with
u(E) < oo and |f| > [|f|loc —€ on E. Then

1My 155 = [E [ dp = (1fllse =€) u(B) = (If e — ) 11"

Thus ||[M¢]| > (|| flleo — €)% As & was arbitrary, ||My|| > || f]|oo-

(ii) We have
(Mg + Mg)h = Mgh+ Mgh = fg+ fh=(f + g)h = M gh
and
MiMsh = f Mgh = fgh = Mygh

for all h, so My + My =M, and MiMy = My,.

(iii) We have
<Mfg,h>=/xfgf_ldu=/nghdu=<9,th>-
So Mj = Mj. If My = Mj, then 0 = My — My = M; ,s0 f = [ ae.
and f is real a.e.

(iv) Suppose that A € essran f. Then for ¢ > 0 there exists £ with u(E) > 0
and |f — Al < e on E. In particular, for each n € N we have

u(f~H(Bia(N)) > 0.
The sets f~(Bi,()\)) decrease as n increases. Fix Xo C X with 0 <
w(Xo) < oo and u(Xo N f=H(B1(N))) > 0 (X, exists because p is semifi-
nite). Let

Fn:Xomf_l(Bl/n(A))7 gn =

Then ||g,||2 = 1, and

_ 1
ﬂ(Fn)l/Z Fp-

2 1 2 1
||(Mf )\I)gnH2 /J,(Fn) /Fn |f )\| =2 —0

Hence My — A is not bounded below, which implies it is not invertible.
So A € o(Mjy).
Conversely, if A € essran f then there exists € > 0 such that
w1 (B-() = 0.
Let G = f~1(B.(\) and g = ﬁ Ix\¢- On X\G we have that |f—\| > ¢,
50 [|gllc < %. And

1
(My = M)Mgh = |f = Al T Ix\ch=1x\gh,

which is equal to h in L?(X) since u(G) = 0. As multiplier operators
commute, M, is the inverse of My — Al and so A & o(My).
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(12.2.2) Show that the semifinite hypothesis is crucial for (iv) to hold
in Proposition 12.2.2.

Answer. Let X = {1,00} with p({1}) = 1 and u({occ}) = co. Let f =
algy + Blisy € L°(X) with a # 3. Given g € L?(X), since g2 < oo we
have g(c0) = 0. Then fg = ag, so o(My) = {a} C {a, 8} = essran f.

(12.2.3) Show that X\ € o(Mjy) is an eigenvalue with multiplicity m if
and only if {f = A} consists of exactly m atoms.

Answer. We work first with the case where m < oo.

Suppose first that dimker(My — AI) = m. This subspace consists pre-
cisely of those functions h € L?(X) such that (f — A\)h = 0. If {f = A\} =
U;n:il E; with u(E;) > 0 for all j and the F; pairwise disjoint, then {1z, };”:11
would be m+1 linearly independent functions in ker(My — AI), contradicting
that dim ker(My — AI) = m. We cannot have any FE; infinitely divisible into
sets of positive measure, because this would give us dimker(My — AI) = oo.
So there is a maximal partition ker(My — AI) = U§=1 E; with each E; an
atom for pu. If r < m we also get a contradiction, because we cannot distin-
guish m linearly independent functions by using r < m points (there would
be two functions that agree at every point). We have shown that {f = A}
consists of precisely m atoms.

Conversely, if { f = A} consists of precisely m atoms { £}, then My1p, =
Ag,, so dimker(M; — AI) > m. As before the dimension cannot be more
than m, because we would have m -+ 1 linearly independent functions to be
separated by m points. Thus dimker(M; — AI) = m.

Now we assume m = oco. If dimker(M; — AI) = oo, then there are
infinitely many linearly independent functions in ker(M; — AI), making it
impossible for {f = A} to have finitely many atoms. Conversely, if {f = A} is
arbitrarily divisible into partitions of sets with positive measure, we get that
dimker(My — X\I) = oo.

12.3. Commutants and Double Commutants
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(12.3.1) Show that B(H)' = K(H)' = C Iy, and (CIy) = B(H).

Answer. We know that CIy C B(H)'. Suppose that T' € B(H)'. In partic-
ular T' commutes with all rank-one operators. So for any &, € H we have
Tén* = En*T. Applied to i with ||n]| = 1, this gives us

TE = (n,m TE =TEn™n = &n*Tn = (T, n)¢.

If T'=0then T = AI with A\ = 0; and if T" # 0, then there exists £ with
T¢ # 0, which implies that A = (T'p,n) # 0, and thus T¢ = X for all £ € H.
That is T € CIy.

The argument above only used finite-rank operators (in fact, rank-one),
so it also proves that KC(H) = C Iy.

The equality (CIy)" = B(H) is just the fact that Al commutes with
all T € B(H), so (Cly)' is a big as it can be.

(12.3.2) Let H = (?(N). Let A = {M, : a € (*°(N)} the algebra of
multipliers. Show that A’ = A.

Answer. Since T, Ty = Ty = Tpe = Ty, for all a,b, A is abelian and so
AcC A'. Now let T € A. Write {e,} C H for the canonical basis, both
as elements of H and of ¢>°(N). Then we can consider the multiplication
operators {M,, }. The operator M., is precisely the projection onto Ce,,
since M, a = aney,. Then, since T € A',

(Tej,ex) = (T'M,ej, Me, e,) = (M, TMc,ej, ex)
= <MekMejT€j, 6k> = 5k7j<T6k, €k>-
Therefore, denoting t,, = (T'e,,, en),

T¢ = Z(f,en>Ten = Ztn<§,en> €n.

That is, T = M, with a = (¢,,). And a € ¢>°(N) since
ltn] = [(Ten, en)| < [|IT]|-
SoT € A.

(12.3.3) Let M C B(H) be a von Neumann algebra. Show that
Z(M') = Z(M).
Conclude that M is a factor if and only if M’ is a factor.




12. COMMUTANTS AND DOUBLE COMMUTANTS 533

Answer. We have
ZM)y=MnM'"=MNM=ZM).

When either of M or M’ is a factor, we have Z(M) = C I, = Z(M’), so the
other one is a factor.

(12.3.4) Let D € M,,(C) be diagonal with all diagonal entries distinct.
Show {D} = {D}' ={E € M, (C) : diagonal}.

Answer. 'We have D = >"}'_, diEy. Suppose that TD = DT. Writing
T= Zz,jzl trj Frj, we have

TD = Z trjdn Ly Enp = Z djtr; B
bk, j=1 k=1

and
n n
DT = > tgjdnEpnErj = Y ditr;Ey;.
h.k,j=1 k,j=1
Comparing entries we see that for each k,j we have
djtr; = dity;.

If £ # j, from d; # di we conclude that ¢{,; = 0. Thus the only nonzero
entries of T are withon those with k = j; that is, T" is diagonal.
As for the double commutant, we have that

A={FE e M,(C): diagonal }

is an abelian algebra, so A C A’. If T € A/, in particular TD = DT, so by the
first part of the argument T' € A. So A’ C A, showing that {D}" = A" = A.

(12.3.5) Let A C B(#H) be a finite-dimensional C*-algebra. Show that
A is a von Neumann algebra.

Answer. By Theorem 5.4.16, the restriction of the sot topology to A agrees
with the norm topology. Thus A is sot-complete and therefore a von Neumann
algebra.

(12.3.6) Prove Proposition 12.3.2.
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Answer.
(i) For any T € M, A € C, T(My) = XT = (\,)T.

(ii) The fact that A is abelian means that each of its elements in the
commutant. Conversely, if A C A’ this means that every element
of A commutes with every element of A, so A is abelian.

(iii) Suppose that {S;} € M’ is a net and S; — S wot. For any T' € M
and &,m € H,

(TS, m) = (S, T*n) = li§n<5j€,T*77>
= lijm<T5j€m> = lijm<5jT£,77> = (ST¢,m).

As &, 1 were arbitrary, TS = ST. So M’ is wot-closed. As wot is
weaker than sot, it is also sot-closed. If S1,5, € M’ and T € M,
then (Sl —|—S2)T = SlT"—SQT = TSl +TS2 = T(Sl +SQ) Slmllarly,
51917 = 51TS5 =T5152. So M is an algebra.

(iv) If T € M’, this means that T'S = ST for all S € M. As N C M,
we have T'S = ST for all S € N, so T € N'. That is, M’ c N".

(V) IfT € M" and S € M, then S* € M and we have T'S* = S*T.
Taking adjoints, ST* = T*S, so T* € M’. That is, M’ contains its
adjoints.

(vi)IsT € M and S € M/, then ST =TS,s0T € M".

(vii) By the above, M’ C M. Now, if T € M" and S € M, then
S € M"” and so ST = ST. So M"" c M'.

(12.3.7) Prove Proposition 12.3.4. ]

Answer. Given T € B(H™) and X € MM, ¢ € H,,
ﬂkTX(g ® ej) = ﬂkT(Xjf ® ej) = Tijjf,

and

T XT(E® Gj) = WkX(Thjf)h = TI'k(XhThjf)h = X, T}5&.
As the two equalities above can be obtained for any k, j, and any § € H;, we
get that TX = XT if and only if Tj; X; = X} T}, for all £, j.
) Next suppose that S € (M™)”. Given 71, Tb, ... € ./\/l:, we can form
T =@, Tx € B(H™); by the above, T € (M™)". Then ST = T'S. Com-
ponent wise, this is Sp;T; = TpSk;. For j # k, we may take T; = I,
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Ti, = 0 to conclude that Si; = 0; so S is diagonal. And SirTi = Ty Skk,
so Sk € (M) = M”. The converse is trivial to check.

(12.3.8) Let M be a von Neumann algebra and P C M a set of projec-
tions. Show that \/ P and /\ ‘P are respectively the supremum
and infimum of P.

Answer. For any P € P, since UQGP QH DO PH, we have that \/73 > P.
So \/73 is an upper bound. Now suppose that ) € M is a projection and
Q > P forall P € P. Then QH D Upep PH, s0 Q > \/73, showing that

\/ P is the least upper bound of P. The argument for the infimum is entirely
similar.

(12.3.9) Given an alternative proof of Corollary 12.3.10 by using an
approximate unit.

Answer. Since M is a C*-algebra it contains an approximate unit {E;}
(Theorem 11.4.4). Since the approximate unit is monotone and bounded by
definition, Proposition 12.1.10 shows that E = limg £; € M exists. For any
XeMand€eH,

I(EX = X)) = lim [|(E;X — X)&]| < [[¢] lim ][ 2;X — X[ = 0.
Thus EX = X for all X € M. The same argument works to show that

XE = X (or, we can use EX = X for X > 0, take adjoints, and use that
positive elements span the algebra). So E = I4.

(12.3.10) Let A C B(H) be a non-degenerate C*-algebra and n € N.
Consider M,(A) C B(H") and show that

M,(A) ={X®I,: XcA}, (12.1)
(X®I,: X e Ay = M,(A), (12.2)
M, (A" = M, (A"). (12.3)
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Answer. Let X € A’ and Y € M,,(A). Then, writing X = X ® I,,,
n n
(XY )y = Y (X)knYnj = XVij = Vi X = > Yin(X)ny = (VX5
h=1 h=1
So XY = YX,N and therefore {X ® I,, : X € A’} ¢ M,(A). Conversely,
suppose that X € M, (A)". Fix k,j and A € A, and consider the matrix
A € M, (A) that has A; = A and zeros elsewhere. We have

(XA)TS = ZXTh Ahs = 5]’,5 XA
h=1
and

(A X)rs = ZATh Xps = 5r,k Ast~
h=1
These two expressions should be equal for any choice of 7, s, k, 7 and A. If we
take 7 = k and j = s, we get that Xy, A = AX;; for all k,j. In particular
Xy € A for all k. If we take an approximate unit {E,} in A, we have
I3 = limgoy Ep by Corollary 12.3.10 and the fact that A is non-degenerate.
Then
ka = kaIH = 1:£?kaEZ = 1513? Engj = ij.

Thus the diagonal of X is constant, made out of elements of A’. When
k # j, choose s = r = k. Then the equality 6; ¢ X;x A = 0, 1 AX;s becomes
0 = AXjj. Using again the approximate unit as above, we get that X5 = 0.
Thus X = X1 ® I,,, proving (12.1).
For (12.2), applying (12.1) to A”, taking commutants, and using that
A = A/,
{XoIl,: XeA"Y = M, (A"’

wot wot

By Exercise 12.1.21, X, ® I,, —— X ® I, if and only if X, —— X. Then,
using the Double Commutant Theorem (12.3.5)

(X®L: XeA)={Xol,: Xe AV =Xal,: XA~
={X®l,: XeA}

wot

We also know from Exercise 12.1.21 that if X € M, (A’) then X, —— X

wot

if and only if (X4)r; —— X, for all k,j. Therefore M,(A’) is a von
Neumann algebra and

{X®I,: Xe A =({X®I,: Xe A} ={X®I,: XcA"Y
— Mn(A/)I/ — ]\4’”(-’4/)7

which is (12.2).
Finally,

Mn(A)H = {X @IL,: Xe A/}l = Mn((A/)I> = Mn(A”)~
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(12.3.11) Let X C B(H). Prove that W*(X) = (X UX*)”, and show by
example that it is possible to have X" C W*(X).

Answer. We have by Proposition 12.3.2 that X C W*(X), and since W*(X)
is a C*-algebra, we also have X* C W*(X). Thus X U X* C W*(X) and so
(X c X*)" cW*(X)" =W*(X) by Proposition 12.3.2 and Theorem 12.3.5.
Conversely, using again Proposition 12.3.2 and Theorem 12.3.5 we have that
(X U X*)” is a von Neumann algebra that contains X, hence W*(X) C
(Xux".

For an example, let H{ = C? and let X consist of the single element

S = [8 (1)} . It is easy to check that X’ consists of the matrices of the form

g 2 . These in turn can be seen as als + bS. As everything commutes
with the identity, it follows that X" = {alz + bS : a,b € C}. Which is
not a x-algebra, since it does not contain S*. A straightforward computation
shows that {S,S*}' = CI;. Then {S,5*} = (CLy)" = M3(C). Thus X" C
W*(X) = My(C).

(12.3.12) Show that S and S° as in Lemma 12.3.16, are closed under
uniform limits.

Answer. Suppose that {f,} C S and f, — f uniformly. Let {T;} C B(H)*

sot

with T; —— T. Fix ¢ > 0. By hypothesis there exists ng such that || f, —
flloo < € for all n > ng. Fix £ € H. Then, for n > ny,

1(f(T5) = F(T)EN < (D)) = (i) + I(FnlTy) = fu(T))E]
+ 1 (Fn(T) = F(T))E]l
<20 fn = Flloo IEIN+ 1(Fn(T5) = Fu(T))EN

< 2 [l€]l + [[(fn(T5) — fu(T))EN-

As fn € S, we get that limsup; || (f(T}) — f(T))§]| < 2¢||€]|. This can be done

for all € > 0, so the limsup is zero which shows that the limit exists and is
sot

zero. That is, f(T;) —— f(T). The computation is S’ is exactly the same.
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(12.3.13) Let M C B(H) be a von Neumann algebra and My C M a
subspace. Show that the following statements are equivalent:

(a) My is wot-dense in M;
(b) My is sot-dense in M;
(¢) My is o-weak dense in M.

Answer. As My is convex we have /\70S0t = /WOWOt by Corollary 12.1.3.
If My is o-weak dense in M, then it is wot dense as the wot is weaker.
Conversely, suppose that My is sot dense in M. Given T' € M there exists a

sot

net {T;} C My with T; —— T. By Kaplansky’s Density Theorem we may
assume that the net {7} is bounded. But then T} s 7 and bounded, so
T; <2, T by Lemma 12.1.21.

12.4. The Spectral Theorem

(12.4.1) Let T € K(H) be normal. Show that Theorem 10.6.12 is a
particular case of Theorem 12.4.4.

Answer. By Theorem 12.4.4 there exists a unique Borel measure pup on o(T")
such that

T— / Npr (V).
a(T)

Since the identity is 0 at 0, we can consider the integral over o(T)\{0}. From
Theorem 9.6.13 we know that o(T) is either finite or a sequence {A;} that
converges to zero. So we can write o(T') \ {0} as a finite or countable disjoint
union of singletons. Thus

T —
;/{Ak}

The operators P, = pr({A\x}) are pairwise orthogonal projections. Since
TP, = APy, each Py is finite-rank for otherwise we would have an infinite-
dimensional eigenspace, contradicting Theorem 9.6.13.

Adpp(X) = Z At ({Ak}).
k
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(12.4.2) Let T € B(H) be normal. Show that there exists S € B(H),
selfadjoint, and a continuous f : o(S) — Csuch that T = f(S).
(Hint: Proposition 7.6.7)

Answer. By Theorem 7.6.5 there exists f : C — o(T), continuous and
surjective. And by Proposition 7.6.7 there exists g : (T) — C with fog =
id,(7y. By the Spectral Theorem (Theorem 12.4.4) there exists a spectral
measure f such that

T = / Ndup(N).

S/ N dpp (M),

This S is well-defined because g is bounded Borel. And S is selfadjoint
because g is real-valued. And we have

£(8) = / oD ) = / M) =T

We define

(12.4.3) Expanding on the ideas of Example 12.4.7, show that if g €
LOO[Oa 1]a then 120,718 (E) = M1g71(E)'

Answer. If {f,} is a bounded sequence of polynomials in L>°[0,1] with
fr — 1g as in Example 12.4.7, then

(o, (EYL 1) =tim [ £,(g) [h]? dm = lim / (f, o) [ dm
[0,1] " Jo,]

:/ (lEog)|h\2dm
(0,1]

So
Mg, (E) = MlEOQ = M1g71(E)'

(12.4.4) Show that the extreme points in the convex set B(H){ of pos-
itive operators with norm at most 1, are precisely the projec-
tions.
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Answer. We know that projections are extreme from Exercise 10.5.5. Now
suppose that T > 0, |T|| < 1, and T is not a projection. By Exercise 10.5.4
there exists Mg € (0,1)No(T). And by Corollary 12.4.14, pr(B,(Ao)) > 0 for
all 7 > 0. Fix r = (1 — A\o)/3. We have

IT 1ge]| =sup{|A|: A€ E°} =sup{|]A\|: A€ B,(Ao)} < Ao+r<1l—r
Let
Ty =T +r1g(T), Ty =T —r1p(T).
We have [T 1ge(T) +71g(T)|| < (1 —7)+7=1. Then
|71 = max {|T 1(T)|, |T 1p<(T) + 7 1p<(T)||} < 1.
Similarly ||T3]| < 1, and then T = % (T} + T») is not extreme.

(12.4.5) Let T € B(#H) be normal, A\g € C. Consider the extension of
o to all of C as in Exercise 2.3.8. Show that the following
statements are equivalent:

(i) T is compact;

(ii) for every Mg € o(T) \ {0} there exists r > 0 such that
pr(Br(Ao)) is a finite-rank projection.

Answer. (i) = (ii) We have that T is compact, and \g € o(T) \ {0}. By
Theorem 9.6.13 there exists > 0 with B,(A\g) N o(T) = {Ao}. Recall that
pr(Br(Xo)) = 1B, (T). K& € 1p,(5)(T)H, as t1p, (6 (t) = Ao 1B, (x)(t)
on o(T'), by functional calculus T'1g, (x,)(T) = Ao 15, (x,)(T). Then

TE=T1g,(3)(T)§ = Mo 1B,(20)(T)E = No€.
Therefore pp-(By(Aog))H C ker(T' — AI), which is finite-dimensional.
(i) = (i) Since A, = {\ € o(T) : A > 1} is compact, there ex-
ist Aiy..os A € o(T) and r1,..., 7 > 0 with A, C UL, By, (A). Let
B, ..., By with B; C B, ();), pairwise disjoint and with union U;n=1 By, (Aj)-

Then
pr(An) < MT(UBU- ()‘j)) = MT(UBJ‘) = ZMT(B])

As the B; are pairwise disjoint the projections pr(B;) are pairwise orthogo-
nal, and each is below the corresponding pr(B;,(A;)), so finite-rank. There-
fore pr(Ay) is finite-rank. So T pr(A,) is finite-rank. And since [t —
tla,(t)] < 2 on o(T), T — T pur(A,)| < L, so Tur(A,) — T. Hence
T is a norm-limit of finite-rank operators, and thus compact.
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(12.4.6) Let M be a von Neumann algebra and 7' € M™ nonzero. Show
that there exists a nonzero projection P € M that commutes
with T"and A > 0 such that TP > \P.

Answer. Since T' > 0 and nonzero, there exists nonzero A with 2\ € o(T).
So A > 0. Let P = pr((A,00)). We have P # 0, for otherwise T =T(I — P)
and then ||T| = |T(I — P)|| < 4, contradicting that 2 € o(T). Functional
calculus and the inequality ¢ 1(x oc)(t) > Al(x o0) then give us

PTP > \P.

(12.4.7) Let T € B(H) be normal. Show that the construction of ur in
the proof of the Spectral Theorem gives pr(o(T)) = Iy.

Answer. The function 1,7y equals 1 on o(T') (this not deep!). In (12.9), we
can take f, =1 for all r, and f,(T) = I;. Hence (ur(o(T))E, &) = (£,€) for
all £ € H, and using polarization we get ur(o(T)) = I3.

12.4.8) Let T € B(H) be normal. Show that 1;9v(7) is the projection
{0}
onto ker T', and that 1,(7)\{03(T) is the projection onto ranT'.

Answer. We know from Exercise 12.4.7 that 1,(7)(T') = I3. Hence 1;0y(T)+
Ly oy (T) = Iy

Let & € 1103 (T)H. As T'1(0y(T) = 0 (from the equality of functions
t1g01(t) = 0), we get TE = T' 11y (7)€ = 0,50 § € ker T'. That is, 170y (T)H C
ker T'. Conversely, let &€ € ker T. Since T¢ = 0 we have TF¢ = 0 for all k € N,
so p(T)€ = 0 for all polynomials p with p(0) = 0. As was done in page 856
of the Book we can get a sequence {p;} of polynomials with p; — 1;0;(t)
pointwise. Since the limit takes the value 1 at 0, we may assume without
loss of generality that p;(0) = 1 for all j. Then p;(T)¢ = £ for all j, which
gives us, as in (12.9), 1(0} (7)€ = £. Thus ker T' C 10} (T)H and the equality
ker T' = 140y (T)H is proven.

Now 1,703 (T) = In — 1(}(T) is the projection onto (kerT)* =
ranT* = ranT.
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(12.4.9) Let M = ¢°[0,1]  B(L?[0,1]), seen as multiplication opera-
tors. Fix ¢ € [0,1] and for § > 0 let Ps = My, _;,_ ;-

(a) Show that Ps =5 0asd— 0.

(b) Show that if K € K(L?[0,1]) then ||PsK]|| — 0.

(c) Show that there exists T' € B(L?[0,1]) such that PsT does
not converge in norm to 0.

Answer.

(a) Fix f € L?[0,1]. We have

1Py fI3 :/[ ]1[t71/n,t+1/n]|f|2dm_>0

by Dominated Convergence. For arbitrary J, given € > 0 there exists n
such that || Py, f|2 < &; if 6 < 1/n, then

1Psfll2 = 1PsPinflla < [[Prynfll2 <e.
Thus Psf — 0.

(b) This is Exercise 12.1.8, since the net is bounded.
(c) We can take T = Iy, then ||PsT|| = | Ps|| = 1 for all 4.

(12.4.10) Show that in Corollary 12.4.18, if a sot-dense separable C*-sub-
algebra Ay C A is prescribed, the operator T' can be chosen so
that C*(T) D Ap. (Attention: the word “separable” has differ-
ent meanings when referring to C* and von Neumann algebras,
see

)

Answer. Since A is separable, it has a countable dense subset {T,,}. By
considering the real and imaginary parts of each T;,, we may assume without
loss of generality that T,, = T, for all n. For each n,k € N by the Spectral
Theorem there exist projections P, g1, .-, Pnk,r, , such that

dist (75, span{ Py k.1, - - - Pk, o 1) < 1/K.
If we now bunch all the countably many projections { P, 5} with the projec-
tions in the proof of Corollary 12.4.18, we get that P, s € C*(T) for all s,

so Ag C C*(T) (note that the proof of Corollary 12.4.18 only uses continuous
functional calculus).




12. CYCLIC AND SEPARATING VECTORS 543

(12.4.11) Let M be a von Neumann algebra and T' € M normal. Give an
alternative proof of Corollary 12.3.8 by using Corollary 12.4.15
and the fact that UTU* = T for all unitaries U € M’.

Answer. Fix U € M’ a unitary. From UTU* = T and the fact that
fUTU*) = Uf(T)U* for all continuous f (or, the uniqueness of the pos-
itive square root), [UTU*| = |T| = U|T|U*. Then

T=UTU*=UV|T|\U* =(UVUHU|T|U* = (UVU")|T|.
Since V*V is the range projection of T, we have V*V, VV* € M by Corol-
lary 12.4.15. Let W = UVU*. We have W*W = UV*U*UVU* =UV*VU* =
V*V and similarly WW?* = VV*. Then the uniqueness in the polar decom-

position guarantees that UVU* = V. That is, UV = VU. As we can do this
for any unitary in M’ and unitaries span M’, we have that V e M” = M.

12.5. Cyclic and Separating Vectors

(12.5.1) In Proposition 12.5.6, where is o-finiteness used?

Answer. The direct sum and the series of projections can be done in any
dimension. But if A is not o-finite, we cannot construct the vector &, as any
vector in any Hilbert space has at most countable many nonzero coefficients.
For instance consider A = £*°[0, 1] acting on H = ¢2[0,1]. As any £ € H
has only countably many non-zero entries, there exists s such that £(s) = 0.
Then §,£ = 0, even though d5 # 0. So & cannot be separating for A.

(12.5.2) In the context of Proposition 12.5.6, show an example of A C
B(H), abelian and without a separating vector.

Answer. The result in Proposition 12.5.6 tells us that we need to look at an
uncountably-dimensional H. Let H = ¢2[0,1] and take A to be the diagonal
masa, that is

A = {Ett 1 te [0, 1]}//,
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where Ey is the orthogonal projection onto Cé;. Let £ € H. So & =, ¢dy,
with 3, [e[* = ||€]|>. Since the series is convergent, only countably c; are
nonzero. Let s € [0,1] such that ¢; = 0. Then Es¢ = 0, and so £ is not
separating.

(12.5.3) Verify the facts about the atomic masa stated after its defini-
tion (12.18). The only nontrivial part is that A, % A,,, which
can be seen by looking at the existence or not of minimal pro-
jections in both algebras.

Answer. For each T € A, there exists a sequence {t,,} such that T'E,, = t,&,
for all n. Since |t,| = ||TE.|| < ||T]|, this allows us to define v : A, — ¢>°(N)
by v(T) = {t,}. It is clear that ~ is linear. It is also multiplicative: STE,, =
tnSE&n = Sntnkn, so Y(ST) = v(S)y(T). Also,

<T*§n7£m> = <§71,5T€m> = <t7n§n;§m,>7
so Y(T*) = {tn} = {tn}*. I y(T) = 0, then T, = 0 for all n and then
T = 0; so v is injective. And if {t,} € ¢>°(N), we can define T' € B(H) by
T¢, = t,&€, and extend by linearity. We have

m m m
T~ ai&lP = 11D ity &lI> =D lay* [t
Jj=1 Jj=1 J=1
m m
< Itll3 D lag® = elZ 1Y el
J=1 J=1
Thus T is bounded on a dense subspace, and being linear it extends to all of
H, bounded with the same norm.

We have in particular the Ey, € A for all &, since the Eyj correspond
to the canonical bases e, in £>°(N). Also, since £°°(N) is abelian, we get that
A, is abelian. If S € A’, then for each n we have S, = SE.&, = EnnSE, €
C&,. So S € Ay, and A/ = A,, showing that it is a masa.

We can construct an easy #*-monomorphism A, — A,, by choosing an
infinite partition {E,} of [0,1] (say, En = (747, +], missing 0 does not matter
because it is a nullset) and mapping {t,} C ¢>*°(N) to > t1g,. Thisis a
x-monomorphism which of course is not surjective.

We cannot have A, ~ A,, because A has minimal projections (namely,
E,,, for each n) while L*°[0, 1] does not. Every projection in L>°[0, 1] is 15 for
some measurable set E of positive measure; and these can always be divided
to obtain proper subprojections.
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(12.5.4) Let A C B(H) be a maximal abelian von Neumann algebra (a
masa). Show that if A4 has a cyclic (equivalently, separating)
vector then A is o-finite.

