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Preface

This is the companion book to Functional Analysis. It consists of my answers to
all exercises. There are compelling reasons both to publish an answer book, and
to not publish an answer book. A strong reason from the “not publish” camp is
that the only way to really learn mathematics is by trying hard on your own, and
getting stuck often. The same way one needs lots of hours and repetition to excel
at sports, arts, or other human activities. There is also an elation that needs
to be experienced, when one sees the light after being trying and trying on a
problem for hours; or, sometimes, after apparently fruitless hours on a problem,
the solution will come while on the shower, or on a walk, or another activity very
far from mathematics. All those efforts train our minds, and prepare us better
to appreciate a certain trick that makes things work, and the emotions involved
will make it easier to remember the idea or at least part of it. The “for publish”
reasons are varied. There is a risk that the student will give up early on a problem
due to the availability of a full answer to the problem. This is unavoidable these
days since for common problems it is simple to find a solution online (a number
of them will likely be mine, if the problem is related to the topics in this book).
This means that these days the student has a stronger responsibility, compared
to days past, to be a shepherd of their own mathematical path. The temptation
to quickly go read an answer should be fought if progress is to be made. We
have all experienced reading someone else’s ideas and saying “I could have done
that!” but if our knowledge is put to the test, we might not be able to recreate
the idea we have just read.

The headlines of the few sections from the book without exercises have been
also included here so that the chapter/section numbering stays coherent with
the book. The equations in the answers have a different numbering scheme than
that in the book, so that both are recognizable and coherent. Namely, equations
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vi PREFACE

in the book are of the form (12.3) (meaning equation 3 in chapter 12), while
equations in the answers are numbered in the form (AB.2.3) (meaning the third
equation in the answers to chapter 2).

While care has been put in checking the answers for correctness and typos,
most certainly some mistakes are still there. This, or any other feedback, is very
welcome! I can be reached at my email address below.

Mart́ın Argerami
Regina, SK, Canada
argerami@uregina.ca
November 2025
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1
CHAPTER

Prerequisites

1.1. Set Theory

(1.1.1) Let {Aj}j∈J be a collection of subsets of a set A. Show that[ ⋃
j∈J

Aj

]c
=
⋂
j∈J

Acj ,
[ ⋂
j∈J

Aj

]c
=
⋃
j∈J

Acj

Answer. If a ̸∈
⋃
j∈J

Aj , then a ̸∈ Aj for all j; this means that a ∈
⋂
j∈J A

c
j .

Conversely, if a ∈
⋂
j∈J

Acj , then a ̸∈ Aj for all j, so a ̸∈
⋃
j∈J

Aj .

The second equality is obtained from the first one by taking comple-
ments, since (Bc)c = B for any set B.

(1.1.2) For sets A,B,C, show that
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

1



2 CHAPTER 1

and
A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

Answer. If a ∈ A and a ∈ B ∩ C, we have that a ∈ A ∩ B and a ∈ A ∩ C,
so a ∈ (A ∪ B) ∩ (A ∪ C); and the converse also holds: if a ∈ A ∩ B and
a ∈ ∩A ∩ C, we have that either a ∈ A, or otherwise a ∈ B and a ∈ C, so
a ∈ A ∪ (B ∩ C).

The second equality can be proven in a similar manner, or we can use
Exercise 1.1.1 to get

A ∩ (B ∪ C) =
[
Ac ∪ (Bc ∩ Cc)

]c =
[
(Ac ∪Bc) ∩ (Ac ∪ Cc)

]c
= (Ac ∪Bc)c ∪ (Ac ∪ Cc)c = (A ∩B) ∪ (A ∩ C).

(1.1.3) Let {Aj}j∈J , {Bj}j∈J be collections of subsets of a set A. Are
the equalities[ ⋃

j∈J
Aj

]
∩
[ ⋃
j∈J

Bj

]
=
⋃
j∈J

(Aj ∩Bj)

and [ ⋂
j∈J

Aj

]
∪
[ ⋂
j∈J

Bj

]
=
⋂
j∈J

(Aj ∪Bj)

true? Prove them, or find a counterexample.

Answer. Let A1 = {1}, A2 = {2}, B1 = {2}, B2 = {1}. Then
(A1 ∪A2) ∩ (B1 ∪B2) = {1, 2},

while A1 ∩B1 = A2 ∩B2 = ∅. What is true is the inclusion⋃
j∈J

(Aj ∩Bj) ⊂
[ ⋃
j∈J

Aj

]
∩
[ ⋃
j∈J

Bj

]
,

for if a ∈ Ak ∩Bk for some k, then a ∈
⋃
j Aj and a ∈

⋃
j Bj .

The second equality is the complement of the first one, so it cannot be
true either. We have[ ⋂

j∈J
Aj

]
∪
[ ⋂
j∈J

Bj

]
⊂
⋂
j∈J

(Aj ∪Bj),

because if a is in every Aj and a is in every Bj , then a ∈ Aj ∩ Bj for all j.
The inclusion is proper in general; consider the same set A1 = {1}, A2 = {2},
B1 = {2}, B2 = {1} from before. Then A1 ∩ A2 = B1 ∩ B2 = ∅, but
A1 ∪B1 = A2 ∪B2 = {1, 2} and the intersection is nonempty.
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(1.1.4) Prove Proposition 1.1.1. Show that the inclusion f
(⋂

j

Bj

)
⊂⋂

j

f(Bj) can be strict.

Answer. We can have f : {1, 2} → {1} be the only possible function, f(x) =
1. If B1 = {1} and B2 = {2}, then f(B1 ∩ B2) = f(∅) = ∅, while f(B1) ∩
f(B2) = {1} ∩ {1} = {1}.

If the empty set makes the example above look unconvincing, we can
tweak it slightly. Let f{1, 2, 3} → {1, 2} be given by f(3) = 2, f(1) = f(2) =
1. Then we have as above, f(B1 ∩ B2) = f(∅) = ∅, while f(B1) ∩ f(B2) =
{1} ∩ {1} = {1}.

(1.1.5) Let f : A → B. For any B0 ⊂ B and A0 ⊂ A, show that
f(f−1(B0)) ⊂ B0, A0 ⊂ f−1(f(A0)).

Show that equality does not always hold, but that
f(f−1(B0)) = B0

whenever f is surjective or, more generally, if B0 ⊂ f(A).

Answer. If a ∈ f−1(B0), it means that f(a) ∈ B0. Hence
f(f−1(B0)) ⊂ B0.

If f : {1, 2} → {1, 2} is given by f(x) = 1, then f(f−1({1, 2})) = f({1, 2}) =
{1} ⊊ {1, 2}. When B0 ⊂ f(A), given any b ∈ B0 there exists a ∈ A
with f(a) = b. Then a ∈ f−1(B0) and b = f(a) ∈ f(f−1(B0)), so B0 ⊂
f(f−1(B0)).

As for the second inclusion, if a ∈ A0, then f(a) ∈ f(A0), so a ∈
f−1(f(A0)). Thus A0 ⊂ f−1(f(A0)). To see that the inclusion can be strict,
let A = {1, 2}, B = {1, 2}, f : A → B given by f(x) = 1. Put A0 = {1}.
Then f−1(f(A0)) = f−1({1}) = {1, 2} ⊋ A0.

(1.1.6) Let f : A → B be a function. Show that

(a) f is injective if and only if there exists g : B → A with
g ◦ f = idA;

(b) f is surjective if and only if there exists h : B → A with
f ◦ h = idB ;
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(c) f is bijective if and only if it is invertible.

Answer.

(a) Suppose that f is injective. Fix a0 ∈ A. Define g : B → A by g(f(a)) = a
on f(A), and g(b) = a0 for b ∈ B\f(A). Then g(f(a)) = a for all a ∈ A by
construction. Conversely, if g exists with g ◦ f = idA and f(a1) = f(a2),
then

a1 = g(f(a1)) = g(f(a2)) = a2,

and f is injective. Conversely, if f is invertible then we can take g = h =
f−1 and then the arguments above show that f is bijective.

(b) Suppose that f is surjective. Given b ∈ B, choose one element ab ∈
f−1({b}); these always exist because f is surjective. Let h(b) = ab. Then
f(h(b)) = f(ab) = b. Conversely, if h exists with f ◦ h = idB , given b ∈ B
we have b = f(h(b)), and so f is surjective.

(c) If f is bijective, by the previous part there exist g : B → A and h : B → A
with g ◦ f = idA and f ◦ h = idB . Then

g = g ◦ idB = g ◦ (f ◦ h) = (g ◦ f) ◦ h = idA ◦ h = h,

so g = h and hence f is invertible.

(1.1.7) Let A be a set with an associative operation (a, b) 7−→ ab and
with a unit e ∈ A (that is, ae = ea = a for all a ∈ A). Show
that the unit is unique. Show also that if a ∈ A is invertible
(that is there exists b ∈ A with ab = ba = e) then b is unique
with that property. More generally, show that if a has a left
inverse b and a right inverse c, then b = c.

Answer. If e and f are units, then e = ef = f .
Now suppose that ba = ac = e. Then

b = be = b(ac) = (ba)c = ec = c.

(1.1.8) Let R be a relation on Z defined by:
aR b ⇐⇒ 3 divides (a− b).
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Show that R is an equivalence relation. Determine its equiva-
lence classes. This quotient is often denoted by Z3.

Answer. The relation is reflexive, because 3 divides 0. It is symmetric, for
if a− b is a multiple of 3, so is b− a = −(a− b). And it is transitive, because
if a− b = 3n and b− c = 3m, then

a− c = (a− b) + (b− c) = 3n+ 3m = 3(n+m).
If m ∈ Z then m = 3q + r (via the Division Algorithm) for unique qn, r ∈ Z
and 0 ≤ r < 3. As m − r = 3q ∈ 3Z, we have that m ∼ r. So {0, 1, 2} for a
set of representatives. The classes are 3Z, 3Z + 1 and 3Z + 2.

(1.1.9) Let f : X → Y be a function. Define a relation ∼ on X by:
x1 ∼ x2 ⇐⇒ f(x1) = f(x2).

(a) Prove that ∼ is an equivalence relation.
(b) Show that the equivalence classes are the “fibers” of f (i.e.,

sets of the form f−1({y}) for y ∈ Y ).

Answer. We have f(x) = f(x) so x ∼ x. If x ∼ y then f(x) = f(y), so
y ∼ x. And if f(x) = f(y) and f(y) = f(z), then x ∼ z.

(1.1.10) Consider the relation ∼ on R2 defined by:
(x1, y1) ∼ (x2, y2) ⇐⇒ x2

1 + y2
1 = x2

2 + y2
2 .

(a) Prove that ∼ is an equivalence relation.
(b) Describe the equivalence classes geometrically.

Answer.

(a) This is a relation of the form considered in (1.1.9), so it is an equivalence
relation.

(b) Two points in R2 are equivalent if their distance to the origin is the same.
So the classes are the distinct circles centered at the origin.
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(1.1.11) Let S = {1, 2, 3, 4, 5} and define R as:
R = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 2), (2, 1), (3, 4), (4, 3)}.

(a) Show that R is an equivalence relation.
(b) Find the partition (quotient set) S/R.

Answer.

(a) The relation is reflexive because (x, x) ∈ R for all x ∈ S. It is symmetric
because for every pair (x, y) ∈ R the corresponding pair (y, x) is in R.
And it is transitive: the only way to have pairs (x, y) and (y, z) in R is
the constant pairs (x, x) and (1, 2), (2, 1) and (3, 4), (4, 3), all of the form
(x, y) and (y, x), where in all cases we also have (x, x) ∈ R.

(b) The classes are {1, 2}, {3, 4}, and {5}.

(1.1.12) Prove that any partition P of a set S induces an equivalence
relation ∼ on S where:

a ∼ b ⇐⇒ a and b belong to the same subset in P.
Conversely, show that any equivalence relation on S induces a
partition of S.

Answer. Suppose that P = {Sj : j ∈ J} is a partition of S. Let ∼ be given
by a ∼ b if there exists j ∈ J with a, b ∈ J . This is reflexive and symmetric
by definition, and transitivity is also automatic: if a, b ∈ Sj and b, c ∈ Sk,
then b ∈ Sj ∩ Sk which implies that k = j since the sets in the partition are
disjoint; so a ∼ c.

Conversely, if ∼ is an equivalence relation, let P be the sets of classes
for ∼. For any a ∈ S there exists P ∈ P with a ∈ P = [a] since every element
belongs to its own class. Therefore the union of all the classes is equal to S.
It remains to show that they are pairwise disjoint. Suppose that a ∈ [b] ∩ [c].
Then a ∼ b and a ∼ c, so b ∼ c by the transitivity. If d ∼ b then d ∼ c by
the transitivity, so [b] ⊂ [c]; exchanging roles we get that [b] = [c]. We have
shown that if [b] ∩ [c] ̸= ∅ then [b] = [c], so the classes are pairwise disjoint.
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(1.1.13) Let ∼ be an equivalence relation on N × N defined by:
(a, b) ∼ (c, d) ⇐⇒ a+ d = b+ c.

Attention: the set R here consists of pairs of ordered pairs!

(a) Prove that ∼ is an equivalence relation.
(b) Show that addition defined as:

[(a, b)] + [(c, d)] = [(a+ c, b+ d)]
is well-defined (i.e., independent of the choice of represen-
tatives).

(c) Show that multiplication defined as
[(a, b)][(c, d)] = [ac+ bd, ad+ bc]

is well-defined, and it is distributive with respect to addi-
tion.

Answer.

(a) From a + b = b + a we get that the relation is reflexive. If a + b = b + c
then c+ b = d+ a, so the relation is symmetric. And if a+ d = b+ c and
c+ f = d+ e, then

(a+ f) + d = (a+ d) + f = b+ c+ f = b+ d+ e = (b+ e) + d.

As we can cancel d, we get that a + f = b + e and so (a, b) ∼ (e, f);
therefore the relation is transitive.

(b) If (a′, b′) ∈ [(a, b)] and (c′, d′) ∈ [(c, d)], then using that a′ + b = a+ b′ and
c′ + d = c+ d′,

a′ + c′ + b+ d = (a′ + b) + (c′ + d) = (a+ b′) + (c+ d′) = a+ c+ b′ + d′,

showing that [(a+ c, b+ d)] = [(a′ + c′, b′ + d′)].
(c) If (a′, b′) ∈ [(a, b)] and (c′, d′) ∈ [(c, d)], then a′ + b = a + b′ and c′ + d =

c+ d′. We need to show that
(ac+ bd, ad+ bc) ∼ (a′c′ + b′d′, a′d′ + b′c′).

That is, we need to show that
ac+ bd+ a′d′ + b′c′ = ad+ bc+ a′c′ + b′d′.

From a+ b′ = b+ a′ and c+ d′ = d+ c′, multiplying by c′,
a′c′ + bc′ = ac′ + b′c′. (AB.1.1)

Multiplying c′ + d = c+ d′ by a:
ac′ + ad = ac+ ad′. (AB.1.2)
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Multiplying a+ b′ = a′ + b by d′:
ad′ + b′d′ = a′d′ + bd′. (AB.1.3)

Multiplying c+ d′ = d+ c′ by b:
bc+ bd′ = bc′ + bd. (AB.1.4)

Adding the four equalities and cancelling ac′, ad′, bd′, and bc′ from both
sides,

ac+ bd+ a′d′ + b′c′ = ad+ bc+ a′c′ + b′d′.

Which is exactly what we needed to show; thus, multiplication is well-
defined.

It remains to check the distributivity. Since the operations are well-
defined, we can work with representatives without concern. We have
[(a, b)]

(
[(c, d)] + [(e, f)]

)
= [(a, b)][(c+ e, d+ f)]

= [(a(c+ e) + b(d+ f), a(d+ f) + b(c+ e)]

= [(ac+ bd+ ae+ bf, ad+ bc+ af + be)]

= [(ac+ bd, ad+ bc)] + [(ae+ bf, af + be)]

= [(a, b)][(c, d)] + [(a, b)][(e, f)].

(1.1.14) Let ∼ be an equivalence relation on Z×Z∗ (where Z∗ = Z\{0})
defined by:

(a, b) ∼ (c, d) ⇐⇒ ad = bc.

(a) Prove that ∼ is an equivalence relation.
(b) Show that addition defined as:

[(a, b)] + [(c, d)] = [(ad+ bc, bd)]
is well-defined (i.e., independent of the choice of represen-
tatives).

(c) Show that multiplication defined as
[(a, b)][(c, d)] = [ab, cd]

is well-defined, and it is distributive with respect to addi-
tion.

Answer.

(a) We have ab = ba, so (a, b) ∼ (a, b) and the relation is reflexive. If (a, b) ∼
(c, d) then ad = bc; written as cb = da this says that (c, d) ∼ (a, b) and the
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relation is symmetric. Finally, if (a, b) ∼ (c, d) and (c, d) ∼ (e, f), then
ad = bc and cf = de. If c = 0, then from b, d ̸= 0 we get a = e = 0 and
af = be holds. Otherwise, if c ̸= 0, then

afcd = (ad)(cf) = (bc)(de) = becd.

As cd ̸= 0 we can cancel and get af = be; that is, (a, b) ∼ (e, f).
(b) If (a′, b′) ∼ (a, b) and (c′, d′) ∼ (c, d), then a′b = ab′ and c′d = cd′. Then

(ad+ bc)b′d′ = adb′d′ + bcb′d′ = (ab′)d′d+′ (cd′)b′b

= a′d′bd+ b′c′bd = (a′d′ + b′c′)bd.
So [(a′, b′)] + [(c′, d′)] = [(a, b)] + [(c, d)].