Answer. Suppose that A is not o-finite. Then there exist uncountably many
pairwise orthogonal projections {P;} C A. By extending the family if needed
we may assume that >, P; = I;. We have

eIz = || > pigh® = 3 Ipiel®
J J

As this is finite, only finitely many P;£ can be nonzero. That is, there exists
some j such that P;§ = 0. As P; # 0, this contradicts the fact that & is
separating.

(12.5.5) Let M C B(H) be a von Neumann algebra such that £ € H is
separating for M. Show that M is o-finite.

Answer. As in the argument from Exercise 12.5.4 the fact that a vector in a
Hilbert space can only admit countably many nonzero components forces, if
M is not o-finite, the existence of a nonzero projection P € A with P§ = 0.
Then £ is not separating.

12.6. Normal Functionals

(12.6.1) Let ¢ € M be a positive normal functional with support pro-
jection Fi,. Show that ¢(T'F,) = ¢(T') for all T € M.

Answer. Suppose first that T > 0. Then

P(TFy) = (T) = p(T) = p(TF,) = p(F,T) = (T).
For arbitrary T' € M, we can write T as a linear combination of four positive
elements, and so the equality ¢(TF,) = ¢(T) follows.
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(12.6.2) Let ¢ be a state on M and F a support projection for ¢. Show
that ¢ is faithful when restricted to F MF.

Answer. Suppose that T > 0 and o(FTF) = 0. If FTF # 0, by Ex-
ercise 12.4.6 there exists A > 0 and a nonzero projection @ € FMF that
commutes with FTF and such that A\Q < QFTF. Then

P(Q) = A"'0(\Q) < p(QFTF) = o((FTF)'?Q(FTF)"/?) < o(FTF) = 0.

Hence @Q < Ixn; — F by definition of support projection. But this gives 0 <
AQ < QFTF =0, s0o @Q =0. The contradiction shows that FTF = 0 and ¢
is faithful on FMF.

(12.6.3) Let M be a von Neumann algebra and ¢ € M* such that there
exists a projection P € M with ¢(P) = 0. Show that there
exists a pairwise orthogonal family {P;} C M, maximal with
respect to the property that ¢(P;) = 0 for all j.

Answer. Let

F= {{Pj} C M : pairwise orthogonal projections with ¢(P;) =0 for all j}7
ordered by inclusion. The family is nonempty because {P} € F. Given a
chain {{P;};e, }r C F, with Ji, C Ji, if k1 < ko, the union {Pj}jEUk j, s
in F and is an upper bound for the chain. By Zorn’s Lemma there exists a
maximal {P;} € F.

(12.6.4) Let M C B(H) and N' C B(K) be von Neumann algebras,
and U : H — K a unitary such that UMU* C N. Show that
I'(T) = UTU* is a o-weak continuous *-monomorphism.

Answer. With U a unitary, that I' is a x-monomorphism is straightforward.
o-weak

Now suppose that {T;} C M with Tj ———— 0. This means that Tr(ATj) —
0 for all A € T(H). Given B € T(K), by Exercise 10.7.16, U*BU € T (H).
Then (using Exercise 10.7.8)

Tr(BT(T)) = Te(BUTU*) = Tr (U* BU)T) —0.
So T(Tj) —ZX2k 4 ¢,
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(12.6.5) Let M be a von Neumann algebra and ¢ € M*. Show that ¢
is normal if and only if its GNS representation 7, is normal.

Answer. We have o(T') = (7, (T)&,,&,) for all T € M. If 7, is normal and

o-weak

Tj e then
o(T) = <7Tv(h]mTj)€va§sa> = <li§nﬂ¢(1})§¢,§¢)

= 1i§n<ﬂ¢(Tj)§wv §<p> = 1i§n @(Tj)v

the last equality because point functionals are o-weak continuous.

Conversely, suppose that ¢ is normal. Then if {7} C M is an increas-
ing net of selfadjoints with 7 T, then S*1};S  S*T'S for all § € M and
hence

(Mo (T (S)Eps o (S)E) = p(S™T;S) 7 (S*T'S)

= <7T¢(T)7T¢(S)§gm77ga(5)€so>-
It follows that n,(T;)  m,(T). Composing with normal functionals of
m,(M)"” and using Proposition 12.6.11, we get that m, is normal.

(12.6.6) Let M be a von Neumann algebra and ¢ € M™* normal and
faithful. Show that my(M)"” = my(M). (This is a direct con-
sequence of Corollary 12.6.12, but it is needed earlier in the
text)

Answer.  Since my is injective, it is isometric. So it maps B{M(0) onto

Bf“’(M). As 1) is normal and the closed unit ball is compact, its image is wot-

closed, hence sot-closed. Kaplansky then implies that (M) is sot-closed,
and by the Double Commutant Theorem 7y, (M)"” = my(M).
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12.7. Preduals and the Enveloping von Neumann Algebra

(12.7.1) Let M be a von Neumann algebra. Show that M, is norm-
closed.

Answer. Let {p,} C M, be a Cauchy sequence. Being Cauchy in a metric
space, the sequence is bounded, so there exists ¢ > 0 such that |¢,| < ¢ for
all n. Since M* is complete, ¢ = lim ¢,, € M* exists. We need to show that

 is wot-continuous on bounded sets.
wot

Let {T;} C M be a bounded net such that T7; —— 0. By enlarging ¢
is needed, we may assume that ||7}|| < ¢ for all j. Then

[o(T)] < 1(p = on)(T)] + [en(TH)] < clle = @nll + lon(T))]-
Hence lim sup; |¢(7})| < c[lp—¢nl|. As we are free to choose ¢, and p—p,, —

0, we get that limsup; |¢(7;)] = 0 and thus the limit exists and is zero,
showing that ¢ is wot-continuous on bounded sets.

(12.7.2) Provide an alternative proof to the fact that M, is a predual
for the von Neumann algebra M by using Corollary 7.3.8 to
see that a predual for M is given by T (#H)/M,. This means
identifying all normal functionals that agree on M, so we have
precisely the normal functionals of M.

Answer. We know that M C B(H) is o-weak-closed by Proposition 12.3.19.
From Theorem 10.7.11 we know that B(H) = T(H)*. So the proof of
Corollary 7.3.8 says that 7(H)/M, is a predual for M. For each class
v =84+ M, with § € T(H), we are interpreting this as the functional
¢(T) = Tr(ST). This is well-defined on M for if S — S’ € M,, this means
that Tr(ST) = Tr(S'T) for all T € M, and so they define the same linear func-
tional. The functional is normal by Proposition 12.6.3. So T(H)/M, C M.
Now, given ¢ € M,, by Proposition 12.6.3 there exists S € T(H) with
o(T) = Tr(ST); that is, p = S+ M, € T(H)/M,. Hence M, =T (H)/ M,
is a predual for M.
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(12.7.3) Let A, B be C*-algebras and «y : A — B a *-isomorphism. Show
that A** ~ B** as C*-algebras.

Answer. We have a canonical isometric linear isomorphism ~** : 4** — B**,
But we need to account for the multiplication, and for this we look at the
enveloping von Neumann algebras. Let m4 : A — B(#H) be a universal rep-
resentation. Then there exists, by Theorem 12.7.8, a unique linear surjective
isometry 74 : A** — w(A)” that extends m4. We can define a representation
75 : B — B(H) by g = ma 0y~ !. This is universal: if p : B — B(K) is a
representation, then po~y : A — B(K) is a representation. By universality
there exists p’ : ma(A)"” — p(v(A))” = p(B)" such that p’om g = po~y. Then
p'omg = p, showing that 7 is universal. Now B** ~ n5(B)"” = m(A)" ~ A**,
where the two isomorphisms are canonical.

We have g o v = w4 by construction, so the extensions from Theo-
rem 12.7.8 satisfy 7 o v** = 7 4.

(12.7.4) Let A be a unital C*-algebra. Show that the unit of A** is the
unit of A; that is, show that [ 4 = I g«.

Answer. Given U € A**, by Theorem 7.2.14 there exists a net {a;} C A

with a; weak®, \p, Then, using the universal representation = : A — B(H)

and its associated homeomorphism 7 : A** — 7(A)” as in Theorem 12.7.8,

F(14)7(¥) = lim 7(La)7(a;) = li;nﬂ(IA)ﬂ(aj) = lijr_nw(aj)

=lim 7 (a;) = 7 ().
J
The same computation can be done on the right, so ﬁ(fA) = Ir(ay (note
that we can always have m non-degenerate by shrinking H if needed). And
we are done, because I 4y~ is what we mean when we write 4+, as we only
see A** as an algebra via 7.

(12.7.5) Let A be a C*-algebra and Z € Z(A**) a central projection.
Show that (ZA)** = ZA**.

weak™

Answer. Given ¢ € A**, there exists a net {arp} C A such that d ——
). When we see this in the enveloping von Neumann algebra, we have

a, ZE, . Then Zap 22, 7y, So ZA™ C (ZA)**. For the
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reverse inclusion, we have ZA C Z.A**; thinking of the enveloping von Neu-
mann algebra as the double commutant of the image through the universal
representation, (ZA)** C ZA**.

(12.7.6) Let A be a C*-algebra and J C A a proper ideal. Show that
A~ T & (A)T)** as C*-algebras.

Answer. Because J is a proper ideal of A, by Hahn—Banach (Corollary 5.7.19)
there exists nonzero ¢ € A* with ¢|7 = 0. When we look at J** C A**, the
functional ¢ becomes normal and so ¢| 7+ = 0, which guarantees that J**
is a proper ideal of A**. By Corollary 12.3.12 there exists Z € Z(A**) with
T =ZA™. So

Consider now the map v : A/J — (Ig« — Z)A given by y(A+J) = (L g+« —
Z)A. This is well-defined: it is linear and if A € J then A = ZA and so
(Ia» —Z)A = 0. Tt is clearly surjective and if ([4+« —Z)A =0then A= ZA
so A € J, so it is injective. It is also straightforward by construction that -y is
a *-homomorphism. Then v** is a *-isomorphism (A/J)** — (14« — Z)A**,
via Exercise 12.7.5. By Corollary 12.6.12, v** is normal. Now id & ~** is the
desired isomorphism, where Exercise 12.7.3 confirms the multiplicativity.

(12.7.7) Let A be the closed unit ball of £*°(R) C B(¢£?(R)). Show that
on A the o-weak topology is precisely pointwise convergence.

o-weak

Answer. Suppose that {f;} C Aand f; ——— 0. This means in particular
that f;(t) = (fj,er) — 0. Conversely, suppose that f;(t) — 0 for all ¢. Fix
g € l'(R). Let £ > 0. Choose to such that 37, ., [g(t)] < e. Then

(gl < D0 1HOHg®+ Y 1@ 1g(t)]

[t|<to [t]>to

< D IHOHg®+ Y 1g(t)]

[t|<to [t]>to

< D O] + <

[t|<to

Then limsup; [(f;, g)| = 0. By the Limsup Routine, the limit exists and is 0.
So fj o-weak 0.
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(12.7.8) Show that £>°(R) C B(¢*(R)) is o-weak separable.

Answer. Since the whole space is a countable union of balls, it is enough to
show that the unit ball has a countable dense subset. By Exercise 12.7.7 we
consider pointwise convergence. Our countable dense set will be

C:{qulEka nENv qk€Q+ZQ7 |qk|§17 E17"'aEn
k=1

partition of R with endpoints in Q}.

Fix f € £*(R) and € > 0. For each F' = {t1,...,t,} C R finite, given
tr € F choose g, € Q +iQ with |t — qx| < e. Let r1,...,7p41 € Q with
rp <tp <rper forall k=1,...,n. Take By = (—o0,7r1), Eny1 = (41, 00),
and Ej = (rp—1,7%). Then gp = >, qxlp, € C and |f(t) — gp(t)| < € for
all t € F. Hence gr — f pointwise, when we consider the finite subsets of R
ordered by inclusion.

(12.7.9) Let M be a von Neumann algebra and X a Banach space such
that M = X*. Put P = {1 —p2+i(ps—pa): @; € XT, j=
1,...,4}. Show that P is a subspace.

Answer.  For the subspace part, that P is closed under addition is just
the fact that sums of positive functionals are positive, and X is a vector
space. As for the multiplication by scalars, by writing A € C in the form
A =ay —ag +i(ag — aq) with a1, as,a3,a4 > 0 we get

/\(“Pl — 2 +i(ps — 994)) = (a191 + a2p2 + azps + asps)
— (a1p2 + azp1 + azps + aspy)
+ i(a1p3 + azps + asp1 + asp2)
—i(a1ps + az2p3 + azpz + asp1)
ePp.

(12.7.10) Let A be a C*-algebra and X', Y Banach spaces such that X* =
Y* = A. Show that X ~ ).
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Answer. By the existence of the predual we get from Theorem 12.7.5 that
there exists a faithful representation = : A — B(#) such that 7(.A) is a von
Neumann algebra. If v : X* — A is an isometric isomorphism, we get that
moy : X* — 7w(A) is an isometric isomorphism of Banach spaces. Now
Theorem 12.7.2 implies that X >~ 7(A),. As the same can be done for Y, we
get that ) ~ X.
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Constructions with C*-Algebras

13.1. Algebraic Tensor Products

(13.1.1) Prove Proposition 13.1.2.

Answer. This follows rather directly from the definition. Indeed, for ¢
bilinear

Mz ®y))(9) = Mz @y)(¢) = Ad(z,y) = 6z, y) = Az @ y)(9),

so Mz ® y) = (A\x) ® y). The other scalar multiplication is similar.
For the sum, for any bilinear ¢

((z+2)®@y)(¢) = oz + 2,y) = ¢(z,y) + d(2,y) = (@ Y)(8) + (2 @ y(¢)

= (@®y) +(z2y)(9),
s0 (r+2)®y =2®y+2®y. The other distributivity is proven similarly.

553
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(13.1.2) Let {ey} be a basis for X and {f;} be a basis for Y. Show that
B = {e, ® fj}r,; is a basis for X @ Y.

Answer.  The linear independence follows from Proposition 13.1.3. And
given z € X ® Y, there exists x1,...,x, € X and y1,...,y- € Y with z =
> or_1%s @ ys. Expressing each z and y; in its respective basis we have for

each s
Ty = E Qg k€L, Ys = E Bs,ifj-
k J

T

z:E:E:aMﬁw€k®b~

s=1 k,j
Thus X ® Y = span B, and B is a basis.

Then

(13.1.3) Let X,Y be complex vector spaces and X ®'Y a tensor product
defined in some way other than via our bilinear maps. This
means that X ®'Y is a vector space, spanned by elements of the
form x ®' y which satisfy the properties in Propositions 13.1.2
and 13.1.3. Show that X ® Y ~ X ® Y canonically.

Answer. Consider the bilinear map ¢ : X xY — X ®'Y given by ¢(z,y) =
z ®"y. By Theorem 13.1.6 there exists a linear map ® : X @ Y - X Q'Y
that satisfies V(z ®y) =z @ yforallz € X and y € Y. As ¥ is lin-
ear, it is automatic that it is surjective. And if W(3_;z; ® y;) = 0, this
means that Zj z; ® y = 0. The fact that the tensor product ®' satisfies
Propositions 13.1.2 and 13.1.3 guarantees that proposition: criterion for ten-
sor equal zero, and so Zj z; ® y; = 0. Therefore ¥ is a linear bijection and
XY ~XQY.

(13.1.4) Use Theorem 13.1.6 to show that the map ¥ @ Y - Y X
induced by * ® y — y ® x is an isomorphism.

Answer. Let ¢ : X XY — Y ® X be given by ¢(z,y) = y ® . By Theo-
rem 13.1.6, there exists Ty : X ® Y — )V ® X with
Ty(z@y) = oy, ) =y @ .

Similarly, we can get 7 : Y@ X - X ® Y with Y¥r(y @ x) = 2 ®y. As
YroTyz®y) =@y foral z € X, y € Y, it follows by linearity that
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Yr o Ty = idxgy. We also get that Ty o Y = idygry. Thus Ty is a vector
space isomorphism of ) ® X onto X ® ).

(13.1.5) Using Theorem 13.1.6 as in Exercise 13.1.4, show that there
are canonical isomorphisms (in that they do the obvious thing
to the elementary tensors) as follows:

(a)Ce® X ~ X,

(b)C" @ X ~ X™;

(c) ¥ @ Y* ~ B(Y,X), if X and Y are finite-dimensional;
(d) Mp,(C) @ X ~ M, (X).

Note that when X and Y are finite-dimensional one could es-
tablish the existence of isomorphisms as above by dimension
considerations. But we do not always require finite-dimension,
and we want our isomorphisms to be canonical.

Answer.

(a) Consider the bilinear map ¢ : C x X — X given by ¢(\,z) = A\x. By
Theorem 13.1.6, there exists a linear map T : C® X — X such that
T(A® x) = Az. It is obvious that T is onto, so we only need to show
that 7" is on-to-one. Suppose that T'(3_; A\; ® z;) = 0. This means that
>_jAjz; = 0. Then

Z)\j@.’ﬂj221®>\j$j:1®Z)\jfﬂj:0.
J J J

(b) Now consider the bilinear map ¢ : C* x X — X" given by
O((A1y- s An), ) = (Azy .0, M),
By Theorem 13.1.6 there exists a linear map 7" : C" ® X — &A™ such
that T((A1,...,An) ® ) = (M12,..., Apx). We can define an inverse for
T explicitly by
T Moy an) =) er @z €C'®X.
k=1
(c) This time the bilinear map is ¢(x, f) = f()z € B(Y,X). By The-
orem 13.1.6 there exists a linear map 7' : X @ Y* — B(),X) with
T(w o f) = f()e.
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If X is finite-dimensional, then given a basis z 1...,x, of X we can
write any A € B(Y,X) as Ay = > _, fi(y)z;, where f; € V* is deter-
mined uniquely by the fact that {z,} is a basis. Thus

n n
T (ij(')xj) = 7,0
k=1 k=1
gives an inverse for 7" and so T is an isomorphism.

(d) Consider the bilinear map ¢ : M, (C) x X — M,,(X) given by ¢(4,z) =
[ak; ]k ;. By Theorem 13.1.6 there exists a linear map 7' : M,,(C) ® X —
M, (X) with T(A® x) = [arjz]k,;. Given any X € M, (X), we can define
an inverse for T' by

Tﬁl(X) = ZEkj @ Ty
k’j

(13.1.6) In the situation of Corollary 13.1.9 where X,) are algebras
and ¢, ¥ homomorphisms, show an example where both ¢ and
1 are injective but ¢ x v is not (Hint: abelian algebras and
finite-dimension are enough).

Answer. Let X =) = A = C?, with pointwise addition and multiplication,
and let ¢ = 1 = id. Then ¢ and @ are injective homomorphisms with
commuting ranges. But

(p x)(e1 ® eg) = ejes = 0.

13.2. Completely Positive Maps

(13.2.1) Prove that if S C A is an operator system, then M, (S) C
M, (A) is an operator system.

contains the identity matrix >, J4 ® Ey,. It is obvious that M, (S) is a

Answer. This of course assumes that A is unital. In that case, M,(S)
subspace of M, (A), so all that remains is to check that M, (S) is closed
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under taking adjoints. Given S = Zk’j Skj ® Eyj € M, (S), we have
= Z Szj & Ejk.
k,j

As each sj; € S—since S is an operator system—we get that S* € M, (S).

(13.2.2) Show that that if n,m € N with n < m, and ¢ : S — B, then
lp™™| > [|¢™ |, and ¢(™ > 0 implies ¢ > 0.

Answer. We may assume without loss of generality that B C B(H). We have

I || = sup{l[¢™ (A)]| : A € Mq(S), | A =1}
Since
¢(4) = ¢ (A® O0m—n),

every number ||¢(™ (A)| can be written as ||¢(™) (A)|| with ||A|| = 1. Thus
11| < [lo™]]. i

Similarly, if (™ > 0 and A € M,,(S) is positive, then A = A® 0 > 0
and

(@™ (A)8,€) = (6™ (A)E,€) 2 0

for any £ € H", with £ =£® 0.

(13.2.3) Let S = A be a C*-algebra, and ¢ : A — B a x-homomorphism.
Show that ¢ is completely positive.

Answer. If A € M,(A) is positive, we can write A = B*B for some B €
M,,(A). Then

o™ (A) = ¢ (B*B) qu(”) ((B*B)kj) ® E;

=33 6(BjpBuy) © By = Zqu Bhur)"¢(Br;) ® Ex;

k,j h

ZZ Bhk ®Ehk) (¢(th)®Ehj)

h

— Z (Z &(Bhi ® Ehk) ’ ( Z @(Bpr ® Ehk> > 0.
k k

h



CHAPTER 13

(13.2.4) Show an example of a C*-algebra 4 with a dense subalgebra
Ao and a #-homomorphism p : Ay — Ap that is unbounded
(so, in particular, it doesn’t extend to A).

Answer. Let A= C[0,1], Ao = C[z], and p : Ay — A given by p(p) = p(2).
Then p is a *-homomorphism. If p,(z) = =™, then ||p,|| = 1 for all n but
lo(pn) = 2™, so p is unbounded.

(13.2.5) Given a compact Hausdorff space T, show that the C*-algebras
A= M,(C(T)) and B = C(T, M,,(C)) are canonically isomor-
phic, where the norm in B is given by

lylls = sup{lly(@)]| - ¢ €T}

Answer. Let m: A — B be given by
m(A)(t) =) Ax;(t) @ Ex;.
k,j

Because the algebraic operations between functions are defined pointwise, it
is clear that 7 is a *-homomorphism. It is injective, for if Ay;(¢) = 0 for all
t then Ay; = 0. And it is surjective. If g : T — M, (C) is continuous, let
A =73} 9k ® Ej, and then 7(A) = g.

(13.2.6) Prove that a positive map ¢ : S — B maps selfadjoint elements
to selfadjoint elements.

Answer. Let a € S be selfadjoint. Then a + ||a||I4 is positive, so z =
¢(a) + |lal]| ¢(I4) is positive. Therefore ¢(a) = z — |jal| ¢(I4) is a linear
combination of positive elements and hence selfadjoint.

(13.2.7) Show that
a+pBz+7220, 2€D <= a>0,y=5,2|8<a

<= {a 2*3]>0.
2y «
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Answer. Suppose first that a4+ Sz 4~z > 0 for all z in the disk. From z =0
we get that a > 0. It follows that fz+~vz € R for all z. With z=1and z =14
we obtain 8+ v € R, (8 — )i € R. We get from these that Imy = —Im 3,
and Re3 = Rev; so v = B. Now we have that a + 2Re3z > 0 for all z.
Choosing z such that bz = —|b| we get 2|8] < a.

Now assume that o > 0, v = ,2|3] < a. We have

(0% 2 z z B
(B S]] ot e amess

> alz1|? + alze|? — 48] |21 |22
> alz1]? + al2a]? = 20|21 | |22

=a(|z]* —[z]*) > 0.
So the matrix is positive.
Finally, suppose that
alz1? + alza|? + 287120 + 27212 2 0

for all z1,z5. Given z = re?? € D, let

1+V1—1r2 _4 1—vV1-—1r2
a=\—p =y

Then |21]2 + |22|> = 1 and 2z122 = 2, giving us o + Bz + vz > 0.

(13.2.8) Prove equation (13.4), i.e.

n

> (9(aac)én &) = (6™ (4 A)¢.€),

k,j=1
where £ = (&1,...,&,)" € H" and A € M, (A) is the matrix
with some row aq,...,a, and zeroes elsewhere.
Answer. If we write £ = [& -+ §n]—r and A =3, a; ® E;, then
ATA=Y (ar@En) (a; @ Epy) = Y (0h @ Epy)(a; @ Erj) = ) aja; @ By,
k,j k.j k.j
Then
(@M (ATA)E, ) =D > ((apa; @ Bry) (& @ €,),& D ey) (13.1)
k,j T8

=D (406, &). (13.2)
kg s
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(13.2.9) Show that if X € M, (A), then we can write X = X7 +--- +
X,—where X}, is the matrix such that its k*" row is that of X,
and the rest of the rows are zero—and then X*X = 3", XX}

Answer. We have X, = Z - Xpj ® Egj, 50 X =5, Xi. And
X*X = ZX X ZZ 7h®Erh X5j®Esj)

T8 j,h

- ZZ thj ®EhrEsj

T8 ]7

= Z Z(th ® Erp)*(Xrj ® Erj)
r  j3,h
=> XX,

(13.2.10) In the proof of Proposition 13.2.12, show that || X|| = ||£]|. ]

Answer. We have
cil> 0
e = et = | (Bt O =Sk = el
J

where we are using that [[Ey[| =1 (since it is a projection).

(13.2.11) Show that if A € M,,(C) and B € M,(S), then AB € M,(S).
Show an example where A, B € M, (S) and AB & M, (S).

Answer. Because A is scalar, the k, j entry in AB is (AB)y; = Zj AgnBhj,
a linear combination of elements in S. Hence AB € M,,(S).
For the example, consider the operator system

S={a+pt: a,f€C}CC[0,1]}.

Already for n = 1 we have, with g(t) =t, g € S but g> € S. We can make

this look like matrices with
2

A= {g 8} € My(S),  while A% = {90 8} ¢ My(S).
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(13.2.12) Show that the set Ky in the proof of Stinespring’s Theo-
rem 13.2.15 is actually a subspace. (Hint: Cauchy-Schwarz)

Answer. Suppose that £,7 € Koo and a € C. It was established in (13.7)
that (-, )k is a positive sesquilinear form, so Cauchy—Schwarz applies. Then
[EmI* < (€,€) (m,m) = 0.

Thus B B o B
(€ + 0@, &+ am) = (£,€) + |a* (0, 7) + 2Re@ (€,7) = 0.

(13.2.13) Prove the uniqueness, up to unitary conjugation, of the Stine-
spring’s Dilation (Theorem 13.2.15).

Answer. Suppose that (1,71, V1) is another minimal Stinespring triple for
¢. So K1 = mi(A)ViH, K = 7(A)VH. Define a map W : L — Iy by

Wr(a)VE = m1(a)V1E.
We first need to check this is well defined: if w(a)V¢ = m(b)Vn, then
71 (a)Vi€ = mi(0)Vin||* = (w1 (a) Vi€, mi(a)Vi&) + (w1 (b)Vinp, w1 (b)Vin)
— 2Re (m1(a) Vi€, m (b)Vin)
= (Wm(a*a)i&, &) + (Vi'm (b°0)Vin, n)
— 2Re (Vy'mi (b a) Vi€, m)
= (#(a”a)§, &) + (o(b"b)n, n) — 2Re (¢(b*a)§, n)
= (Vin(a®a)VE, &) + (Vim(b™b) Vi, m)
—2Re (V*'m(b*a)VE, n)
= (m()VE,m(a)VE) + (m(b)Vn, w(b)Vn)
—2Re (m(a)VE, m(b)Vn)
= |m(a)VE —m(0)Vnl* =0,
so m1(a)Vi€ = m1(b)Vin. Also, working on the inner products as above,
Wr(a)VE]l = [[m(a)Vi]l = llg(a”a)é]| = |Iw(a)VE],

and W is an isometry. From K; = 71 (A)ViH the range of W is dense; as
W is an isometry its range is also closed, and thus W is onto. Finally, we
show that the unitary W conjugates one Stinespring triple into the other: by
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construction, WX = Ky, and
Wr(a)m(b)VE =Wr(ab)VE = m(ab)V1€ = m1(a) 71 (b)) V1€ = m1 (a)Wr(b)VE;
as the elements of the form 7(b)V¢ are dense in K, we get that Wr(a) =
m1(a)W and hence Wr(a)W* = 71(a) for all @ € A. Assuming that A is
unital, for all £ € H we have

WViE =Wri(I4)V1€ =n(I4)VE=VE.
So WV, =V.

If A is not unital, the whole argument can still be carried by using an
approximate unit. Indeed, if {e;} C A is an approximate unit, then the net
{e; ® £} is weakly convergent in K; for

(6, ®E—er®EbRE) = (d(b"(e; — ex))E, &) = (d(b" — 7)€, &) = 0.
And for arbitrary n € IC given ¢ > 0 there exists 79 = Ej b; ® n; with
ln—noll <e. Then

{e; @& —er @& m)| < ®&—exr @& M)+ [{e; ®E —ex ®E,m— o)

[(e; )
< e ®@E—er @& m0)| + [In—noll ll(ex —e5) @&l
{e; @ & — e @ & mo)| + & (B((er — €5)?)€, €)'/
( )

[(ej @& — e, @ & mo)| + e [l /2 €]

Then limsup; |(¢; ® £ — ex @ &, n)| < £ [[o]|*/2|[]| for all e > 0, and so by the
Limsup Routine the limit exists and is zero. Thus there exists ¢ € K with
f = limyeak €j ® . We define V¢ = f The only moment where we used the
definition of V' was to check the formula V*m(a)V = ¢(a). In this case we
can do (note that there is no double limit below, just two limits applied one
after the other)

(V*m(a)VE,n) = (n(a)VE Vi) = (n(a)é, 7)) = 11?111131@(@)(6]' ® &) ex )

= limlim(m(exae;)&, ) = li§n<¢(a€j)€,n> = (p(a)é,n).

J

IA

IN

For the norm of V, we have

IVel? = (Ve ve) = limlim{e; ® £, e ® ) = limlim(@(exe;)E, &) < |4l el

for all £ € H, so |V||* < ||¢]|. Conversely, given ¢ > 0 choose a € A with
lla]| = 1 and ||¢|| < € + ||¢(a)]]. Now choose & € H with |&]] = 1 and

lp(a)l| < &+ [l¢p(a)¢]l. Then
6] < 2 + [|p(a)é] = 26 + [V 7(a)VE| = 26 + (V*n(a")VV 1 (a)VE, )2

<2+ VIV r(a*a)VE 2 = 26 + |V (n(a”a)VE, VE) /2
<2+ [Vl Im(a*a)|? [VE| < 22+ V2.
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As € was arbitrary we get the reverse inequality and then ||V|? = ||]|.

(13.2.14) Let ® : A — B be a linear map. Let v : B — B(H) be a
faithful representation and H = @j ‘H; a decomposition of H
such that v(B)H,; C #H;. Show that ® is completely positive if
and only if each restriction P;(y o ®)P; is completely positive,
where P; : H — H; is the canonical projection.

Answer. If ® is completely positive, then Pj(y o ®)P; is completely positive
since it is a composition of completely positive maps.
Conversely, suppose that P;(y o ®)P; is completely positive for each j.
Fix ay,...,a, € Aand &, ... &, € H. For each &, we have (since the P; are
pairwise orthogonal projections) a decomposition &, = Zj Pj&j,. Then (note
that v(®(a))P; = Pjy(®(a)) for all a € A)
n

> (v(@(aar)ér&n) =Y Z ®(aj,ar)) Piéx, Pyén)

k,h=1 g, k,h=1

=57 % (Py(@(afan)) Pitr, €n)

9,J k,h=1

=3 3 (P(@(ahar)) P, )

J kh=1

= Z Z (Pjy(®(apar)) Piér, &) > 0

j kh=1
By Lemma 13.2.10 ¢ o ® is completely positive, and then @ is completely

positive since 77! is.

(13.2.15) Show that the transpose map ¢r : Ma(C) — Ms(C) is positive,
unital, and contractive.

Answer. We have ¢ (A*A) = (A*A)T = (AT)*AT >0, so ¢r is positive.
We have ¢ (1) = I} = I, so ¢ is unital.
As for the norm,

lor(A)|* = ATI® = (AT (AT = (A" A) Tl = [[A"Al| = [|A]*.
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(13.2.16) Work out the missing details in Example 13.2.20. Namely,
show that the matrix inside ¢§? ) is positive, while its image is
not positive.

Answer. Let
1

1 00
A=10 0 0 0
0 0 0 0Odirbo 0 0 1
As A is real and symmetric, it is selfadjoint. Also, A? = 24, so A =
(A/v/2)? > 0. Or, we deduce from A% = 24 that o(A) = {0, 2}.
The other matrix is

0

0

B=¢P = .
0

OO O
oo~ O

0
0
0
1

—(

One can compute directly that B(es — e3) = —(ea — e3), which shows that

—1 € o(B). Hence B is not positive.

(13.2.17) Let ¢ : A — B(H) be contractive and completely positive with
minimal Stinespring triple (, IC, V). Use ideas from the proof
of Lemma 13.2.37, to show there exists a *-homomorphism
p:p(A) = m(A) C B(K) that satisfies

w(a)T = V*r(a)p(T)V, a€eA, TepA).

Answer. Given T € ¢(A)" we define for a € A and £ € H
p(T)m(a)VE = m(a)VTE

and extended by linearity. If we get that p(T) is well-defined and bounded,
then

(M) (a)VE = m(a) VT ToE = p(Th)7(a)VTaé = p(Th)p(Ta)7(a)VE,
and
(p(T")m(a)VE,w(0)Vn = (m(a)VT™E,w(b)Vn) = (& TV m(a) m(b)Vn)
= (&, Tp(a"b)n) = (& w(a”0)Tn)
= (m(@)VE m(b)VTn) = (w(a)VE, p(T)m(b)Vn)
= (p(T) 7 (a)VE m(b)Vn).

As this can be done for all a,b € A and all £, € H these equalities survive
sums, and so p(T*) = p(T). Now we check that p(T') is well-defined and
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bounded. We have

o) ( Ertavrs)

2

> o m(a)VTE

2 ‘
J

= Z<T*V*’/T(a;ak)vT5k7 &)
k,j

= (T p(ajar)Tér, &) = (1) ™ (A" A)TE,E)
k,j

— ((p(m)(A*A)l/Q (T)*T@(m) (A*A)1/2£7 £>

2
< TN (™ (A A)E,E) = 1T || D w(a)VE

J
where A = [a1 -+ am], £ = (& - &), and T € My, (¢(A)) is the
matrix with 7" in the diagonal and zeros elsewhere.
Hence p extends uniquely to an operator p(T') € B(K), and from

p(T)m(a) (b)) VE = p(T)m(ab)VE = m(ab)VTE = w(a) m(b)VTE
=m(a)p(T) m(H)VE,
we conclude that p(T) € w(A)".

}T

(13.2.18) Let X € M,(A)". Show that if Xy, = 0 for some k, then
ij :Xjk =0 for alljzl,...,n.

Answer. Since X is positive, we have X = Y*Y for some Y € M,,(A). Then

n

0= Xp =Y (V) Yie =Y VYo = )|Vl
j=1 j=1

j=1
It follows that Y, =0 for all j =1,...,n. Now, for any j,

Xy = Z@ij =0.

=1
And here is a different argument:

1 Xj] = [(Xew, e5]) < | Xexl llesl| < [ X2 | X 2ex])
= | X2 (Xex, ex) = || X/?|| Xy = 0.

In both cases, we have Xj; = ?, so it is enough to show that one of them
is zero.
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(13.2.19) Let [; Z] € My(A) with {8 8} < L/l‘ ?4 < {ng 8]
Show that y = z = 0. Use the same idea to conclude that if
X € My(A) and 0 < X < I4 ® Egg, then X = a ® Eyy, for
some a € A.

Answer. The second inequality is

Ta y] > 0.

The 2,2 entry gives that —z > 0, while the first inequality 8 8} < Lj; ﬂ

gives z > 0. Thus z = 0 and now Exercise 13.2.18 gives us y = 0.
For X € M,(A), the idea is the same. We write X =37, ,2x; ® Ey;.
Then, for any h,
(€, &) = (X(E® &), E®&p) > 0,
so xpn, > 0. We also have, for any € € H and h # k,

0 <((Ia® Epr, — X)(E®&R), (€@ &n) = —(xnné, &),

so —xpp > 0. It follows that xp, = 0 for all h # k. Now we can repeat the
argument as in Exercise 13.2.18: for £ € H with [|£]| = 1,

(zin,m) = (X(E® &), ER &) < IXEQ]? = (XP(E® &), E® &)

< I XIHX(E @ &n), & @ &n) = I X {znn, &) = 0.

Then z;, = 0 for all h # k and all j. Since X* = X, we also get zp; = 0.
Thus only zy is possibly nonzero, and then X = xy; ® Eg.

(13.2.20) Let ¢ : A — B(H) be unital and 2-positive. Show that ¢ is
bounded and ||¢|| = 1.

Answer. Fix a € A with |a|| = 1. Then a*a < I and, using Kadison’s
Schwarz inequality (13.8),

le(a)|* = llé(a)*da)ll < o(a”a)| < llo(D)] = 1] = 1.
Thus, ¢ is bounded and ||¢|| < 1. As I = ¢(I), we have ||¢] = 1.
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(138.2.21) Let A be a non-unital C*-algebra and f € S(A) pure. Show
that the unique extension f of f to A (which exists by Propo-
sition 11.5.6) is pure.

Answer. By Proposition 13.2.41 it is enough to show that f is extreme.
Suppose that f = tg + (1 — t)h for g,h € S(A) and t € [0,1]. By restriction
to A and the fact that f is pure, we get that g|4 = h|4 = f. Then g(a, ) =
g(a,0)+ X = f(a) + X = f(a, ), and similarly for h. Thus g = h = f, and so

f is pure.

(13.2.22) Show that, using the matrix units { E4; } as the basis of M, (C),
the basis can be ordered in such a way that the matrix repre-
sentation of the multiplication operator Mx : Y —— XY is
X®I,.

Answer. The (n? x n?) matrix of M is obtained via the equation
XEy;= ZXk,j,h,ZEhé~ (AB.13.1)
ht
As X = Zh ¢ Xn,eEne, we obtain

XEy, = ZXMEM. (AB.13.2)
h

Comparing (AB.13.1) with (AB.13.2), we get
Xrjhe = 05,0 Xn -

So if we see the matrix of My as a block matrix with the blocks indexed by
j,¢, we will have a copy of X in each diagonal block: Mx ~ X ® I,,.

To visualize this more concretely, consider the case n = 2. We identify
M, (C) with C* by

Y
Yo
Y +— ,
Yio
Yoo
and then Y —— XY is achieved by
Y
X 0| |Yo
0 X| |Yio

Yoo
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(13.2.23) Let {¢,;} C CP(S, B(H)) be a bounded net. Show that gb]
if and only if (¢;(z)&, &) = (o(x)§, &) for all € € H and z € S.

Answer. Let ¢ > 0 with ||¢;| < ¢ for all j.

Suppose first that ¢; W, and & € H. Let P be the rank-one projection
with P¢ = £. Then

(0j(2), ) = Tr(Pyp;(z) P) = Tr(Pg;(z)) = Tr(Pe(z)) = (p(2), §).
Conversely, if (¢;(x)E, &) — (d(x)E, &) for all £ then using polarization we
get that (¢;(x)§,n) — (é(x)§,n) for all £,n € H. From this we get that
lo(z)]| < cl|z], and that Tr(Sy,(x)) = Tr(Sy(x)) for all finite-rank S. Given
79t

)
S € T(H), by Proposition 10.7.9 there exist finite-rank operators {S,} with
IS — Snll1 — 0. Then

| Tr(S(p;(x) — @(@)))] < | Te(Snlp; (@) — (@) + 1S = Sully [lp; () — (@)
< Te(Sn(pj(x) — (@) + 2] |S = Sl

Then limsup; | Tr(S(p;(z) — ¢(x)))] < 2¢||z[/[|S — Snlli. As we can do this
for all n, the limsup is zero, showing that the limit exists and is zero.

(13.2.24) Let P € B(#) be a finite-rank projection, n = Tr(P). Show
that PB(H)P ~ M, (C) as C*-algebras.

Answer. Since P has rank n, there exist n pairwise orthogonal rank-one
projections Pi,..., P, with >°, P; = P. Let {{;} C H unit vectors with
P;¢; = & (hence orthonormal) and put Vi;§ = (£,&;)&. Then (Vy,)*Vi; =
Pj, ‘/717‘/1? = P1~ If we define

Vii = Vi Vag,

we get a system of matrix units. Let p : M, (C) — PB(#H)P be given by
p(Exj) = Vi; and extended by linearity. The matrix unit properties guarantee
that p is a *-homomorphism. As M,,(C) is simple, p is injective. Now given
T € PB(H)P, we have

VikTVji€ = (&, &) (T, &) & = (T€5, &) Pi€.
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Then

T=PTP=> BTP =Y Vii(VieTVj1)Vi
k.j k,j

=Y PTP = (T&,&) VinPVi,

k,j k,j
= (T&, &) Vij = p(Z<T§ja§k> Ek:j)-
k.j k,j
So p is surjective, and therefore a #-isomorphism.

(13.2.25) Show that the composition of cp maps is cp. ]

Answer. This is simply the observation that (o o)™ = (™ o (™),

(13.2.26) Show that if A € M,(S), i.e. A = Z};’jzlakj ® Ey; with
ar; € S for all k, j, then [|A| < 32, ; [lak;]l-

Answer. We have ||A] < szzl llak; @ Ey;ll. And, given any & € H",
(ar; @ Eij)Ell = llars&ill < llarsll 16511 < llan; |l I]-

(13.2.27) Let A be a non-unital C*-algebra and ¢ € S(A) a pure state.
Show that the extension ¢ to A (Proposition 11.5.6) is pure.

Answer. By Proposition 13.2.41 we need to show that ¢ is extreme. Sup-
pose that ¢ = top, + (1 — t)’(/NJQ for t € [0,1] and 1,1 € A* positive with
le1] < 1 and [|1h2] < 1 (that any state in A is an extension of a positive
linear functional is guarantees by the uniqueness in Proposition 11.5.6). The
restrictions to A then satisfy ¢ =ty + (1 —t)yo. With {e;} an approximate
unit for A, by Proposition 11.5.4

L= llgll = limple;) = limtwa (e;) + (1 = )in(e;)

=tleall+ (A=)l <1+1-t =1



570

CHAPTER 13

As |1l < 1 and [J12]] < 1, the only way the equality can hold is if |11 =
2]l = 1, so 1,2 € S(A). As ¢ is extreme, 1 = ¥2 = ¢, and then
@ =11 =Yy and ¢ is extreme. By Proposition 13.2.41, ¢ is pure.

(13.2.28) Let A be a C*-algebra and ¢ : A — B(H) a contractive com-
pletely positive map. Show that ¢ admits a unique ucp exten-
sion to the unitization A.

Answer. The extension should necessarily be @(a,\) = ¢(a) + Ap(0,1) =
p(a) + A Iy since ¢ is required to be unital. So the only task ahead is to
show that ¢ is cp. Let ¢ = V*7V be a minimal Stinespring dilation, with
m: A— B(K) a representation and V : K — H linear and bounded. Since ¢
is contractive, we have ||V = ||¢[|'/? < 1. Let Z = Iy; — V*V > 0. We have

B(a,\) = V*r(a)V + AV*V + A\Z = V*(n(a) + M)V + AZ.

As conjugating with V' is ¢p and the map (a,\) — AZ is cp (being of the
form “state times fixed operator”) and the sum of c¢p maps is cp, it only
remains to show that we can extend representations to the unitization. This
was done in Exercise 11.6.10.

(13.2.29) Let A = M, (C), and B the diagonal subalgebra. Show that the
map A — diag(Ai1,...,Any) is a conditional expectation.

Answer. Denoting the map by £, we have
g(A + )\B) = diag(A11 + )\Blla ey Ann + )\Bnn)
= diag(All, . »Ann) + /\diag(Bll, . ,Bnn)

If B is already diagonal, the diagonal of AB is diag(A11Bi1, - - -, ApnBnn). S0
E(AB) = £(A)B, and the other side is similar. The positivity of £ is the fact
that the diagonal of a positive matrix is positive, namely Ay, = ej Ae, > 0.

(13.2.30) Let A be a unital C*-algebra and ¢ € A* a positive linear func-
tional. Show that a — ¢(a) I4 is a conditional expectation
onto C 1 4.

Answer. The linearity and positivity are those of ¢. If b = A4 € B, then
w(ab)I4 = (p(a)I4)A = (¢(a)l4)b. So the map is B-linear.
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(13.2.31) Write a direct proof of (ii) = (i) in Proposition 13.2.68.

Answer. Since £ satisfies equation: Kadison’s Inequality, it is positive. It
remains to show that £(ba) = bE(a) for all a € A, b € B (the equality to
the other side can be obtained by taking adjoints). We have £(b)*E(b) =
b*b = £(b*b). The proof of Theorem 13.2.29 only uses the 2-positive to have
access to Kadison’s Schwarz inequality, which is a hypothesis here. Hence the
proof applies, and b is in the multiplicative domain of £. This means that

£(ba) = E(b)E(a) = bE(a).

(13.2.32) Show that the map £ from Example 13.2.70 is a faithful normal
conditional expectation.

Answer. For each T' € B(H), we have F;TF; = A ;F}; for some Ap; € C
(due to the minimality of Fj, and [Ar;| < [[T]|. So the series ), F;TF}
converges sot since the F} are pairwise orthogonal. So £ : B(H) — A is a
linear map, and HE(T)H =sup{||F;TF;| : j} <||T||. And if A € A, then

ZFJAF ZAF Al = A

hence £ is a projection of norm 1 and thus a conditional expectation by
Proposition 13.2.68.

It £(T*T) = 0, then }°; F;TF; = 0. Compressing with a single F; we

get
0=F,T*F; = (TF;)"TF},
so TF;j =0. Then T =TI =3 ;TF; =0 and € is faithful.

Finally, normality. Fix ¢ € S(A) a normal state. The maps T —
@(F;TF;) are normal for each j (since trace-class operators form an ideal).
Sums of normal maps are normal, and so are limits by Exercise 12.7.1; then
o & is normal. As this can be done for all normal ¢, £ is normal.

(13.2.33) Show that if on £*°(Z) we consider the states

N
1
en(a) = IN+1 ; a(n).
and ¢ is a weak*-accumulation point {¢n}y, then ¢ is an
invariant mean. That is, if b(n) = a(n + m) for all n (that is,
b is a translate of a), show that ¢(b) = ¢(a).
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Answer. Let {N;} be a net of integers such that ¢y, — ¢ pointwise. We
have

N;

Z a(n+m) —b(n)

n:—Nj

1

< —
—2N+1 Z a(n +m) — b(n))|
1 —Nj—l Nj
== (D YO RS SN 0l)
J n:—Nj—m n:Nj—m+1
2mllalloo
< .
- 2Nj+1 —0

Therefore ¢(b) = ¢(a).

13.3. Group Algebras

(13.3.1) Prove Proposition 13.3.2.

Answer. Given v € Hg, since G is a group
IMVZ =D (g ' h)? = Z ()P = [l
heG
This shows that A(g) is an isometry. The hnearlty is automatic since A(g)
acts inside of v. Namely,
(A@)an +72))(h) = (am +12)(g7 h) = an(g™ h) +72(9~ " h)

= (aA(g)1)(h) + (Ag)r2) ().
So A(g) € B(Hg). We have
(Agh)7) (k) =((gh) "' k) = v(h~ g™ k) = (A(h)7) (97" k) = (Mg)A(h)7) (k)
for all g,h,k € G, so A(gh) = A(g)A(h). As M) = Iy, and every g is
invertible in G, we get that A(g) is invertible with inverse A(¢g~1) (no need

for theorems here, as A(g~!) is a bounded operator). So A(g) is a surjective
isometry and hence a unitary.
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We have, for all g, h, k € G,

(M(9)dn)(k) = 0n(g™"k) = dgn (k).
Hence A(g)dy, = dgh.

(13.3.2) Prove Proposition 13.3.4.

Answer. Given v € Hg, since G is a group
o)V I* = Iv(hg)|? = Z ()P = |
hea
This shows that p(g) is an isometry. The hnearlty is automatic since p(g)
acts inside of . Namely,
(p(9)(am +12)) (h) = (a1 +12)(hg) = avi(hg) + y2(hg)

= (ap(g)1)(h) + (p(g)72)(h)-
So p(g) € B(H¢). We have

(p(gh)7) (k) = ~(kgh) = (p(h)7)(kg) = (p(g)p(h)7) (k)
for all g,h,k € G, so p(gh) = p(g)p(h). As p(e) = Iy, and every g is
invertible in G, we get that p(g) is invertible with inverse p(¢g~!) (no need
for theorems here, as p(g~!) is a bounded operator). So p(g) is a surjective

isometry and hence a unitary.
We have, for all g, h, k € G,

(p(9)0n) (k) = dn(kg) = dng—1 (k).
Hence p(g)ds = 6hg™?

(13.3.3) Let z € C{(G) and y € C}(G). Show that zy = yx.

Answer. We have

ANg)p(h)dk = dgpn—1 = p(h)A(g)0k.
By linearity and continuity, zydy, = yzdy for all £ € G. Then linearity and
continuity again gives us zy = y=.

(13.3.4) Let J be given by (Jﬁ)( ) =&(g71). Show that J € B(Hcg) is
a unitary and JA(g)J = p(g) for all g € G.
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Answer. Given £ € Hg,

(JM9)TE)(h) = (M) T (h™) = (JE (g~ 'h™") = &(hg) = (p(9)€) (h)
for all g,h € G. Then JA(g9)J = p(g). The fact that J is a unitary follows
from J? = I3, and || JE|| = ||€]|, since g — g~ is a bijection on G.

(13.3.5) Let G be a discrete group, ¢ € ¢?(G) with the property that
cxmn € L2(G) for all n € (2(G), and T : £*(G) — (*(G) the
operator T = ¢ * 7. Use the Closed Graph Theorem to show
that T is bounded.

Answer.  We want to use the Closed Graph Theorem (6.3.12) and Exer-
cise 6.3.9.
Suppose that 1, — 0 and cxn, — £. Since ||[c*nu|leo < llc)l2]|nll2 — 0,

we have that c * 1, — 0 pointwise. Now Proposition 7.1.20 implies that
cxn, — 0,80 &=0.

(13.3.6) Let ¢, € ¢*(G), F C G and Pr € B({*(GQ)) the projection
(Pr€)(9) = 1r(g)&(g). Show that (Ppc) *n = cx (Pp-147).

Answer. We have, for each g € G,

[(Pre)+n](9) = Y (Pre)(h)n(h~"g) = D e(h)n(h~"g)

heG heF

= > clgkTnlk) = c(gh™") (Prorgn)(k)
keF—1g keG

=Y c(h) (Pp-ign)(h™g) = [cx (Pp-140)] (9)-
heG

(13.3.7) For each g € G let P, be the orthogonal projection onto Cd,.
Show that

AMg)PeA(g)" = Py, and  p(g) Pep(g)" = Py-1.

Answer. To avoid confusion with the canonical basis, we use the notation

1, a=b
0(a,b) =
0, a#b
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We have
p(9) Pe p(9)* 65 = p(g) Pe pg~")8s = 0(s,97") p(g) Pe e
=6(s,97") 0y-1 = Py1ds.

So P, and p(g)P.p(g)* agree on each element of the canonical basis and are
thus equal. The other equality is similar.

(13.3.8) Show that the tracial state 7 is faithful on L(G).

Answer. We need to show that 7(£* x£) = 0 implies that £ = 0. The adjoint
of { =3, ¢4, as an element of L(G) is given by

€= by =D Fbyr =) 010y
g g g

Then
9)=>_&mEh T g) =Y ghNgh!
Hence " "
(€ % 8) = ((€" % €)de, 0c) = (€ %) (e) = Y (W Dg(h™1) =D lE(n)*.
h h

Therefore, if 7(£* x &) = 0, then £(h) = 0 for all h; that is, £ = 0 and 7 is
faithful.

(13.3.9) Write an alternate proof of (13.17) by writing each coordinate
of T'n.

Answer. For g € G, we have

(T'n)(g) = (T, 4, Zah T6n,00) =Y an Y cx(0kn,dg
h k
= Zahcghq = Zchahflg.
h h

(13.3.10) Let G be a discrete group. The full C*-algebra of G is the
completion C*(G) of CG via the norm

|5 ol = {lo( S| <}
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where R, is the set of xrepresentations o : CG — (2(S,,)
where each S, is a set of cardinality n for each n < |G| (these
convoluted choice guarantees that the set of representations is
actually a set). Show that C*A(G) and C}(G) are quotients of
C*(@G).

Answer. By definition of the norm on C*(G), we have ||z||x < || for all
z € CG. So the identity map CG — CG, with |- || in the domain and || - || in
the codomain, is bounded. So we get a *-homomorphism 3 : C*(G) — C5(G)
with dense range (hence surjective).

The argument for C;(G) runs the same.

(13.3.11) Let G be a discrete group and T' € B(¢?(G)). Show that T €
L(G) if and only if T is “Toeplitz”, in the sense that diagonals
are constant, meaning that

(T'hg,0g) = Ty,ng = Tieynk = (TOnk»On), g,k h €G.
(13.3)

Answer. We know that L(G) = A(G)”. So there exists a net {T;} C
span A(G) with T} =Y T. As the equality (13.3) survives wot limits, it
is enough to show that T € span A(G) has the property, and by linearity it is
enough to show it for A(h) for a fixed h € G. We have

(A(h)dg,0rg) = (Ongs Org) = (Onk, Ork) = (A(R)0k, Ori),

since the left inner product will be 1 or 0 depending on whether h = r, and
the same with the right one.
For the converse, suppose that T satisfies (13.3). Fix k € G. We have

<Tp(k)>5g,5h> = (T69k71,6h> = <T6gk*176(hkg*1)gk’*1> = <T(Sg76(hkg*1)g>
= (Tdg,0ni) = (Tdg, p(k™ 1)) = {p(k)Tdg, n).
It follows that T € p(G)" = L(G).
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13.4. Topological Tensor Products

(13.4.1) Let H,K be Hilbert spaces with orthonormal bases {¢;} and
{nk}, respectively. Show that {{; ®n} is an orthonormal basis
for H® K.

Answer. We have

(& @M, & @ns) = (&5 &) s M) = 0,10k

so the family {£; ® ni} is orthonormal. We also have span{{; ® ny : k,j} =
H ® K is dense in H ® K, so {&; @ ni} is an orthonormal basis.

(13.4.2) Prove Corollary 13.1.9.

Answer. Via Theorem 13.1.6 we define ¢ X ¢p = Tp, where b: ¥ @ Y — A
is the bilinear form b(z,y) = p(z)¥(y). ¥ L : X ® Y — A is linear and
L(z®y) = ¢(z)yY(y) for all x € X and y € Y, the bilinear form induced by L
isbr(z,y) = L(z®y) = p(z)Y(y) agrees with b, and so L =Ty, = Tp, = o x).

In the case where X',) are algebras and ¢, homomorphisms with
commuting ranges, due to the linearity we only have to show multiplicativity
on elementary tensors. We have

(o x ) ((x1 @ y1)(®2 @ y2)) = (¢ X Y) (2122 @ Y1Y2)

= (z122)Y(y192)

= p(21)p(22)Y (y1)Y (y2)

= (@)Y (y1)e(@2)Y(y2)

= (e x¥)(x1 ®y1) (¢ X ¥)(s2 @ y2).-

(13.4.3) Prove the isomorphisms (13.20).
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Answer. With the notation from Lemma 13.4.3,let T: H®K — P, x H
be I'(§) = @, Cx. Let lemma gives us that I' is well-defined and injective.
The linearity of I' can be obtained either by looking at the definition of (j,

or out of the uniqueness of the (;. Given ( = @, € P, H we have

> 16kl < oo. Then
fir(ZCk ®77k>-
%

Thus I' is a linear bijection. It remains to check that it preserves the inner
product. For this by polarization it is enough to check that it preserves norms;

and
<F(;Ck®nk)7r(z];@®nk)> = <@Cb€?€k> sz:HCkH2
= <§k:Ck ®?7k,§k:Ck®77k>-

The second isomorphism is proven in the same manner, with the roles of H
and C exchanged.

(13.4.4) Show that the tensor product of operators obeys the same
arithmetic rules as the elementary tensors of vectors, as in
Proposition 13.1.2.

Answer. The properties follow directly from the corresponding properties of
vectors. For instance,

(M +T)®8)(E@n) = (11 + To)E ® S = Tié ® Sy + Tré ® S

=(MoS+Th®S)(E@n).
By linearity and continuity we get (11 +72) @S =T1 S+ Th ® S.

(13.4.5) Let M C B(K) be a von Neumann algebra and H a Hilbert
space. Fix an orthonormal basis {);},;cs and consider the asso-
ciated matrix units {FE};}. Show that for each T € M & B(H)
there exist unique operators {Ty;} C M such that

T = ZTkj X Ekj,
k.j

where the series converges sot.
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Answer.