(c) We have
acb′d′ = a′c′bd,

so [(a′, b′)][(c′, d′)] = [(a, b)][(c, d)] and the multiplication is well-defined.
For the distributivity,

[(a, b)]
(
[(c, d)] + [(e, f)]

)
= [(a, b)][(cf + de, df)] = [(acf + ade, bdf)]

= [(a, b)][(c, d)] + [(a, b)][(e, f)].

1.2. The Axiom of Choice

(1.2.1) Let R be a nonzero unital commutative ring and x ∈ R non-
invertible. Show that there exists a proper maximal ideal J of
R with x ∈ J .

Answer. The ideal xR generated by x cannot be all of R because if it were
then x would be invertible. Let

J = {J ⊂ R : proper ideal with x ∈ J},
ordered by inclusion. If {Jk} is a chain in J , let J∞ =

⋃
k Jk. As the union

is monotone, J∞ is an ideal. And it is proper, for if 1 ∈ J∞ then there exists
k with 1 ∈ Jk, a contradiction. So J∞ is an upper bound for the chain in J ,
and by Zorn’s Lemma there exists J ∈ J , maximal proper ideal with x ∈ J .
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(1.2.2) Let X be a set. Prove that Zorn’s Lemma implies the Well
Ordering Principle by applying Zorn’s Lemma to the collection

P = {(A,≤A) : A ⊂ X, ≤A is a well-ordering on A},
where the order is given by saying that (A,≤A) ⪯ (B,≤B) if
A ⊂ B, ≤B extends ≤A, and every element of A is less (in the
≤B order) than every element of B \A.

Answer. We have that P is nonempty because it contains singletons with
the only possible order on each. Suppose that {(Aj ,≤Aj} is a chain in P. Let
U =

⋃
j Aj with the order ≤U defined as follows: if u, v ∈ U there exists j

such that u, v ∈ Aj , and we say that u ≤U v if u ≤Aj v. This is well-defined
because if u, v ∈ Ak with k > j, the order in Aj is the restriction of the order
in Ak and so u ≤Aj v ⇐⇒ u ≤Ak v. We claim that U is well-ordered.
Let S ⊂ U be nonempty. Then there exists j with S ∩ Aj ̸= ∅. As Aj is
well-ordered by ≤Aj , there exists a least element s ∈ S ∩ Aj . Because ≤U

restricts to ≤Aj , the element s is also least for ≤U . Thus U ∈ P and it is an
upper bound for the chain. By Zorn’s Lemma, P admits a maximal element
(M,≤M ).

If we had M ⊊ X, pick x ∈ X \ M and let M ′ = M ∪ {x} with the
order ≤M ′ defined to be ≤M for all elements of M , and m ≤M ′ x for all
m ∈ M . Then (M ′,≤M ′) ∈ P and (M,≤M ) ⪯ (M ′,≤M ′), contradicting the
maximality.

1.3. Real Numbers and Calculus

(1.3.1) Let E ⊂ R. Show that inf E = − sup(−E) and
lim inf

n
an = − lim sup

n
(−an).

Answer. Let c be a lower bound for E. Then −c is an upper bound for
−E, which gives us sup(−E) ≤ −c, and so c ≤ − sup(−E). As this occurs
for every lower bound of E, we get inf E ≤ − sup(−E). Conversely, if c is
an upper bound for −E, then −c is a lower bound for E, which means that
−c ≤ inf E, which we can write as − inf E ≤ c. So − inf E is below every
upper bound for −E, and so − inf E ≤ sup(−E), which is sup(−E) ≤ inf E.
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Now, using the above,
− lim sup

n
(−an) = − inf

m
sup
n≥m

(−an) = sup
m

(− sup
n≥m

(−an))

= sup
m

inf
n≥m

an = lim inf
n

an.

(1.3.2) Let {an} ⊂ R be a sequence. Allowing ±∞ to be cluster points
for unbounded sequences, show that

lim sup
n

an = max{cluster points of {an}},

and
lim inf

n
an = min{cluster points of {an}}.

Answer. Assume first that the set of cluster points is bounded (this is equiv-
alent to {an} being bounded).

Let A = lim supn an and B the maximum cluster point of {an}. Since
B is a cluster point, there exists a subsequence {anj} with anj → B. Then
for any m there exists j with nj ≥ m, and so

B = lim
j
anj ≤ sup

n≥m
an.

Then B is a lower bound for supn≥m{an} for all m, and thus B ≤ A. Con-
versely, since A = infm supn≥m an, there exists a subsequence {mj} such that
supn≥mj an ↘ A. For each j we can find nj such that |anj − supn≥mj | < 1

j .
Then anj → A, that is A is a cluster point for {an}; this immediately gives
us A ≤ B. We also have

lim inf
n

an = − lim sup
n

(−an). (AB.1.5)

By the first part of the answer, the right hand side is −C, where C is the
largest cluster point of {−an}. Then −C is the smallest cluster point of
−{−an} = {an}.

If {an} is unbounded above, then B = ∞. If {anj} is a subsequence of
{an} such that anj ≥ j, then supn≥m an = ∞ for all m, and so A = ∞ = B.
This also gives the result when {an} is unbounded below, via (AB.1.5).

(1.3.3) Let {an} ⊂ R be a sequence. Show that limn an exists and is
equal to L ∈ R if and only if lim supn an = lim infn an = L.
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Answer. If limn an = L, then L is the only cluster point of the sequence.
By Exercise 1.3.2 we have that lim infn an = L = lim supn an. Exercise 1.3.2
also provides the converse, for if lim infn an = L = lim supn an then L is the
only cluster point of {an} and hence limn an = L.

(1.3.4) Prove (1.3).

Answer. We start, from the Fundamental Theorem of Calculus, with

f(x) = f(0) +
∫ x

0
f ′(s) ds = f(0) + x

∫ 1

0
f ′(tx) dt.

Now we proceed by induction. If (1.3) holds for n and f (n+1) exists,

xn

(n− 1)!

∫ 1

0
(1 − t)n−1f (n)(tx) dt = xn

(n− 1)!

[
− (1 − t)n

n
f (n)(tx)

∣∣∣∣1
0

+ x

n

∫ 1

0
(1 − t)nf (n+1)(tx) dt

= f (n)(0)
n! xn + xn+1

n!

∫ 1

0
(1 − t)nf (n+1)(tx) dt.

(1.3.5) Let f : [0,∞) → R be continuously differentiable, with f ′(x) >
0 for all x, and such that f(x) ≤ c for all x.

(a) Show that limx→∞ f(x) exists and it is equal to sup{f(x) :
x ≥ 0};

(b) show that there exists f as above and such that lim
x→∞

f ′(x)
does not necessarily exist;

(c) show that if in addition f ′ is differentiable and f ′′(x) < 0
for all sufficiently large x, then lim

x→∞
f ′(x) = 0.

Answer.

(a) Let s = sup{f(x) : x ≥ 0}. By hypothesis, s < ∞. Fix ε > 0. Then there
exists x0 such that s− f(x0) < ε. Suppose that x ≥ x0. Then

f(x) = f(x0) +
∫ x

x0

f ′(t) dt > f(x0)
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since f ′ > 0. We have
|s− f(x)| = s− f(x) > s− f(x0) < ε,

showing that limx→∞ f(x) = s.
(b) Let

g(x) =
∞∑
n=0

1
n2 1[n,n+1)(x) +

(
1 − n2

∣∣∣x− n− 1
n2

∣∣∣) 1[
n,n+ 2

n2

]
and

f(x) =
∫ x

0
g(t) dt.

The idea is that g has bumps so it has no limit, but the bumps shrink in
width so that the integral is bounded. The first term of the sum guarantees
that g(x) > 0 for all x, and the second provides the bumps. The function
g is continuous and positive by construction, so f ′(x) = g(x) > 0 for all
x > 0. And

f(x) ≤
∫ ∞

0
g(t) dt =

∞∑
n=0

1
n2 + 1

n2 = π2

3 ,

so f is bounded. And g(n+ 1
n2 ) = 1 and f(n) = 1

n2 for all n, so the limit
of g at infinity does not exist.

(c) We have that f ′(x) > 0 for all x, and since f ′′(x) < 0 for all x we have
that f ′ is decreasing. Let c0 = inf{f ′(x) : x > 0}; this exists for the
set is bounded below by 0. Now the function −f ′ satisfies the condition
of the original question, so by part a we have that c0 = limx→∞ f ′(x).
Write s0 = limx→∞ f(x). If c0 > 0, we can choose x0 > 0 such that for
all x ≥ x0 we have f(x) > s0 − c0

2 . Then we would have

f(x0 + 1) = f(x0) +
∫ x0+1

x0

f ′(t) dt ≥ s0 − c0

2 +
∫ x0+1

x0

c0 dt = s0 + c0

2 ,

a contradiction since s0 ≥ f(x) for all x. It follows that c0 = 0, as desired.

(1.3.6) Let [a, b] ⊂ R and P, P ′ partitions with P ⊂ P ′. Show that
L(f, P ) ≤ L(f, P ′) ≤ U(f, P ′) ≤ U(f, P ).
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Answer. That L(f, P ′) ≤ U(f, P ′) follows from mj(f) ≤ Mj(f). Consider
the partition P ∪ {y}. Suppose that xj < y < xj+1. Then

U(f, P ∪ {y}) =
j∑

k=1
Mj(f) (xk − xk−1) +M[xj ,y](f) (y − xj)

+M[y,xj+1](f) (xj+1 − y) +
m∑

k=j+2
Mj(f) (xk − xk−1)

≤
j∑

k=1
Mj(f) (xk − xk−1) +Mj(f) (y − xj)

+Mj(f) (xj+1 − y) +
m∑

k=j+2
Mj(f) (xk − xk−1)

= U(f, P ).
Iterating this we get that U(f, P ′) ≤ U(f, P ). The corresponding inequalities
for the lower sums follow from L(f, P ) = −U(−f, P ).

(1.3.7) Let f : [a, b] → R be bounded. Show that f is Riemann inte-
grable if and only if for each ε > 0 there exists a partition P
of [a, b] such that U(f, P ) − L(f, P ) < ε.

Answer. Suppose first that f is Riemann integrable and fix ε > 0. By
definition of supremum and infimum there exist partitions P,Q of [a, b] such
that |U(f, P ) − L(f,Q)| < ε. Using Exercise 1.3.6,

U(f, P ∪Q) − L(f, P ∪Q) ≤ U(f, P ) − L(f,Q) < ε.

Conversely, assuming that for each ε > 0 there exists a partition P with
U(f, P ) − L(f, P ) < ε, we have U(f, P ) < L(f, P ) + ε. This gives

U(f, P ) < ε+ sup{L(f,Q) : Q}.
As ε was arbitrary, this shows that sup{L(f,Q) : Q} is an upper bound for
{U(f, P ) : P}. In particular inf{U(f, P ) : P} ≤ sup{L(f, P ) : P}. The
reverse inequality is trivial by Exercise 1.3.6, and therefore f is integrable.

(1.3.8) Show that a bounded function f is continuous at x if and only
if o(f, x) = 0.
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Answer. By definition of sup and inf, the numbers m(f, x, δ) increase with
δ and the numbers M(f, x, δ) decrease with δ.

Suppose that f is continuous at x. Given ε > 0, there exists δ > 0 such
that |f(x) − f(y)| < ε for all y ∈ (x− δ, x+ δ). Then M(f, x, δ) ≤ f(x) + ε.
As f(y) > f(x) − ε we also have m(f, x, δ) > f(x) − ε. Then

M(f, x, δ) −m(f, x, δ) < 2ε.
As ε was arbitrary, o(f, x) = 0.

Conversely, suppose that o(f, x) = 0 and fix ε > 0. Then there exists
δ with M(f, x, δ) − m(f, x, δ) < ε. This says that |f(x) − f(y)| < ε on
(x− δ, x+ δ), so f is continuous.

1.4. Trigonometric Functions

(1.4.1) Find exact formulas for sin π
5 and cos π5 .

Answer. Write s = sin π
5 , c = cos π5 , t = π

5 . We have that sin 3t = sin(π −
3t) = sin 2t. This we can rewrite as

sin 2t cos t+ cos 2t sin t = sin 2t.
Using that

sin 2t = 2 sin t cos t, cos 2t = cos2 t− sin2 t = 1 − 2 sin2 t,

the first equality becomes
2sc2 + (1 − 2s2)s = 2sc.

After dividing both sides by s (which is nonzero since 0 < π
5 <

π
2 ), using that

s2 = 1 − c2, and simplifying, we get
4c2 − 2c− 1 = 0.

Knowing that c > 0, from the quadratic equation we get

cos π5 = c = 1 +
√

5
4 .

And then
sin π

5 =
√

1 − c2 =
√

10 − 2
√

5
4 .
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(1.4.2) Write formulas to express the sine and the cosine in terms of
the tangent for x ∈

[
0, π2

)
. Explain how to adapt the formulas

for arbitrary x.

Answer. When 0 ≤ x < π
2 , both the sine and the cosine are non-negative.

Then
tan2 x = sin2 x

cos2 x
= sin2 x

1 − sin2 x
,

and solving (we can happily take square roots because everything is non-
negative)

sin x = tan x√
1 + tan2 x

.

In an analogous way we get

cosx = 1√
1 + tan2 x

.

For x ∈
(
π
2 , π

]
we have sin x = sin(π − x) and cosx = − cos(π − x). Then

sin x = sin(π − x) = tan(π − x)√
1 + tan2(π − x)

= − tan x√
1 + tan2 x

,

and
cosx = − cos(π − x) = − 1√

1 + tan2(π − x)
= − tan x√

1 + tan2 x
.

In the third quadrant the tangent is again non-negative, so we get

sin x = tan x√
1 + tan2 x

and
cosx = 1√

1 + tan2 x
.

And in the fourth quadrant the sine and cosine have opposite signs, so the
formulas will be the same as inthe second quadrant.

(1.4.3) Find an addition formula for the tangent; that is, express
tan(x+ y) as a formula on tan x and tan y.

Answer. We have, factoring cosx cos y out from numerator and denominator
when they are nonzero,

tan(x+ y) = sin(x+ y)
cos(x+ y) = sin x cos y + cosx sin y

cosx cos y − sin x sin y

= tan x+ tan y
1 − tan x tan y
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If cosx = 0 and cos y ̸= 0 we have

tan(x+ y) = − sin x cos y
sin x sin y = − 1

tan y ,

which actually agrees with the limit as x → π
2 of the full expression for the

sum. When cos y = 0 and cosx ̸= 0 we get a similar expression. And when
cosx = cos y = 0, then x = 2k+1

2 π, y = 2j+1
2 π, and x+ y = (2k + 2j + 1)π,

so tan(x+ y) = 0.

(1.4.4) For each x, let

T (x) =
[
cosx − sin x
sin x cosx

]
.

Show that T (x+ y) = T (x)T (y).

Answer. We have

T (x+ y) =
[
cosx cos y − sin x sin y − sin x cos y − cosx sin y
sin x cos y + cosx sin y cosx cos y − sin x sin y

]
=
[
cosx − sin x
sin x cosx

] [
cos y − sin y
sin y cos y

]
= T (x)T (y).

(1.4.5) Find formulas for sin(2x) and cos(2x) in terms of tan x.

Answer. We have, from Exercise 1.4.2

sin 2x = 2 sin x cosx = 2 tan x
1 + tan2 x

.

And

cos 2x = cos2 x− sin2 x = 1 − 2 sin2 x = 1 − 2 tan2 x

1 + tan2 x
= 1 − tan2 x

1 + tan2 x
.

(1.4.6) Show that

sin x+ sin y = 2 sin
(
x+ y

2

)
cos
(
x− y

2

)
.

Show that
cosx+ cos y = 2 cos

(
x+ y

2

)
cos
(
x− y

2

)



18 CHAPTER 1

and
cosx− cos y = −2 sin

(
x+ y

2

)
sin
(
x− y

2

)
.

Answer. With r = x+y
2 and s = x−y

2 , we have
sin x+ sin y = sin(r + s) + sin(r − s)

= sin r cos s+ cos r sin s+ sin r cos s− cos r sin s

= 2 sin r cos s

= 2 sin
(
x+ y

2

)
cos
(
x− y

2

)
.

Also,
cosx+ cos y = cos(r + s) + cos(r − s)

= cos r cos s− sin r sin s+ cos r cos s+ sin r sin s

= 2 cos r cos s = 2 cos
(
x+ y

2

)
cos
(
x− y

2

)
Similarly,

cosx− cos y = cos(r + s) − cos(r − s)

= cos r cos s− sin r sin s− cos r cos s− sin r sin s

= −2 sin r sin s = −2 sin
(
x+ y

2

)
sin
(
x− y

2

)
.

(1.4.7) Show that
tan x+ y

2 = sin x+ sin y
cosx+ cos y

whenever the denominator is nonzero.

Answer. If r = (x+ y)/2 and s = (x− y)/2, then
sin x+ sin y
cosx+ cos y = sin(r + s) + sin(r − s)

cos(r + s) + cos(r − s)

= sin r cos s+ cos r sin s+ sin r cos s− cos r sin s
cos r cos s− sin r sin s+ cos r cos s+ sin r sin s

= 2 sin r cos s
2 cos r cos s = sin r

cos r = tan x+ y

2 .
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(1.4.8) Show that
sin2 x− sin2 y

cos2 x− cos2 y
= −1

whenever the denominator is nonzero.