Let v : M —= (Ix ® E11)(M ® B(H))(Ix ® Eq1) be given by ~(T') =
T ® Fq1. Since Ej; is projection, it is straightforward to check that v is a
s-homomorphism. It is injective by Proposition 13.1.3. And if T € (Ix ®
E11))(M® B(H))(Ix ® E11), positive, define a form on K by

[5; V] = <T(§ oy nl)a 5 & 771>'
This form is sequilinear and positive, so by Proposition 10.1.5 there exists
T € B(H) with [§,v] = (T¢,v). Let S € M’. Then S® Iy € (M @ B(H))'.
We have

(TS€,v) =[S, v] = (T(S & In) (€ ©m), v @ m)
(S® L)T(E@m),ven)
T(E®m), S v@mn)

= [6, "] = (T¢, S™v) = (ST¢,v).

As this can be done for all £,v € K, we have that ST = TS. Thus T € M" =
M. By construction, y(T) = T ® Ey; = (Ix ® F11)T(Ix @ E1p) = T. So, as
any C*-algebra is spanned by its positive elements, v is surjective, hence a
bijection.

Fix T € M&B(H). For each k,j € J, let Tyj = v~ ((Ix ® E1)T (Ix ®
Ej1)). By Lemma 13.4.3 for each £ € K there exist unique vectors {¢;} C K

such that
€= G@m
k

=
=
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and >, |Gk |? = |I€]|?. Fix F C J, finite. Then
Z (Thj ® Ekj)§ = Z Z TyjCr @ Eggny = Z ThiC @ N

kjeF T kjeF kjEF

= > (T; ® Exx) (¢ © mi)
kjEF

= z (Ix ® Er1)(Tk; @ E11)(Ix ® E1x) (¢ @ n)
kjeF

= Z (Ix ® Ex1)(Ix @ Bi)T(Ix @ Ej1) (¢ @ m1)
k.jEF

= > (k@ Ew)T(¢ @ny)
kjEF

= Y Uk @ Eu)T(Ix ® Ej))(¢ ©n))
kjEF

= Z Z (Ic ® Ey)T(Ix ® Ej;)) (G @ )
k.jer r

= Ik ® PF)T(IIC ® Pr)§.

Now, with a similar argument as that in Exercise 10.6.9,

> (Thy @ By )é - T¢.
k,jeF

(13.4.6) Let M C B(H) be a von Neumann algebra and {Ey;}x jes C
M matrix units such that ), Ey = Ir (with the series con-
verging sot). Fix jo € J and let P = Ej, ;,. Show that there
exists a Hilbert space K such that M ~ PMP®B(K) (we take
as assumed knowledge that PMP C B(PH) is a von Neumann
algebra; this will be proven in Proposition 14.1.1).

Answer. Let N'= PMP, let K = ¢*(J), and let {Gg; }r jes the matrix units
corresponding to the canonical basis. By Exercise 13.4.5 we know that any
T € N ® B(K) can be written in the form

T = ZTkj ® G
k,j
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for certain operators {Tj;} C N. Let W : PH ® ¢%(J) — H be given by
Wf12243@3%444>§:l%ﬂbgn
J J
where we are using Lemma 13.4.3to write the elements of PH ® ¢2(.J). The

uniqueness in the lemma makes W well-defined. It is clearly linear, for all
the algebra occurs on the side of the (;. It is surjective, for given £ € H we

have
= ZEJg Z 5.do Ejo.i€ = W(Z jo,j§®5j).

And (using the contlnulty of the inner product to exchange with the series)

HW(ZCj ®5-7')H2 = H Y EiinG g > (Ej.30Cis Bk joCr)
J j k,j

V)

= (EjoxEijoGirCk) = Y (Ejo.joCin &) = D IG I
j

k,j J

2
=[Xoea]-
J
So W is a unitary. Let I' : N @ B(K) — M be given by

F( Z Th; ® ij) = ZEk,joTkjEjmj7

kjeF k,j

where I’ € J is some finite subset.

First thing is to check that this makes sense, which is to say that
the series converges and it belongs to M. Let F' C J be finite. Let T =
> okjer Tki © Gy € N @ B(K). Then, with Pr = ZjeF E;jand £ € H,

£= Z Bk o Thj Ejo 5 ZEJO Jo,r

kjEF
S b Bt B (S0 )
kjEF kEF jeF
— W( > ( > Ty Ejo,jf) ® 5k)
kel jeF
= W( Z ( Z T; Ejo}jﬁ) ® ij5j>
keF jeF

= (ZTk3®GkJZEJor§®5>

k,jeF
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Since £ = W( > EigrE® 5T) and W is a unitary, we conclude that

> BTy =W ( S Ty @ Gig )W, (AB.13.3)
k,jeF k,jeF

As the series on the right converges sot, so does the series on the left. This
also shows that I" is a normal *-monomorphism and that its range lies in M.
And given T' € M, we have

T= Z EwTE;; = Z Ekjo (EjoxTEjjy) Ejo.j-
k,j k,j

Looking at (AB.13.3) but with W* and W on the left-hand-side we see that
>k BjokTEj jo ® Gij is bounded with Ej, xTEj;, € N for all k,j. Hence
I" is surjective.

(13.4.7) Let H1, Hz be Hilbert spaces. Show that
/C(H1 ® 7‘[2) = /C(?‘h) X /C(Hg)

Answer. By Proposition 10.6.4 and Proposition 10.6.1 it is enough to show
that if T € B(H1 ® Hs) is rank-one, then T' € K(H1) @ K(Hz). Suppose then
that T = &i* for €,7 € Hq @ Ho and fix € > 0. There exist &, € Hq @ Ha
with ||€ — &|| < € and ||77 — n|| < &. Then

1T = &)l < € = vl + 1@ —n) vl < e(lall + €]l +¢) ]

Thus we may assume without loss of generality that T' = &n* for &,n €
Hi ® Ha. And now

m n

T = (Zﬁl,k ® 52,k) (Zm,k ® 772,k-)
k=1 k=1
= Guwni; @ &uns; € K(H1) ® K(Ha).
k,j
(13.4.8) Let S € T(H), T € T(K). Show that S®T € T(H ® K). ]

Answer. Fix orthonormal basis {{;} and {n} for # and K. We know from
Exercise 13.4.1 that {£; ® ni} is an orthonormal basis for H ® K. We have
|S®@T|=|S|®|T], since |S| ® |T| > 0 and

(S|@ TN =|SP@|T?=858*SeT*T=(S@T) (S T).
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Then
Tr(S@ T)) = > (151 @ TN @), & @ i)
k.j
= ({IS1&. &) (Tne, k) = Tr(|S]) Tr(|T]) < o0
k,j

(no issues with summation order by Tonelli, since everything is non-negative).
So ST eT(HK).

(13.4.9) Let H1,H2, Hs be Hilbert spaces. Show that
(7‘[1 ® 7‘[2) @Hg ~ Hy ® (7‘[2 @%3)

canonically.

Answer. We know from Proposition 13.1.7 that the linear map U : (H; ®
Ho) @ H3 ~ H1 @ (Ha ® H3) induced by

U:(§@n)@v—Eahav)
is well-defined. And since
(Ul(&r @m) @], U[(§2 @ n2) @ va]) = (&1 ® (m @ 11), &2 @ (12 ® v2))
= (£1,&2) (M @ v1,m2 @ 1)
= (&1, &2) (1, m2) (v1,v2)
= ((&1@m) @, (&2 @) @),

together with the linearity of U this shows that U is isometric. Taking limits,
U extends first to an isometry

(H1 ®@Ha) @ Hz ~ H1 @ (Ha2 ® Hs),
and then to an isometry
(H1 ®Ha) @ Hz ~ H1 ® (Ha @ Hs).

As it has dense range, U is a unitary.

(13.4.10) Let H be an infinite-dimensional Hilbert space, and n € N.
Show that M, (C) @ B(H) = M,(C) ® B(H) ~ B(H) as von
Neumann algebras.

Answer. We discussed at the beginning of Section 11.7 how M, (M) is
complete. And M, (M) ~ M, (C) ® M canonically by Exercise 13.1.5. Thus
M, (C) ® B(H) is complete and therefore equal to M, (C) ® B(H).
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As dim H = oo, we can split an orthonormal basis into n sets of equal
cardinality, and this way we induce a unitary U : H — @;_, H. Then
B(H) ~ B(®;_, *), so we have reduced the problem to showing that

B(EDH) ~ M, (B(H)).
k=1

We can achieve this by naturally interpreting a matrix in M, (B(#)) as an
operator on @, H; this was done at the beginning of Section 11.7.

(13.4.11) Let My, C B(Hy), k = 1,2, 3, be von Neumann algebras. Show
that there is a canonical isomorphism

(Ml @Mz) @Mz~ M ® (Mz ® ./\/lg)

Answer. We know from Exercise 13.4.9 that the underlying tensor product
of Hilber spaces behaves the right way. The unitary that implements the
isomorphism at the level of Hilbert spaces then gives

U @Ty) @ T3|U* =Ty @ (T, ® Ts)

and the same for any linear combination of such operators. As unitary con-
jugation is as continuous as any map in a von Neumann algebra will ever be,
it extends to the closures and so

UMy ® M) 8 Ms|U* = My & (My B Ms).

(13.4.12) Let H, K be separable infinite-dimensional Hilbert spaces. Show
that the subalgebras
K:(H) ®min IC(IC), K:(H) ®min B(K)a
and
B(H) ®min ’C(IC)
are three distinct ideals of B(H) ®min B(K).

Answer. Let ¢ € S(B(H)) and + € S(B(K)) such that ¢|x) = 0 and
Y|y = 0. These exist because we can apply Corollary 11.5.8 to the Calkin
algebra B(H)/K(H) to get a nonzero state ¢’, and then we define ¢ = ¢’ o g,
where ¢ : B(H) — B(H)/K(H) is the quotient map; and we do the similar
thing with .

By Corollary 13.4.21 we can consider the state ¢ X ¢ € S(B(H) ®min
B(()K). Let T € K(H) and S € K(K) be nonzero and positive. Then T®Ix €
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K(H) @min BIK), Iy ® S € B(H) @min K(K). Let also v € S(B(H)) and
0 € S(B(K)) be given by v(X) = Tr(WX), where W € T (H) is positive, with
r( ) = 1, and injective; and form p similarly. We have (v x ¢)(T® S) =0,

so by hnearity and continuity v X Y| ()@mmkc) = 0, while (v x ) (T®Ix) =

v(T) > 0. This shows that K(H) @min K(K) € K(H) Qmin B(K), and a similar

argument with ¢ and ¢ shows that C(H) Qmumin LK) € B(H) Qmin K(K).

Finally, v x 1 is nonzero on K(H) ®min B(K) but zero on B(H) @min K(K),

so these two are also distinct.

(13.4.13) Let 7 : A — B(H) a representation. In Definition 12.6.15 we
considered the amplification of 7 given by 7 : A — @ H.

keK
Show that there is a unitary U : @ H—->HQK, where K is a

keK
Hilbert space with dim K = |K|, such that # = U* (7 ® Ix)U.

Answer. We write @ H = H'EI convenience. Let K = (2(K). Given
~ keK
€ ={&} € #HIXI we define

U= & ey
kEK
This is linear because tensor products are linear on each component, and

IUE|1> = (UE,UE) = Y (¢ @ex,&5Re)

k,jeK

= > l&l® = l€1°.

keK
So U is an isometry. Given Ko C K finite and >, . & ®@ €5, € H® K, we
have ~
Y a®e;, =UE,
kEK,
where é(jk) = & for all kK € Ky. This shows that U has dense range; being
an isometry, it is surjective and hence a unitary. Now

(m(a) ® IIC)Ug = (m(a) ® Ix) ka Qe = ZW(G)fk ® ey
k

k

=U({r(a)ér}) = Unt(a)é.

This can be done for all EH!X1, so (7(a) @ Ix)U = U#(a). With U a unitary,
the equality @ = U*(7m ® Ixc)U holds.
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(13.4.14) Let H, K be Hilbert spaces and {P;}jec; C B(H), {Qr}rer C
B(K) increasing nets of projections. Show that {P; ® Qx} C
B(H ® K) is an increasing net of projections. And if P;§ — ¢
for all £ € H and Qgn — n for all n € K, then (P; ® Qx)v — v
foralv e HR K.

Answer. We have (P; ® Q)" (P; @ Q) = P P; @ Q1.Qk = Pj ® Qk, so they
are projections.

We order J x K by saying that (ji, k1) < (a2, ke) if j1 < jo and k1 < ko.

If j1 < jo and k1 < kg then P;, < Pj, and Qi, < Q,. Using Proposi-
tion 10.5.3 we have (Pj2 &® ka)(le &® le) =P,P; ® Qi Qr, = P ® Qk,,
so again by Proposition 10.5.3 we get Pj, ® Qr, > Pj, ® Qy, .

As for the limit,

(P ® Q)(§®n) —E@n| < (P @ Qr)(§ @n) — @ Qun|
+E@Qkn — @]
= 1P;¢ = &l Qunll + 1]l |Qxn — =
< Il 1856 = €l + €M1 Qwn = il —> 0.

When v = 37" | & ®n,, by linearity of the limit we obtain (P; @ Qr)v — v.
As P; ® Qi € B(H ® K) by Proposition 13.4.4, for arbitrary v € H ® K given
€ > 0 there exists vy € H @ K with ||[v — 1| < e. Then
(P © Qr)v — vl < [[(P; ® Qr)(v — vo)ll + |(P; @ Qu)ro — voll + [lvo — v||
< 26+ ||(P; ® Qi)vo — woll-
Thus
limsup ||[(P; ® Qr)v — || < 2e,
J.k

and as € was arbitrary this shows that the limit exists and is zero.

(13.4.15) Let A, B be C*-algebras. Use Proposition 13.1.4 to show that
the product and involution are well-defined.

Answer. Suppose that

dajebi=> a.®b,. (AB.13.4)
j=1 r=1
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By relabelling a,1; = —a’; and b, ; = b, we may write the above as

n+m

Z a; ®bj =0.
j=1

Then Proposition 13.1.4 gives us coefficients {~x;} such that

n+m n+m

> mjar =0, D by = br. (AB.13.5)
We want to show that
(Taon)(Sasa) - (Sden)(Xasd).
j=1 k=1 r=1 k=1

which expanded amounts to

n p m P
Z Zajck & bjdk = Z Za’rck X b;,dk.
j=1k=1 r=1k=1
Now
n p n p ntm
Za Cr & b dy, = ZZ Z VjsQjCk & bsdi,
j=1k=1 j=1k=1 s=1

3
+
3

Il
[7;
Eq\@
Ms

%baj)ck ® bgdy,

1

>
Il

s 1

1

+

n+m n+m

=- zp: ( Z 'Yjsaj)ck ® bsdy,

s=1 k=1 j=n+1

n

+

m n+m

Zajck ® ( Z Vs s)

j=n+1k=1

n+m p

Z Zajck ® bjdk

j=n+1k=1

m p
= Z Z a;ck ® blrdk.

r=1k=1

The same argument can be used for different presentations of ), ¢ ® dy,
and therefore the product does not depend on the presentation.

With the involution we can use a similar idea. If we have the equality
(AB.13.4), we can again relabel and use the relations (AB.13.5). We want to
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show that

n+m
Z a; ®b; =0.
J=1

We have

n+m n+m

> Axjaj =0, > Ay = bj.
k=1 j=1

Then, by Proposition 13.1.4,

n+m

Za}f@bjzo
j=1

as desired.

(13.4.16) Let A, B be C*-algebras. Show that the product on A ® B is
well-defined (use Theorem 13.1.6 and Corollary 13.1.8).

Answer. For each a € A consider the multiplication operator L, : A — A
given by left multiplication by a, and similarly we have L, : B — B. By
Corollary 13.1.8 there exists a linear map L, ® Ly : AQ B — A® B, with the
property that
(Lo ® Lp)(c® d) = ac ® bd.

If £ is the space of linear maps A ® B — A ® B, we can consider a bilinear
form ¢ : A x B — L given by ¢(a,b) = L, ® L,. By Theorem 13.1.6 there
exists a linear map M : A® B — L such that M(a ® b) = L, ® Lp. This
allows us to define, for z,y € A® B,

zy = (Mz)(y).
This is bilinear, for M is linear and the map Mz is linear. And, on elementary

tensors,
(M(a®b))(c®d) = (L, @ Lp)(c ® d) = ac @ bd.

(13.4.17) Let A, B,C be unital C*-algebras and 7: A®@ B — C a *-
homomorphism. Show that there exist *-homomorphisms 7 4 :
A — C and 7 : B — C, with commuting ranges, such that
T =T7TAXTH.
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Answer. Let mq(a) = w(a ® Ig), m5(b) = 7(I4 ® b). Then w4, 75 are
*-homomorphisms. We have
ma(a)mg(b) = m(a®@Ip)T(I4®b) = m(a®b) = T(Ia@b)w(a®Ip) = 7(b)T4(a),

so the ranges commute. Now Corollary 13.1.9 guarantees that m = w4 X 3.

(13.4.18) Let A, B be C*-algebras and 7 : A ® B — B(H) a representa-
tion. Fix a € A. Show that the map p: b+— w(a®b) is linear
and bounded. (Hint: for the bounded part, assume that a > 0
so that ¢ o p is positive for any state ¢, and use the Closed
Graph Theorem,)

Answer. We have
pb1 4+ Ab2) = m(a® (by + Ab2)) = m(a @ by + Aa ® ba)
= 7T(CL ® bl) + )\ﬂ'(a ® bQ) = p(bl) —+ )\p(bg)

So p is linear. To show that p is bounded, we can assume without loss of
generality that a > 0, for an arbitrary a is a linear combination of positives
and then p will be a linear combination of bounded. Suppose that b, — 0
and p(b,) = T. Let ¢ € S(B(#H)). We have, for b € B,

p(p(b*)) = p(m(a @ b*b)) = p(m(a'/? @ b)*m(a'/? @ b)) > 0.

So ¢ o p is a positive linear functional on B. By Proposition 11.5.4, p o p is
bounded. Then

¢(T) = p(lim p(by)) = ¢ 0 p(limb,) = 0.

As ¢ can be any state, it follows that T = 0 (by Corollary 11.5.8) and so p is
bounded.

(13.4.19) Let A, B be C*-algebras and 7 : A®B — B(H) a non-degenerate
representation. Show that there exist non-degenerate represen-
tations w4 : A — B(H) and 75 : B — B(#H), with commuting
ranges, such that m = w4 X mg. When 7 is faithful, so are m4
and 73.

(As opposed to Exercise 13.4.17, the algebras are not re-
quired to be unital, so a different method is required; use the
non-degeneracy to define w4 and mg on a dense subspace of H,
and use Exercise 13.4.18 when needed)
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Answer. Since m(A ® B)H is dense in H, we define
ﬂA(a)w( Z ar ® bk)§ = Z m(aag @ bg)E.
k

k
We need to check that this is well-defined and that m4(a) € B(H). Suppose

that

Z m(ar ® by)€ = Z 7(er ® dp)n.
k r

Let {es} be an approximate unit for B. Then, using Exercise 13.4.18,

WA(G)W(Z ap ® bk.)f = Zﬂ'(aak ®bk)E = liinZﬁ(aak ® epbi )€
k k Tk

= liﬁn m(a ® ep) Zk: m(ar @ by)

= hﬁn m(a ® ey) Z m(cr @ di)n

T

= 11?1 XT: m(ac, ® epdy)n = Z m(ac, ® di)n.

r

Thus 74(a) is well-defined and linear by construction. By Exercise 13.4.18
there exists ¢ > 0 with ||7(a ® e)|| < ¢ for all £. Then

“(a)w(;ak ® bk)gH = lim | m(a® e)) Y m(ar © bk)gH

k
W(Zak ®bk)§H
k

Hence 7 4(a) is bounded and by Proposition 6.1.9 it extends uniquely to an
operator m4(a) € B(H).

The definition and justification for 7z is entirely analogous. As for the
commuting ranges, that’s straightforward:

mal@)ms(6) (D areby )¢ = (Y mlaar@bby) )€ = ms(b)mata) (3 aebe )€,
k k k

<c

so mg(b)ma(a) and 74(a)wp(b) agree on a dense subset and are hence equal.
It remains to check that the representations are non-degenerate. Given an
approximate unit {e,} for B,

WB(ee)(Zak@)bk) = (Zak@)egbk) - (Z%@bk)-
k k &

Thus 7g(B)H is dense in H, and 7 is non-degenerate. A similar argument
establishes that w4 is non-degenerate.
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When 7 is faithful, if m4(a) = 0, then 7(a ® b) = w4(a)7s(b) = 0 for
all b € B. This implies that a ® b = 0 for all b € B and then a = 0. Hence 74
is faithful, and the argument for w4 is entirely analogous.

(13.4.20) Let A, B be C*-algebras and 7 : A®B — B(H) a non-degenerate
representation. Show that if {e,} and {f:} are approximate
units for A4 and B respectively, the representations w4 and 7
of Exercise 13.4.19 satisfy

ma(a) = lign m(a® fi), mg(b) = liinﬂ(es ® b),

where the limits are understood pointwise.

Answer. This was done more or less explicitly in the answer to Exer-
cise 13.4.19. Concretely, with pi(b) = m(aar ® b) and using Exercise 13.4.18,

m(a)w(;ak ®bk)§ _77(@®€Z)7T(;ak ®bk)§H
.
\

< 1€l exllbr — bre| - 0

k
For arbitrary n € H fix € > 0 and choose £ € H and {ar} C A, {bx} C B

with
H’r] — (Zak ®bk)fH <e.
k

> aa, @ (b — bkee))ﬁH
k

Z (b — bkez)EH
&
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Then, using that ||7(a ® e;)|| < c|le¢|| < ¢ by Exercise 13.4.18,

[ma(a)n —m(a® el

< Il o~ (S|

+ WA(a)w(Zak®bk)§—7T(a®eg)7r(2ak®bk>§H
k k
+ [Im(a @ el Zak®bk§—T]H
k
<A +c)lalle

+

WA(a)w(Zak ®bk)§—7r(a®eg)7r(2ak ®bk>§H.
k k

Hence

limsup [|.4(a)n = m(a ® ec)nll < (1 + c)llaf e

As e was arbitrary, this shows that the limit exists and is zero. The compu-
tation for 7g is entirely analog.

(13.4.21) Let A, B be C*-algebras and 74 : A - H 4 and 75 : B — Hp
cyclic representations. Show that 74 ® mp is cyclic.

Answer. We have {4 € H 4 cyclic and g € Hp cyclic. We want to show
that (74 @ 78)(A ® B)(H4 ® Hp) is dense in H4 ® Hp. Given & € H 4 and
neHp there exist sequences {a,} C A and {b,} C B with m4(an){4 — £ and
758(bn)és — 1. Then

[(ma @ mp)(an @ bn)(Ea ® &) —E @ = [|Talan)ia ® m5(bn)és — E @]l
< [[(ma(an)éa — &) @ m5(bn)ésll
+ 1€ @ (pi(bn)é — n)||
= [[(ma(an)a = )l lm5(bn)ésll

+ [l [pis(bn)és — nll
— 0.

n
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(13.4.22) Let A, B be C*-algebras with A non-unital, v a C*-norm on
A® B, and ) € S(A) the unique state with kert) = A. Show
that, for the map ¢ ®,idg : fl@wB — C® B, we have ker(¢¥ ®,
idg) = A®, B

Answer. If B is not unital, by Exercise 11.6.10 we have that idz is the unique
s-homomorphism that extends idg to B. Then Exercise 13.2.28 _guarantees
that ¢ ®. id; is the unique ucp extension of ¥ ®., idg to A®, B — C @ B.
In the end, we may assume without loss of generality that B is unital.

Let z € A®, B with ||z|l, = 1 and (¢)®-idg)(z) = 0. Then there exists
a sequence {z,} C A® B with ||z — 2, |, — 0. As ¢ ®, idz is y-continuous,
we have 0 = (¢ ®, idg)(x) = lim, (¢ ®, idg)(xy). Each of these x,, is of the
form x, = Y janj ® by, where we might assume that the b,; are linearly
independent for each n (Remark 13.1.5). Let

Zn = Z(a'nj - w(anj)lj) ® bnj-
J
By definition of ¥, ayn; —¢(an;)I; € A for all n,j. So z, € A® B for all n.
Also

D Plan) 1 ©by| =
7 ol

lzn — Zn”v =
> (an;)bn;

‘ J

showing that z € A®, B

1) (an;)bnj
i

= (¥ ©4idB)(zn)[| =0,

(13.4.23) Let A, B be C*-algebras, x € A ®min B. Show that if (¢ ®
P)(z*z) = for all p € S(A) and ¢ € S(B), then z = 0.

Answer. Let mq : A — B(H4) and 75 : B — B(Hp) be faithful repre-
sentations. By Proposition 13.4.8 and Corollary 13.4.24 we have a faith-
ful representation 74 ® 5 1 A Qumin B — B(Ha ® Hp). If © # 0 then
(ma®mp)(x*x) # 0. Then there exists an elementary tensor {Q@n € HA@Hp
with (14 @ 75)(x'/?)(€ @ n) # 0. Let

pla) = (ra(a),§),  »(b) = (ma(b)n,n).
Then
(p@Y)(x) = ((ra®@mp)(x) E@n,E@n) = [|(ma @ 7)(2'/?) (€ @ )|* > 0.
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(13.4.24) Let A C B(H.a), B C B(Hp) be separable C*-algebras. Show
that if A Qmin B C B(H4 ® Hp) contains a nonzero compact
operator, then A contains a nonzero compact operator.

Answer. We have A Quin B = AQB. Let T € A® B be compact and
nonzero. Then T*T is compact, nonzero, and in A ® B, and we may assume
without loss of generality that T > 0. By Exercise 13.4.7 we know that
T =1lim, T, with T,, € K(H4) @ K(Hp).

As B is separable, it admits a faithful state 1. By Lemma 13.4.26, the
map idg(s 4) @min ¥ : B(H.A) @min B — A is completely positive and faithful.
Let S, = (idg) ® ¥)(Tn) € K(Ha). We have (using the norm estimate
from Lemma 13.4.26)

”S’n - SmH = H(idB(HA) ® w)(Tn - Tm)” < HTn - TmH7

so {Sp} is Cauchy in K(H_4), and there exists S = lim, S, € K(H4). By
continuity of the map idgx_) ®, S = (idgu_) @Y)(T) € A. Asidgy )@Y
is faithful, S # 0. So S € A and A contains a nonzero compact operator.

(13.4.25) Let X be locally compact Hausdorff, A a C*-algebra, and 7 :
A — B(H) a representation. Let ¢ : Co(X) — B(£*(X)) be

given by d(f) = My. Given Z = ka ®ar € Co(X) ® A,
k
show that
|[6em@)|

:sup{H(&C@W)(Z)HB :LEGX}.

B2(X)QH) (H)

Answer. Let Z:ka@)ak 6C()(X)@AandEZZgj@){j,ﬁ:Zhj®
k J J

¢ € *(X) ®H (where {¢;}; is an orthonormal basis, as in Lemma 13.4.3).

Write
Dy = sup{H((Sw ®7T)(zk:fk ®ak)HB(H) tx € X}
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We have

6em@ER = |6on (X iou)(Zues)|,
k J
= |2 sy o wtants |

X)@H

22(X)®H

= Z Z<fk1gj17fk2.gj2> <7r<ak1£j177r(ak2§j2>

k1,k2 j1,J2

= Z Z Zf’ﬁ gj1 sz( )ng(x) <7r(ak1)§j1>7r(ak2)€j2>

ki,k2 j1,Jj2 ®

=D 3 @)g, (@) fro ()95 (@) (m(ar, )5 m(an,)E)
T Eioka j1.2
)(ka ®ak) (Z%(@fj)”j{
z & J
< S| S

= Dz ||€]1*.

(for the exchanging of series, the sums on ki, ks are actual sums, and the
series for j1,jo, and z converge absolutely by Cauchy-Schwarz). Thus [|(d ®

m)(2)|| < sup{(6 @ 7)(Z) |82 -
Conversely, fix ¢ > 0 and y € X such that

|5 et 2o {| S 2 x)* -

Fix £ € H with ||€|| = 1 and

H ka(y)w(ak)sz > H ka(y)ﬂ(ak.)H? — e
k k
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Let £ =6, ® & € £2(X) ®H. Then

IGem2)3E?=|Een (kamk) G20,

2(X)®

H(5®7T (ka@ak) (0y ®§)

2(X)®H

Z Frer (U)o (v) (m(an, )€ m(ar, )E) = H ka(y)ﬂ(ak)gHz
k

k1,k2

> | ka@)w(ak)HQ -
k
> sup{H ka(x)ﬂ'(ak)H s x € X}2 — 2e.
k

As ¢ was arbitrary, the equality is established.

(13.4.26) Let B C A be C*-algebras, with B hereditary. Show that if id 4
is nuclear, then so is idg. (Hint: use an approximate identity

for B)

Answer. By hypothesis there exit nets of contractive completely positive
maps {p¢} and {¢¢} with @p : A = My4)(C) and ¢y : My)(C) — A with
Ye(pe(a)) — afor all a € A. Let {e;} be an approximate unit for B. Because
B is hereditary, this means that e;ae; € B for all a € A and all j. So we can
define maps 9y ;(X) = e;9,(X)e;, still contractive and completely positive,
now with codomain B. So ¢ ;(¢¢(b)) — b for all b € B if we make a new net
by ordering (£1,j1) < ({2,72) if £1 < /5 and j1 < jo.

(13.4.27) Let A be a C*-algebra. Show that id 4 is nuclear if and only if
id 4 is nuclear.

Answer. Suppose first that id 4 is nuclear. So there exit nets of contractive
completely positive maps {¢¢} and {¢¢} with ¢, : A = M, (C) and o)y :
M0y (C) = A with 9(¢e(a)) — a for all a € A. We can define maps @y :
A = My 041(C) given by @g(a, A) = @e(a) ® A, and similarly define De(X) =
(Ye(PeX Pyp), X (6)+1,n(0)+1), Where Py is the compression to the n(£) x n(f)
upper left corner. In both cases the new maps are completely positive because
direct sums of completely positive maps are completely positive. They are
also contractive.
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Conversely, suppose that id 7 is nuclear. As A is an ideal in A, we get
that id 4 is nuclear by Exercise 13.4.26.

(13.4.28) Let M be a von Neumann algebra. Show that
(M ®min IIC)/ = M/ @B(IC),

where M’ ®@B(K) is the von Neumann algebra generated by
M’ @ B(K) in B(H ® K). Conclude that Z(M ® B(K)) =
Z(M) R Ik.

Answer. If T e M, S € M' and R € B(K), then
(T®Ik)(S®R)=TS®R=ST®R=(S®R)(T® Ik).
So (after taking linear combinations and sot-closure, which stay in the com-
mutant) M’ ® B(K) C (M Qmin I)’
Now consider X € (M’ ® B(K))'. In particular X (Iyp ® E;) = (Ipm ®
Ey;)X for all {Ej;} matrix units for a fixed orthonormal basis. Then
X(E®ep)=X(Im® Egk)(@er) = (Im @ Egi) X (@ ex) = a(f) @ e

for some function a. By linearity and uniqueness of the tensor product when
one side is linearly independent (so in particular for elementary tensors), «
is linear. We also have

(O = lla€) @ exll = [ X (€ @ er) | < [ XT[EN,

so o € B(H). By linearity and continuity we get that X = S ® Ix, where
S =a € B(H). But X also commutes with elements of the form T'® R with
TeM.SoST®@R=TS®R for all R € B(K). Then

(TS = 5T)¢,m) = (TS = ST) ® Ix)(§ @ex),n@er) =0

for all £, € H, so TS = ST which shows that S € (M') = M" = M.
We have shown that (M’ ® B(K)) € M ® Ix. Taking commutants we get
(M Qmin Ix) € (M’ @ B(K)) = M'®@B(K).

As for the centre, if T € Z(M®B(K)) then T € (MBB(K)) = M'&I.
So T =T & Ix for some T € M’. Given S € M, since T € M ® B(K) and
S® I € M’ ® I, we have

TS ® Ik = (T@IK)(S®IK) = (S@I}C)(TQ@IK) = ST ® Ix.
Then, for any £ € H and n € K with ||n|| =1,
(TS, 6 = (TS Ix)E@n),f@n) = (ST @ Ix)(§ @n),E @n) = (STEE).

By polarization TS = ST, so T € M" = M. Hence T € Z(M) and T €
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13.5. Crossed Products

(13.5.1) Let (A, G, ) be a C*-dynamical system and (7, U) a covariant
representation. Show that m x U is indeed a representation.

Answer. For multiplicativity, let
A=>"ag-g. B=Y by-h
geF heF

(we use the same F' below since we can take the larger of two and make new
coefficients equal to zero). Then

(x x U)[AB] = (x = U) (3 (ay-9)(b - 1))

g,heF

=(rxU) ( Z agog(by) -gh)

g,heF

= Z m(agag(bn))Ugh

g,heF

= > mlag) Uym(bp)U; Uy Uy,
g,heF

= Z m(ag) Uy m(bp) Un

g,heF

(Z ﬂ'(ag)Ug) ( 3 w(bh)Uh)
geG heF

= (7 % U)(A) (7 % U)(B).
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As for adjoint preservation,

(mxU) {(Zag g) } :(WMU)(;ag—l(a;).g—l)
=Y mlag (@) Upgr = > Uyrm(ag)Us—s Uy

geF gelr
= Z Ug-1m(ay) = (Z (ag) Ug)*
geF gk
- [(w x0) (Y ag ~g)r-
gEF

(13.5.2) Show that when A is unital every *-representation 5 : A-G —
B(H) is =7 x U for a covariant representation (m,U).

Answer. Let 8: A-G — B(H) be a #-representation. Define 7 : A — B(H)
by m(a) = B(a - e). The equalities in (13.25) and (13.26) show that
m(ab) = Bab-e) = B((a-e)(b-e)) = Bla-e)B(b-e) = m(a)m(b)
and
#(a") = Bla* - ¢) = B((a-€)") = Bla- &) = n(a)".

The additivity is trivial, and hence 7 is a x-representation. Similarly, let
U:G— B(H) be given by U, = (14 - g). Then

Ut =BIa-g ") =Upr, Up=p8(Ia-9)7)=8Ta g ")=Uy,
so Uy is a unitary. We also have

Ugh = B(Ia-gh) = B((Ia-g)Ia-h)) =UyUp,
so U is a representation. We have
m(ag(a)) = Blag(a) -e) = B((La-g)(a-e)(Ia-g7")) = Ugn(a)Uy,

so the representation is covariant. Finally,

(2 U)(a-g) =m(a)U; = Bla-e)B(Ia-g) =B((a-e)(Ia-g)) = Bla-g),
so by linearity § =m x U.

(13.5.3) Let A = C and a,(g) = I4 for al g. Show that Cx,G = C*(G)
and C x/, G = C5(G).
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Answer. Because agy(g) = L4 for all G we have that the product in A- G
agrees with the plan product in CG, and so does the adjoint. The fact that
m(A) = C I makes the covariance condition trivial, too. So the covariant
representations are precisely the representations where 7 is trivial (as it acts
on the scalars) and U is any unitary representation of G. Then the norm
used for the full crossed product and the norm for the full group algebra are
the same, which gives C x, G = C*(G).

For the regular representations the same happens: as 7w and « the norm
of the reduced crossed product is calculated over the (unique) norm

|3 0200

geG
which is precisely the norm in C5(G). Therefore C x}, G = C5(G).

(13.5.4) Show that A x7, G is a quotient of A x, G via a surjection that
extends the identity map on A - G.

Answer. Since the norm of the reduced product is obtained over less rep-
resentations that the full one, the identity map A-G — A - G is bounded
x-homomorphism when considered with the full norm on the domain and
the reduced norm on the codomain. Then it extends to a *x-homomorphism
A xq G — A X!, G with dense range and hence surjective.

(13.5.5) Show that (13.28) makes (Cy(X), G, @) a C*-dynamical system.

Answer.  We need to check that a is a homomorphism and that oy €
Aut Cy(X) for all s € G. For the latter,

[as(fg + A0)](z) = (fg+ AR*)(s™h - 2) = f(s7 - a)g(s™ - 2) + Ah(s~! - )
= [asf](@)[asg)(x) + Alosh](2).
This shows that g is a *-homomorphism. If asf = 0, then f(s™!-z) =0
for all x € X. In particular f(z) = f(s™!-(s-z)) = 0 for all 2, so f =0
and ag is injective. Given f € Cy(X), let g(x) = f(s- ). Because the map
x — s -z is continuous, g € Cp(X); and asg = f. So «y is surjective, and
thus a, € Aut Co(X).
It remains to check that « is a homomorphism. We have

(@afl(e) = F((st)71 - 2) = s a) = (T (57 )
= [auf](s™ - 2) = [ fl().
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Hence ag = asa.

(18.5.6) Let G be a group, A = ¢o(G), and ay(f)(h) = f(g~'h). Show
that co(G) x4 G =~ K(2(Q)).

Answer. By remark Remark 13.5.1 we may assume that there is a faithful
covariant representation (m,U) of ¢o(G) Xo G C B(H) into some H. Let
P, = 7(d,) € bh. The family {P,} are pairwise orthogonal projections. We
also have

Ugm(0n)Ug = m(ag(01)) = 7(dgn)-
Let By = Ugp-17m(0s) € B(H). We have

EopEgn = Ugy-17(0)Ugp-17(5n)
= Uap—17(8) 7 (3gn—11)Ugn—1
= 0p,g Ugg—17(0g)Ugp—1
= 0b,g Uag—17(dgn—1 1) Ugn—1
= 0,9 Uag—1Ugn—17(01)
= 6b,g Uan—17(n)
= 0b,g Eq,h-

That is, the family F = {E, p}qnec is a family of matrix units, and so
C*(F) ~ K(f*(@)). Since 7(8,) € C*(F) for all g and co(G) = C*({d,}),
we have m(co(G)) C C*(F). We also have by construction that m(d,)Us =
Up-17(0p-14) € C*(F). Hence C*(F) = (7 x U)(co(G) X G) and therefore
co(Q) x4 G~ K(F2(Q)).

(13.5.7) Let (G, X) be a locally compact transformation group. Show
that if Aut Cy(X) is considered with the pointwise-norm topol-
ogy, then « as in (13.28) is continuous.

Answer. We want to show that lim;_, [|[a(f) f — a(s) f]lec — 0. Since we can
write

”atf - O‘sfHOO = ||as (O‘sfltf - f”oo
and t — s if and only if s~ — e, we only need to show that || f — f|lec — 0
when s — e. For this latter property to fail we would have an € > 0, and nets
{s;} € G, {z;} C X with s; — e and

157" - a) = flag)| 2 (AB.13.6)
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for all j. Let K = {|f| > &/2}; this is compact because f € Cy(X)
(Exercise 2.6.2). The inequality (AB.13.6) then means that at least one of

sj_l -x; € Kof z; € K. Let V be a neighbourhood of e with compact closure.

Then s; € V for all big enough j. The set V - K is compact, being a continu-
ous image of the compact set V x K. If the set of z; in K is infinite, then it
admits a convergent subnet. By picking only those we have that x; — x¢ for
some xg € K; then sj_l -x; — xo, and by the continuity of f is contradicts
(AB.13.6). If instead we have infinitely many sj_l -z; in K for j big enough
s; € V and then z; = 5j~(5j_1 -xj) € V-K. As this latter set is compact, again
we get that x; admits a convergent subnet and we can repeat the previous
argument.
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14

von Neumann Algebras

14.1. Subalgebras

(14.1.1) Let M C B(#) be a von Neumann algebra, P € M a pro-
jection, K = MPH, and @ € B(H) the orthogonal projection
onto K. Show that K is invariant for M and M’, and conclude
that @ € Z(M).

Answer. Fix S € M. Forany T € M and £ € H, S(TPE) = (ST)P¢ €
MPH. As S is continuous, SK C K. Similarly, if S € M’ and T € M, £ € H,
we have S(TPE) = TP(S§) € MPH; again by linearity and continuity,
SK c K. Thus K is invariant for both M and M’.

Now consider the orthogonal projection @ onto . Fix S € M®*. For
any £ € H, we have Q¢ € KL and SQ¢ € K, so QSQ¢ = SQE. This can be
done for all £ € H, giving us QSQ = SQ. Using that S = S5*,

QS =(SQ)" = (RQSQ)" =QRSQ = 5Q.
This says that ) commutes with all sefadjoints in M; but the selfadjoint

elements span the whole algebra (as any element 7" € M can be written as
T=ReT+iImT), so Q € M’. The previous computations would have been

603
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the exact same if S € M’, selfadjoint, so we also get that Q € M" = M.
Thus Q e MNM' = Z(M).

(14.1.2) Let M be a factor, S € M, T € M’. Show that ST = 0 if and
only if S=0o0r T =0.

Answer. Suppose that ST = 0. If T = 0 we are done. Otherwise, by
Exercise 12.4.8 and Corollary 12.4.15, the rank projection P of T is in M’.
Since P is a wot limit of polynomials p;(T), with p;(0) = 0 for all j, we have
SP = limg Sp;j(T) = 0. With the notation of Corollary 14.1.4, we have
~(S) = 0 and hence S = 0.

The converse is trivial.

(14.1.3) Let P,Q,Z € M C B(H) be projections with Z central and
Q = ZP. Show that ¢(Q) = Zc¢(P).

Answer. Since
MQH = MZPH = Z MPH,
we get that ¢(Q) = Ze(P).

(14.1.4) Let M be a von Neumann algebra and R C M a subset that
is closed under multiplication and taking adjoints, and such
that W*(R) = M. Let P € M UM’ be a projection. Show
that W*(PRP) = PMP. Show also that the result is not
necessarily true if R is not closed under multiplication.

Answer. From PRP C PMP we get W*(PRP) C PMP. The assump-
tions on R guarantee that M = spanl'l R. Then PMP c spanll'll PRP ¢
W*(PRP).

For an example when R is not closed under multiplication, consider
M = M3(C), and R = {E12}. Then W*(R) = M (because W*(R) contains
Elg, Eik2 = E21, ElgEiKQ = Ell)- Let P = E11. Then PMP = (CEH, while
PRP = {0}.

(14.1.5) Let M be a von Neumann algebra, H a Hilbert space, P € M
a projection. Fix also an orthonormal basis for H and let {Ej;}
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be the associated matrix units. Show that
PMP ~ (P® E;))(M®B(H))(P® Ey).

Answer. Let v: PMP ~ (P ® E11)(M® B(H))(P ® E11) be given by

This is well-defined, since PTP ® F1; = (P ® F11)(PTP ® Iy)(P ® E1) €
(P® E11)(M®B(H))(P® E1). It is linear, for

v(PTP + APSP) =~(P(T + A\S)P) = P(T + AS)P ® E11
= PTP® E11 + A\PSP ® E11 =~(T) + Ay(9).
Similarly,
¥(PTPSP) = PTPSP ® Ey, = (PTP ® Ey1)(PSP ® Ey1) = ~(T)v(S)
(this is the first place we use that Fy; is a projection). And
Y(PTP)") = (PTP)" ® By = (PTP ® E11)" =~(T)"

(here we use that F1; is selfadjoint). So v is a #-homomorphism. If v(PTP) =
0, this means that PTP ® FE1; = 0 and so PTP = 0 since E1; = 0 (Proposi-
tion 13.1.3). It remains to check that v is surjective. Given T' € M@ B(H) we
can write T = Y7, Ty ® Sg, with T3,..., T, € M and Si,...,S, € B(H).
For each k we have F11SFE11 = A\ E11 since Eq1 is minimal. Then

(P®En)T(P® En) =) PTiP© EnSiEn = ) MPTP® i
k=1 k=1

- 'y( kzn:_l )\kPTkP).

Hence v has dense range. By Proposition 11.4.9, « is surjective.

14.2. Comparison of Projections

(14.2.1) Let P € M be a projection with P < 0. Show that P = 0.

Answer. By hypothesis we have V € M with V*V = P and VV* = 0. Then
IVIZ=|[V*|I?=||[VV*||?=0. SoV =0and P =V*V = 0.
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(14.2.2) Let P,Q € M,(C) be projections. Show that P ~ @ if and
only if Tr(P) = Tr(Q).

Answer. If P ~ @, then there exists V € M, (C) with V*V = P and
VV* = Q. Therefore

Tr(P) =Te(V*'V) = Te(VV*) = Te(Q).

Now suppose that Tr(P) = Tr(Q). By fixing an orthonormal basis for PH
and extending it to an orthonormal basis for the whole C™, we can see P
as a diagonal matrix with dim PH ones in the diagonal, and the rest zeros.
Thus Tr(P) = dim PH. The equality Tr(P) = Tr(Q) gives us dim PH =
dim QH. Fix orthonormal bases {ei,...,e,} and {f1,..., fr} for PH and
QH respectively, and define V' to be the linear operator that maps Ve = f,
and V = 0 on (PH)*. Then V* is the operator that maps f to ex, and is
zero on (QH)L. So V*V = P and VV* = Q.

(14.2.3) Let M be a finite-dimensional von Neumann algebra and P, Q €
M Dbe projections. Show that P ~ @ if and only if Tr(ZP) =
Tr(ZQ) for every central projection Z.

Answer. If P ~ @ there exists V € M with V*V = P and VV* = Q. Then
Tr(ZP) = Tr(PZ) = Te(V*VZ) = Te(VZV*) = Te(ZVV*) = Tr(ZQ).
Conversely, suppose that Tr(ZP) = Tr(ZQ) for all central projections. We
know from Theorem 11.8.10 that M = @‘?:1 M,,,(C) (properly, up to iso-
morphism). For each j we can consider the central projection Z; =0&--- @
L, 0@ ---®0. As Tr(Z;P) = Tr(Z;Q), we can use Exercise 14.2.2 to get
a partial isometry V; € M, (C) with V*V; = Z; P and V;V} = Z;Q. Then
V=Vi&--- @V is a partial isometry in M with V*V = P and VV* = Q.

(14.2.4) Let P,Q,R € M be projections, with P < @ and Q =X R.
Show that P < R.

Answer. By hypothesis there exist VW € M with V*V = P, VV* < Q,
W*W = Q, WW* < R. Then

(VW)Y'VW = W*V*VIW = W*PW < W*W = Q.

And
VWVW) =VW*WV
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(14.2.5) Let P,Q,Z € M be projections, with Z € Z(M) and such
that P < ). Show that ZP < ZQ).

Answer. By definition there exists V € M with V*V = P, VV* = Q. Then
(ZV)(ZV)=ZV*V = ZP, (ZVY(ZV)* = ZQ,
showing that ZP < ZQ.

(14.2.6) Let P,Q € M with P < @ and Q < P. Prove that P ~ @ by
structuring the argument the same as the proof of Schroder—
Bernstein (Theorem 1.6.13).

Answer. By hypothesis there exist VW € M with V*V = P, VV* < Q,
W*W =Q, WW* < P. Tt is enough to show that P ~ WW™* since WIW* ~
Q. We define projections
Po=P, Ri=WW* Piy1=WVR W VW* Ry =WVEV*W*™.
By construction, R; < Py, and

PL=WVRVW* <WVPV*W*=WVV*W* <WW* = R;.
Repeated inductively, we get that Ry1 < P and Py < Rg41. Hence

Ph>Ri>Pi>R>P >

Assume for the moment that P, — Riy1 ~ Pry1 — Riyo. Let
P = /\Pk = /\Rk.
k k

Then, noting that P, = limgoy Pr = limgey R,

P=Pu+Y (P~ Rin)+ Y (Re— Py)
k=0 k=1
and - -
Ri=Pu+Y (Pi—Ri1) + Y (Ru—Po).
k=1 k=1
By Proposition 14.2.7, P ~ R;. So it remains to prove that Py — Rp41 ~
Piy1 — Riy2. We note that

WVWV P V*W*V*W* = WV R VW™ = Py

and
WVWVR A VW VW* =WV P, 1 VW* = Rpyo.
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Also, since V*W*WV =V*QV =V*V =P
VW VWP WVWV = VW VW (WV R VW) WVWV
=V'W*PR1 PWV = V*W*Rp (1 WV
=V'W*(WVPV*W WV = PP,P =P

and
VW*V*W* Ry s WVWV = VW V*W*(WV Pyt VWO WVWV

= V*W*PPu 1 PWV = V*W*P,  \WV
= V*W*(WV R, VWHWV
== PRk+1P == Rk+1.

Let U = (Py — Rpq1)V*W*V*W*(Pi41 — Rit2). Then the equalities
above show that

U*U = Pyi1 — Rz, UU* = P — Ryy1.

(14.2.7) Let M be a von Neumann algebra and {P;} and {Q,} two
families of pairwise orthogonal projections in M, such that
Pj j Qj for all ] Show that Zj Pj j Zj Qj'

Answer. By hypothesis there exist projections @} < Q; such that P; ~ Q’
for all j. The projections {Q} are pairwise orthogonal, since the {Q;} are.
By Proposition 14.2.7,

SP~> Q<> Q.
3 j

J

(14.2.8) Show that the statement of Proposition 14.2.16 can fail if the
word “finite” is removed.

Answer. In M = M5(C), let Q = E11, P, = E11, Py = E9s. Then P, < Q
forallm but Pl—‘rPQ:IQﬁQ

The statement can be false even if (Q is infinite. For instance with
M ZB(KQ(N)),letQ:IM—Ell,Pl :Q, Pg =E11. ThenP1 jQ, Pg = Q,
but P1+P2:Ih ﬁQ
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(14.2.9) Let H be an infinite-dimensional separable Hilbert space. Let
P,Q € B(H) be infinite projections. Show that P ~ Q. Is

Ly —Q~ 1y — Q7

Answer. This follows directly from Corollary 14.2.18, but we offer here a
constructive argument in this simple case.

Since equivalence is transitive, it is enough to show that P ~ Iy.
Reasoning as in Exercise 14.2.29 we can construct an infinite monotone se-
quence of subprojections of P, P = P, > P, > ---. As shown in Exer-
cise 14.2.29, the projections { P, — Pi1 } are nonzero and pairwise orthogonal.
As (P, — Pi11)H C PH, we deduce that dim PH = oco. Fix an orthonor-
mal basis {&,} for H, and an orthonormal basis {n,} for PH. Let V be the
bounded linear operator induced by Vn, = &,, and V|pyyr = 0. Then,

given £ € H and writing £ = &0 + >, cniin, with & € (PH)*,
<V*€na£> = <€na V£> = ch<§na Vnk> =Cn = <77n7£>

k
Thus V*¢, = n, for all n. Then V*Vy,, = V*§, = n,, showing that V*V =
P, while VV*¢, =V, =&, for all n, and then VV* = I3.
The equality of the complements can fail, by taking for instance P = Iy
and Q = Iy — Ey; in B(?(N)). Then Iy — P =0 and I; — Q = Fy; are not
equivalent.

(14.2.10) Let M C B(H) be a von Neumann algebra and 7' € M. Show
that [TH] ~ [|T|H] = [T*H] in M.

Answer. The projections are the range projections of T, |T|, and T* re-
spectively, so they are in M by Corollary 12.3.8. We know from Proposi-
tion 10.4.11 that if T = V|T| is the polar decomposition of T, then V*V =
[T*H] = [|T|H] and VV* = [TH]. This proves the equivalence.

(14.2.11) Let M C B(H) be a von Neumann algebra, P € M a projec-
tion, and £ € H. Show that [PME] = P[ME].

Answer. From [PME] < P (since PME C PH) and [PME] < [M{] (since
PM C M) we get that

[PME] < PV [ME] = PIME],
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the latter equality because P € M and [M¢&] € M’ so they commute (a proper
justification comes from Proposition 12.1.17). For the reverse inequality, since
PMEH C PME, we have [PME](P[ME]) = P[M¢E]. This implies that
PIME] < [PME], and so the equality is established.

(14.2.12) Let M be a von Neumann algebra, and P € M a projection.
Show that P is minimal if and only if @) < P for a projection
Q € M, implies that either Q@ = P or Q = 0.

Answer. If P is minimal, then PMP = CI,s. Then the only projections
there are 0 and Ix4.

Conversely, suppose that the only subprojections of P are 0 and P. Any
projection @ € PMP satisfies Q < P (because P is the identity of PMP,
and @ > 0 with ||@| = 1). So by hypothesis the only projections in PMP
are 0 and In. By Corollary 12.4.16,

PMP = spanl'l {0, I} = C .

(14.2.13) Let M = M, (C). Find all the minimal projections. Find all
the abelian projections. Show that M is finite.

Answer. The algebra PM P consists precisely of the matrices such that they
and their adjoint leave PC™ invariant. The subspace PC™ has, by definition,
dimension rank P. If dim PC™ > 2, PMP ~ M,.nx p(C) is non-commutative.
Thus if P is minimal, then rank P = 1. And if rank P = 1, then dim PC" =1,
so PMP is necessarily one-dimensional, which makes it commutative. The
argument shows both that the minimal and abelian projections are the rank-
one projections.

To show that I, is finite, suppose that V*V = I,,. This means that V'
is injective; and by Exercise 1.7.8, it is surjective. Then it is invertible, and
V=1 = V*. Then VV* = I,,, and hence I,, is finite.

(14.2.14) Let {P;} C M be a family of pairwise equivalent projections.
Fix a projection P € M with P ~ P; for all j. Show that

c(\j/Pj) = ¢(P).
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Answer.  Write @ = \/; P;. From P; < @ we have ¢(P) = ¢(P;) < ¢(Q).
But we also have, for any & € H and any j, ¢(P)P;§ = P;€. It follows that
U; PjH is invariant for ¢(P). That is, ¢(Q) < ¢(P). Therefore ¢(Q) = c(P).

(14.2.15) Let P,Q € M be equivalent. Show that PMP ~ QMQ.

Answer. By hypothesis there exists V € M with V*V = P, VV* = Q.
Define v : PMP — QMQ by v(T) = VTV*. This map is clearly linear
and it maps into QMQ since V = QV (Exercise 10.4.12). We have v(T*) =
VT*v* = (VIV*)* = 4(T)*. A key observation is that T € PMP if and
only if T = PTP. And, given S,T € PMP,

V(S)YT) = VSV*VTV* = VSPTV* = VSTV* = v(ST),

so v is a s*-homomorphism. If T € PMP and v(T) = 0, this means that
VTV* = 0; multiplying by V* on the left and by V on the right, we get
0=V*VIV*V = PTP =T, soT = 0; meaning that ~ is injective. Finally,
given S € QMQ, we have S = QSQ = VV*SVV* = (V*SV). We will
have shown that v is surjective if we show that V*SV € PMP. And this
follows from V = VP (Exercise 10.4.12).

(14.2.16) Let P,@Q € M be equivalent projections. Show that if P is any
of minimal, abelian, infinite, finite, purely infinite, properly
infinite, then so is Q.

Answer.

(a) If P is minimal, then PMP = CP. By Exercise 14.2.15 QMQ is one-
dimensional, so QMQ = CQ since CQ lies inside it.

(b) If P is abelian, then QMQ ~ PMP by Exercise 14.2.15 and so QMQ is
abelian.

(c) If P is infinite, there exists Py < P with Py ~ P and P — Py # 0. Let
V eMwith VV =Pand VV* = Q. Put Qy = VP V* € M. We have
Qo < VV*=Q,and Q — Qg = V(P — Py)V* # 0, for if it were 0 we
could multiply by V* on the left and by V on the right to get P — Py = 0.
We have Qg € Py, since Qg = VP V* and Ph)V*V Py = PhPPy = Py. So
Qo ~ Py~ P ~ @, and @ is infinite.

(d) If P is finite then @ is finite, for if Q were infinite then P would be infinite
by the previous paragraph.
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(e) Suppose that P is purely infinite and Qo < @ with Qg infinite. Writing
P=V*V and Q@ =VV* we have Py = V*QyV ~ Qo and Py < P. Then
P, is infinite (as P is purely infinite) and @ is infinite as proven above.
So @ is purely infinite.

(f) If P is properly infinite, this means that ZP is infinite for all nonzero
projections Z € Z(M). Then ZQ ~ ZP is infinite, and it follows that @
is properly infinite.

(14.2.17) Let P,Q € M be projections with @ < P. Show that if P is
finite, then @ is finite.

Answer. Suppose that @ is infinite. Then there exists Qg < @ with Qo # Q
and Qo ~ Q. By Proposition 14.2.7,

P=P-Q+Q~P—-Q+Qo,
and P— (P —Q+ Qo) = Q — Qo # 0, so P is infinite.

(14.2.18) Let P,Q € M be projections with @ < P. Show that if P is
abelian, then @ is abelian.

Answer. By Exercise 14.2.16 we may assume without loss of generality that
@ < P. By hypothesis, PMP is abelian and Q = PQP € PMUP. Then

QMQ = Q(PMP)Q = (PMP)Q

is abelian, so @ is abelian.

(14.2.19) Let P,Z € M be projections with Z central. Show that P is
finite if and only if ZP and (Ip — Z)P are finite.