Answer. The denominator is
cos2 x− cos2 y = 1 − sin2 x− (1 − sin2 y) = −(sin2 x− sin2 y).

(1.4.9) Show that
sin x+ sin y
cosx+ cos y = −cosx− cos y

sin x− sin y
whenever the denominator is nonzero.

Answer. Cross multiplying the denominators,
(sin x+ sin y)(sin x− sin y) = sin2 x− sin2 y = −(cos2 x− cos2 y)

= (cosx− cos y)(cosx+ cos y).

(1.4.10) Show that
{λ sin(x+ r) : λ, r ∈ R} = {α cosx+ β sin x : α, β ∈ R}.

Answer. We have
λ sin(x+ r) = λ sin r cosx+ λ cos r sin x.

Conversely, given α, β ∈ R let
α′ = α/

√
α2 + β2, β′ = β/

√
α2 + β2.

Then we have α′2β′2 = 1 and so there exists r ∈ R with α′ = sin r, β′ = cos r.
Then
α cosx+β sin x =

√
α2 + β2

[
sin r cosx+ cos r sin x

]
=
√
α2 + β2 sin(x+ r).

(1.4.11) Use the idea in the proof of Lemma 1.4.1 to show that the
initial problem y′ = y, y(0) = 1 has at most one solution.
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Answer. Having two solutions y1, y2 means that y1 − y2 is a solution of the
initial problem y′ = y, y(0) = 0. So it is enough to show that this latter
problem has the only solution y = 0. We have, since y = y, y(n)(0) = · · · =
y′(0) = y(0) = 0. Also, working on the interval [−a, a], say, by continuity we
have that there exists c > 0 with |y(x)| ≤ c. Then the Taylor polynomial of
y is just the error term, that is for each n ∈ N

y(x) = y(n)(ξ(x))xn+1

(n+ 1)! , x ∈ [−a, a],

with ξ(x) between 0 and x. As y(n) = y and |y| ≤ c, we have

|y(x)| ≤ c

(n+ 1)! .

As this is true for all n ∈ N, we get that y(x) = 0 on [−a, a]. But this can be
done for all a > 0, so y = 0.

1.5. Complex Numbers

(1.5.1) Without using series, show that a nonzero complex number z
can be written in a unique way as z = r(cos θ + i sin θ) with
r > 0 and θ ∈ [0, 2π).

Answer. If z ∈ C is nonzero, then z = a+ ib with at least one of a, b nonzero.
Then

a√
a2 + b2

and b√
a2 + b2

are two real numbers such that their squares add to 1. That is, they form the
coordinates of a point in the unit circle. As shown on page 17 of the Book,
there exists θ ∈ [0, 2π) such that

a√
a2 + b2

= cos θ and b√
a2 + b2

= sin θ.

If r =
√
a2 + b2, then a = r cos θ and b = r sin θ.

(1.5.2) Still without using series, follow up from Exercise 1.5.1 by
showing that if we formally use the notation eiθ for the complex
number cos θ + i sin θ, then ei(θ1+θ2) = eiθ1eiθ2 .
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Answer. Using the addition formulas and the multiplication of complex
numbers,(

cos θ1 + i sin θ1
)(

cos θ2 + i sin θ2
)

= cos θ1 cos θ2 − sin θ1 sin θ2

+ i
(

sin θ1 cos θ2 + cos θ1 sin θ2
)

= cos(θ1 + θ2) + i sin(θ1 + θ2).

(1.5.3) Let z ∈ C be nonzero. Show that if z = r(cos θ + i sin θ), then
zn = rn(cosnθ + i sinnθ).

Answer. We have z = reiθ. Then zn = rn(eiθ)n = rneinθ. The last equality
is obtained inductively from (eiθ)2 = eθ+θ = ei2θ.

(1.5.4) Show that the equation zn = 1 has precisely n distinct solu-
tions, that can be written as

ωk = e2iπk/n, k = 0, . . . , n− 1.

Answer. Suppose that zn = 1. From Exercise 1.5.3 we know that if z =
r(cos θ + iθ) the equality can be written as

rn(cosnθ + i sinnθ) = 1.
This means, by the uniqueness of the polar form, that r1/n = 1 (so r = 1) and
cosnθ = 1, sinnθ = 0. Thus nθ = 2kπ for k ∈ Z. As e2iπk/n = e2iπ(k−mn)/n

for all m ∈ Z, the unique solutions can be parametrized by
ωk = e2iπk/n, k = 0, . . . , n− 1.

(1.5.5) Solve the equation (z + 1)5 = z5.

Answer. Dividing both sides by z5 (note that z ̸= 0, since for z = 0 we get
0 = 1) we get (

1 + 1
z

)5
= 1.
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The expression in brackets cannot be 1, so we are left with the four non-trivial
fifth roots of unity:

1 + 1
z

= e2πik/5, k = 1, 2, 3, 4.

So we get four solutions, namely

z = 1
e2πik/5 − 1

, k = 1, 2, 3, 4.

(1.5.6) Show that ez+w = ezew.

Answer.

ez+w =
∞∑
k=0

(z + w)k

k! =
∞∑
k=0

k∑
j=0

(
k

j

)
1
k!z

jwk−j (1.1)

=
∞∑
k=0

k∑
j=0

1
j!

1
(k − j)!z

jwk−j (1.2)

=
∞∑
j=0

∞∑
k=j

1
j!

1
(k − j)!z

jwk−j (1.3)

=
∞∑
j=0

∞∑
r=0

1
j!

1
r!z

jwr (1.4)

=
∞∑
j=0

1
j!z

j ew = ezew. (1.5)

(1.6)

(1.5.7) Show that ez+w = ezew by showing that ez+w is the unique
solution of the initial value problem y′(z) = y(z), y(0) = ew.

Answer. Let g(z) = ez+w. Then g(0) = ew, g′(z) = g(z). Then g(z) = cez

with c = g(0) = ew.
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1.6. Cardinality

(1.6.1) Show that equipotency is an equivalence relation.

Answer. We define the relation A ∼ B if there exists a bijection f : A → B.
Given a set A, the identity idA :→ A is a bijection, so the relation is reflexive.
If A ∼ B and f : A → B is a bijection, then f−1 : B → A is a bijection, and so
B ∼ A, making the relation symmetric. Finally, if f : A → B and g : B → C
are bijections, then g ◦ f : A → C is also a bijection by Exercise 1.1.6.

(1.6.2) Let n < m be positive integers. Show by induction that there
is no bijection between {1, . . . , n} and {1, . . . ,m}.

Answer. We proceed by induction on m. When m = 2, any function γ :
{1} → {1, 2} will clearly not be surjective. Assume as inductive hypothesis
that there is no bijection between {1, . . . , n} and {1, . . . ,m} for all n < m.
Suppose that γ : {1, . . . , n + 1} → {1, . . . ,m + 1} is bijective, where n < m.
Because reordering is a bijection, we may assume without loss of generality
that γ(n+1) = m+1. This means that γ restricts to a bijection {1, . . . , n} →
{1, . . . ,m} a contradiction.

(1.6.3) Write an explicit bijection γ : (0, 1) → (0, 1) ∪ (1, 2).

Answer. We can map (0, 1) to (0, 2) and then use the countable shift idea
to hide the middle point 1. So γ : (0, 1) → (0, 1) ∪ (0, 2) given by

γ(t) =
{

1
n+1 , t = 1

2n , n ∈ N

2t, t ̸∈
{

1, 1
2 ,

1
3 , . . .

}
is a bijection as desired.

(1.6.4) Write γ−1 explicitly for Example 1.6.5.
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Answer. We need to identify whether the positive rational q is in an interval
of the form (2n, 2n+ 1] or (2n+ 1, 2n+ 2]. Let m(q) = ⌊q⌋. Then we put

η(q) =
{
q − m(q)

2 , m(q) even
m(q)−1

2 + 1 − q, m(q) q odd

(1.6.5) Write in detail the proof of Proposition 1.6.27.

Answer. Let γ : P(A) → {0, 1}A be given by γ(B) = 1B . If γ(B) = γ(C),
then 1B = 1C . So if b ∈ B then 1C(b) = 1B(b) = 1, so b ∈ C; and, similarly,
C ⊂ B. So B = C and γ is injective. Let g : A → {0, 1} be a function, and
let B = {a ∈ A : g(a) = 1}. Then γ(B) = 1B = g and hence γ is surjective.
Thus γ is bijective and |{0, 1}A| = |P(A)|.

(1.6.6) Let A be a set and A =
⋃
j∈J Aj , with {Aj} nonempty and

pairwise disjoint. Fix sets {Ba}a∈A. Show that

|
∏
a∈A

Ba| = |
∏
j∈J

∏
a∈Aj

Ba|.

Answer. Let g ∈
∏
j∈J

∏
a∈Aj Ba. Then, for each j ∈ J , g(j) : Aj →⋃

a∈Aj Ba with g(j)(a) ∈ Ba. Define g̃ ∈
∏
a∈ABa by g̃(a) = g(j)(a) where

j is the unique index such that a ∈ Aj . If g̃ = h̃, then g(j)(a) = h(j)(a)
for a ∈ Aj , and so g(j) = h(j), and so g = h. That is, the assignment
g 7−→ g̃ is injective. And given h ∈

∏
a∈ABa, define h0 ∈

∏
j∈J

∏
a∈Aj Ba

by h0(j)(a) = h(a). Then h = h̃0 and the assignment is surjective, thus
|
∏
a∈ABa| = |

∏
j∈J

∏
a∈Aj Ba|.

(1.6.7) Let A1, A2, . . . be countable (finite or not), with |An| ≥ 2 for
all n. Show that ∣∣∣∣∏

N
An

∣∣∣∣ =
∣∣∣∣∏

N
{0, 1}

∣∣∣∣.
Answer. Since each An has at least two elements, we have injections γn :
{0, 1} → An. Then we can map each g ∈

∏
N{0, 1} to g̃ ∈

∏
NAn by g̃(n) =

γn(g(n)). The assignment g 7−→ g̃ is clearly injective, and so |
∏

N{0, 1}| ≤
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|
∏

NAn|. Conversely, let {Bn}n∈N be a pairwise disjoint family of subsets
of N with |Bn| = |N| for each n; for instance we can fix the sequence of
prime numbers {pn} and define Bn = {pkn : k ∈ N}. Then |An| = |N| <
|
∏

N{0, 1}| = |
∏
k∈Bn{0, 1}. And∣∣∣∣ ∏
n∈N

An

∣∣∣∣ ≤
∣∣∣∣ ∏
n∈N

∏
k∈Bn

{0, 1}
∣∣∣∣ =

∣∣∣∣∏
n

{0, 1}
∣∣∣∣.

Having shown both injections, Schröder–Bernstein gives us the equality∣∣∣∣∏
N
An

∣∣∣∣ =
∣∣∣∣∏

N
{0, 1}

∣∣∣∣.

(1.6.8) Show that, in the proof of Proposition 1.6.32, g : X × {0, 1} →
X is a bijection.

Answer. Let (x, t), (y, s) ∈ X × {0, 1} with g(x, t) = g(y, s). Because X =⋃
j Xj , there exists j such that x, y ∈ Xj (find a j for each of x and y and

then choose the largest of both). Then gj(x, t) = g(x, t) = g(y, s) = gj(y, s)
and then x = y and t = s by the injectivity of gj . Given z ∈ X, there exists
j with z ∈ Xj . As gj is surjective, there exist x ∈ X and t ∈ {0, 1} with
gj(x, t) = z. Then g(x, t) = gj(x, t) = z and g is surjective. Being both
injective and surjective, g is bijective.

(1.6.9) Show that, in the proof of Proposition 1.6.33, g : X ×X → X
is a bijection.

Answer. If g(x1, x2) = g(z1, z2) for x1, x2, z1, z2 ∈ X, by construction of
X there exists j such that x1, x2, z1, z2 ∈ Xj (choose a j for each, and then
keep the largest). Then gj(x1, x2) = g(x1, x2) = g(z1, z2) = gj(z1, z2) and
(x1, x2) = (z1, z2) by the injectivity of gj . Hence g is injective. Given z ∈ X,
there exists j with z ∈ Xj . By the surjectivity of gj there exists (x1, x2) ∈
X×X with gj(x1, x2) = z. Then g(x1, x2) = gj(x1, x2) = z and g is surjective.
Being both injective and surjective, g is bijective.
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1.7. Linear Algebra

(1.7.1) Let F be a field. Show that 0α = 0 for all α ∈ F.

Answer. We have
0α = (0 + 0)α = 0α+ 0α.

If we now add −(0α) to both sides, we get 0 = 0α.

(1.7.2) Let F be a field, α, β ∈ F. Show that

(i) (−α)β = α(−β) = −(αβ);
(ii) −(−α) = α;
(iii) (−1)α = −α.

Answer.

(i) We have (−α)β+αβ = (−α+α)β = 0β = 0. As additive inverses are
unique, (−α)β = −(αβ). Now α(−β) = (−β)α = −(βα) = −(αβ).

(ii) This is just the definition of −α. We can see the equality α+(−α) =
0 as saying that −α is the additive inverse of α, but also as saying
that α is the additive inverse of −α.

(iii) This follows from the above: (−1)α = −(1α) = −α.

(1.7.3) Prove Proposition 1.7.5.

Answer.

(i) If W is a subspace, then αv + w ∈ W for all α ∈ F and v, w ∈ W .
Conversely, taking α = 1 we get that v+w ∈ W for all v, w ∈ W , so
the operation of addition is defined on W . We have 0 = (−1)v+v ∈
W , and −v = (−1)v + 0 ∈ W ; as associativity and commutativity
are inherited from V , (W,+) is an abelian group, hence a subspace.
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(ii) If Wj ⊂ V is a subspace for all j ∈ J , then given α ∈ F and v, w ∈⋂
jWj by the first part of the exercise we have that αv + w ∈ Wj

for each j, and so αv + w ∈
⋂
jWj ; hence

⋂
jWj is a subspace of

V . In particular when W is a subset we can take the family of all
subspaces of V that contain W (this family is non-empty, because
it contains V ) and so the intersection is the smallest subspace that
contains W .

(iii) Let W0 = spanW , that is

W0 =
{ m∑
j=1

αjwj : m ∈ N, α1, . . . , αm ∈ F, w1, . . . , wm ∈ W
}
.

A linear combination of linear combinations is a linear combination,
so W0 is a subspace. So spanW ⊂ W0 by definition. At the same
time, the elements of W0 belong to any subspace that contains W ,
so W0 ⊂ spanW and hence spanW = W0.

(1.7.4) Let {pn}∞
n=0 ⊂ F[x] such that deg pn = n for all n. Show that

{pn} is a basis for F[x].

Answer. Since deg pn = 0, we have p0 = α ∈ F \ {0}. Then Fp0 = F.
Assume for induction that span{p0, . . . , pk} = span{1, x, . . . , xk}. We have
pk+1 = αxk+1 + q(x), where deg q ≤ k. By the inductive hypothesis q ∈
span{p0, . . . , pk}; so xk+1 = α−1(pk+1 − q) ∈ span{p0, . . . , pk+1}. By induc-
tion, span{p0, p1, . . .} = F[x].

It remains to show that {pn} is linearly independent. Suppose that
α1pn1 + · · ·+αkpnk = 0, where n1 > n2 > · · · > nk. The monomial of highest
degree in the expression is α1x

n1 ; so α1 = 0. But then the monomial of high-
est degree is α2x

n2 , forcing α2 = 0. This can be repeated until obtaining that
αj = 0 for all j, and so pn1 , . . . , pnk are linearly independent. As they were
arbitrary elements in {pn}, we have shown that {pn} is linearly independent.

(1.7.5) Show that if V,W are vector spaces and ϕ : V → W is bijective
and linear, then ϕ−1 is linear.

Answer. Let α ∈ F, w1, w2 ∈ W . Since ϕ is surjective, there exist v1, v2 ∈ V
such that ϕ(v1) = w1, ϕ(v2) = w2. As ϕ(αv1 + v2) = αϕ(v1) + ϕ(v2) =



28 CHAPTER 1

αw1 + w2, we have that
ϕ−1(αw1 + w2) = αv1 + v2 = αϕ−1(w1) + ϕ−1(w2)

and so ϕ−1 is linear.

(1.7.6) Prove Proposition 1.7.11.

Answer. If φ1, φ2 : V → F are linear and a ∈ F, then (aφ1 + φ2)(v) =
aφ1(v) + φ2(v), so V ∗ is a vector space. Given a basis {e1, . . . , en} of V ,
define

e∗
k

( n∑
j=1

cjej

)
= ck.

Then e∗
k ∈ V ∗. Given any φ ∈ V ∗, we have

φ(x) = φ
( n∑
j=1

cjej

)
=

n∑
j=1

φ(ej) cj =
n∑
j=1

φ(ej) e∗
j (x).

So φ =
∑n
j=1 φ(ej) e∗

j , showing that V ∗ = span{e∗
1, . . . , e

∗
n}. And if

∑
j aje

∗
j =

0, evaluating at ek we get ak = 0. So e∗
1, . . . , e

∗
n} are linearly independent

and hence a basis for V ∗. Which also shows that dimV ∗ = dimV = n.

(1.7.7) Prove Proposition 1.7.10.