Answer. If P is finite, then ZP is finite by Exercise 14.2.17. Conversely,
suppose that ZP and (Ip — Z)P are finite. Let Q < P with Q ~ P. As Z is
central, we have ZQ ~ ZP and (Ipm — Z)Q ~ (Ip — Z)P. As the two right-
hand-side projections are finite and ZQ < ZP and (Ip — 2)Q < (Ipm — Z) P,
we get that ZQ = ZP and (Iyp — Z2)Q = (Ipm — Z)P. Adding, Q = P and
hence P is finite.
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(14.2.20) Let M be a finite von Neumann algebra. Show that the only
isometries are the unitaries.

Answer. If V is an isometry, we have V*V = I,;. Then VV* < Iy, and
VV* ~ V*V = I, As Iz is finite, VV* = Ty

(14.2.21) Let @ as in the proof of Proposition 14.2.21. Show that it is
faithful.

Answer. Let

X =3 X5 @B ;€ A9 BE(J))
Ji,J2
and suppose that ®(X*X) = 0. This means that

( Z Js Ja Xjr.g2 ® Ej,, ]3E317Jz)

J1,J2,J3,J4
( Z Jl 2Ja Jl »J2 ®EJ4 J3E31 Jz)
J1,J2,:J4
_Z(I)<Z J1,Ja J1J2®EJ4]2)
J2,Ja

_E: j: J1,J2 J1j2'
J1

As every term is non—negatlve, X, .. = 0 for all jq,jo, and thus X = 0.

(14.2.22) Let H be an infinite-dimensional separable Hilbert space. Fix
an orthonormal basis and consider the associated unilateral
shift S. Show that S is a partial isometry, and conclude that
B(#) is infinite.

Answer. If the basis is {£,}, then the unilateral shift is the bounded linear
operator V induced by V&, = &,41. So

V=> Eniin
n
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This series converges sot, for given £ = 3", c&, we have

2 2 2
2
| 32 Burnt| = || X ek B = || 2 entana]| = X feul®,
n>ng n>ng k n>ng n>ngo

which can be made arbitrarily small by taking ng sufficiently large. This gives
us

V'V = ZEm,m+1En+l,n = ZEnn = IH-
Meanwhile,

VV* = ZEn+1,nEm,n+1 = Z En+1,n+1 = I’H — Ell-
n

n,m

This shows that I is infinite, and so B(#) is infinite.

(14.2.23) Show an example of a infinite projection that cannot be halved.

Answer. The example cannot occur in a factor, for there every infinite projec-
tion is properly infinite. Let M = C®B(H ), with dim H = oo. The projection
we consider is the identity Ixq = 1 @ I4. Suppose that 1 ® Iy = P+ Q for
projections P,Q € M. We have P =a ® Py, Q = 8 ® Qo, with «, 8 € {0, 1}
and Py, Qo € B(H) projections. Since a + = 1, we may assume without
loss of generality that o = 1, 8 = 0. Suppose that V*V = P and VV* = Q.
Since V=A@ V) with A € C and Vj € B(H) a partial isometry, we have

1Py =P=V*V =\ V;V.

Then |\| = 1. This forces VV* = |A\? @ Vo V5 = 1 @ WV, which can never
be equal to () since the scalar component of ) is 0. Thus P and () cannot
be equivalent.

This shows that I fails a weaker form halving, where one does not
require P ~ I. This kind of halving is strictly weaker than the halving
of properly infinite projections. For instance Iy € Ms(C) can be written as
Ig = Ell + EQQ, with E11 ~ E22.

(14.2.24) Let M be a finite von Neumann algebra, and P,Q € M pro-
jections with P ~ Q. Show that g — P ~ Ixf — Q.

Answer. 1If Ing— P is not equivalent to Irq — @, by Comparison there exists
a projection Z € Z(M) with Z(Ipm — P) < Z(Ipm — Q) (if this fails, then
the case with the roles of P,Q exchanged works). So Z(Iyp — P) ~ ZRy <
Z(Im — @), with ZRg a proper subprojection of Z (I — Q). This gives (via
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Proposition 14.2.7)
Z=7ZP+Z(Im—P)~ZQ+ZRy < ZQ+Z(Im — Q) = Z,

with Z@Q + Z Ry a proper subprojection of Z. As M is finite this is a contra-
diction, and so Iy — P ~ Ip — Q.

(14.2.25) Let M be a finite von Neumann algebra, and P,Q € M pro-
jections with P < ). Show that Ix — Q =< I — P.

Answer. By hypothesis there exists Qy < @ with Qg ~ P. By Exer-
cise 14.2.26, Ipg — Qo ~ Ipg — P. Then

Ipm—Q < I —Qo~1Ip — P

(14.2.26) Let M be a von Neumann algebra, and P,Q € M finite pro-
jections with P ~ ). Show that Iy — P ~ I\ — Q.

Answer. We know that P A @ is finite by Proposition 14.2.15. Applying
Exercise 14.2.24 to P,Q in the finite algebra (P V Q)M(P V Q), we get
PVQ—-P~PAQ—-Q (in (PVQM(PVQ), hence also in M). Then,
using Proposition 14.2.7,

Ipm—P = (Im—PVQ)+(PVQ—P) ~ (Im—PVQ)+(PVQ—-Q) = I —Q.

(14.2.27) Let P € M be a finite projection, and @ € M a projection.
Show that there exists a number s € NU{0} such that s is the
maximum such that there exist pairwise orthogonal projections
{Pi,...,Ps} C M with P, ~Q for all k, and > ;_, P, < P.

Answer. Suppose that no such s exists. This means that for any m €
N there exist pairwise orthogonal projections {Pp,1,..., Pn.m} C M with
Poi ~ @ for all k and Zk P, = P. Assume without loss of generality
that P1 = Pl,l S P. Let P2/11 ~ Pg’l and P2/72 ~ PQ)Q with P2/71 + P2/72 S P.
As P ~ @Q ~ Py, by Exercise 14.2.25 (applied in the von Neumann algebra
PMP) we have P — Py ~ P~ P;; > Py, Then Q ~ P;, < P— P;. So
there exists P, € M with Py ~ Q and P,P; = 0. Now we can repeat the
argument with Pl + P2 S P and P371 + P372 + P373 j P to obtain P3 ~ Q
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and P; + P, + P3 < P. Continuing inductively, we get a sequence {P,},
pairwise orthogonal, P, ~ @ for all n, and Zn P, < P. But as the P, are
all pairwise equivalent, the projection ) P, is infinite (it is equivalent to
Y >0 P, for instance), a contradiction since P is finite (Exercise 14.2.17).
The contradiction shows that there exists a maximum s as desired.

(14.2.28) Let M be a finite von Neumann algebra and T' € M with polar
decomposition T'= V|T|. Show that V' can be extended to a
unitary U with 7' = U|T|.

Answer. Because V*V ~ VV* and M is finite, by Exercise 14.2.24 there
exists a partial isometry W € M with W*W = I, — V*V and WW* =
Iy —VV* Let U=V +W. We have

VW = V*VV*(Ip — VVHW = 0.

Then U is a unitary, for U*U = V*V + W*W = Iy and UU* = VV* 4+
WW* = 1. We also have

UIT| = (V+W)|T| = (V+W)V*V|T| = VV*V|T| = V|T| = T.

(14.2.29) Let M be a finite-dimensional von Neumann algebra. Show
that M is finite, in two ways:

(a) by using the explicit form of a finite-dimensional von Neu-
mann algebra;

(b) by a direct argument.

Answer.

(a) We know, from Theorem 11.8.10, that M = @5:1 M,,(C). So Iym =
69?:1 I,;. Let V.€ M with V*V = I,. We can write V' = @;;1 Vj, and
then V'Vj = I,,; for all j. Seen as an element of M, (C), this equality
gives us that Vj is injective, and so it is surjective by Exercise 1.7.8.
Therefore V; is invertible and Vi= ijl. Thus V;V = 1I,;. Tt follows
that VV* = I, and so I is finite.

(b) Let P < In be a projection with P ~ Iy and P # I, So there
exists V€ M with V*V = Iy and VV* = P. Let P, = VPV*. Then
P <VV* =P,and P, # P; for if P, = P this is VVV*V* = VV*
and applying V* on the left and V on the right, we would have P =
Inq. Tterating this construction we get a properly decreasing sequence of
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projections P; > P, > Ps---. We have, if k£ > j,
(Pr = Peq1)(Pj — Pj1) = PPy + PryaiPiy1 — Pepa Py — PePjga
=Py + Pry1— Pey1— P =0.

That is, the projections {Py — Pxy1} are nonzero and pairwise orthogo-
nal. In particular they are linearly independent, so dim M = oco. The
contradiction shows that I, is finite.

(14.2.30) Let M be a von Neumann algebra. Show that the following
statements are equivalent:

(a) M is finite;

(b) for any projections P,Q € M with P ~ @, there exists
U € M unitary with Q = UPU*.

Answer. Suppose first that M is finite and P ~ (). So there exists a partial
isometry V € M with V*V = P and VV* = Q. By Exercise 14.2.24 there
exists a partial isometry W € M with W*W = I —P and WW* = I, —Q.
Let U=V +W. Since V*W =V*QUpm — Q)W =0and VW* = VP(Ip —
PYW* =0,

U'U=VV+WW=P+1Iypy—P=1Ipm
and

UU=VV*+WW*=Q+Ipm— Q= 1pm.
So U is a unitary, and

UPU*=VPV*=VV*VV*=Q.
Conversely, suppose that Iy ~ P. By hypothesis, this means that

there exists a unitary U € M with P = UU* = Ixq. So I, is finite, and M
is finite.

(14.2.31) Let M be a factor, and P,Q € M projections with @ finite
and P infinite. Show that @ < P.

Answer. Because M is a factor, by Comparison we either have @ < P or
P < Q. The latter would imply that P is finite (Exercise 14.2.17); so Q < P.
We cannot have Q ~ P, because that would make P finite or ) infinite; so
Q=< P.
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(14.2.32) Let P,Q € M be projections with P properly infinite and
Q < P. Show that PV Q ~ P.

Answer. Because P is properly infinite, by Halving (Proposition 14.2.14)
there exists a projection R € M with R < Pand R~ P ~ P — R. We have
(using Kaplansky’s Formula)
PVQ-P~Q-PAQ<Q<P~P—R
Then
PVQ=(PVQ—-P)—P)+P~P—-R+R=P.

(14.2.33) Let P,QQ € M be properly infinite, with P + Q = Iy and
P ~ Q. Show that P ~ I,,.

Answer. Since P is properly infinite, by Halving there exists a projection R €
M with P~ R~ P — R. Then Q ~ P ~ R, and so using Proposition 14.2.7

IMy=P+Q~P—-R+R=P.

(14.2.34) Let Py, P2, Q1, Q2 € M be projections with P, + P> = Q1 +Q2,
P1P2 =0= QlQQ, and P1 ~ P27 Ql ~ QQ. Show that P1 ~

Q1-

Answer. By working on (P} + Py)M(P; + P>) we may assume without loss
of generality that P, + P = 4.

From Proposition 14.2.13 we have a projection Z € Z(M) with ZP;
finite and (Ixq — Z) Py properly infinite. So it is enough that we show that
cases P; finite and P; properly infinite separately.

Suppose first that P; is finite. Then Iy = P; 4+ P; is finite by Propo-
sition 14.2.15. By Comparison there exists a projection Z € Z(M) with
ZP 2 ZQ1 and (Ipm — Z2)Q1 = (Ip — Z)P1. We immediately have

ZPy ~ZP, X ZQ1 ~ ZQ>.

Fix projection Ry < @y with ZP; ~ ZQ, and Ry < Q2 with ZP, ~ ZR,.
Then
Z=7ZPi+7ZP,~ZR1+ZRy < ZQ1+ ZQs = Z.
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As Z is finite, this means that ZR; + ZR, = Z, Then
0<Z(Q1—R1)+Z(Q2—Re)=Z—-(ZR1 + ZR3) = 0.

As Z(Q1 — R1) > 0 and Z(Q2 — Ry) > 0, this forces ZR; = Z@Q; and
ZR2 = ZQ2 But then ZP1 ~ ZRl = ZQ1 and similarly ZP2 ~ ZQ2
Recalling that the projection Z also satisfies (Iyp — Z2)Q1 <X (Ipm — Z)P1, we
can repeat the argument to get (Ipg — Z)P1 ~ (Ipm — Z)@Q1. Then Py ~ Q1
by Proposition 14.2.7.

Now suppose that P; is properly infinite. Then ), is properly infinite;
indeed, if @1 is not properly infinite there exists a projection Z € Z(M)
with Z@Q); finite. This makes Z(@Qs finite by Exercise 14.2.16 and therefore
Z = ZQ1 + Z(Q- is finite by Proposition 14.2.15. But this would make ZP;
finite, a contradiction unless Z = 0. By Exercise 14.2.33,

Py~ Ip~ Q1.

(14.2.35) Let M C B(H) be a von Neumann algebra, @ € M a projec-
tion, and K a Hilbert space. Show that ¢(Q® E11) = ¢(Q)® Ik
in M® B(K).

Answer. The projection ¢(Q) ® I is central, and
Q)@ —Q®En =(c(Q) —Q)®@Ix+Q® (Iy — E11) =0
since both terms are positive. That is, @ ® E11 < ¢(Q) ® Ix. Now let
P e Z(M) with @ ® E11 < P. We know from Exercise 13.4.28 that Z(M @
B(H)) = Z(M) ® Iy. So P =P ® I for some P € Z(M). We have
P*@Ix=(P®Ix)"=P"=P=PaIx.
Then, for n € K with ||n|| =1 and £ € H,
(P?6.&) =((PeIx)*(E@n).E@n) = (P& I)(E@n),E®n) = (PEE).

Using polarization we conclude that P2 = P. We can similarly obtain that
P* = P, so P is a central projection. Therefore we have the inequality

0<PRIx—Q®FE; =(P-Q)® (I — E11).

This can only occur if P > @ (we can show this using ¢ and 7 as above).
Then P > ¢(Q), and so ¢(Q) ® Ix < P® Ix = P. It follows that ¢(Q) ® I is
the last central projection above Q ® F11, and thus ¢(Q ® F11) = ¢(Q) ® I.
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(14.2.36) Let P € M be a properly infinite projection, and n € N U
{oo}. Show that there exist pairwise orthogonal projections
{Pi}?_1 C M with P, ~ P for all k, and P =), P.

Answer. Suppose first that n € N. We can write n = >, 5 2% for some
finite subset ' C N. Write F' = {kq,...,kn} with k. < k.1 for all . Use
Halving to write P = Qg + @1 with Q¢ ~ Q1 ~ Q. Now we apply Halving
k1 times to Qg to get Qg = Zik:ll Ry j, with Rg s ~ Qo for all s. Now we
do the same, but starting with @ and Fy = {kz,...,kn,}. Repeating this
inductively we get 2%t 4 ... 4+ 2= — p pairwise equivalent projections that
add to P.

When n = oo, we subdivide as in the previous paragraph, but always
halving the second projection. This way we end up with countably many
{Qr}, pairwise orthogonal and P, ~ P for all k. Let Py = P — ), P. Since
Py < P ~ Py, by Exercise 14.2.32 we have P, + Py ~ P;. So we replace P,
with P; + Py and now P =), P, with all projections equivalent to P.

14.3. Classification of von Neumann Algebras

(14.3.1) Show that the matrix units defined in (14.5) do satisfy the
matrix unit relations Ey;E,, = ;.4 Ek, and E,’zj = Eji.

Answer. 1If j # a, then
EyjEa, = E1 E1jQQu BT By = 6.4 B E1; Q5 E1; Eny
=0j.0 E{ E11 B = 65,0 E{ By = 05,0 Ers.

And E;:j = Eijlk = Ejk.

(14.3.2) Let M be a type I von Neumann algebra, and H a Hilbert
space. Show that M ® B(H) is type I, without using Theo-
rem 14.3.2.
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Answer. If M is type I, there exists an abelian projection @ € M with
¢(Q) = Ipq. Then Q ® Eq; is abelian in M ® B(H), with central support
c(Q) ® Iy = Iizy (Exercise 14.2.35). If P € M ® B(H) is any projection,
by Proposition 14.2.6 there exist nonzero projections @y < @ ® Fp; and
Py < P with Py ~ Q. As Qg is abelian, so is Py by Exercise 14.2.16. Hence
M® B(H) is type L.

(14.3.3) In the proof of (14.6), show that Py and Qo are in generic
position when acting on (Py V Qo)H.

Answer. Suppose that £ € (Py A Qp)H. This implies that £ = P¢ = Q¢
(since Py < p and Qg < q), so £ = (P A Q)E. But we also have £ = Py, so
£=PRy(PAQ)E=0.

If now & € PyAQg, then £ = Poé = p€. As QF = Q- +PAQ+PLAQ,
the equality Qoé = & leaves us with three possibilities. First, that Q¢ = €.
Then (P A Q1)€ = €, and thus & = Py(P A Q+)¢ = 0. Second possibility is
that £ € (P A Q)H, and again we get £ = 0 from Py(P A Q) = 0. Finally, if
£ e (P AQ)H, we also get £ =0 from P(PYAQ)=0. So Py A Qg = 0.

The equality P;s- A Qo = 0 is proven by exchanging the roles of P
and Qg in the previous paragraph. So it remains to consider the case where
¢ € (P& AQg). But we are working in a context where py V ¢o = 1, so
Pt AQg = (PyV Qo) =iz =0.

(14.3.4) Let M C B(H) be a von Neumann algebra. Show that M is
type I if and only if there exists a projection P € M, abelian,
with ¢(P) = Inm.

Answer. Suppose first that M is type I. Then abelian projections exist in M.
Via Zorn’s Lemma construct a family {P;} C M of abelian projections with
pairwise orthogonal central supports. Let Q = Zj c(Pj)e M. I —Q #0,
by hypothesis there exists Py € M, abelian, with Py < Iy — @Q; as this latter
projection is central, ¢(Py) < Iy — Q, contradicting the maximality. Then
Q=1Inm.

Let P = 3, P; € M (the projections are pairwise orthogonal since
their central supports are). Since

Pj./\/lpk = PjC(Pj)MC(Pk)Pk = PjC(Pj)C(Pk)MPk =0

if 7 # k, we can write M = Zj P; MP;j, abelian. So P is an abelian pro-
jection. Suppose that Z € M is a central projection with P < Z. As
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P; <P <7, weget c(P;) <Z. And then Z > 3 c(P;) = Ing. This shows
that ¢(P) = I as desired.

Conversely, suppose that there exists P € M, abelian, with ¢(P) = 4.
Given any nonzero ) € M, since ¢(P) = Ir by Proposition 14.2.6 there exist
nonzero projections Py < P and @y < @ with Py ~ Q. From Py < P we
have that P, is abelian; then Qg is abelian by Exercise 14.2.16.

(14.3.5) Let M C B(H) be a von Neumann algebra. Show that M is
type II if and only if there exists a projection P € M, finite,
with ¢(P) = ILu.

Answer. Suppose first that M is type II. Then finite projections exist in M.
Via Zorn’s Lemma construct a family {P;} C M of finite projections with
pairwise orthogonal central supports. Let Q) = Zj c(Pj) e M. If Iy —Q #0,
by hypothesis there exists Py € M, finite, with Py < Ixq — @Q; as this latter
projection is central, ¢(Py) < In — @, contradicting the maximality. Then
Q= 1Inm-

Let P=3" j P;j € M (the projections are pairwise orthogonal since their
central supports are). By Lemma 14.2.12, P is a finite projection. Suppose
that Z € M is a central projection with P < Z. As P; < P < Z, we get
c(Pj) < Z. And then Z > . c(P;) = In. This shows that ¢(P) = Iy as
desired.

Conversely, suppose that there exists P € M, finite, with ¢(P) = ITr.
Given any nonzero Q € M, since ¢(P) = Inq by Proposition 14.2.6 there exist
nonzero projections Py < P and Qg < @ with Py ~ Qg. From Py < P we have
that Py is finite (Exercise 14.2.17); then Qg is abelian by Exercise 14.2.16.

(14.3.6) Let M be a II;-factor. We will outline here a way to “manu-
ally” construct the normalized dimension function.

(a) Use Proposition 14.2.22 to construct a family {Py .} C M
of projections, with n € N, k € {1,...,2"}, and
Pk;n ~ Pj,'ru P2k:—l7n+1 + P2k:7n = Pk:,n
for all n and all k,j < 2", and >, Py, = Iap (note:
{Pk,n}g; are pairwise orthogonal by Proposition 10.5.5).
(b) (Division Algorithm) Show that given n € N and P €
P (M), there exist s(n) € {0,...,2"} and projections

Qlw"aQs(n)aR € M7
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with R < Py, Qr ~ Pijp, and such that P = R +
Zkgs(n) Q-

(c) Show that if @7, ..., Q'S,(n), R’ is another decomposition for
P as above, then s'(n) = s(n) and R’ ~ R.

(d) Keep considering the same fixed P. Show that s(n + 1) >
2s(n) for all n.

(e) For the same projection P, let ay,, = 27" s(n). Show that
the sequence {a,,} converges to some number 7(P) € [0, 1].

(f) Show that for projections P,Q € M, we have P < @ if and
only if 7(P) < 7(Q). Conclude that P ~ @ if and only if
7(P) = 7(Q) and that P < @ if and only if 7(P) < 7(Q).

(g) Use Proposition 14.2.16 to show that if {Q,} C M is a

monotone sequence of projections with @, BLCUIN @, then

7(@n) = 7(Q)
(h) Show that 7 is o-additive.

(i) Show that 7(P(M)) = [0,1].

Answer.

(a) We let Pi g = In. By Proposition 14.2.22 there exist equivalent projec-
tions PLl,PLQ € M with Pl,l ~ PLQ and Pl,O = P1,1 + P172. Now we
proceed inductively by using Proposition 14.2.22 repeatedly.

(b) Since we are in a factor, all projections are comparable. We have P < I 4.
Let s(n) be the largest index such that Zé(") Py, < P (it is possible that

s(n) =0if P < Py ,,); this number exists by Exercise 14.2.17. Let V,, € M
be a partial isometry with V*V = Zs(n) Py » and VV* < P. Define Qk =

VP, nV*. Then Qp ~ Py p, and Ek Qk <P. Let R=P — Zk
If Pi, =2 R, then there exists Py € ./\/l with P, ~ Py < R, and SO

by Proposition 14.2.7 Zs(n )+l p Py, = R+ ZZ(:nl) = P, contradicting the
definition of s(n). Hence R < Py .
(c) By hypothesis, Q) ~ Pi, ~ Qy, for all k. If s'(n) > s(n), we would have

s(n)+1 s'(n)

Z Pknézpknjp

a contradiction. As the roles are equlvalent, s'(n) = s(n). Now R’ ~ R by
Exercise 14.2.24 applied in the II;-factor PMP, since >, Qr ~ Y, Q%
by Proposition 14.2.7.
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(d) We have
2s(n) s(n) s(n)
Z Piny1 = Z Poj—in+ Popp = Z Py, = P.
k=1 k=1

Then s(n + ) > 2s(n) by definition of s(n + 1).
(e) We have, using the estimate s(n) < s(n+1)/2,

_s(n) < s(n+1)
n on = on+1

=apt1 < 1.
So the sequence {a,} is monotone non-decreasing, and bounded above by
1. Hence 7(P) = lim,, v, exists.

(f) Suppose that P < Q. Then, for each n € N,

sp(n)

ZPk,anjQ

k=1
Hence sp(n) < sg(n). It follows that

oF — sp(n) < sq(n) _ @,

n on on
Taking limit, 7(P) < 7(Q). Exchanging roles we get that P ~ @ implies
T(P) = 7(Q).
Now assume that 7(P) = 7(Q). We have, writing of =0,
S (o aP )= S s e 1)
7(P) = Z:l(a” al )= Z:l ! (AB.14.1)
With this idea in mind, we have (Where R < Pand R, ~R,)
SP(I) Sp(2)
P~ Y P + Ry = Z Peit+ >, Pt R
k=1 k=2sp(1)+1
sp(n)

*Z Z Pk,n+R;n,

n=1k=2sp(n—1)+1

where R;, ., < R;, and R;, < Pp,. Since {R], },, is a decreasing se-
quence, R’ = limgy R,, exists in M (by Proposition 12.1.10) and it is
a projection by Proposition 12.1.13. We have R’ < R}, < P, for all
n. This means that we can put arbitrarily many copies of R’ below I,
contradicting that I is finite. Hence R’ = 0. Then

sp(n)

P~ Z > Pin (AB.14.2)

n=1k=2sp(n—1)+1
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From (AB.14.1) we get, since sp(0) = 0 = s¢(0), that sp(n) = sg(n) for
all n. Then (AB.14.2) also applies to @, and we get P ~ Q. With this we
have shown that P ~ @ if and only if 7(P) = 7(Q).

We already know that P < @ implies 7(P) < 7(Q). Together with the
above, we obtain that P < @ implies 7(P) < 7(Q). And if 7(P) < 7(Q)
we cannot have Q < P (because we know it implies 7(Q) < 7(P), so
P=<Q.

(g) We may assume without loss of generality that @, \, 0 (by replacing
each @, with Q — @Q,, or @, — @ depending on whether the sequence is
increasing or decreasing; the new sequence is still monotone). Let us recall
again that, since we are in a factor, all projections are comparable. Fix
k € N. Suppose that P = @, for all n. Proposition 14.2.16 gives us,
since Ipr — Qn = Ip — Py i by Exercise 14.2.25,

\/(IM —Qn) 2 Ip— Pr.

n

And now using again Exercise 14.2.25 and Proposition 10.5.9,
Prg 2 I —\/(Im = Qu) = \ Qu =0.

As Py # 0, this is a contradiction. So there exists ng such that @Q,, =
Py ;. As the sequence is monotone, @, = Pj for all n > ng. This says
that 7(Q,) < 27% for all n > ng. As this can be done for all k, we have
shown that lim,, 7(Q,) = 0.

(h) Let {Qs}sen € M be a sequence of pairwise orthogonal projections. Write
Q =V,Qs € M. We have by definition that 7(Ix¢) = 1 and 7(Pyn) =
27" for all k,n. Suppose first that Q1 + Q2 = L. Let us write s1(n) and
sa(n) for the integer counters used to define 7(Q1) and 7(Q2), and {al}
and {a2} the corresponding sequences approximating 7(Q1) and 7(Q2)
respectively. For each n we have

s1(n)+1

Z Pen % Q1 < Z Py (AB.14.3)

So there exists Q) < @1 with @} ~ Zbl(n) Py .. By Exercise 14.2.24,
I — Q) ~ Zz:81(n)+1 Py . Hence

277/
Q=Im— Qi1 <Im—Qy~ Z Py

k=s1(n)+1
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This gives us 7(Q2) < w 1—al. Taking limit, 7(Q2) < 1—7(Q1).

We can also do, with the same idea but using the other side of (AB.14.3),
on
> Pen 2 Im—Q1=Qo,

k=s1(n)+2

and this gives 7(Q2) > 1—al — 3. Again taking limit, 7(Q2) > 1—7(Q1).
Therefore 7(Q2) =1 —7(Q1), showing that 7(Q1 + Qg) =7(Q1) + 7(Q2).

If we write Q, = \/};—,,, | Qk, we have

T(Q) = T(Ql +-+ Qn + Qn) = T(Qn) + T(Qk)

-
= 14-
3

for all n. As Q, \, 0 (Exercise 12.1.22) and using (g

T(Q) = HTTLHT(Qn) + ZT(Qk) = ZT(Qk)'
k=1 k=1

(i) We already have that k/2™ € 7(M) for alln € Nand k € {1,...,2"}. The
continuity (AB.14.3), applied to properly chosen subsequences of { Py .},
shows that 7(M) = [0, 1].

(14.3.7) Let N be a von Neumann algebra and K an infinite-dimensional
Hilbert space. Show that N ® B(K) ~ My (N) ® B(K).

Answer. Using Exercises 13.1.5, 13.4.10 and 13.4.11,
N &BK) ~N & (M(C) @ B(K))
~ (N ® My(C)) ® B(K)
~ M>(N) @ B(K)
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14.4. Tensor Products of von Neumann Algebras

(14.4.1) Let S, T € B(H) be selfadjoint. Show that ST = TS if and
only if SH Lg iTH.

Answer. If ST =TS and € € H then ST is selfadjoint and then
Re(SE,iT¢) = —Rei(T'SE, &) = 0.
Conversely, if Re (S€,iT¢) = 0 then
Im (SE,T¢) = —Rei(SE, TE) = Re (SE,iTE) = 0.
So (S¢,T¢) € R. Then
(ST = TS)E,€) = (T€, ) — (S&,7€) = (TE, 58 — (S, T¢)

As this can be done for all £ € H, and using Polarization, ST = T'S.