Answer. If ϕ : V → W is an isomorphism and X is a basis for V , then
ϕ(X) is a basis for W . Indeed, if v =

∑
j αjxj then ϕ(v) =

∑
j αjϕ(xj),

so W = spanϕ(X). And if 0 =
∑
j αjφ(xj), then 0 = φ(

∑
j αjxj); the

injectivity of φ gives 0 =
∑
j αjxj , and the linear independence of X gives

αj = 0 for all j. So ϕ(X) spans W and is linearly independent: a basis. And
ϕ is a bijection, so dimW = |ϕ(X)| = |X| = dimV .

Conversely, if dimV = dimW , fix bases X = {xj}j∈J of X and {yj}j∈J
of Y . Define ϕ : V → W by

ϕ
(∑

j

αjxj) =
∑
j

αjyj .

This is well-defined because the αj are uniquely determined for each element
of V . The fact that {yj} is spans W makes ϕ surjective. And if ϕ(

∑
j αjxj) =

0, then
∑
j αjyj = 0 and αj = 0 for all j since {yj} is a basis. So ϕ is bijective.
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It remains to show that ϕ is linear. Given v1, v2 ∈ V , by using zeros if
necessary we may write v1 =

∑n
j=1 αjxj , v2 =

∑n
j=1 βjxj . Then

ϕ(αv1 + v2) = ϕ
( n∑
j=1

(ααj + βj)xj
)

=
n∑
j=1

(ααj + βj)yj

= α

n∑
j=1

αjyj +
n∑
j=1

βjyj = αϕ(v1) + ϕ(v2)

and ϕ is linear.

(1.7.8) Let V,W be a finite-dimensional vector spaces with dimW =
dimV and ϕ : V → V linear. Show that ϕ is injective if and
only if it is surjective.

Answer. Suppose that ϕ is injective, and let {e1, . . . , en} be a basis for V .
If α1ϕ(e1) + · · · + αnϕ(en) = 0, then

0 = α1ϕ(e1) + · · · + αnϕ(en) = ϕ(α1e1 + · · · + αnen).
As ϕ is injective, we get α1e1 + · · · + αnen = 0 and then by the linear
independence we get α1 = · · · = αn = 0. Thus ϕ(e1), . . . , ϕ(en) are linearly
independent. Being a linearly independent set with the same cardinality as
a basis, it is a basis for W . Then for any w ∈ W there exist α1, . . . , αn ∈ F
with w = α1ϕ(e1) + · · · +αnϕ(en) = ϕ(α1e1 + · · · +αnen) and ϕ is surjective.

Conversely, suppose that ϕ is surjective. Then ϕ(e1), . . . , ϕ(en) span
W ; as the dimension of W is n, necessarily ϕ(e1), . . . , ϕ(en) are linearly in-
dependent (otherwise we could choose a proper linearly independent subset
and then dimW < dimV , a contradiction). If 0 = ϕ(α1e1 + · · · + αnen)
then 0 = α1ϕ(e1) + · · · + αnϕ(en) and so α1 = · · ·αn = 0, showing that ϕ is
injective.

(1.7.9) Prove Proposition 1.7.13.

Answer. If ϕ(v) = λv for nonzero v, then (ϕ − λI)(v) = ϕ(v) − λv = 0, so
v ∈ ker(ϕ−λI). These implications also work the other way: if v ∈ ker(ϕ−λI)
is nonzero, then ϕ(v) = λv.

When ker(ϕ−λI) ̸= {0}, this means that ϕ−λI is not injective, hence
not invertible. Conversely, if ker(ϕ− λI) = {0}, then ϕ− λI is injective. By
Exercise 1.7.8, ϕ− λI is invertible.

That ϕ − λI is invertible if and only if det(ϕ − λI) ̸= 0 is proven in
Theorem A.3.3.
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(1.7.10) Let V,W be vector spaces over F and ϕ1, ϕ2 : V → W linear.
Fix bases E,F for V and W respectively, and show that

[ϕ1 + ϕ2]E,F = [ϕ1]E,F + [ϕ2]E,F .

Answer. We have that [ϕ1]E,F is the matrix {αkj} with

ϕ1(ej) =
m∑
k=1

αkjfk.

Similarly, [ϕ2]E,F is the matrix {βkj} with

ϕ2(ej) =
m∑
k=1

βkjfk.

Then

(ϕ1 + ϕ2)(ej) =
m∑
k=1

(αkj + βkj)fk.

Thus
[ϕ1 + ϕ2]E,F = [αkj + βkj ] = α+ β = [ϕ1]E,F + [ϕ2]E,F .

(1.7.11) Let V,W,Z be vectors spaces over F and ϕ : V → W , ψ : W →
Z linear maps. Fix bases {e1, . . . , en} for V , {f1, . . . , fm} for
W , and {g1, . . . , gp} for Z. Show that

[ψ ◦ ϕ]E,G = [ψ]F,G[ϕ]E,F .

Answer. We have that [ϕ]E,F is the matrix {αkj} with

ϕ(ej) =
m∑
k=1

αkjfk.

Similarly, [ψ]F,G is the matrix {βrs} with

ψ(fs) =
m∑
r=1

βrsgr.

Then

(ψ ◦ ϕ)(ej) =
m∑
k=1

αkj ψ(fk) =
m∑
k=1

αkj

p∑
r=1

βrkgr =
p∑
r=1

( m∑
k=1

βrkαkj

)
gr.
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Thus if γ = [ψ ◦ ϕ]E,G, then γ = βα, where

γrj =
m∑
k=1

βrkαkj .

(1.7.12) Let V be a finite-dimensional vector space and ϕ : V → V
linear. Let λ1, . . . , λn be distinct eigenvalues for ϕ. Show that
if v1, . . . , vn are eigenvectors for λ1, . . . , λn respectively, then
v1, . . . , vn are linearly independent.

Answer. We proceed by induction. A single eigenvector is linearly indepen-
dent, so this is our base case. Suppose as inductive hypothesis that n − 1
eigenvectors corresponding to distinct eigenvalues are linearly independent.
If

α1v1 + · · · + αnvn = 0, (AB.1.6)
applying ϕ we get

α1λ1v1 + · · · + αnλnvn = 0 (AB.1.7)
Multiplying (AB.1.6) by λn and subtracting from (AB.1.7),

α1(λ1 − λn)v1 + · · · + αn−1(λ1 − λn)vn−1 = 0.
As v1, . . . , vn−1 are linearly independent we get αj(λj − λn) = 0 for j =
1, . . . , n− 1. And λj ̸= λn, so α1 = · · · = αn−1 = 0. Going back to (AB.1.6)
we get αn = 0 and so v1, . . . , vn are linearly independent.
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1.8. Basic Point Set Topology

(1.8.1) Let X be a metric space, x ∈ X and r > 0. Show that Br(x)
is open.

Answer. Fix y ∈ Br(x). Let s = r−d(y,x)
2 . If z ∈ Bs(y), then

d(x, z) ≤ d(x, y) + d(y, z) = d(x, y) + r − d(x, y)
2 = d(x, y) + r

2 < r,

so z ∈ Br(x), showing that Bs(y) ⊂ Br(x).

(1.8.2) Let X be a metric space. Let {Aj} be a collection of open sets,
and let {Bk} be a collection of closed sets. Show that

⋃
j Aj is

open, and that
⋂
k Bk is closed.

Answer. Let a ∈
⋃
j Aj . Then there exists j such that a ∈ Aj . Since Aj is

open, there exists r > 0 with Br(a) ⊂ Aj . Then Br(a) ⊂
⋃
j Aj and, as this

can be done for any a ∈
⋃
j Aj , we conclude that

⋃
j Aj is open.

We have
X \

⋂
k

Bk =
(⋂

k

Bk

)c
=
⋃
k

Bck,

a union of open sets. That is, the complement of
⋂
k Bk is open, which proves

that
⋂
k Bk is closed.

(1.8.3) Find an example of a metric space X and a collection {Aj} of
open sets such that

⋂
j Aj is not open. Find also an example of

a collection {Bk} of closed sets such that
⋃
k Bk is not closed.

Answer. This can be easily done in the real line. Let X = R and An =(
− 1

n ,
1
n

)
. Then each An is open, but

⋂
nAn = {0}, which is not open. With

a similar idea, let Bn =
[ 1
n , 1
]
. Each Bn is closed, but

⋃
nBn = (0, 1], which

is not closed.
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(1.8.4) Let X be a topological space and V,W ⊂ X open and disjoint.
Show that V ∩W = ∅.

Answer. If x ∈ W , as W is open and V ∩ W = ∅, this means that x ̸∈ V
(because x has a neighbourhood that does not touch V ).

(1.8.5) Show that a metric space is normal.

Answer. Let X be a metric space and C1, C2 ⊂ X be closed and disjoint.
Since C1 ⊂ X \ C2 and this latter set is open, for each x ∈ C1 there exists
rx > 0 such that Brx(x) ⊂ X \ C2. Similarly, for each y ∈ C2 there exists
ry > 0 such that Bry (y) ⊂ X \ C1. Consider the open sets

V1 =
⋃
x∈C1

Brx/2(x), V2 =
⋃
y∈C2

Bry/2(y).

Then V1, V2 are open, and C1 ⊂ V1, C2 ⊂ V2. We will be done if we show
that V1 ∩ V2 = ∅. Let z ∈ V1 ∩ V2. Then there exist x ∈ C1 and y ∈ C2 such
that z ∈ Brx/2(x) ∩Bry/2(y). Suppose that ry ≤ rx (otherwise, we exchange
roles). We have

d(x, y) ≤ d(x, z) + d(z, y) < rx
2 + ry

2 ≤ rx.

Thus y ∈ Brx(x) ⊂ X \ C2, contradicting the fact that y ∈ C2.

(1.8.6) Let X be a topological space. Show that the following state-
ments are equivalent:

(a) X is normal;
(b) given K ⊂ V with K closed and V open, there exists W ⊂

X, open, with K ⊂ W ⊂ W ⊂ V .

Answer. If X is normal and K ⊂ V with K compact and V open, consider
the disjoint closed sets K and X \ V . By hypothesis there exist disjoint
open sets W and W ′ with K ⊂ W and X \ V ⊂ W ′. By Exercise 1.8.4,
W ∩X \ V = ∅, so W ⊂ V . Thus K ⊂ W ⊂ W ⊂ V .

Conversely, suppose that for all K ⊂ V with K closed and V open,
there exists W ⊂ X, open, with K ⊂ W ⊂ W ⊂ V . Given C1, C2 closed and
disjoint, we have C1 ⊂ X \ C2. Then there exists W open with C1 ⊂ W ⊂
W ⊂ X \ C2. Hence C1 ⊂ W and C2 ⊂ X \W , which are disjoint open sets.
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(1.8.7) Prove Proposition 1.8.6.

Answer.

(a) A is closed if and only if C(A) ⊂ A. Assume first that A is closed. Then
Ac is open. For any b ∈ Ac, there exists a neighbourhood N such that
b ∈ N ⊂ Ac; then (N \ {b}) ∩A = ∅. Thus C(A) ⊂ (Ac)c = A.

Conversely, if C(A) ⊂ A, then for any b ∈ Ac we have that b ̸∈ C(A),
so there exists a neighbourhood N with b ∈ N ⊂ Ac. So Ac is open, which
shows that A is closed.

(b) A = A ∪ C(A). First, we want to show that A ∪ C(A) is closed. Indeed,
consider its complement Ac ∩ C(A)c. If b ∈ Ac ∩ C(A)c, then for any
neighbourhood N of b we have N ∩A = ∅. This shows that Ac∩C(A)c is
open, and thus A ∪C(A) is closed. It follows that A ⊂ A ∪C(A). As the
complement of A is open, for any b ∈ (a)c there exists a neighbourhood
N with b ∈ N ⊂ (A)c ⊂ Ac. So N ∩ A = ∅. This shows that (A)c ⊂
(A ∩ C(A))c, implying that A ∪ C(A) ⊂ A.

(c) A ∪B = A ∪ B. Using that C(A ∪ B) = C(A) ∪ C(B) and the previous
item, (A ∪B) = A ∪B ∪ C(A) ∪ C(B) = A ∪B.

(d) A ∩B ⊂ A ∩B. Using that C(A ∩B) ⊂ C(A) ∩ C(B), we have A ∩B =
(A ∩ B) ∪ (C(A) ∩ C(B)) = (A ∪ C(A)) ∪ (B ∪ C(B)) = A ∩ B. The
inclusion can be strict; this is easy to see if A ∩ B = ∅. For example, in
the real line, let A ⊂ R be the rationals, and B ⊂ R the irrationals. Then
A ∩B = ∅, while A ∩B = R.

(1.8.8) Let M be a separable metric space and X ⊂ M be uncountable.
Show that X has infinitely many accumulation points.

Answer. Let D be a countable dense subset of M , and let B() = {Bq(s) :
s ∈ D, q ∈ Q+} be a countable base for the topology. Form the set

E = {x ∈ X : ∃B ∈ B(), B() ∩X countable}.
For each x ∈ E, denote by Bx the corresponding ball with Bx ∩X countable.
As there are only countable many balls available in B(), the set E0 = {Bx :
x ∈ E} is countable. Thus

X0 =
⋃

Bx∈E0

(Bx ∩X)
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is countable. The set X0 is uncountable, and for every x ∈ X0 every ball
around it contains uncountably many points in X, so it is an accumulation
point.

(1.8.9) Let X = R and T = Top{[a, b) : a, b ∈ R, a < b}. The
topological space (R, T ) is called the Sorgenfrey Line, and
T is called the lower limit topology.

(a) Show that T is finer than the usual topology on R.
(b) Show that [a, b) is both open and closed for all a < b.
(c) Show that (R, T ) is normal.
(d) Show that xn → x if and only if there exists n0 such that

xn ≥ x for all n ≥ n0, and xn → x in the usual topology.
(e) Show that if K ⊂ R is compact then K is countable.

Answer.

(a) Any interval (a, b) can be written (a, b) =
⋃
n[a+ 1

n , b) ∈ T .
(b) The interval [a, b) is open by definition of T . To see that it is closed, its

complement

R \ [a, b) = (−∞, a) ∪ [b,∞) =
⋃
n

[a− n, a− 1
n

] ∪
⋃
n

[b, b+ n)

is open.
(c) Let A,B ⊂ R be disjoint closed sets. For each a ∈ A, since it is in

the complement of B there exists ã such that [a, ã) ∩ B = ∅. Let V =⋃
a∈A[a, ã). Then V is open, A ⊂ V , and V ∩ B = ∅. Similarly, for each

b ∈ B there exists b̃ with [b, b̃) ∩ A = ∅ and W =
⋃
b∈B [b, b̃) is an open

set with B ⊂ W , and W ∩ A = ∅. For any a ∈ A, b ∈ B, if a < b then
ã < b and so [a, ã) ∩ [b, b̃) = ∅, and the same happens if b < a. It follows
that V ∩W = ∅.

(d) Suppose that xn → x. Then for each y > x we have that eventually
xn ∈ [x, y), so xn ≥ x for all big enough n. Conversely, if xn → x in the
usual topology and xn ≥ x for all n (which we may assume after discarding
finitely many elements in the sequence if necessary) given V ∈ T open with
x ∈ V , there exists y such that [x, y) ⊂ V . Then xn ∈ [x, y) ⊂ V for all
big enough n, and so xn → x.

(e) Suppose that K is compact. Fix k ∈ K. Then{(
− ∞, k − 1

n

)
: n ∈ N

}
∪ [k,∞)



36 CHAPTER 1

is an open cover for K; so it admits a finite subcover. So there exists n0
such that [k− 1

n , k) ∩K = ∅ for all n ≥ n0. Fix a rational qk ∈ [k− 1
n , k).

Then the map g : K → Q, g(k) = qk is injective, and so K is countable.

(1.8.10) Let (R, T ) be the Sorgenfrey Line and consider the topological
space (R2, T × T ). This is called the Sorgenfrey Plane.

(a) Show that the Sorgenfrey Plane is separable.
(b) Consider the set Y = {(x,−x) : x ∈ R} ⊂ R2. Show that

Y is not separable.
(c) Conclude that the Sorgenfrey Plane is not metric.
(d) Show that Y0 = {(x,−x) : x ∈ Q} and Y \ Y0 are closed,

and use this information to show that (R, T ) is not normal.

Answer.

(a) Since (xn, yn) → (x, y) if and only if xn → x and yn → y in the usual
topology together with xn ≥ x and yn ≥ y eventually, the countable subset
Q2 is dense.

(b) Given (x,−x) let Vx = [x, x + 1) × [−x,−x + 1). Then Vx is open, and
Vx ∩ Y = {x}; indeed, if (y,−y) ∈ Vx ∩ Y , then y ≥ x and −y ≥ −x, so
y = x. If {qj}j∈J is dense in Y , then for each x there exists jx such that
qjx ∈ Vx; it follows that qjx ̸= qjy for all y ̸= x, and so |J | ≥ |R|. That is,
Y admits no countable dense subset.

(c) In a separable metric space its subsets are separable Proposition 1.8.5, so
(R, T ) cannot be metric as Y is not separable.

(d) Let x, y ∈ R such that (x, y) ̸∈ Y0. Suppose first that y ̸= −x. This means
that the Euclidean distance from (x, y) to Y0 is positive. That is, there
exists δ > 0 such that

√
(x− q)2 + (y + q)2 ≥ δ for all q ∈ Q. Let V =

[x, x+ δ
2 ) × [y, y+ δ

2 ). Then (x, y) ∈ V and V ∩Y0 = ∅; for if (q,−q) ∈ V ,
then |x−q| < δ

2 and |y+q| < δ
2 and so (x−q)2 +(y+q)2 < δ2

2 . The second
possibility is that y = −x. In such case we put V = [x, x+1)×[−x,−x+1)
and V is open, (x, y) ∈ V and V ∩ Y0 = ∅. We have shown that R2 \ Y0
is open, so Y0 is closed. The same proof shows that Y \ Y0 is closed.