14.5. The Trace

(14.5.1) Let M = M,,(L>°[0,1]) and ¢ € L*[0,1]. = L'[0,1]. Show
that the functional

U(T) =Y (Tir)
k=1
is tracial.
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Answer. We just compute:

T8) =Y (i) = D> (TknShr)
k=1 k=1h=1

= Z Z V(ShkTkn) = Z Y ((ST)nn)
k=1h=1 h=1

= U(ST).

(14.5.2) Let H be an infinite-dimensional Hilbert space. Show that
a projection P € B(#) is monic if and only if dim PH =
dim(PH)*+.

Answer.  Suppose that dim PH = dim(PH)*. Considering orthonormal
bases for each of these two subspaces, the equal cardinality allows us to
construct a partial isometry V : PH — (I3 — P)H. Then V*V = P, VV* =
Iy —P,so P~1Iy—Pand P+ (Iy — P) =1y € Z(B(H)).

Conversely, suppose that P is monic. Since Z(B(H)) = C I3, the only
central projections are 0 and I. So there exist projections Py, ..., P, € B(H)
with P, ~ P for all k and P, + --- + P, = Iy. If P were finite, then we
would get I3 finite by Proposition 14.2.15, contradicting that dim H = oc.
So P is infinite, and therefore so are all the P;,. We then have, applying
Proposition 1.6.33 to the cardinality of the respective orthonormal bases,

dim(PH)* Zdlm PH = dim PH.
k=2

(14.5.3) Show that a map ¥ : M — Z(M) is a conditional expectation
if and only if it is a linear and positive projection.

Answer. We know that a conditional expectation is a positive linear pro-
jection by Tomiyama’s Theorem (Proposition 13.2.68). Note that Kadison’s
Schwarz inequality (13.8) implies positivity.

Conversely, suppose that ¥ : M — Z(M) is a linear and positive
projection. Because Z(M) is abelian we have that ¥ is completely positive
by Proposition 13.2.22. Then Proposition 13.2.24 gives us

W = [N (Iall = [Haall = 1.
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And then ¥ is a conditional expectation by Tomiyama’s Theorem (Proposi-
tion 13.2.68).

(14.5.4) Let M be a finite von Neumann algebra and 7T its centre-valued
trace. Let P,@Q € M be projections. Show that P < @ if and
only if T(P) < T(Q).

Answer. If P < @, there exists Qp < Q with Qg ~ P. Then
T(P)=T(Qo) <T(Q).

Conversely, suppose that T(P) < T7(Q). By Comparison there exists a
nonzero central projection Z with ZQ < ZP and (Inp — Z)P < (Ipm — 2)Q.
From 7(P) < T(Q) we have

0<Z(T(Q)—T(P) =T(Z2Q) - T(ZP).
And from ZQ <X ZP we have T(ZQ) —T(ZP) < 0. Thus T(ZQ) = T(ZP).
As ZQ ~ Py < ZP, this implies that ZQ ~ ZP by the faithfulness of T;
indeed, T(ZP — Py) = T(ZP)—T(ZQ) =0,s0 Py = ZP. And ZP ~ ZQ
and (Ipg — Z)P = (Ipm — Z)Q together imply P < @ (Proposition 14.2.7).

(14.5.5) Let M be a finite von Neumann algebra and ¢, € M, two
tracial normal states such that ¥|za) = ¢|za). Show that

b =e.

Answer. Let P € M be a monic projection. Then there exist projections
Py,...,P. € M with P, ~ P forall kand Z =3, P, € Z(M). We have

e(P) =171 o(P:) =1""0(2)
k=1

=r'(Z) =171 ) w(Br)
k=1

= ¢(P).
If now P is an arbitrary projection in M, by Lemma 14.5.4 there exist pairwise
orthogonal monic projections {F;} C M with P = . P;. As both states
are normal,

P(P) =Y (Py) = S w(P)) = w(P).



630

CHAPTER 14

Given T' € M®*, by the Spectral Theorem it is a norm limit of linear com-
binations of projections, so ¥(T) = ¢(T). Finally, any T € M is a linear
combination of two selfadjoints, so ¥(T") = ¢(T).

(14.5.6) Let M be a von Neumann algebra, Ty, ...,T, € M, and € > 0.
Show that there exists v € Dy and Zy,...,Z, € Z(M) such
that

v (Tx) — Zk|| < &, k=1,...,r

Answer. We need to use the idea at the end of the proof of Theorem 14.5.15.
We may assume without loss of generality that 77, ..., T, are selfadjoint, for
we may replace the list with a list of their real and imaginary parts. We argue
by induction. From the (14.20) we have the case r = 1. So we assume that
we have 8 € Dag and Z, ..., Zy_1 such that ||5(T;) — Zk|| < €. Applying
again the argument that leads to (14.20) to B(T;.), we obtain o € Dy and
Z, € Z(M) such that ||a(B8(T:)) — Z.|| < e. Now we put v = ao . Then for
all k,

IV(Tx) = Zi|| = la(B(Tk)) = Zill = [la(B(Tk) = Z)ll < [IB(Tk) — Zill <e.

(14.5.7) Let M be a von Neumann algebra and T, ...,T,. € M. Show
that there exist Z,...,2Z, € Z(M) and {y,} C D such that
lim, v, (T) = Z, k=1,...,7.

Answer. Given n € N, we apply Exercise 14.5.6 inductively to obtain 3, €
Dm and Zi ..y Zrp € Z(M) with

||ﬁ"o--~oﬁ1(Tk)—ZkH<2_", k=1,...,r
Let
Tn :ﬁnoﬁn—lo"'oﬁl GDM.

Then

[vn+1(Tk) = Zinll = 1Bn+1 (0 (Tk) — Zien) | < v (Th) — Zk,ull <27
So

[vn+1(Tk) = (Tl < lvn+1(Tk) = Zien
It follows that

|+ 1y (Tk) = Ziwll < 2771

n+s—1 n+s—1
[Yts(Te) = 1Tl < D Nga (Tr) = (T < Y 279+ <2742,

j=n j=n
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So {vn(Tk)} is Cauchy for each k = 1,...,r. This forces {Zj ,}n to be also
Cauchy. Then there exists Z, = lim,, Zj , € Z(M), and Zj, = lim, v, (Tk).

(14.5.8) Let M be a von Neumann algebra and S,T € M. Show that
DS +T)NZ(M) CDum(S)NZ(M) +Dp(T) N Z(M).

Answer. Let Z € Dy (S +T)N Z(M) and fix € > 0. This means that there
exists 8 € Dy such that [|5(S+T)— Z|| < e. By Exercise 14.5.7 there exists
v € D and Zy € Dy (B(S)) N Z(M), Zy € Dq(B(T')) N Z(M) such that

IV (B(S)) — 21l <&, |Iv(B(T)) — Zefl <e.
As
VB +T) =2l =7vBES+T) - 2) < B(S+T) - Z| <e,

we obtain
1Z = (21 + Zo)| < |1 Z =~(B(S + D) + IV(B(S)) — Zull + [ (B(T)) — Z||

< 3e.
As this can be done for any ¢ and

Dm(B(S)) N Z(M) C Dum(S) N Z(M)
and

Dm(B(T)) N Z(M) C Dp(T) N Z(M),
we have shown that

Ze€Dm(S)NZM) +Dm(T) N Z(M).

(14.5.9) Let M be a von Neumann algebra, T' € M, Z € Z(M). Show
that

Du(TZ) N Z(M) C Z(Dpm(T) N Z(M)).

Answer. Fix Y € Dpm(TZ) N Z(M) and € > 0. Then there exists 8 € Dy
such that |8(TZ) — Y| < e. By Theorem 14.5.15 there exists v € Dy and
Yi € Da(A(T)) 1 Z(M) with [[y(B(T)) — Yi]| < &. Then

1Z2(v(B(T) =Y = [[(V(B(TZ)) = Y| < [IB(TZ) - Y| <e.

Also,
1Z(v(B(T)) — ZY1 ||l < [v(B(T)) = Va1 Z]] < e[| Z].
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Then
1Y = Zvil| < 1 +[|Z]])e.
As Z is fixed and this can be done for all ¢ > 0, we have shown that Y €

(14.5.10) Let M = B(H) with dimH = co and T € K(H)". Show that
Dm(T) N Z2(M) = {0}.

Answer. Fix e > 0. Using the Spectral Theorem (Theorem 10.6.12) we have
T =372, \e Py where Py, P, ..., are rank-one projections. Choosing n big
enough we can take To = Y _;_; A Py, with || T—Tp|| < . Let {Ejy;} be matrix
units in B(H) with Ex, = Py for k = 1,...,n; use P, to denote Ejyy for all
k. Fix m > 1/e. For j =1,...,m let let U; be a unitary with

UjEkU; = Pl 1ynsk-

Then
1w .
V(TO) = E ZUjTOUj
j=1
1 m n .
S
=1 k=1
1 m n
= 2 2 MUPG -t
j=1k=1
m n
Ak
=22 UiPGonk
=1 k=1
As the projections P(j_1),+x are pairwise orthogonal for k = 1,...,n and
j=1,...,m, we get that
) = — A s k)< i T
Y(To) = — max{[Ax] : k} < T2 <e|T].

Then
VD < NIV (T = To)l[ + [V (To)l| <e+eT].
This can be done for all € > 0, so 0 € Dap(T) N Z(M).

Conversely, for any v € Dp(z) we have y(T') € K(H) (linear combina-
tions of unitary conjugates of compact are compact). As IC(H) is norm-closed,
D) (T) € K(H). This means that

Dy (T) N Z(B(H)) € K(H) N Z(B(H)) = {0}.
Therefore Dp(3)(T) N Z(B(H)) = {0}.
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(14.5.11) Let M = B(H) with dimH = oo and P € B(H) an infinite
projection with I; — P infinite. Show that Dy (T) N Z(M) =
[0,1] I.

Answer. By working on an orthonormal basis made out of orthonormal
bases for PH and ker P, we may assume without loss of generality that P
is diagonal. So we may think of P as an element of {0,1}" with infinitely
many 1 and infinitely many 0. Via unitary conjugation we can implement
any permutation. Fix m,n € N with m < n. Choose a unitary U such that
UPU* corresponds to

n—m times m times

—— —
0,...,0,1,...,1,...
where the pattern repeats afterwards. Let r = (:1) and Vi,...,V, unitaries

that implement all distinct r permutations (this is the total number of per-
mutations of the first n entries if we ignore permutations that produce the
same arrangement of 0 and 1). Let

I
1 * *
¥ (T) = - > V,UPU*V;.
j=1
In each coordinate the amount of 1 is equal to the amount of configurations
of the remaining m — 1 number 1 distributed in the remaining n — 1 positions.

So there is a total of (”"~) entries equal to 1. This shows that

=) g,
() n
So ™ I3, € Dy (P) N Z(B(H)) for all m,n € N with m < n. As D) (P)
is closed, t I3, € Dp3)(P) N Z(B(H)) for all ¢ € [0, 1].
The converse is trivial, for 0 < P < I implies 0 < v(P) < I3 for all
v € Dgny, so any Z € Dgyy)(P) N Z(B(H)) satisfies 0 < Z < Iy. As Z is
necessarily a scalar, Z = t Iy with ¢t € [0, 1].

L.

(14.5.12) Given a weight ¢ : MT — [0,00], show that F, is a face
in M, Ny is a left ideal in M, M, is a x-subalgebra, and
My, = span Fy.

Answer. Given S,T € Fy and t € [0,1], (¢S + (1 — t)T) = ty(S) + (1 —
Y(T) < 0o, so Fy is convex. If T = tS1 + (1 —t)Sy € Fy, then

t(S1) < tp(S1) + (1= 1)1p(S2) = P(T) < o0,
so S1 € Fy and similarly Sy € Fy. Hence Fy is a face.
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Given T € Ny and S € M, since 0 < (S —T)*(S—T) = S*S+T*T —
2Re S*T we have the obvious inequality
(S+T)(S+T)=5"S+T"T+2ReS"T <25*S+2I"T. (AB.14.4)
Then
Y((S+T)Y(S+T)) =2¢4(5*S) +2¢(T"T) < 0
so Ny is a subspace, and
Y((ST)*ST) = (T*S*ST) < ||S|*%(T"T) < o0,

showing that Ny is a left ideal. Since the adjoint reverses products it follows
that A} is a right ideal, and then M,, = N NNy, is an ideal since it is the
intersection of a left and and right ideal.

Given T' € Fy we have TY/? € Ny NN}, to T € My. As My is a
subspace we get that span Fy; C My. Conversely, an element of M, is a
linear combination of elements of the form S*T with S,T € Ny. So it is
enough to show that S*T" € span . By (AB.14.4) with both £T', we get
that |S £ T|? € Fy. Then

ARe S*T = (S+T)"(S+T)—(S—T)"(S—T) € span Fy.
Replacing S with iS we get Im S*S € span Fy, and so S*T" € span Fy.

14.6. Examples of Factors

(14.6.1) Let M C B(H), 7 : M — B(H) the identity representation,
G a group that acts on M via a. Show that if S € M’, then
S® Iﬂ(G) S 7~T(M)/

Answer. ForT € M and £ € H and g € G,
(S @ L)) T(T)(E @0y) = (S @ L2y (QQI(T)ﬁ ® dy)
Sa, '(T)E® b6y = ay ' (T)SE® b,
F(T)(SE ©8,) = #(T)(S @ () (€ @ 6,).

By linearity and taking limits, (S ® Ip2(q))7(T) = 7(T)(S ® Ip2(g)). This
happens for all T' € M, so (S ® Ij2(e)) € T(M)'.
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(14.6.2) Let T € M %,G and g,h,7,s € G. Show that [U,TU],n =
Tr_lgﬂsh

Answer. For any &,n € H,
([U.TU], ,&m) = (U TUS(€ @ 61), 1 © )
= (T(£ ® 65,0 @ 8rry)
= (T-14.n&, ).

Hence [TUs]g,h =Tr-1g,sn-

(14.6.3) Let T € M %,G and g,h € G. Show that Tg,h = E(U;TUh).

Answer. Using Exercise 14.6.2,
EWU;TU,) = [Ug_lfUh]e,e =Tyn

(14.6.4) Prove (14.22).

Answer. We have

(Tyn&sm) = (T(€ ® 0n),n® by)

= (U, T(E®61),n @ )

= (U, TU Uy (E®0n),n @ de)
= (U;TU4 (£ ® 0y-11),1 ® be)
=

(U*TU )eg 1h§7 >
This holds for all £, € H, so

Tgah = ((U;TUg)e7g*1h'

(14.6.5) Use (14.23) to show that the conditional expectation £ : M X
oG — M is faithful.
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Answer. Suppose that £(T*T) = 0. This means that [T*T].. = 0. So, for
§eH,

0= ([T"T)e,c&,6) = (T*T(E®6.), £ @ 6,) = I T(E @ 6|
Thus T(€£ ® 6.) = 0 for all £ € H. This gives us, for any &,n € H,
<Tg,efa n = <T(£ ®0e),n ® dg) = 0.
It follows that T, . = 0 for all g. By (14.23),
Tgah = agl(Tghfl,e) =0
for all g, h € G. We can now write
(T(€®6n),n @ 8g) = (Tyn&m) =0,

and therefore T' = 0 after using linear combinations and continuity.

(14.6.6) Let 0 be an irrational number and « the translation action as
in Example 14.6.9. Show that « is free and ergodic.

Answer. Fixn € Z and suppose that fg = a,,(g)f for all g € L°(T). Fix z €
T. We can always construct g (as a polynomial, even) with g(z) # a,(g)(2).
Then f(z) =0. This can be done for all z, so f = 0 and the action is free.

Now suppose that a,(f) = f for all n. Fix ¢ > 0; as f is uniformly
continuous by the compactness of T, there exists § with |f(z) — f(w)] < ¢
whenever |z — w| < §. Since 6 is irrational, given z € T we can find n such
that [z — e2™%"| < §. Then

[f(2) = FOI < [f(2) = F(T0M)| + [ fe®rP0m) — f(1)]
<et|an(H)) = fA) =e.

As this can be done for any € > 0 we have shown that f(z) = f(1) and thus
f is constant. Therefore the action is ergodic.

(14.6.7) Show that the action of Q on L (R) by translation is free and
ergodic.

Answer. If fg = aq(g)f for all g € L>®(R), this means that f(t)g(t) =
f(®)g(t + q) for all t. We can construct g with g(t) = 0 and g(t + ¢) = 0,
which shows that f(¢) = 0. As this can be done for all ¢, f = 0. Properly,
the equality fg = a4(g)f is almost everywhere, so one needs a bit more care,
but basically the argument is the above up to a nullset. Hence the action is
free.
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If ag(f) = f for all ¢ € Q, this is f(t) = f(¢t + ¢) almost everywhere.
Given r € R, choose {¢,} C Q with ¢, — r. Using the notation from
Lemma 2.8.19, and working on a fixed interval [—m, m] so that f is integrable
there,

1fr = Flle < e = faullo + 1o = Flle = 1fr = faulli =0

by Lemma 2.8.19. Hence f, = f a.e. for each r € R. For each Lebesgue point
r of f, by Theorem 2.11.9

Properly 0 might not be a Lebesgue point for f, but we can translate the in-
tegrals to any Lebesgue point, and this is all of R up to a nullset. Finally, this
can be done for every interval [—m,m] so f is constant in these overlapping
intervals; hence f is constant, and the action is ergodic.

14.7. 11,-Factors

(14.7.1) Where in the proof of Proposition 14.7.2 is the norm-closedness
of J used?

Answer. 1t is used in the fact that J is hereditary. The argument after Defi-
nition 11.5.19 requires J to be closed. This was discussed in Exercise 11.5.11.

(14.7.2) Give an alternate proof of Proposition 14.7.2 by using Dixmier’s
Property.

Answer. Let M be a II;-factor and J C M a nonzero norm-closed ideal.
Let T € J be positive (recall that J is a C*-algebra, so it is spanned by
its positive elements). As the trace 7 is faithful, 7(7') > 0. By Dixmier’s
Property,

7(T) e {UTU*: U € M unitary}.
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So there exists a sequence {U,} C M of unitaries with U, TU; — 7(T) In.
AsT € J and J is an ideal, U, TU} € J for all n. Then 7(T )IM egJ=J,
and therefore Iy € J, showing that J = M.

(14.7.3) Show that 6 in (14.24) is a *-homomorphism.

Answer. When we write (T)60(S5), the 1,1 entry is

Y~ HPTPSP+PT(Ip—P)SP) =~y (PT(P+Ipm—P)SP) =y (PTSP).
The same phenomenon occurs on the other three entries, like the 2,1 entry is
v Y PTPS(Ipg — P)V + PT(Ipg — P)S(Ipg — P)V) =y Y(PTS(Ip — P)V).
As for the adjoint,

oy — | TUPTP Y YPT(Ip — P)V) "
@ = V(I — PYTP) ' (V* (It — PYT(Inq — P)VJ
_ ~1(PTP)") UV (Ing — PYTP)) ]
(PT(In — P)VI) 7 (V*[(Int — PYT (It — P)*V)
[ pTP) U (PT* (Ing — P)V) }
= (VI — PYTP) v (V*(Ing — PYT*(Ing — P)V)

=6(T").
And for the injectivity, if (T") = 0 we immediately get from the injec-

tivity of y~! that

PTP=0, PT*"(Ipm—-P)V=0, V*(Ip—P)TP=0,
and

V*(UIm — P)T(Ipmq — P)V =0.

Multiplying the second equality by V* on the right, the third one by V on
the left, and the fourth one by V' on the left and V* on the right, we obtain

pPrp=0, PT*(Ipm—P)=0, (Ipm—P)TP=0, (I—P)T(Ipm—P)=0.
And now adding the four equalities yields T' = 0.

(14.7.4) Let M be a II;-factor, n € N,
PcP(M,(M)), and Q€ M,(PM,(M)P).
Show that QM,2(M)Q = QM, (PM,(M)P)Q.

Answer.  We clearly have QM,2(M)Q D QM,(PM,(M)P)Q, so we only
need to prove that inclusion QM,2(M)Q C QM,(PM,(M)P)Q. Let X €
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M,2 (M), seen as M, (M, (M)). The hypothesis is that @ is an n x n block
matrix [Qg;] with Qr; € PM,(M)P for all k,j. Then

(QXQ)k,j = Z Qk,rXr,st,j = Z PQk,rXr,st,jP

T, T,

= P(}. QurX0sQus ) P € PMu(M)P.

]
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The Determinant

A.l. Preliminaries on Permutations

A.2. Preliminaries on Multilinear Maps

A.3. The Determinant

(A.3.1) Given j € {1,...,n} and v € S,_1, let 0;, as in (A.3). Show
that Ojv € Sn.
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Answer. Let a:{2,...,n} — {1,...,n — 1} be given by a(k) = k — 1. Let
Bi:{l,....,n—=1} = {1,...,n}\ {j} be
k, k<j
Bi(k) = :
k1, k>
Then o, is given by ¢, (1) = j and for k > 2,
ojv(k) = Bjovoa(k).

Being a composition of bijections, it is a bijection.

(A.3.2) Given j € {1,...,n} and v € S,,_1, let 0;, as in (A.3). Show
that sgnoj;, = (—1)"!sgnv.

Answer. The number sgno;, is the parity of the cardinality of the set
ngw = {(T, S) cr<s, O’jﬁ,,(?“) > a'j’y(s)}_

The formula for o;, will usually apply a “4+1‘” to both v(r — 1) and v(s1);
and it if it only applies it to one of them, it will be the largest. Then

Py, ={(r,s): 2<r<s, 05,(r)>o0(s)}

U{(1,s): 1 <s, 0,(1) > 0j.,(s)}
={(r,s): 2<r<s, v(r—1)>v(s—1)}
U{(1,s): 1<s, j>0j.(s)}
={(r,s): 2<r<s, v(r—1)>v(s—1)}U{l,...,j—1}.

(A.3.3) With the notation of (A.3), show that S,, = {o;, : j €
{1,...,n}, vE€S,_1}.

Answer. Given o € S,,, let j = o(1), and put
L o(k+1), olk+1)<j
1% =
ok+1)—1, ok+1)>j

Then o, = 0.
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Getting to Know Majorization

B.1. Preliminaries on Majorization

(B.1.1) Let € R™ with z; > 0 for all j. Show that

¥e<x< (Tr(z),0,...,0)

Answer. For z < (Tr(x),0,...,0), both vectors have the same trace, and
since the entries of x are non-negative,

kS

And for %x) e < x, again they have the same trace. If we had, for

some k,
k

k
Tr(z) = Z Tr7(1a:) > ij,

j=1 j=1

S|
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then
ij < = Tr(x) + Z xj < k Tr(z) + (n — k):Lt
j=1 Jj=k+1 "
@ - LS < E @) 4 (- k) L Te() = Tr(o)
—n k < - J = n n ’
=

Tr(x)

a contradiction. Thus e <y « and, as they have the same trace, we get

majorization.

(B.1.2) Show that ti,...,t, are convex coefficients (that, is ¢; > 0 for
all j and Zj t; =1)ifand only if t < eq, where t = (t1,...,t5).

Answer. Suppose that t; > 0 for all j and Zj t; = 1. Then 2521 t; <1l=
Z?Zl(el)j for all k, with equality for £k = n. Thus t < e;.

Conversely, if t < e1, assuming without loss of generality that ¢t = t+,
we have t, > (e1), =0, s0¢; >0 for all j. And °;¢; = Tr(t) = Tr(e1) = 1.

(B.1.3) Prove (B.1), that is <, y and y <, « if and only if there
exists a permutation ¢ with y = P,x.

Answer. For each k we have

k k
DT =D v
j=1 j=1

for all kK = 1,...,n, since the double majorization gives us inequality both
ways. When k = 1 we get x% = y% This equality together with the equality
for k = 2 give xé = y% . Continuing this way, we obtain xj = yji for all j. That
is, x and y have the exact same entries, possibly in different order. Hence
there exists o € S,, with z = P,y.

(B.1.4) Let x,y € R™ and a € R. Show that if z < y then az < ay.

Answer. Suppose that z < y. When o > 0, the equality and inequality
defining majorization are preserved, so ax < ay. To deal with the case where
a < 0, it is enough to show that —x < —y. The condition Tr(—z) = Tr(—y)
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is satisfied trivially by linearity. Note that (—aj)j = —ka j+1- Then
k k n n ;
o T _ 0 T 1
D(y==d wa= ), TS vy =2 vy
j=1 j=1 j=n—k+1 j=n—k+1 j=1

(B.1.5) Show that A € DS(n) if and only if A has non-negative entries,
Ae=c¢,and ATe =e.

Answer. The equality Ae = e means that (Ae); = e, = 1 for all k, and this

1S "
> A =1.
j=1

In other words, Ae = e describes exactly row stochasticity. Similarly, ATe = e

is
n
> Ay =1.
k=1

(B.1.6) Show that DS(n) is convex.

Answer. It is enough to show it for two. If A,B € M,(R) are doubly
stochastic and ¢ € [0, 1], then [tA+ (1 —¢)B|g; = tAg; + (1 —t)By; > 0, and

DA+ (1 —t)Blyy=tY Ay+(1-1)> Byj=t+1-t=1
j=1

j=1 j=1
Similarly,

DA+ A —=t)Bly=t> Agj+(1—1)) Byyj=t+1—-t=1

k=1 k=1 k=1

(B.1.7) Show that a T-transform is doubly stochastic.

Answer. Suppose that T = tI+ (1 —t)P,, with 0 = (r s). When h #€ {r, s}
we have Te;, — ep. Also,

Tes =tes + (1 —t)e,, Te, =te,. + (1 —t)es.
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It follows that Tj; € {0,1,¢,1 —¢}. And, if we reorder the canonical basis so
that e; and e, are the first two elements,
t 1—t
T=|1-t t
L2
So T is doubly stochastic.

(B.1.8) Show that if A, B € DS(n) then AB € DS(n).

Answer. When all entries of A and B are non-negative, the formula for the
product of matrices guarantees that all entries of AB are non-negative. The
rest follows directly from Exercise B.1.5. For (AB)e = A(Be) = Ae = e, and
(AB)Te=BTATe=BTe=e.

(B.1.9) Let A € M,,(R) be doubly stochastic.
(a) Show that A has at least n nonzero entries.

(b) Show that A has precisely n nonzero entries if and only if
A is a permutation.

Answer. Because the entries of each row of A add to 1, this implies that
each row has at least one nonzero entry. So A has at least n nonzero entries.

Now suppose that A has precisely n nonzero entries. Because each row
has at least one nonzero entry, this means that each row (and column, by
analogy) has precisely one nonzero entries. This also shows that all nonzero
entries of A are 1. Now we proceed as follows. Let o(j) be the row in which
column j has its entry equal to 1. The numbers o(1),...,0(n) have to be
all different, for otherwise there would be a column with two nonzero entries.
Thus o € S,,, and then A = P, is a permutation matrix.

(B.1.10) Show that (ii) and (i) in Proposition B.1.4 are equivalent.

Answer. (i) = (ii) Suppose that = < y. We note that :ch = xi7j+1' Then

k k n n—k

IR SEUHED SRS EE O

j=1 j=1 j=n—k+1 =1

<.
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Thus
n—k n—k n—k
D) =) = 3oy 2 Te(e) = 3wl =Tew) — Y = Z%
j=1 Jj=1 Jj=1 j=1

(ii) = (i) The case k = n gives us Tr(z) = Tr(y). And z <, y is a
given, so x < y.