The closed subsets Y0 and Y \Y0 cannot be separated. Fix (q,−q) ∈ Y0
and V open with (q,−q) ∈ V . Then there exists a sequence {rn} such
that rn ∈ R \ Q, rn ≥ q for all n, and rn → q. Then (rn,−rn) → (q,−q),
so eventually (rn,−rn) ∈ V . That is, V ∩ Y \ Y0 ̸ ∅. So Y0 and Y \ Y0
cannot be separated, and (R, T ) is not normal.
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(1.8.11) Show that a discrete compact topological space is finite.

Answer. Suppose that T is discrete and compact. Since T is discrete, the
family

{
{t}
}
t∈T is an open cover for T , and it does not admit any proper

subcover, as removing any {t} will leave that t uncovered. The compactness
of T then implies that T is finite.

(1.8.12) Show that completeness is actually required in Lemma 1.8.25.

Answer. Let X = (0, 1) with the usual topology. Then X is not compact,
but given any ε > 0 it is possible to cover X with finitely many balls of radius
ε. Namely, let xk = ke/2, k = 1, . . . ,m with m the smallest integer greater

than 2/ε. Then X ⊂
m⋃
k=1

Bε(xk).

(1.8.13) Using the ε-δ definition of continuity in a metric space, show
that everywhere continuity of f : X → Y is equivalent to saying
that f−1(E) is open in X for every open set E ⊂ Y .

Answer. Assume that f satisfies the ε-δ definition of continuity at every
point. Let E ⊂ Y be open, and consider x ∈ f−1(E). Since f(x) ∈ E and
E is open, there exists a ball surrounding f(x) and inside E; that is, there
exists ε > 0 such that Bε(f(x)) ⊂ E. The continuity of f gives us a δ such
that |y−x| < δ implies |f(y) −f(x)| < ε. This means that if y ∈ Bδ(x), then
f(y) ∈ Bε(f(x)) ⊂ E; that is, y ∈ f−1(E) and so Bδ(x) ⊂ E, showing that
f−1(E) is open since x was arbitrary.

Conversely, suppose that f−1(E) is open for all E open. Fix x ∈ X and
ε > 0. Consider the open ball Bε(f(x)) ⊂ Y ; by hypothesis, f−1(Bε(f(x)))
is open. Since x is a point in this open set, this means that there exists δ > 0
such that Bδ(x) ⊂ f−1(Bε(f(x))). So, if |y − x| < δ, then y ∈ Bδ(x) and so
y ∈ f−1(Bε(f(x))), which is to say that f(y) ∈ Bε(f(x)). This is precisely
|f(y) − f(x)| < ε.
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(1.8.14) Show that f : X → Y is continuous if and only if f−1(E) is
open for every E in a subbase for X.

Answer. If f is continuous, then f−1(E) is open for every open set E ⊂
Y , in particular for those in a subbase. Conversely, if B is a subbase for
Y , then the set B′ of finite intersections of sets in B is a base for X. As
f−1(E1 ∩ · · · ∩ Em) = f−1(E1) ∩ · · · ∩ f−1(Em) is open, we may assume
without loss of generality that B is a base. Then any V ⊂ Y open can be
written as V =

⋃
j Ej , with Ej ∈ B, and

f−1(V ) = f−1
(⋃

j

Ej

)
=
⋃
j

f−1(Ej),

which is open in X.

(1.8.15) Let X be a topological space and H ⊂ X a subset. Show that
1H is continuous if and only if H is clopen.

Answer. Assume first that 1H is continuous. Then H = (1H)−1({1}) is
closed. We can also write

H = (1H)−1
( 1

−
1
2 , 1 + 1

2

)
so H is open.

Conversely, suppose that H is clopen. We have, for B ⊂ C open,

(1H)−1(B) =



X, {0, 1} ⊂ B

H, 1 ∈ B, 0 ̸∈ B

X \H, 1 ̸∈ B, 0 ∈ B

∅, {0, 1} ∩B = ∅

In all four cases the preimage is open (even if B is not open, though we don’t
need that), so 1H is continuous.

(1.8.16) Let (X, d) be a metric space and {fn} a sequence of contin-
uous functions such that fn → f uniformly. Show that f is
continuous.

Answer. Let ε > 0. By definition of uniform convergence, there exists n0
such that d(fn(x), f(x)) < ε for all n ≥ n0 and all x ∈ X. Fix x ∈ X and
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n ≥ n0. Then
d(f(x), f(y)) ≤ d(f(x), fn(x)) + d(fn(x), fn(y)) + d(fn(y), f(y))

< 2ε+ d(fn(x), fn(y)).
As fn is continuous, there exists δ > 0 such that d(x, y) < δ implies that
d(fn(x), fn(y)) < ε. Then, for all y such that d(x, y) < δ, we have

d(f(x), f(y)) < 3ε,
and so f is continuous.

(1.8.17) Let (M,d) and (N, d′) be metric spaces and f : M → N a func-
tion. As mentioned, f is continuous at x ∈ M if for every ε > 0
there exists δ > 0 such that d(y, x) < δ =⇒ d′(f(y), f(x)) < ε.
When δ does not depend on X , we say that f is uniformly
continuous. Show that if M is compact then f is uniformly
continuous.

Answer. Fix ε > 0. By the continuity of f , for each x ∈ M there exists δx > 0
such that d(y, x) < δx =⇒ d′(f(y), f(x)) < ε/2. The balls Bδx/2(x) form an
open cover for M ; so there is a finite subcover, given by say x1, . . . , xm. Let
δ = 1

2 min{δx1 , . . . , δxm}. If d(y, x) < δ, choose j so that d(x, xj) < δxj/2.
Then

d(y, xj) ≤ d(y, x) + d(x, xj) <
1
2 δxj + 1

2 δxj = δxj ,

and so d′(f(y), f(xj)) < ε/2 and d′(f(x), f(xj)) < ε/2. The triangle inequal-
ity then gives d(f(y), f(x)) < ε.

(1.8.18) Let X = {1, 2, 3} with the topology {∅, X, {1}, {2, 3}}. Show
that f : X → R is continuous if and only if f(2) = f(3).

Answer. Suppose first that f(2) ̸= f(3). Then f−1({2}) is either {1, 2} or
{2}, neither of which is open; so f is not continuous.

Now assume that f(2) = f(3); name this number r. By Exercise 1.8.14
we may test continuity only on open intervals. If r ∈ (a, b), then f−1(a, b) is
either {2, 3} (when f(1) ̸∈ (a, b)) or X (when f(1) ∈ (a, b)); in either case,
f−1(a, b) is open, and so f is continuous.
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(1.8.19) Let a, b ∈ R and f : (a, b) → R be continuously differentiable.
Show that f is piecewise monotonic, i.e., there exists disjoint
intervals (ak, bk) such that [a, b] =

⋃
k[ak, bk] and f is monotone

on each [ak, bk], and there exist intervals (a′
k, b

′
k) ⊂ (ak, bk) such

that f is strictly monotone on (a′
k, b

′
k) and constant on (ak, a′

k)
and on (b′

k, bk).

Answer. The set {t : f ′(t) > 0} = f−1(R\{0}) is open. By Proposition 1.8.1,
there exist disjoint intervals such that

{t : f ′(t) > 0} =
⋃
k

(ak, bk).

Since f ′ is continuous and nonzero on each of (ak, bk), we conclude that f ′

does not change sign there and so f is monotone on each (ak, bk). On any
interval contained in the complement of V =

⋃
k(ak, bk) we have f ′ = 0 and

so f is constant on such intervals. If we replace each ak and bk with
a′
k = inf{t : (t, ak) ⊂ V c}, b′

k = sup{t : (bk, t) ⊂ V c}
(and we left them unchanged if the corresponding set is empty), we get that⋃
k[ak, bk] = [a, b] and f is monotone on each [ak, bk].

(1.8.20) Let X = {1, 2, 3}. Show that T = {∅, X, {1, 2}, {2}, {2, 3}} is
a topology, and that it is not Hausdorff.

Answer. T is closed under taking unions and under taking intersections, and
has X and ∅, so it is a topology, It is not Hausdorff, because the topology
cannot separate 1 and 2 (or 2 and 3).

(1.8.21) Let X = {1, 2, 3} with the topology {∅, X, {1, 2}, {2}, {2, 3}}.
Show that f : X → R is continuous if and only if f is constant.

Answer. If f is constant, then f−1(V ) is either X or ∅, so open. Conversely,
if f is continuous, fix any δ > 0; then V = f−1(f(1) − δ, f(1) + δ) is open
and contains 1, so either V = X or V = {1, 2}. The case V = X forces
f(2) = f(3) = f(1), for otherwise we get a contradiction by taking δ small
enough. And when V = {1, 2} we get that f(2) = f(1). A similar argument
then shows that f(2) = f(3). In either case, f is constant.
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(1.8.22) Prove Proposition 1.8.10.

Answer. (i) =⇒ (ii) Trivial.
(ii) =⇒ (iii) Let a ∈ A. Then there exists a net {aj} ⊂ A such that

aj → a. As f is continuous at a we have f(a) = limj f(aj) ∈ f(A).
(iii) =⇒ (iv) Let C ⊂ Y be closed, with f−1(C) not closed. Then

A \ f−1(C) is not open. So there exists z ∈ A that is not interior, meaning
that there is a net {aj} ⊂ f−1(C) with aj → z. Then

f(z) ∈ f(f−1(C)) ⊂ f(f−1(C)) ⊂ C = C,

giving us z ∈ f−1(C), a contradiction. It follows that f−1(C) is closed.
(iv) =⇒ (i) If B ⊂ Y is open, then f−1(B)c = f−1(Bc) is closed by

hypothesis, so f−1(B) is open. That is, f is continuous.
(v) =⇒ (i) Suppose that f is not continuous. Then there exists V ⊂ Y

open with f−1(V ) not open. This implies that there exists a ∈ f−1(V ) and a
net {xj} ⊂ X \f−1(V ) and xj → a. As xj ̸∈ f−1(V ), we have that f(xj) ̸∈ V
for all j. Then f(xj) cannot converge to f(a), for V is a neighbourhood of
f(a) with not points from the net.

(i) =⇒ (v) Suppose that xj → x. Let V ⊂ Y be an open neighbourhood
of f(x). As f−1(V ) is an open neighbourhood of x, there exists j0 such that
xj ∈ f−1(V ) for all j ≥ j0. Then f(xj) ∈ V for all j ≥ j0. As this can be
done for any open neighbourhood of f(x), this shows that f(xk) → f(x).

(1.8.23) Show that an interval (a, b) ⊂ R is connected.

Answer. Suppose that (a, b) = V ∪W , with V,W open and disjoint. Define
f : (a, b) → R by f(x) = 1 if x ∈ V , f(x) = 0 if x ∈ W . Using Exercise 1.8.13
it is easy to see that f is continuous. Indeed, given any Z ⊂ R open, we have

f−1(Z) =



∅, 0, 1 ̸∈ Z

W, 0 ∈ Z, 1 ̸∈ Z

V, 0 ̸∈ Z, 1 ∈ Z

(a, b), 0, 1 ∈ Z

In all cases the preimage of Z is open, so f is continuous. But this contradicts
the Intermediate Value Theorem. Thus necessarily one of V and W is empty,
and (a, b) is connected.

Next is a different argument. Again suppose that (a, b) = V ∪ W ,
with V,W open and disjoint. Fix v ∈ V and w ∈ W . Assume without
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loss of generality that v < w (otherwise, exchange roles). Let c = sup{t ∈
R : (a, b) ∩ [v, t) ⊂ V ; it exists because v ∈ V . Note that c ≤ w; for
otherwise there would exist t > w with b ∈ [v, t) ⊂ V , a contradiction. Then
a < v ≤ c ≤ w < b, which means that c ∈ (a, b). We cannot have c ∈ V ,
because if it were there would exist δ > 0 with c + δ ∈ V since V is open.
But we cannot have c ∈ W either; we would have δ > 0 with c− 2δ ∈ W , so
[v, c− δ) ∩W ̸= ∅, giving us the contradiction c ≤ c− δ.

(1.8.24) Let (X, d) be a metric space. Show the reverse triangle in-
equality

|d(x, y) − d(y, w)| ≤ d(x,w), x, y, w ∈ X.

Answer. We have, using the triangle inequality,
d(x, y) ≤ d(x,w) + d(y, w), d(y, w) ≤ d(x, y) + d(x,w).

We can rewrite these as
−d(x,w) ≤ d(x, y) − d(y, w) ≤ d(x,w),

which in turn is
|d(x, y) − d(y, w)| ≤ d(x,w).

(1.8.25) Let X be a complete topological space and C ⊂ X a closed
subset. Show that C is complete.

Answer. Let {cj} ⊂ C be a Cauchy net. Because X is complete, there
exists x ∈ X such that cj → x. Then x ∈ ∂C, and so by Proposition 1.8.6
x ∈ C ∪ ∂C = C = C.

(1.8.26) Let (X, d) be a metric space. Construct a completion for X in
the following way. Let X̃ be the set of Cauchy sequences in X,
and R the equivalence relation

(xn)R (yn) ⇐⇒ d(xn, yn) →c⃝ 2024 Mart́ın Argerami All Rights Reserved 0.
On X̄ = X̃/R one defines the metric

d′( (xn), (yn) ) = lim
n
d(xn, yn).

(i) Show that d′ is well-defined.
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(ii) Show that the map ρ : X → X̄ that maps x to the
constant sequence (x) is isometric.

(iii) Show that ρ(X) is dense in X̄.

(iv) Show that X̄ is complete.

Answer.

(i) First, if (xn) and (yn) are Cauchy, then
|d(xm, ym) − d(xn, yn)| ≤ |d(xm, ym) − d(ym, xn)| + |d(ym, xn) − d(xn, yn)|

≤ d(xm, xn) + d(ym, yn) →c⃝ 2024 Mart́ın Argerami All Rights Reserved 0
since each sequence is Cauchy. So the number sequence (d(xn, yn))
is Cauchy and so its limit d′ = limn d(xn, yn) exists.

If d(xn, zn) → 0 and d(yn, wn) → 0, then
|d(xn, yn) − d(zn, wn)| ≤ |d(xn, yn) − d(yn, zn)| + |d(yn, zn) − d(zn, wn)|

≤ d(xn, zn) + d)yn, wn) →c⃝ 2024 Mart́ın Argerami All Rights Reserved 0.
Thus d′( (xn), (yn) ) = d′( (zn), (wn) ).

(ii) This is
d′(ρ(x), ρ(y)) = d′( (x), (y) ) = lim

n
d(x, y) = d(x, y).

(iii) Let (xn) be a representative in X̄. By definition, the sequence is
Cauchy. Let An be the constant sequence (xn, xn, . . .). Then

d′(Am, (xn) ) = lim
n
d(xm, xn)

(note that the limit exists, as we proved above that d′ always exists).
Because (xn) is Cauchy, for m big enough the limit can be made
as small as we want. Thus limmAm = (xn), showing that ρ(X) is
dense in X̄.

(iv) This one is a bit cumbersome to write because we need to deal with
sequences of sequences. If (Am) is a Cauchy sequence in X, then
each Am is the class of a Cauchy sequence (Amn)n ⊂ X. So, for
every r ∈ N, there exists nr such that

d′(Am, Aℓ) <
1
r
, for all m, ℓ ≥ nr.

In turn, using the definition of d′, this means that there exists mr ∈
N, with mr ≥ mr−1, such that

d(Anr,k, Anr+ℓ,k) < 1
r
, for all k ≥ mr, and for all ℓ, (AB.1.8)
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and such that
d(Anr,h, Anr,j) <

1
r
, for all h, j ≥ mr. (AB.1.9)

(this, because the sequence Anr is Cauchy).
Now consider the sequence (Anr,mr )r ⊂ X. This sequence is

Cauchy, since for any s ≥ r

d(Anr,mr , Ans,ms) ≤ d(Anr,mr , Anr,ms) + d(Anr,ms , Ans,ms)

≤ d(Anr,mr , Anr,ms) + 1
r

≤ 1
r

+ 1
r

= 2
r

(this first estimate by (AB.1.8), and the second one by (AB.1.9).
So the sequence (Anr,mr )r is Cauchy, and it is not hard to check

that its class in X is the limit of (Am)m.

(1.8.27) Let (X, d) be a metric space and {xn} a Cauchy sequence.
Show that {xn} is bounded; that is, there exists x ∈ X and a
ball B centered at x such that {xn} ⊂ B.

Answer. Let ε = 1. Then there exists n0 such that d(xn, xm) < 1 whenever
n,m ≥ n0. Put x = xn0 and r = 1 + max{1, d(x1, x), . . . , d(xn0−1, x)}. Then
d(xn, x) < r for all n.

(1.8.28) Let X,Y be complete metric spaces with dense subset X0, Y0
respectively. Let γ : X0 → Y0 be an isometric surjection. Show
that there exists a unique γ̃ : X → Y , bijective and isometric.

Answer. If x ∈ X, there exists {xn} ⊂ X0 with xn → x. The sequence (xn)
is Cauchy. As dY (γ(xn), γ(xm)) = dX(xn, xm), the sequence (γ(xn)) is also
Cauchy. We want to define γ̃(x) = lim γ(xn). To see that this is well-defined,
if x′

n → x, then dY (γ(xn), γ(x′
n)) = dX(xn, x′

n), so γ(x′
n) → γ̃(x).

Next we see that γ is isometric. If xn → x, zn → z, then
dY (γ̃(x), γ̃(z)) = lim

n
dY (γ(xn), γ(zn)) = lim

n
dX(xn, zn) = dX(x, z).

Thus γ̃ is isometric, and in particular it is injective. Finally, if y ∈ Y , there
exists (yn) ⊂ Y0 with yn → y. Put xn = γ−1(yn). Since γ is isometric, (xn)
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is Cauchy and so there exists x ∈ X with xn → x. Then
dY (γ̃(x), y) = lim

n
dY (γ(xn), y) = lim

n
dY (yn, y) = 0,

so γ̃(x) = y, and γ̃ is surjective.

(1.8.29) Let X = Q and define
d(x, y) = | arctan x− arctan y|.

Show that d is a distance, and find the completion of (X, d).

Answer. We have d(x, x) = 0 for all x, and d(x, y) ≥ 0 by definition. The
absolute value and the difference also give us that d(x, y) = d(y, x). And
d(x, z) = | arctan x− arctan z| ≤ | arctan x− arctan y| + | arctan y − arctan z|

= d(x, y) + d(y, z).

As for the completion, let X̃ = R ∪ {±∞}, where

d̃(x,+∞) =
∣∣π
2 − arctan x

∣∣, d̃(x,−∞) =
∣∣ arctan x+ π

2
∣∣.

The arctan is uniformly continuous, so |qn−x| → 0 if and only if d(qn, x) → 0.
This, together with the fact that limx→±∞ arctan x = ±π

2 guarantees that d̃
is still a distance and that X is dense in X̃. So it remains to show that X̃ is
complete. Let {qn} ⊂ X be Cauchy. If there exists c > 0 with |qn| ≤ c by
the Mean Value Theorem there exists ξ(x, y) ∈ [−c, c] with

| arctan x− arctan y| = | arctan′ ξ(x, y)| |x− y| = 1
1 + ξ(x, y)2 |x− y| ≤ |x− y|.

Thus
|qn − qm| ≤ d(qn, qm)

and so {qn} is Cauchy in the usual sense and converges to some x ∈ R. The
same estimate as above shows that d(qn, x) → 0.

When {qn} is Cauchy for the metric d but unbounded for the usual
metric, the above does not work. If {qn} has a limit point x ∈ R, we could
apply the above to said subsequence and also to a subsequence that increases
to infinity (or decreases to minus infinity). This would have x and ±∞ as
accumulation points for the sequence on (X, d), a contradiction. If follows
that qn → ∞ or qn → −∞. In both cases, the fact that arctan converges to
±π

2 at infinity implies that qn → ±∞ in (X, d). Hence (X̃, d̃) is complete.
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(1.8.30) Let X = R \ Q, with the metric

d(x, y) =
{

|x− 1| + |y − 1|, x ̸= y

0, x = y

Show that d is a metric, and find the completion of (X, d).

Answer. The expression of d is symmetric on x and y. And
|x− 1| + |z − 1| ≤ |x− 1| + |y − 1| + |z − 1| + |y − 1| = d(x, y) + d(y, z).

We claim that 1 is the only accumulation point in (X, d). Let {xn} be a
Cauchy sequence. Then

|xn − 1| + |xm − 1| = d(xn, xm) →c⃝ 2024 Mart́ın Argerami All Rights Reserved 0,
so xn → 1 in the usual topology and also in the d topology, and d(xn, 1) → 0.
So (X̃, d̃) = (X ∪ {1}, d̃), where d̃ is defined with the same formula as d.

(1.8.31) Let X be a complete metric space, and E1 ⊃ E2 ⊃ · · · a
decreasing sequence of closed sets, such that limn diam(En) =
0. Show that

⋂
nEn is nonempty and it consists of a single

point. Can the “closed” condition be removed?

Answer. Fix xn ∈ En for each n ∈ N. Given ε > 0 there exists m such that
diam(Em) < ε/2. Then for k, n ≥ m we have xn, xk ∈ Em, so d(xn, xk) <
ε/2 < ε; which shows that the sequence {xn} is Cauchy. By the completeness,
there exists x = limn xn. For any m, since xn ∈ Em for all n ≥ m (from
En ⊂ Em), we get by the closedness of Em that x ∈ Em. Thus x ∈

⋂
nEn.

If y is another element in the intersection, then d(x, y) ≤ diam(En) for all n,
so d(x, y) = 0 and x = y.

The closedness of the En is necessary. For instance consider X = R
with the usual topology and let En =

(
0, 1

n

)
. Then E1 ⊃ E2 ⊃ · · · but⋂

nEn = ∅.

(1.8.32) Let X be a topological space, and let V,W ⊂ X be disjoint
open subsets. Show that U ∩W = ∅.

Answer. Let x ∈ U ∩W . Since W is open, it is an open neighbourhood N of
x, disjoint with U . Then x ̸∈ ∂U . As we also have x ̸∈ U , we get that x ̸∈ U ,
a contradiction. So U ∩ V = ∅.
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(1.8.33) Let X be a topological space, E ⊂ X. Show that if E is
connected, then E is also connected.

Answer. Write E = (E∩V )∪ (E∩W ), with V,W open. Taking intersection
with E, we get that E = (E ∩ V ) ∪ (E ∩W ). As E is connected, one of the
two sets is empty, say E ∩W = ∅. That is, E ⊂ W c, which is closed. Thus
E ⊂ W c, which we may write as E ∩W = ∅. As we can do this for any pair
of open sets V,W , we get that E is connected.

(1.8.34) Let X be a topological space and E,F ⊂ X connected. Show
that if E ∩ F ̸= ∅, then E ∪ F is connected.

Answer. Suppose that E∪F = A∪B, with A = (E∪F )∩V , B = (E∪F )∩W
disjoint, and V,W open. Fix x ∈ E∩F . As A∩B = ∅, either x ∈ A or x ∈ B.
Without loss of generality, assume that x ∈ A. So x ∈ V . We may write
E = (E∩V )∪(E∩W ). These two sets are relatively open; as E is connected,
one of them is empty; and as x ∈ V , we get that E = E∩V , E∩W = ∅. We
may do the same for F , so F ∩W = ∅. Thus B = (E ∩W ) ∪ (F ∩W ) = ∅,
and E ∪ F is connected.

(1.8.35) Let X be a topological space. For each x, denote by Ex a
maximal connected set with x ∈ Ex. Define a relation by
x ∼ y if y ∈ Ex. Show that ∼ is an equivalence relation.

Answer. Reflexive: x ∈ Ex by definition, so x ∼ x.
Symmetric: Suppose that x ∼ y. Then y ∈ Ex. We also have

y ∈ Ey. By Exercise 1.8.34, the set Ex ∪ Ey is connected; the maximality of
Ey then shows that Ex ∪ Ey = Ey, so Ex ⊂ Ey. Now the maximality of Ex
gives us that Ex = Ey. So x ∈ Ex = Ey, showing that y ∼ x.

Transitive: If x ∼ y and y ∼ z, then by the above Ex = Ey = Ez;
and so x ∼ z.

(1.8.36) Show that a path-connected space is connected.

Answer. Suppose that X is not connected. Then X = V ∪ W , with V,W
open, nonempty, and V ∩W = ∅. Let v ∈ V , w ∈ W . Let f : [0, 1] → X be
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continuous, with f(0) = v and f(1) = w. We get
[0, 1] = f−1(X) = f−1(V ∪W ) = f−1(V ) ∪ f−1(W ).

As [0, 1] is connected, we get that either f−1(V ) or f−1(W ) is empty; but
this contradicts the fact that f(0) = v (so v ∈ f−1(V )) and f(1) = w (so
w ∈ f−1(W )).

(1.8.37) Let X,Y be topological spaces, f : X → Y continuous, and
K ⊂ X compact. Show that f(K) is compact.

Answer. Let {Vj} be an open cover of f(K). Then

K ⊂ f−1(f(K)) ⊂ f−1
(⋃

j

Vj

)
=
⋃
j

f−1(Vj).

As f is continuous, each f−1(Vj) is open, so we have an open cover of K. By
the compactness of K, there exist j1, . . . , jm such that K ⊂ f−1(Vj1) ∪ · · · ∪
f−1(Vm). Then, as images preserve unions (Proposition 1.1.1),

f(K) ⊂
m⋃
k=1

Vjk .

Hence f(K) admits a finite subcover and so it is compact.

(1.8.38) Let X be compact Hausdorff, Y a Hausdorff topological space,
and ψ : X → Y continuous. Show that if ψ is injective, then
ψ is a homeomorphism onto ψ(X).

Answer. By hypothesis ψ : X → ψ(X) is a continuous bijection. So all
we need to address is the continuity of ψ−1. Let X0 ⊂ X be closed. As
X is compact, X0 is compact (Lemma 1.8.16). By Exercise 1.8.37, f(X0) is
compact, and by Lemma 1.8.16 f(X0) is closed. We have shown that f maps
closed sets to closed sets, which means that the pre-images of closed sets by
f−1 are closed. Then f−1 is continuous by Proposition 1.8.10.

(1.8.39) Use Exercise 1.8.38 to show that if X is compact Hausdorff,
any weaker topology on X is not Hausdorff, and any stronger
topology on X is Hausdorff but not compact.
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Answer. Let T1 be the topology on X, and T2 ⊂ T1. If T2 is Hausdorff, then
Exercise 1.8.38 implies that T2 = T1. It follows that if T2 ⊊ T1, then T2 is not
Hausdorff. Similarly, if T3 ⊃ T1 it is necessarily Hausdorff by the fact that it
contains T1; and if it is compact, then by Exercise 1.8.38 it is equal to T1.

(1.8.40) Let X,Y be topological spaces and f : X → Y continuous. If
X0 ⊂ X is such that X0 is compact, show that f(X0) = f(X0).

Answer. We have f(X0) ⊂ f(X0) by Proposition 1.8.10. Conversely, let
y ∈ f(X0). Then there exists a net {xj} ⊂ X0 with f(xj) → y. By the
compact ness of X0 and Proposition 1.8.19, there exists a convergent subnet
{xjk}, say xjk → x ∈ X0. Then

y = lim
k
f(xjk) = f(lim

k
xjk) = f(x),

so f(X0) ⊂ f(X0).

(1.8.41) Show that the set R ∪ {−∞,∞} can be given a topology such
that it is a compactification of R.

Answer. We mimic the proof of Proposition 1.8.27. On T±∞ = R∪{−∞,∞}
we consider the topology

T = Top
{

{V ⊂ R, open} ∪ {(R \K) ∪N :

K ⊂ R compact, N ⊂ {∞,−∞} \ {∅}}
}
.

The open sets that do not contain ±∞ are precisely the open sets in R, so this
topology restrict to the usual topology on R. Given an open cover of R±∞,
since ∞ is covered there has to exist an open set of the form (R \K1) ∪ {∞}
on the cover; and similarly there exists K2 compact with (R \ K2) ∪ {−∞}
in the cover. If we now let {Vj} consist of all open sets in the cover with the
two points ±∞ removed, we have that {Vj} is an open cover for K1 ∩ K2.
Hence there exist j1, . . . , jm such that K1 ∩K2 ⊂

⋃m
k=1 Vjk . This implies that

R±∞ = Vj1 ∪ · · · ∪ Vjm ∪
(
(R \ K1) ∪ {∞}

(
(R \ K1) ∪ {−∞}, and this gives

us a finite subcover. Thus R±∞ is compact.
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(1.8.42) Let S, T be homeomorphic topological spaces such that both
are locally compact Hausdorff . Show that S∞ is homeomor-
phic to T∞.

Answer. We have a homeomorphism γ : S → T . We extend it as γ̃(∞) =
∞, and we need to show that the extension is still a homeomorphism. We
already have that it is bijective, and as the codomain T∞ is compact, by
Exercise 1.8.38 we just need to show that γ̃ is continuous. We take V ⊂ T∞
open. By definition, we have two possibilities. The first possibility is that
V ⊂ T is open. In that case, γ̃−1(V ) = γ−1(V ) is open by the continuity
of γ. The second possibility is that V = (T \ K) ∪ {∞} for some K ⊂ T
compact. Then, since preimages preserve all set operations and γ̃(∞) = ∞,

γ̃−1(V ) = (S \ γ−1K) ∪ {∞}.
Since γ is a homeomorphism, γ−1(K) is compact, and then γ̃−1(V ) is open
in S∞. Thus γ̃ is continuous and hence a homeomorphism.

(1.8.43) Let T be a locally compact Hausdorff space. Let R and S be
one-point compactifications of T , that is R = T ∪ {∞R} is a
compact Hausdorff space such that the restriction to T agrees
with the topology of T , and similarly for S. Show that R and
S are homeomorphic; that is, the one-point compactification is
unique.

Answer. Since R = T∪{∞R and S = T∪{∞S}, we have an obvious bijection
γ between the two sets, that is the identity on T . Since the codomain is
compact, it is enough to show that γ is continuous. Let V ⊂ S be open. If
V ⊂ T , then γ−1(V ) = V is open in R. If V ̸⊂ T , then ∞S ∈ V . Because
points are closed (due to S being Hausdorff), T = R \ {∞S} is open on S.
Let V0 = V ∩T , which is open in S; we have K = T \V0 = S \V is closed, and
hence compact in S; but K is entirely inside T , where both topologies agree,
so K is compact in T . Then V =

(
S \K) ∪ {∞S}, and as γ−1(K) = K,

γ−1(V ) = (T \K) ∪ {∞R}.
The same reasoning we used above show that this set is open in R. Hence γ
is continuous, and thus a homeomorphism.

(1.8.44) Show that the one-point compactification R∞ of R is homeo-
morphic to the unit circle T.
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Answer. By Exercise 1.8.42 it is enough to show that R is homeomorphic to
T \ {1}. The set T \ {1} is homeomorphic to T \ {−1}. We have

T \ {−1} = {eit : t ∈ (−π, π)}.
So the exponential provides a homeomorphism between T\{−1} and (−π, π).
We showed in Example 1.6.8 that R is homeomorphic (the inverse tangent
function is bicontinuous) to the interval

(
− π

2 ,
π
2
)
. Then, with ≃ denoting

homeomorphism, we have

R ≃
(

− π

2 ,
π

2

)
≃ (−π, π) ≃ T \ {−1} ≃ T \ {1}.

By Exercise 1.8.43 the one-point compactification of T \ {1} is T, and hence
R∞ ≃ T by Exercise 1.8.42.

(1.8.45) Let S, T be topological spaces and f : S → T be surjective
and such that f is not surjective when restricted to any proper
closed subset of S. Let U ⊂ S be open. Show that f(U) ⊂
T \ f(S \ U).

Answer. Fix t ∈ f(U) and let V ⊂ T be an open neighbourhood of t.
Since W = U ∩ f−1(V ) is open and nonempty, its complement S \ W is
a proper closed subset of S; by hypothesis there exists z ∈ T \ f(S \ W ).
As f is surjective we have T = f(W ) ∪ f(S \ W ), so z = f(w) for some
w ∈ W . Then z = f(w) ∈ f(U) ∩ V . Hence z ∈ V ∩ (T \ f(S \ U)) (since
T \ f(S \ W ) ⊂ T \ f(S \ U)). We have shown that any neighbourhood of t
touches T \ f(S \ U), and so f(U) ⊂ T \ f(S \ U).
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CHAPTER

Measure and Integration

2.1. Motivation

(2.1.1) Show that the integral in (2.1) exists if f is continuous with
the possible exception of finitely many jump discontinuities.

Answer. Because f has finitely many discontinuities, it is bounded. Let
t1, . . . , tm be the points where f has discontinuities. For each n, let

k(n, j) =
⌊
n(tj − a)
b− a

⌋
.

Then
a+ k(n, j)(b− a)

n
≤ tj < a+ (k(n, j) + 1)(b− a)

n
.

As f is continuous on (tj−1, tj), we get∫ tj

tj−1

f(t) dt = lim
n→∞

k(n,j)−1∑
k=k(n,j−1)+1

f
(
a+ k(b− a)

n

)
∆k.

53
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Then we get∫ b

a

f(t) dt = lim
n→∞

n∑
k=1

f
(
a+ k(b− a)

n

)
∆k − 1

n

m∑
j=1

, f
(
a+ j(b− a)

n

)

= lim
n→∞

n∑
k=1

f
(
a+ k(b− a)

n

)
∆k.

2.2. The Cantor Set

(2.2.1) Show that for all n ∈ N and k ∈ {1, . . . , 2n−1}, the interval Cn,k
is of the form

(
r

3n ,
r+1
3n
)
, with neither r nor r + 1 multiples of

3.

Answer. We proceed by induction on the following assertion: for all n ∈ N
and k ∈ {1, . . . , 2n−1}, the interval Cn,k is of the form

( r(n,k)
3n , r(n,k)+1

3n
)
, with

neither r(n, k) nor r(n, k) + 1 multiples of 3.
We have C1,1 =

( 1
3 ,

2
3
)
, and neither 1 nor 2 are multiples of 3. Assume

inductively that for all k we have Cn,k
(
r

3n ,
r+1
3n
)
, with neither r nor r + 1

multiples of 3. The interval Cn+1,k is the middle third an interval of the form(
a

3n ,
a+1
3n
)
, with a ∈ N. Thus

r(n+ 1, k)
3n+1 = a

3n + 1
3n+1

and so
r(n+ 1, k) = 3a+ 1,

not a multiple of 3. And neither is r(n+ 1, k) + 1 = 3a+ 2.