(B.1.11) Show directly that (i) = (iv) in Proposition B.1.4

Answer. This follows directly from Proposition B.3.4. But it is not hard to
write an ad-hoc proof. Since both sums involve all terms of x and y, we may
assume without loss of generality that = 2% and y = y*. Fix t € R. We
consider three cases:

et <ux,. Then

Z|xj—t\—Zx]—t—Zy]—t<Z|yj—t|.

j=1

et > 1. In this case,

n n
lea—t\—Zt—wFZt—yjéZlyj—tl-
j=1 j=1

j=1
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ex >t > 33k:+1 We have

n

Z|$J_t|_2$1_t+ Z t—z,; = n—2kt+Za:J— Z x;
Jj=1

= j=k+1 j=k+1

= (n—2kz)t+ixj - (Tr(x)—ixj)

k
= (n — 2k)t — Tr(z) +2ij
k
< (n—2k)t —Tr(y) +2) vy
—Zyj —t+ Z t—y;

j=k+1

n
<>y —tl-
j=1

(B.1.12) Let z,y € R™. Show that the following statements are equiva-
lent:

(a) T <w Y;
(b) Tr f(x) < Tr f(y) for all f convex and non-decreasing;

()
i(ﬂﬁj —t)* < i(yj -8, teR. (B.1)

Answer. (a) => (b) Suppose that z <,, y. By Proposition B.1.7 there exists
v with £ < v <y. Then

Tr f(z) < Tr f(v) < Tr f(y),

the first inequality by the convexity and Proposition B.1.4, and the second
inequality by the monotonicity.
(b) = (¢) We have that s — (s — t)™ is convex and non-decreasing.
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(c) = (a) If we take t = min{x y; : j} then (B.1) becomes

—nt—I—Z 1) —nt+z

If instead we take t = max{z;,y; : j}, the same idea gives us Tr(z) > Tr(y).
Thus Tr(z) = Tr(y). If we take ¢t = y;, then

k k k
Soaj—kt=> (z;—t) <> (z;-t)"
j=1 j=1 j=1
n k k
< Z(% —t)F < Z(yj -t < Z(yj —1) = Zyj — kt
j=1 j=1 j=1 j=1
So x <y Y.

B.2. Some Combinatorics

(B.2.1) Prove Corollary B.2.3.

Answer. We will use Theorem B.2.1. We take B =G = {1,...,n}, and
R={(k,j): Ay #0}.

Each diagonal without zero entries is a matching. So (i) in Corollary B.2.3
says that there is no matching, and then Theorem B.2.1 gives us indices
ki,..., k. such that |Gk1,...,kr| <r. Write Gy, ..k, = {j1,---,7s}, with s < r.
This means that for j € {1,...,n}\Gg,,.. &, we have Ay, ; = 0. This is a zero
submatrix with 7 rows and n — s columns. Then r+(n—s) >r+((n—r)=n
and (ii) in Corollary B.2.3 holds.

This process can done in reverse. If A admits a zero submatrix with
r rows ki,...,k, and n — s columns such that s < r, taking the remaining
columuns jq,...,Js (which are the only possible nonzero for the given rows)
we get |G, ,...k,.| <7, and by Theorem B.2.1 no matching is possible, which
means that every diagonal has a zero entry.
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B.3. Birkhoff’s Theorem and Convex Functions

(B.3.1) A matrix A € M,,(C) is doubly substochastic if Aj; > 0 for
all k, 7 and

n
ZAkjSL k::l,...,n

and
n
A <1, j=1,...,n

Show that the set DSS(n) of all doubly substochastic n x n
matrices is convex, and its extreme points are those A € M,,(C)
with at most an entry 1 in each row, and all other entries equal
to zero (in particular, the zero matrix is an extreme point of

DSS(n)).

Answer. Ift €[0,1] and A, B € DSS(n), then

ZtA,c] 1—tB;€J_tZAkJ 1—t)zn:Bkj§t+1—t:1.

j=1 j=1
Simllarly7
ZtAkj 1—tBkJ—tZAk] (1=t)) By <t+1-t=1,
k=1 k=1

=) DSS(n) is convex. When A has some entry in (0, 1), then A is not extreme
in DS(n) by Remark B.3.2, so it cannot be extreme in DSS(n). When A
has at most an entry equal to 1 per row (and hence per column) and zeroes
elsewhere, if A =tB+(1—1t)C with t € [0,1] and B,C € DSS(n), we do the
following. If A.; =1, then 1 =¢B,s + (1 — t)C,s forces B.s = C,s = 1. This
immediately forces the rest of the " row and the s** column of B, C to be
zero. When a full row k of A is zero, we have 0 = tBy; + (1 — t)Cy; and this
forces By; = Ci; = 0 for all j.

(B.3.2) Show that B is doubly substochastic if and only if there exists
A € DS(n) with By; < Ay; for all k, 5.
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Answer. If B € DS(n) then we may take A = B. So we assume without loss
of generality that We proceed by induction. If n = 1 and B € DSS(1)\DS(1),
we put A = 1. So now suppose that the statement is true for n, and let
B € DSS(n+ 1)\ DS(n+1). If B,s = 1 for some r,s, then the rest
of the row and column are zero. Consider the submatrix B(r,s) obtained
by removing row r and column s. By the inductive hypothesis there exists
A’ € DS(n) with B(r,s),; < Akj’ for all k,j = 1,...,n. Hence we form A
by making A,, = 1, the rest of the *" row and s*" column equal to zero, and
the remaining n x n submatrix we put A’. Then A € DS(n) and By; < Ay,
for all k, j.

Conversely, if Br; < Ag; for all &, 7, ZBkj < ZAkj =1, and

J j
similarly for rows, so B € DSS(n).

(B.3.3) Let z,y € C™ with non-negative coordinates. Show that x <,
y if and only if x = By for some B € DSS(n).

Answer. Assume first that x <, y. By Proposition B.1.7 there exists z with
2z < z < y. Then Proposition B.1.4 gives us A € DS(n) with z = Ay. Since
x < z, for each k there exists o € [0,1] with xx = axzx. Let B € M,,(C) be
given by By; = arAkj. Then B € DSS(n) and (By)r = ax(Ay)r = apzr =
Ty, so x = By.
Conversely, if x = By with B € DSS(n), then for any r

Zx’“ = ZZBkjyj = Z (ZBkj)yj < Zyj,

k=1 k=1 j=1 j=1 k=1 j=1
SO T <y Y-
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C

Lidskii’s Theorem

C.1. Antisymmetric Tensor Products and the Determinant

(C.1.1) Let H be a Hilbert space and {} an orthonormal basis. Show
that

{€j1 /\"'/\gjn 3 gh L ooc <.7n}
is an orthonormal basis for A"H.

Answer. We have

1 n
(€ N Nl A A = D sgnosgno’ [ (60 Enp)

o,0' €Sy t=1

= Z 58 H &jerEhocny)

o€S, t=1

The only way any of the products can be nonzero is that j; = hg( for
t=1,...,n. This forces hy = j; for all t = 1,...,n. So the product can be
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nonzero only when ¢ = id. Thus

{6 A NG i < <}
is orthonormal. And it has dense span in A™(#), so it is an orthonormal
basis.

(C.1.2) Let a € ¢*(N). Show that

Z ajy @y, < k,(i%)

J1<-<jk Jj=1

Answer. We have, as all the coefficients are non-negative,

(Z ) Z aj, ---aj, > k! Z aj, - aj,

Jj=1 150k J1<-<Jk

(note that each product aj, - - - aj, appears k! times in the full product).

(C.1.3) Let H=C" and T € B(H) = M,,(C). Show that dim A"H =
1, and that A™T is the operator of multiplication by det T

Answer. With eq,...,e, the canonical basis, we know from Exercise C.1.1
that
{ejl N Nej, oogr <oo-- <jn}

is an orthogonal basis for A"H. The only possible choice j; < -+ < j, for
indicesin {1,...,n}is jr = k for all k. So the orthogonal basis is {e1 A---Aep }
and A"H is one-dimensional.

We have, expanding each Te; in terms of the entries of T" with respect
to the canonical basis and using that the exterior products are zero when
there is any repetition so we need k1, ..., k, distinct,

(AN"T)(ey A---ANey)=Tey A---ATey,

Z Z Tkh "Tk’n,7"ek1 /\.../\ekn
kn=1

ki1=1

Z Tom)1 Tom)m o) N+ A eo(n)

oES,

Z SgnUTa(l)}l 3 ~Tg(n)’n erN---Nep
oES,

(detT)er A--- Nep.
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(C.1.4) Let H be a Hilbert space and T € B(H). Show that if rank T' =
n, then A\"**(T) =0 for all k € N.

Answer. Given &1,..., &1 € H, the set {T&,...,T¢ 1} is linearly de-
pendent. We can take {n,...,n,} to be an orthonormal basis of TH, and so
there exists coefficients c; s such that

n
T = ¢jals:
s=1

Then
AFT(E A AN pik) = TE A - ATy,
n+k

—_ Z ch7sj7731 /\.../\778n+k :O,

S1yeeySntk j=1

for each product ns, A--- Ans,., contains at least a repetition.

C.2. Lidskii’s Formula
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The Banach—Tarski Paradox

D.1. The Construction

D.2. The Axiomatic Issue
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E.1. First abstract approach: Gelfand—Naimark

E.2. Second abstract approach:

the Stone Cech compactification
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E.3. A more intuitive approach: Ultrafilters

(E.3.1) Let Ap € N. Show that / = {A C N: A D Ap} is an
ultrafilter. Show also that U is free if and only if Ay is infinite.

Answer. We have
(a) N € U because N D Ay.

(b) Suppose that A € Y. Then Ag C A, so N\ A C N\ Ap; then Ay ¢ N\ A
and thus N\ A & U.

(c) Suppose that A, B € Y. Then Ag C A and Ay C B, which implies that
Ay C AN B; therefore ANB € U.

()If AclU and A C B, then Ay C AC B,so Bel.

This shows that U is an ultrafilter. If Ag is finite, let n = 1 + max Ag; then
Ao C N\ {k: k > n}, showing that {k: k > n} ¢ U and so U is not free.
Conversely, if Ay is infinite then A9 ¢ {1,...,n—1} and thus{k: k >n} e U
by Lemma E.3.1, and hence U is free.

(E.3.2) Show that ¢y, as defined in (E.1) and extended by linearity to
span{eg : k} is well-defined.

Answer. We need to show that if
ZBklAn = Z’}/lej, (AB51)
k=1 =1

then ¢y, agrees on both. By extending with zero coefficients if needed we may
assume that >, 14, = > ;1 = 1. The key property is that A, N B; € U if
and only if A, € U an B; € U, which happens by definition of ultrafilter. This
implies that ¢y (1a,nB;) = wu(la,)pu(lp,;) for all k,j. From Lemma E.3.1
we know that ¢(1p;) = 1 for precisely one j, so

¢(Llay) Zsﬂ 1a,)e(1B,).
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This, together with ¢;(1) = 1 (because N € U) and the fact from (AB.5.1)
that g = v; if Ay N B; # & gives

@(ZﬁklAn) = Zﬂk@u(lAn) = Z/Bk Z@u(lAn)sﬁ(lBj)
k=1 k=1 k=1 =1

(E.3.3) Let x € £°(N). Show that 7}1_{% Ty = @u(T).

Answer. Let a =lim,_,, z,. Fixe > 0and let A, ={n: z, € B.(a)}. By
hypothesis, A. € w. Then, using that |¢(y)|?> < ¢(y*y) by Cauchy—Schwarz
since ¢ is positive,

2
e Y walim)| <o X l2nl 1pn) < ol pu(lpngany) = 0.

ng¢A. ngA.

So, as v, (14.) =1,

o = pu(@)] = |a - sow(ixnl{n})! =a—eu( X anigm)]
n=1

necA.

=| Y (e 1py)| < cpulia) ==

neA,

As this can be done for all € > 0, we have shown that a = ¢, (z).

(E.3.4) Let ng € Nandw = {A C N: ng € A} the associated principal
ultrafilter. Show that ¢, (z) = zp,.

Answer.  We have ¢, (1{,,3) = 1. Then
Yo () = o () ‘Pwu{no}) = pu(z 1no) = Tn, ‘P(lno) = Tng-
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(E.3.5) Let & € ¢>°(N) be given by z(n) = (—1)". Show that there
exist free ultrafilters w; and we such that ¢, () = 1 and

Pws (J)) =-L

Answer. Let
wi ={ACN: 2N C A}, wy={ACN: 2N+1C A}.

These are free ultrafilters by Exercise E.3.1. Let « € ¢°°(N) be given by
xz(n) = (=1)™. We consider the states ¢, and ¢,,. We have

Pun (T) = Puy (T) Pu, (12v) = P, (7 12n) = @y (1on) = 1,
while

P (T) = Puoy (T) P, (12N41) = Puon (T Lan41) = Puy (longr) = —1.
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F

Unbounded Operators

(F.0.1) Prove Proposition F.0.3.

Answer. Suppose that T is closed and let {z,} C D(T) be Cauchy for

Il - lc- Then {(z,,Txz,)} is Cauchy in G(T); so there exists (x,Tx) =

lim, (xy, Txy,) € G(T). Then ||z — z,||¢ — 0 and D(T') is complete.
Conversely, suppose that D(T) is complete for || - ||¢ and let

{(@n, Tan)} C G(T)

be Cauchy. Then ||z, — |l = ||&n — Tm| + || T2n — T2y || is Cauchy in
D(T). By the completeness, there exists x € D(T') with ||z — z,]|l¢ — 0. In
particular, z,, - « and Tz,, — Tx, so (z,,Tz,) — (z,Tz) in G(T).

(F.0.2) Show that V, defined in Proposition F.0.5 is an isometry, and
VHg = (VHo)* for any subspace Ho C H x K.

Answer.

IV, OI7 = 16 =m1* = IEl* + [In]1* = | (n, €)1
Also, if (p,7) € hg and (&,7) € Ho, then

Vp,7), V(&) = (v, —p), (n,=&)) = {vsm) + (p, &) = {(p,7), (&m)) = 0.

663
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Thus VHg C (VHo)*. Conversely, if (p,) € (VHo)t, this means that for
all (677]) € HOv

(Vi(p:7), (&:m) = ((p:7), V(§;m)) = 0.
Thus V(p,7) € Hg, and (p,7) € VHg. Then (VHo)t C VHi.

(F.0.3) Show that the map T in Example F.0.1, that is T : X — Y
given by T'f = f, is unbounded.

Answer. Let g,(t) = t", n € N. Then ||g,|lx = gn(1) = 1, while ||g,|ly =
9(3) = 3™. Hence,
ITgally _ on
l[gnlla

7

showing that T' is unbounded.

(F.0.4) Let X =Y = C[0,1], with the infinity norm. Let D = C1|0, 1]
and T : D — Y the operator Tf = f’. Show that T is
unbounded and closed. If instead we consider the operator
Sf = f' but now D(S) = C*|0, 1], show that this operator is
closable with closure T'.

J

Answer. We know that T is unbounded by considering the usual example
of ||| = 1, while ||Tz,|;infty = n. Suppose that (gn,g,) is a Cauchy
sequence in G(T'). This means that both {g,,} and {g,} are uniformly Cauchy;
this guarantees that lim, g/, = (lim,, g,)’. So there exists g € C[0,1] with
g = lim,, g,, and g, is differentiable with ¢’ = limg/,. Then (g,¢9’) € G(T),
showing that it is closed.

In the case of S, a Cauchy sequence in its graph will now be (hy, h!,)
with some h € C[0, 1] such that h = lim,, h,, h’ = lim,, h},. This implies that
h € C'0,1]. The closure of {(h,h') : h € C*[0,1]} in C[0,1] x C[0,1] is
{f, f"): f € C'0,1]}. Indeed, we have

{(h,0): heC>®[0,1]} C {f, f): feC0,1]}.
And if f € C[0,1], let {h,} C C*°[0,1] with h,, — f’ uniformly. Then

1@ = 10+ [ =tmso+ [ h.
Thus (f, f') = lim, (f(0) + [y hn,hn) € {(h. 1) : h € C>®[0,1]}.
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(F.0.5) Let X, Y be normed spaces, D C X a subspace, and T : D — Y
linear. Show that the following statements are equivalent:

(a) T is closable;

(b) (0,y) € G(T') implies y = 0.

J

Answer. Suppose that T is closable. Then G(T') is the graph of a linear
operator T. If (0,y) € G(T), then y = T(0) = 0.

Conversely, suppose that (0,0) is the only element on G(T)) with first
coordinate zero. If (z,y),(z,2) € G(T), as this is a vector space we have
(0,y — z) € G(T). Then y = 2. Hence G(T) is the graph of a function T
When z € D we have (z,Tz) € G(T) € G(T) = G(T), so Tz = Tx. Given
x1,m1 € X such that there exist yi,y2 € Y with (z1,y1), (z2,y2) € G(T) =
G(T), there exist sequences {7, }, {x//} C D such that

! 1 ! 1
z, —T1, x, — T2, Tx, =y, Tz, —yo.

Then for any o € C

(a1 + 22,51 + y2) = lim(aaf, + 2, T, + Ta) € G(T) = G(T),

showing that T(ax; + x2) = aTwxy + Txe. That is T is linear and so T is
closable.

(F.0.6) Let X, Y be normed spaces, D C X a subspace,and T : D — )
linear. Show that T is closable if and only if G(7T') is the graph
of an operator.

Answer. Suppose that T is closable. Then G(T) is closed. A Cauchy sequence

{(zy, Tz,)} in G(T) is also Cauchy in G(T') which is closed, so G(T) C G(T).

By Exercise F.0.5 we have that G(T) is the graph of an operator.
Conversely, if G(T) is the graph of an operator T, we can take T = T".

As {(z,Tz) : z € D(T)} C G(T), we have that D(T) C D(T) and that

Tlpry=T.

(F.0.7) Let D(T') C H be dense, and T': D(T') — K linear. Show that
T is closed.

Answer. Let {n,} C D(T*) such that (n,,T*n,) C G(T*) is Cauchy. This
means that there exist n € K and v € H such that n, — n and T*n,, — v.
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We have, for any £ € H,
(€ v) = lm &, T"ny) = Im T¢, n,) = (T¢€, n).

This shows that v, is bounded, for ~,(§) = (§,v), and that v = T"*n. So T*
is closed.

(F.0.8) Let X = L?[0,1] with its dense subspace D = C[0,1]. Define
T:D — Dby Tf = f(0). Show that this operator is un-
bounded. Also, consider the functions f, = (1 — nt) lp,1) and
show that f, € C[0,1] for all n, ||f]l2 = 0, and T'f,, = 1 for
all n, so G(T'); conclude that T is not closed and that it is not
even closable.

Answer. Let g, = (n — n3t) l[o,n%](t)- Then T'g,, = n, while

1/n? 1/2 1
mn2=(/ m—n%fw) .
0 3

So T' is unbounded.
If fr = (1 = nt) 1 1(t), we have f(1/n) = 0so f is continuous. Also
2 Y 2 1
1l = [ @ =ntpar= g
so fn — 0. Meanwhile, T'f,, = f,(0) =1 for all n. Hence (f,,Tf,) — (0,1);

this point cannot be in the graph of any linear operator, so T is not closed
and not closable.

(F.0.9) Give an example of a Banach space X, subspaces D, M C X,
and an idempotent E : D — M which is unbounded.

Answer. Let X = cg, D = cgg, and M = Ce;. Let
Er = (Zooa:k,0,0,...)
k=1

Then ED = M, and if z = ) _,_, ey, then ||z|| = 1 and ||Ez|| = n; as this can
be done for all n, E is unbounded.
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(F.0.10) Let p € [1,00) and X =Y = (P(N), D = cpo, T : D — X given

by
n n n
T(chek) = (chk) e+ chek.
k=1 k=1 k=2

Decide if T is closable. Find T™*.

Answer. We have Te;, = ke for all k, so T' is unbounded. We have (0,e1) =
limg (k= teg, e1), so T is not closable.

As for the adjoint, if y € ¢9(N) and ~,(z) = (Tx,y) is bounded, there
exists ¢ > 0 such that

c=cllenlly = Ten,y)| = Z(Ten)kyk
%
> |yin| — | D> (en)ryr| = nlyr] — lynl

k>2

= nlyi| = |lyllq-
Thus y € D(T*) if and only if y; = 0. We have, for such y,
<Tl',y> = Zxkyk = <$7y>7
k>2

so Ty = y.

(F.0.11) Let T be the map T'f = f(0) defined on D = C[0,1] C L?[0, 1].
Show that D, # {0}, but T* = 0.

Answer. )
() = (T5.9) = (£0)9) = £0) [ 5.
0
The only way this can be bounded is if fol g = 0. Hence

1
D, = gGLQ[O,l]:/g:O
{ 90}
and T* = 0.

(F.0.12) Let T is as in Example F.0.1. Show that D. = {0}.
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Answer. If g € D, and f € C]0,1], then

Yo(f) = (Tf,9) ./ /3

For any nonzero g € C[2,3], this linear functional is unbounded. Indeed,
fix tg € [2,3] such that g(tp) # 0. Then there exists a neighbourhood V
of top and § > 0 such that |g(¢)] > 6 for all t € V. Let K = [a,b] C V
be compact, with nonempty interior, and such that t5 € K. Use Urysohn’s
Lemma (Theorem 2.6.5) to get h € C[0,1] such that h|x = 1 and supph C V.
Let fn(t) = t" h(t) ‘zg—gl (note that 1/g(t) is defined and continuous on V).
Then || fn|| = 1, while

o) = (/fg—/t" ()] dt

n+1 _ n+1 n _ on
25/t”dtf5(b ) 58—

n+1 n+1

So v4(fn) — o0, showing that v, is unbounded for all nonzero g. Thus
D. ={0}.

(F.0.13) Let H = K = (*(N), D = cgo, and T : D — K the linear
operator induced by Te,» = e, for each p € N prime and
n € N. Show that D(T*) = {0}.

Answer. Let y € D(T*). We have that there exists ¢ > 0 with
(T*y)pr = (epn, T"y) = (Tepn, y) = yp.

This means that if y, # 0, then Ty has to have infinitely many entries equal
to y,; this prevents it from being in ¢*(N). Thus D(T*) = {0}.

(F.0.14) Let D C H be dense and T : D — K linear. Show that the
following statements are equivalent:

(a) D(T™) = {0};
(b) G(T) =H x K.

Answer.  We get a direct proof from (F.3). Since G(T*) = VG(T)*, if
D(T*) = {0} then D(T*) = {(0,0)} and it follows that G(T)* = {(0,0)};
hence G(T) = H x K. Conversely, if G(T) is dense then G(T)*+ = {(0,0
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and then G(T™) = {(0,0)}; as (n, T*n) € G(T™) for all n € D(T™*), we conclude
that D(T™*) = {0}.

Below we show another proof without using (F.3), though the ideas are
not really different.

(a) = (b) If (v,n) € Q(T)L and nonzero, this means that for all

0=(&v)+(T¢n).

This gives us

77](5) = <T€’77> = _langlega V>a
S0 v, is bounded since D(T') is dense. Note that we cannot have n = 0, for
in that case we get (¢,v) = 0 for ¢ in a dense set, and so v = 0 contradicting
that (v,7) was nonzero. Hence D(T*) # {0}.

(b) = (a) Suppose that D(T*) # {0}. Let n € D(T™) be nonzero.

Then

(T¢,n) =& Tn),  £€D(T).
We can read the above equality as saying that (—T*n,eta) € G(T)*. So
G(T) #H =K.

(F.0.15) Let g € L>=(R), and such that [ [g]* = co. Fix hg € L*(R).
Let T : D(T) — L?(R) be given by

Tf = (f,g)ho,

where
@) ={1 e 2®: [ Ifsl <ol
Show that T is densely defined, and find T*.

Answer. Since g is bounded, for any measurable F C R with finite measure,
J 1 1e] < e m(E) < .
R

So D(T') contains all integrable simple functions and hence it’s dense in L?(RR)
(this can be seen by combining Proposition 2.8.14 and Theorem 2.4.13).
To find D(T%), it h € D(T*) and f € D(T'), we have

(f,T°h) =(Tf,h) = (f,g) (ho, h) = (f, (h, ho) g)-
Thus
T*h = (h, ho) g.
Even though the way that adjoint was defined guarantees it, it might not be
obvious at first sight that 7* maps into L?(R). But from h € D(T*) we know

that the linear functional ~, : f —— (f, (h, ho) g) is bounded. This implies,
via Proposition 5.6.8, that (h, ho) g € L?(R).
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(F.0.16) For an unbounded operator T : D(T) — ), where D(T) C X
is dense and X', ) are normed spaces, write a definition for 7%,
and explore how much of the results in the text can be made
to work. Reflexivity might be needed in some cases.

Answer. We can mimic exactly the criterion in (F.1). Indeed, let
D(T*)={p Y : v, is bounded},
where 7y, (x) = ¢(Tz). When D(T) is dense 7, is defined everywhere, so we
can define T*p = v, € X*. That is, for ¢ € D(T*) and = € X, we have
(T*p)z = p(Tx).
In analogy with (F.3) we have, when T is densely defined,
g(17) =vg(1)°,
where V : X* x Y* — V* x X'* is the isometry V(p,v) = (¢, —¢). Indeed, if
(o, T*p) € G(T™*), then

Ve, T ) (z,Tx) = (=T*¢,¢)(x,Tx) = —(T*p)x + ¢(Tx) = 0

since ¢ € D(T*) (the dual of the direct sum was considered in Proposi-
tion 5.6.5). This shows that V=1G(T*) C G(T)°. Conversely, if (1, p) €
G(T)°, we have (x) + o(Tz) = 0 for all z € X; then ¢ € D(T*) and
= —T*p. Thus G(T)° C V7IG(T*). Then G(T*) = VG(T)°.

Next we show that, when X, ) are reflexive, T is closable if and only
if T* is densely defined. Suppose that T is not closable. Then there exists
z € Y such that (0,z) € G(T). This means that there exists a sequence
{z,} C D(T) with x,, — 0 and Tz, — z. Then, for any ¢ € D(T™*),

p(2) =limp(Tx,) = Um(T*p)z, =0,

since T*p € X*. We cannot have D(T*) dense in Y*, for in such case we would
get p(z) = 0 for all p € Y*, contradicting that z # 0 (via Corollary 5.7.7).
Conversely, if D(T*) is not dense, there exists nonzero ® € D(T*)° C Y**.
So (®,0) € G(T*)°; then (0,®) € V-1G(T*)°, meaning that V~1G(T*)° is
not the graph of an operator. But

VG = VTHVG(T)?)* = G(T),
since V' preserves polars (this is straightforward to check). Here is where we

use the reflexivity of X and Y. We have that G(T)°° = JG(T) , using that
G(T) is a subspace and Exercise 7.3.5. Here J = Jx x Jy is the canonical
embedding X x Y — X** x Y**. By the reflexivity, the weak*-closure agrees
with the weak closure, and being a subspace we end up with the norm closure.
Thus G(T')°° = G(T'), implying that T is not closable.
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(F.0.17) Continuing from Exercise F.0.16, show that if T" is closable and
X, are reflexive, then

T=T".

This requires showing first that because T is closable then T is
densely defined, which hopefully was done in Exercise F.0.16.

Answer. For x € D(T) and ¢ € D(T*),
(T Jxz)yp = (T72)Y = 2(T™) = (T*)x = (Tx) = (JyT).
Hence, on D(T), T = J;lT**JX. As T** is closed, so is J§1T**JX; this

means that Jjle**JX is a closed operator that agrees with 7" on D(T'), and
so Jy, ' T** Jx =T,

(F.0.18) Let Y =Y =c¢g, and T : X — Y given by
Tx = (21,22, 323, . .),
with D(T') = cpo. Decide if T is closed or not, and find 7.

Answer. We have

G(T)={(z,Tx): x € coo}.
Intuitively, we can extend the domain of T' a bit, as there are full nonzero
sequences where T makes sense. For instance, T'(1/k?) = (1/k). If P, is the
projection onto the first n coordinates, we have P,z € D(T) for all x € c.

And TP, (1/k?) = P,(1/k) — (1/k). So ((1/k*),(1/k)) € G(T) and T is not
closed. It is still densely defined, though, so T* exists.
The domain of T is

D(T*) = {z € (*(N) : 5, is bounded},
where 0, (z) = (Tx, z). Since

(Tx,z) = Z nx(n)z(n)

needs to be bounded for all z € ¢y, we need Tz € ¢}(N). Thus
D(T*) = {z € *(N) : (nz(n)), € £*(N)}

is dense, as it contains all finitely supported sequences. As a formula, 7™ is
the same as T, now with domain D(T™).
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(F.0.19) Let X,Y be normed spaces and T : D(T) — Y linear and
densely defined. Show that if D(T*) = Y* if and only if T is
bounded.

Answer. Assume first that D(T*) = Y*. We have that for each ¢ € Y* there
exists ¢, > 0 such that

lp(Tz)| < cpllzll, @€, e D).
We can read this inequality as saying that if ||z|| < 1.
sup |Tag| < cp.
z€D(T)NB;¥ (0)
By the Uniform Boundedness Principle (Theorem 6.3.16), applied on the
Banach space X**, there exists ¢ > 0 such that ||Tz| = ||Tz|| < ¢. Thus T is
bounded.

Now, for the converse, if T is bounded then for all ¢ € Y* we have
9(T2)] < ]l IT] 1], s0 7 is bounded and @ € D(T*).
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