(2.2.2) Let t ∈ [0, 2].

(a) Show that there exist a, b ∈ C such that t = a+ b.
(b) Find a, b ∈ C, expressed as fractions, such that a+ b = 1.
(c) Are such a, b unique? If they are not, find another suitable

pair a, b.
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Answer.

(a) Since t is 2 times an element of [0, 1], we may write

t =
∞∑
k=1

2ak
3k ,

with ak ∈ {0, 1, 2} for all k. Let U = {k : ak = 1}, and put

a =
∑
k∈U

2ak
3k +

∑
k ̸∈U

ak
3k , b =

∑
k ̸∈U

ak
3k .

Then a+ b = t, and by Proposition 2.2.1 we have that a, b ∈ C.
(b) In ternary, 1 = 0.2 · · ·3. So we may take for instance

a = 0.20202020 · · ·3 , b = 0.020202 · · ·3 ,
which are in C by Proposition 2.2.1. Noting that a = 3b (since in base 3 it
is multiplication by 3 that “moves the period to the right”) and a+ b = 1,
we immediately determine that a = 3

4 , b = 1
4 . Or we can go the hard way

and calculate

b =
∞∑
k=1

2
9n = 2

1
9

1 − 1
9

= 2
8 = 1

4 .

(c) There are infinitely many suitable a, b. We can “pass” any part of the
expansion to the other. For instance we can take 1

3 off a (that would be
the first 2 in the expansion) and put it in b: we get

a′ = 00202020 · · ·3 , b = 22020202 · · ·3 .
That is,

a′ = a− 1
3 = 3

4 − 1
3 = 5

12 , b′ = b+ 1
3 = 1

4 + 1
3 = 7

12
An even simpler observation is that in this particular case 1

3 + 2
3 = 1,

and both numbers are in C; so that’s another possible choice. There are
infinitely many choices, as there are infinitely many ways to shift some
ternary digit from a to b.

(2.2.3) Complete the details the proof of Proposition 2.2.2. That is,
justify why if

|s− t| =
∣∣∣∑
n

an
3n −

∑
n

bn
3n
∣∣∣ < 1

3m

with an, bn ∈ {0, 2}, then aj = bj for j = 1, . . . ,m− 1.
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Answer. By hypothesis we have that |aj − bj | ≤ 2 for all j. Suppose that
aj = bj for j = 1, . . . , k − 1, |ak − bk| = 2, and k < m. Then∣∣∣∑

n

an
3n −

∑
n

bn
3n
∣∣∣ =

∣∣∣ak − bk
3k +

∑
n>k

an − bn
3n

∣∣∣ ≥ |ak − bk|
3k −

∣∣∣∑
n>k

an − bn
3n

∣∣∣
≥ 2

3k −
∑
n>k

|an − bn|
3n ≥ 2

3k −
∑
n>k

2
3n

= 2
3k − 2

1
3k+1

1 − 1
3

= 1
3k

>
1

3m ,

a contradiction.

(2.2.4) Show that the dyadic numbers in [0, 1] are dense.

Answer. Let t ∈ [0, 1]. If we write t in binary, we have t =
∑∞
k=1

tk
2k . Since

the series converges, given ε > 0 there exists k0 such that
∑∞
k=k0+1

tk
2k < ε.

If s =
∑k0
k=1

tk
2k , then

s =
k0∑
k=1

tk
2k =

∑k0
k=1 2k0−ktk

2k0

is dyadic and |t− s| = |
∑∞
k=k0+1

tk
2k < ε.

(2.2.5) Consider the function β from Proposition 2.2.2, and recall the
notation Cn,k for the removed intervals in the construction of
C.

(a) Show that the right endpoints of all the removed intervals
Cn,k are those numbers in [0, 1] such that their ternary ex-
pansion is finite and ends in 2.

(b) Show that for any two endpoints of a removed interval
Cn,k = (a, b), we have β(a) = β(b) and that this is a dyadic
number.

(c) Show that if a, b ∈ C are distinct and β(a) = β(b), then
there exist n, k such that Cn,k = (a, b).

(d) Conclude that if E is the set of endpoints of the removed
intervals, then β is injective on C \ E.
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(e) Conclude that β−1({t}) is a singleton if t is not dyadic, and
that it consists of two points when t is dyadic.

Answer.

(a) We proceed by induction on n. When n = 1, C1,1 = ( 1
3 ,

2
3 ), and 2

3 =
0.23. Now assume that the right endpoint of Cn,k is of the form bn,k =
0.b1 · · · bn−123. When we remove a middle third Cn+1,j = (s, t) in the step
n + 1, then length of this middle third is 3−n−1, and it will be situated
2 × 3−n−1 to the right of some endpoint 0.b1 · · · bk23 for some k ≤ n− 1.
Thus

t = 0.b1 · · · bk23 + 2
3n+1 = 0.b1 · · · bk23 + 0.

n︷ ︸︸ ︷
0 · · · 0 23 = 0.b1 · · · bk2

n−k−1︷ ︸︸ ︷
0 · · · 0 23,

which completes the induction. For each n there are precisely 2n−1 inter-
vals Cn,k. And that’s also the precise amount of numbers in C that finish
with a 2 in the nth position. So every such number has to be an endpoint.

(b) We know that the right endpoint of Cn,k = (a, b) is b = 0.b1 · · · bn−123.
The left endpoint is 3−n units to the left, that is

a = 0.b1 · · · bn−123 − 3−n = 0.b1 · · · bn−123 − 0.
n−1︷ ︸︸ ︷

0 · · · 0 13

= 0.b1 · · · bn−113 = 0.b1 · · · bn−1022 · · ·3 .
Now, using b′

j to denote bj/2,
β(a) = 0.b′

1 · · · b′
n−1011 · · ·2 = 0.b′

1 · · · b′
n−112,

and
β(b) = 0.b′

1 · · · b′
n−112 = β(a).

Since dyadic numbers are those with a finite expansion in base 2, β(a) =
β(b) is dyadic.

(c) Write a =
∑∞
k=1

ak
3k , b =

∑∞
k=1

bk
3k , with ak, bk ∈ {0, 2} for all k. Assume

a ≤ b. By hypothesis we have that
∞∑
k=r

a′
k

2k =
∞∑
k=r

b′
k

2k

(still using the notation a′
j = aj/2), where r is the smallest index such

that ar ̸= br. We may assume without loss of generality that ar = 0,
br = 1. Then

1
2r =

∞∑
k=r+1

a′
k − b′

k

2k .
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The right-hand-side is at most
∞∑

k=r+1

1
2k = 1

2r ,

which forces a′
k − b′

k = 1 for all k > r. That is, a′
k = 1, b′

k = 0 for all
k > r. Thus

a = 0.a1 · · · ar−10222 · · ·3 , b = 0.a1 · · · ar−123.

By part (a), the interval (a, b) is one of the Cn,k.
(d) By part (c), β has to be injective on C \ E, for the equality β(a) = β(b)

implies that a, b ∈ E.
(e) In base 2, dyadic numbers are those with a finite binary expansion, which

in our convention translates to those that finish with 0111 · · · . So if t =
0.t′1 · · · t′r0111 · · ·2, then t = β(a), where a = 0.t1 · · · tr0222 · · ·3 (and still
denoting tk = 2t′j). By (a), this means that a ∈ E. Combined with (b),
this gives us that t is dyadic if and only if β−1({t}) consists of the two
endpoints of a Cn,k. By part (c), β is injective on C \ E.

(2.2.6) Show that C has no isolated points.

Answer. Fix t ∈ C. If we denote the removed middle thirds by Cn,k, with
k = 1, . . . , 2n−1 and m(Cn,k) = 3−n, then for each n there exists k(n) such
that t is in between Cn,k(n) and Cn,k(n)+1. As the endpoints of each Cn,k are
in C, this guarantees that there exists tn ∈ C with |t − tn| < 3−n. That is,
there exists {tn} ⊂ C with tn → t.

(2.2.7) Let s, t ∈ C with s < t. Show that there exists b ∈ [0, 1] \ C
with s < b < t. This shows that C is totally disconnected.

Answer. We may write

s =
∞∑
k=1

an
3n , t =

∞∑
k=1

bn
3n ,

with an, bn ∈ {0, 2} for all n. Since s < t, there exists a minimum index r
such that ar = 0, br = 2 and ak = bk for k = 1, . . . , r − 1. Let

b =
r−1∑
k=1

ak
3n + 1

3r + 1
3r+1 .
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Then b ̸∈ C because its ternary expansion has a non-terminating 1, and
s < t < b by construction.

(2.2.8) Suppose that you create a set with a similar idea as the Cantor
set, you start with the unit interval [0, 1] but instead of remov-
ing, in each step, middle intervals of measure 3−n, you remove
middle intervals of measure 4−n. Discuss the set D you ob-
tained. Does it contain any intervals? What properties are the
same as in the Cantor set, and what properties are different?

Answer. The intervals we remove are(3
8 ,

5
8
)
,
( 5

32 ,
7
32
)
,
(25

32 ,
27
32
)
,

etc. In each step we are removing 2n−1 intervals, each of length 4−n. Thus

D = [0, 1] \
∞⋃
n=1

2n−1⋃
k=1

Dn,k,

where each Dn,k is an interval of length 4−n. Thus

m(D) = 1 −
∞∑
n=1

2n−1∑
k=1

m(Dn,k) = 1 −
∞∑
n=1

2n−1∑
k=1

1
4n

= 1 −
∞∑
n=1

2n−1

4n = 1 − 1
2

∞∑
n=1

2−n = 1
2 .

This is the main difference between D and C, that D has some “mass”. Other
than that,

• the set D is uncountable for the same reasons as C, just working
with expansions in base 4;

• it is also compact, being the complement of an open set inside [0, 1];

• it has no isolated points, since in each step we are removing a middle
interval, so the length of the remaining closed intervals after each
step decreases by a factor of more than 2.

• D cannot contain an interval since we can do an analog of the ar-
gument from Exercise 2.2.6.
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(2.2.9) Define a function f : [0, 1] → [0, 1] in the following way. Write
the complement of D (as in Exercise 2.2.8) as

⋃
n

⋃2n
k=1 Dn,k

and the complement of C as
⋃
n

⋃2n
k=1 Cn,k. For each n, k let

fn,k be the natural increasing bijection Dn,k → Cn,k. That is,
if Dn,k = (a, b) and Cn,k = (c, d), then fn,k(x) = c+ (x−a)(d−c)

b−a .
Patch them together so that

f(x) = fn,k(x), x ∈ Dn,k.

As the complement of the union of the Dn,k is nowhere dense,
we can extend f by continuity to get f : [0, 1] → [0, 1]. Show
that f is continuous, monotone non-decreasing, and fails the
property that the preimage of a nullset is a nullset.

Answer. The function f is continuous by construction. It is monotone
because it respects the order of the intervals Dk,n. And f−1(C) = D, so there
is a nullset whose preimage has positive measure.

(2.2.10) Show that the sequence {fn} defined on page 86 of the Book
converges uniformly to α. This gives an alternative proof that
α is continuous (and other properties, too).

Answer. We first show the uniform convergence by induction. We have
|f0(x) − f1(x)| ≤ 1 for all x, since 0 ≤ f0(x), f1(x) ≤ 1 for all x. Now assume
for induction that |fn(x) − fn−1(x)| ≤ 2−n+1 for all x. The trivial case is
x ∈

[ 1
3 ,

2
3
]
, since then fn+1(x) = fn(x). For x ∈

[
0, 1

3
]
,

|fn+1(x) − fn(x)| =
∣∣1
2 fn(3x) − 1

2 fn−1(3x)| ≤ 1
2 2−n+1 = 2n .

And for x ∈
[ 2

3 , 1
]
,

|fn+1(x) − fn(x)| =
∣∣1
2 + 1

2 fn(3x− 2) − 1
2 − 1

2 fn−1(3x− 2)|

=
∣∣1
2 fn(3x− 2) − 1

2 fn−1(3x− 2)| ≤ 1
2 2−n+1 = 2n .

So by induction we have shown that |fn+1(x) − fn(x)| ≤ 2−n for all x and
all n. This implies that the sequence is (uniformly) Cauchy. Indeed, by
telescoping we get

|fn+k(x) − fn(x)| ≤
k−1∑
j=0

|fn+j+1(x) − fn+j(x)| ≤
k−1∑
j=0

2−n−j ≤ 2−n.
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Let f(x) = limn fn(x). Since the convergence is uniform, f(x) is con-
tinuous. The function f satisfies

f(x) =


1
2 f(3x), x ∈

[
0, 1

3
]

1
2 , x ∈

[ 1
3 ,

2
3
]

1
2 + 1

2 f(3x− 2), x ∈
[ 2

3 , 1
]

And α also satisfies the relations

α(x) =


1
2 α(3x), x ∈

[
0, 1

3
]

1
2 , x ∈

[ 1
3 ,

2
3
]

1
2 + 1

2 α(3x− 2), x ∈
[ 2

3 , 1
]

Indeed, when x ∈
[
0, 1

3
)
, we have x = 0.0R3, where R denotes the rest of the

expansion. Then 3x = 0.R3. Now α(3x) = 0.R′
2, where R′ is obtained from

R by truncating at the first 1 and replacing all remaining 2 with 1. And then
1
2 α(3x) = 0.0R′

2, which is precisely α(x). When x ∈
[ 1

3 ,
2
3
]
, we have that

x = 0.1R3, and then α(x) = 0.12 = 1
2 . And when x ∈

( 2
3 , 1
]
, now x = 0.2R3.

Then 3x− 2 = 2.R3 − 2 = 0.R3; so α(3x− 2) = 0.R′
2 and

1
2 + 1

2 α(3x− 2) = 0.12 + 0.0R′
2 = 0.1R′

2 = α(x).

Let us now show that α = f . Since 0 ≤ α(x), f(x) ≤ 1 for all x ∈ [0, 1],
we have |α(x) − f(x)| ≤ 1 for all x. If x ∈

[
0, 1

3
]
,

|α(x) − f(x)| = 1
2 |α(3x) − f(3x)|. (AB.2.1)

If x ∈
[ 1

3 ,
2
3
]
, then α(x) = f(x) = 1

2 . And if x ∈
( 2

3 , 1],

|α(x) − f(x)| =
∣∣1
2 + 1

2 α(3x− 2) − 1
2 − 1

2 f(3x− 2)
∣∣

= 1
2 |α(3x− 2) − f(3x− 2)|.

(AB.2.2)

Iterating the inequalities (AB.2.1) and (AB.2.2) we obtain

|α(x) − f(x)| ≤ 1
2n , x ∈ [0, 1]

for arbitrary n, and hence α = f .

(2.2.11) Consider the metric space
X = {f : [0, 1] →c⃝ 2024 Mart́ın Argerami All Rights Reserved [0, 1], continuous, f(0) = 0, f(1) = 1},

with the metric
d(f, g) = max{|f(x) − g(x)| : x ∈ [0, 1]}.
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Define Φ : X → X by

(Φf)(x) =


1
2 f(3x), x ∈

[
0, 1

3
]

1
2 , x ∈

[ 1
3 ,

2
3
]

1
2 + 1

2 f(3x− 2), x ∈
[ 2

3 , 1
]

We use Φn to denote composition of Φ with itself n times.

(a) Show that d(Φf,Φg) ≤ 1
2 d(f, g) for all f, g ∈ X.

(b) Show that, for any f ∈ X, the sequence {Φnf} converges.
(c) Show that, for any f, g ∈ X, limn Φnf = limn Φng.
(d) Deduce that, for any f ∈ X, limn Φnf = α.

Answer.

(a) When x ∈
[ 1

3 ,
2
3
]
, we have Φf(x) = Φg(x). For the other two cases,

|Φf(x) − Φg(x)| = 1
2 |f(3x) − g(3x)| ≤ 1

2 d(f, g), x ∈
[
0, 1

3
)
,

and
|Φf(x) − Φg(x)| = 1

2
∣∣1 + f(3x− 2) − 1 − g(3x− 2)|

= 1
2 |f(3x− 2) − g(3x− 2)|

≤ 1
2 d(f, g)

for x ∈
[ 2

3 , 1
)
. Hence d(Φf,Φg) ≤ 1

2 d(f, g).
(b) The proof is the typical proof of the fixed point theorem. Note that

d(f, g) ≤ 1 for all f, g ∈ X. We have

|Φnf(x) − Φn+1f(x)| ≤ 1
2 |{Phin−1f(x) − Φnf(x)| ≤ · · · ≤ 1

2n .

So d(Φnf,Φn+1f) ≤ 1
2n . Then by the triangle inequality

d(Φn+kf,Φnf) ≤
k−1∑
j=1

d(Φn+j ,Φn+j−1) ≤
k−1∑
j=1

1
2n+j−1 ≤ 1

2n .

Thus the sequence {Φnf} is Cauchy on X. The space X is complete
because a uniform limit of continuous functions is continuous, and the
values at the endpoints will be unchanged. It follows that limn Φnf ∈ X
exists.
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(c) This is the uniqueness in the fixed point theorem. Note that we proved
above that

d(Φf,Φg) ≤ d(f, g).
This means that Φ is continuous. Let f̃ = limn Φnf , g̃ = limn Φng. Then
Φf̃ = f̃ , Φg̃ = g̃. Iterating,

d(f̃ , g̃) = d(Φf̃ ,Φg̃) =≤ 1
2 d(f̃ , g̃) = 1

2 d(Φf̃ ,Φg̃) ≤ 1
4 d(f̃ , g̃) ≤ · · · ≤ 1

2n .

As this can be done for any n ∈ N, it follows that f̃ = g̃.
(d) Let γ = limn Φnf (it doesn’t matter which f ∈ X). Then Φγ = γ. This

guarantees that γ satisfies the relations

γ(x) =


1
2 γ(3x), x ∈

[
0, 1

3
]

1
2 , x ∈

[ 1
3 ,

2
3
]

1
2 + 1

2 γ(3x− 2), x ∈
[ 2

3 , 1
]

The computation in the answer to Exercise 2.2.10 shows that any f ∈ X
satisfying the recursive relation above equals α. Thus γ = α.

(2.2.12) Consider α as the fixed point in Exercise 2.2.11, i.e., do not
use the other equivalent definitions.

(a) Show that if x =
∑∞
k=1

ak
3k , with ak ∈ {0, 1, 2} for all k and

a1 ̸= 1, then

α(x) = 1
2
(a1

2 + α(3x− a1)
)
,

and that if a1 = 1 then α(x) = 1
2 .

(b) Let m = min{k : ak = 1}, and put m = ∞ when x ∈ C.
Show that

α(x) =
m−1∑
k=1

ak
2k+1 + 1

2m x ∈ [0, 1]. (2.1)

This works even when m = ∞, if we interpret 1
2∞ = 0.

(c) Show that α(1 − x) = 1 − α(x) for all x ∈ [0, 1].

Answer.
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(a) If a1 = 1, then x ∈
[ 1

3 ,
2
3
]

and so α(x) = 1
2 . When a1 = 0, we have

x ∈
[
0, 1

3
]
, and then

α(x) = 1
2 α(3x) = 1

2
(a1

4 + α(3x− a1)
)
.

And when a1 = 2 we have x ∈
[ 2

3 , 1
]
, and then

α(x) = 1
2
(1

2 + α(3x− 2)
)

= 1
2
(a1

4 + α(3x− a1)
)
.

(b) Note that 3x − a1 =
∑∞
k=1

ak+1
3k . We proceed by induction on m. When

m = 1, we have α(x) = 1
2 and the formula holds. Assume as inductive

hypothesis that (2.1) holds for m. If x =
∑m
k=1

ak
3k + 1

3m+1 +
∑∞
k=m+2

ak
3k ,

then

α(x) = 1
2
(a1

2 + α(3x− a1)
)

= a1

4 + 1
2 α
( m∑
k=1

ak+1

3k + 1
3m +

∞∑
k=m+1

ak+1

3k
)

= a1

4 + 1
2
( m∑
k=1

ak+1

2k+1 + 1
2m
)

= a1

4 + 1
2
( m∑
k=2

ak
2k + 1

2m
)

=
m∑
k=1

ak
2k+1 + 1

2m+1 ,

which completes the induction. When m = ∞, that is when x ∈ C, we
may write

x = lim
m→∞

m∑
k=1

ak
3k + 1

3m+1 .

As α is continuous,

α(x) = lim
m→∞

m∑
k=1

ak
2k+1 + 1

2m+1 =
∞∑
k=1

ak
2k+1 .

(c) We write x =
∞∑
k=1

ak
3k . Since 1 =

∞∑
k=1

2
3k , we have that

1 − x =
∞∑
k=1

2 − ak
3k .

If m is the least index such that ak = 1 when x ̸∈ C, it is clear that m is
also the least index such that 2 − ak = 1.
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Then

α(x) + α(1 − x) =
m−1∑
k=1

ak
2k+1 + 1

2m +
m−1∑
k=1

2 − ak
2k+1 + 1

2m

=
m−1∑
k=1

1
2k+1 + 1

2m−1 =
1
2 − 1

2m

1 − 1
2

+ 1
2m−1

= 1 − 1
2m−1 + 1

2m−1 = 1.

(2.2.13) Let α : [0, 1] → [0, 1] be the Cantor function. We saw that
α is surjective and continuous. By Exercise 1.1.6 it admits a
right-inverse. Show that such right-inverse cannot possibly be
continuous.

Answer. Let h : [0, 1] → [0, 1] such that α ◦ h = id. By Exercise 1.1.6, h is
injective. Also, from α non-decreasing we get that h is non-decreasing, for if
h(s) > h(t) then

s = α(h(s)) ≥ α(h(t)) = t.;
hence if s < t then h(s) ≤ h(t). As h is bounded and monotone, its side
limits exist. Let v = sup{h(t) : t < 1

2 } and w = inf{h(t) : t > 1
2 } be

the left and right limits at 1
2 . If t < 1

2 , then h(t) < 1
3 , for if h(t) ≥ 1

3 then
t = α(h(t)) ≥ α( 1

3 ) = 1
2 . It follows that v ≤ 1

3 . Similarly, if t > 1
2 , then

h(t) > 2
3 , for if h(t) ≤ 2

3 , then t = α(h(t)) ≤ α( 2
3 ) = 1

2 ; then w = 2
3 . As the

side limits do not agree, h is not continuous at t = 1
2 . Although not needed,

the same argument shows that h fails to be continuous at every dyadic number
in [0, 1.

2.3. Measures and Lebesgue Measure
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(2.3.1) Let X be a set. Show that (X,P(X), µ) is a measure space,
where µ is the counting measure, given by

µ(S) =
{

|S|, if S is finite

∞, if S is infinite
and |S| denotes the number of elements in S.

Answer. Since P(X) contains all subsets of X, it is a σ-algebra. We have
µ(∅) = 0 since |∅| = 0. And if {An} are pairwise disjoint subsets of X, we
first remove empty sets from the list—so possibly the list becomes finite, and
we write A1, . . . , As with s ∈ N or s = ∞—and we consider two cases:

• if |Am| = ∞ for some m, then |
⋃
nAn| = ∞ and

µ
(⋃

n

An

)
= ∞ = µ(Am) =

∑
n

µ(An);

• When all An are finite, since we have countably many finite disjoint
sets, we may consider them as disjoint subsets of N. Establish bi-
jections µn : An → {1, . . . , |An|}, and put k1 = 0, kn =

∑n−1
j=1 |An|.

Write An = {an,1, . . . , an,rn}. So rn = |An|. Put
γ(an,k) = kn + k.

Then γ :
⋃
nAn → {1, . . . ,

∑
n rn} is a bijection, since

kn ≤ γ(an,k) ≤ kn + rn = kn+1, n ∈ {1, . . . , s}, k ∈ {1, . . . , rn}.
This shows that

µ
(⋃

n

An

)
=
∑
n

rn =
∑
n

µ(An).

(2.3.2) Let X be a set and let
A = {A ⊂ X : A is countable or Ac is countable}.

(a) Show that A is a σ-algebra.
(b) Show that A is the σ-algebra generated by the singletons

(the family of all subsets of A consisting of a single element).
(c) Show that A = P(X) if and only if X is countable.

Answer. The empty set is countable, so ∅ ∈ A. The definition of A is sym-
metric on A and Ac, so A contains complements. If {Ak} ⊂ A is countable,
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we want to show that
⋃
k Ak is either countable or has countable complement.

If Ak is countable for all k, then
⋃
k Ak is countable and thus in A. If at least

one of the Ak is not countable, say Aj , then Acj is countable and(⋃
k

Ak

)c
=
⋂
k

Ack ⊂ Acj

is countable.
Let S be the σ-algebra generated by the singletons. As {x} is obviously

countable for all x ∈ X, we have S ⊂ A. Conversely, if A ∈ A is countable,
then A =

⋃
a∈A{a} ∈ S; and similarly, if Ac is countable then Ac ∈ A and so

A ∈ S. This shows that A ⊂ S, and so S = A.
If X is countable, then every A ∈ P(X) is countable, and so it is

in A. Conversely, if X is uncountable then it can be partitioned into two
uncountable disjoint subsets, X = X0 ∪ X1, X0 ∩ X1 = ∅. Then X0 ̸∈ A,
and so A ⊊ P(X).

(2.3.3) Consider a set X and A as in Exercise 2.3.2. Let

µ(A) =
{

0, A countable

1, otherwise
Show that (X,A, µ) is a measure space.

Answer. Since ∅ is countable, µ(∅) = 0. Now suppose that {Ak} ⊂ A are
pairwise disjoint. If all Ak are countable, then

⋃
k Ak is countable and

µ
(⋃

k

Aj) = 0 =
∑
k

µ(Ak).

If at least one Aj is uncountable with Acj countable, then
⋃
k Ak is uncount-

able, and
⋃
k ̸=j Ak ⊂ Acj is countable. So µ(Ak) = 0 if k ̸= j. Thus

µ
(⋃

k

Aj

)
= 1 =

∑
k

µ(Ak).

(2.3.4) Let A be a σ-algebra. Show |A| ≠ |N|. (Hint: if A is countably
infinite, consider for each x ∈ X the smallest set in A that
contains x)

Answer. Assume that A is countable. For each x ∈ X, let

Sx =
⋂

{A ∈ A : x ∈ A}.
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Because A is countable, each intersection uses at most countably many sets,
and so Sx ∈ A.

Given x, y ∈ A, suppose that x ̸∈ Sy. Then x ∈ Sx \ Sy ∈ A. Because
Sx is the smallest set in A that contains x, this implies that Sx \ Sy = Sx;
this in turn is equivalent to Sx ∩ Sy = ∅. And if x ∈ Sy, then x ∈ Sx ∩ Sy,
which by the minimality of Sx implies that Sx ∩ Sy = Sx; this means that
Sx = Sy. We have shown that either Sx = Sy or Sx ∩ Sy = ∅.

As A is infinite, the family {Sx : x ∈ X} has to be infinite (otherwise,
A would be finite, as the Sx are minimal in A and so every element of A is
a union of some Sx). Let {xn} ⊂ X be chosen so that {Sxn : n} is infinite.
Now consider the map Φ : P(N) → A, given by

Φ(N) =
⋃
n∈N

Sxn .

Because the sets {Sxn}n are pairwise disjoint, the function Φ is injective.
Thus |A| ≥ |P(N)| > |N|, a contradiction.

(2.3.5) Let (X,A) be a measurable space. Define

µ(A) =
{

0, A finite

∞, A infinite
Show that µ is always additive, and discuss when it is σ-
additive.

Answer. Let A1, . . . , Am ∈ A. If all m sets are finite, then so is
⋃
j Aj and

µ
( m⋃
j=1

Aj

)
= 0 =

m∑
j=1

µ(Aj).

If at least one of the sets is infinite, then so is the union and we have

µ
( m⋃
j=1

Aj

)
= ∞ =

m∑
j=1

µ(Aj).

The problem with σ-additivity is this: if A has infinitely many finite sets then
we can, as in Exercise 2.3.4, obtain countably many pairwise disjoint finite
sets {An} ⊂ A. Then

⋃
nAn is infinite, and if we had σ-additivity then

∞ = µ
(⋃

n

An

)
=
∑
n

µ(An) = 0,

a contradiction. So A has to have finitely many finite sets (this is possible
even when A is infinite, for instance write N \ {1} =

⋃
nAn with {An} all

infinite and pairwise disjoint, and put A =
{
∅,N, {1}

}
∪ Σ(A1, A2, . . .)).
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(2.3.6) Complete the details in Example 2.3.7. That is, show that δ is
a measure, and that x0 is an atom.

Answer. Since x0 ̸∈ ∅, δ(∅) = 0.
Let {Ek} ⊂ X be a disjoint countable family. If x0 ̸∈

⋃
k Ek, then

δ(
⋃
k Ek) = 0 =

∑
k δ(Ek), since x0 ̸∈ Ek for all k. If x0 ∈

⋃
k Ek, then there

exists a single k0 with x0 ∈ Ek0 . Then δ(
⋃
k Ek) = 1 = δ(Ek0) =

∑
k δ(Ek).

Finally, δ({x0}) = 1 by definition, so x0 is an atom.

(2.3.7) Let (X,A, µ) be a measure space, and E ∈ A. Show that
AE = {A ∩ E : A ∈ A}

is a σ-algebra on E, and that µE(A) = µ(A) defines a measure
on AE .

Answer. Since ∅ = ∅∩E and E = X∩E, we have ∅, E ∈ AE . If A1, A2, . . .
are sets in AE , then An = An ∩ E for all n; then⋃

n

An =
⋃
n

An ∩ E =
(⋃

n

An

)
∩ E.

And if A ∈ AE , then E \ A = E ∩ Ac ∈ AE . As for µE , we clearly have
µE(∅) = µ(∅ ∩ E) = 0, and if {An} ⊂ AE are pairwise disjoint, then

µE

(⋃
n

An

)
= µ

(
E ∩

⋃
n

An

)
= µ

(⋃
E ∩An

)
= µ

(⋃
An

)
=
∑
n

µ(An) =
∑
n

µ(An ∩ E) =
∑
n

µE(An).

(2.3.8) Let (X,A, µ) be a measure space and Y a set with X ⊂ Y .
Show that there exists a measure space (Y,A′, µ′) such that
µ′(Y \X) = 0, A = A′

X , and µ = µ′
X .

Answer. Let A′ = A ∪ {A ∪ (Y \X) : A ∈ A}. Then A′ is a σ-algebra:

• we have ∅, Y = X ∪ (Y \X) ∈ A′ by construction.

• If B ∈ A′, then either B ∈ A, in which case Y \B = B∪(Y \X) ∈ A′,
or B = B0 ∪ (Y \X), in which case Y \B = B0 ∈ A′.
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• If {Bn} ⊂ A′, suppose first that Bn ∈ A for all n. Then B =⋃
nBn ∈ A, so B ∈ A′. Otherwise, there exists m with Bm =

B′
m ∪ (Y \X) and B′

m ∈ A. Then

B =
⋃
n

Bn =
⋃
n

(Bn ∩X) ∪ (Bn ∩ (Y \X)) =
(⋃

(Bn ∩X)
)

∪ (Y \X) ∈ A′,

since the first union is in A by definition of A′.
Now we define µ′(A∪(Y \X)) = µ(A). Then µ(∅) = 0. Suppose

that {Bn} ⊂ A′ are pairwise disjoint. Then

µ′
(⋃

n

Bn

)
= µ

(
X∩
⋃
n

Bn

)
= µ

(⋃
n

(Bn∩X)
)

=
∑
n

µ(Bn∩X) =
∑
n

µ′(Bn).

Hence µ′ is a measure on A′ and µ′
X = µ.

(2.3.9) Let M be an infinite σ-algebra. Show that there exists non-
empty E ∈ M such that MEc is infinite.

Answer. Suppose that such E does not exist. This means that for any
nonempty E ∈ M the σ-algebra MEc is finite. If we fix any nonempty
E ∈ M, then MEc and ME are finite (because Ec is also an element of M
and so the negation of the statement does apply to it. This gives us that

M = ME ∪ MEc ,

finite. The contradiction implies that the desired E exists.

(2.3.10) Let M be an infinite σ-algebra. Show that M contains a pair-
wise disjoint sequence of sets. (Hint: the naive approach does
not work; instead, use Exercise 2.3.9)

Answer. Let E1 as in Exercise 2.3.9. As MEc1
is infinite, we can apply

Exercise 2.3.9 again to obtain E2 ∈ M, nonempty, disjoint with E1, and such
that (MEc1

)Ec2 = MEc1∩Ec2 is infinite. Continuing inductively we produce a
pairwise disjoint sequence of nonempty sets {En} ⊂ M.
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(2.3.11) Show that the equality

µ
(⋂

k

Ek

)
= lim
k→∞

µ(Ek)

can fail if {Ek} is non-increasing but µ(Ek) = ∞ for all k.
Examples can be found in the measure space (N,P(N), µ) with
µ the counting measure.

Answer. Let
En = {m ∈ N : m ≥ n}.

Then En+1 ⊂ En, µ(En) = ∞ for all n, and
⋂
n

En = ∅, so µ
(⋂

n

En

)
= 0.

Here is another example, using Lebesgue measure. For each n, let
En =

⋃
m

(
m− 1

n
,m+ 1

n

)
. Then En ⊃ En+1 for all n, and m(En) = ∞. But⋂

n

En = N, and m(N) = 0 with the same proof we used for Q in Section 2.1.

Thus m(En) = ∞ for all n, and m
(⋂

n

En

)
= 0.

(2.3.12) Let X be a set and µ∗ : P(X) → [0,∞] be given by

µ∗(E) =
{

0, E = ∅

1, E ̸= ∅

Show that µ∗ is an outer measure and find M(X).

Answer. We have µ∗(∅) = 0 by definition. For any A ∈ P(X), Ac = ∅ if
and only if A = ∅, which shows that µ∗(Ac) = µ∗(A).

If E ∈ M(X), then µ∗(S) = µ∗(S ∩E) + µ∗(S ∩Ec) for all S ∈ P(X).
If E ⊊ X and E ̸= ∅, then Ec ̸= ∅. Let S = X. Then µ∗(S) = 1,
µ∗(S ∩E) = µ∗(E) = 1 and µ∗(S ∩Ec) = µ∗(Ec) = 1. As 1 ̸= 2, E ̸∈ M(X).
Hence M(X) = {∅, X}.
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(2.3.13) Let ν∗ : P(N) → [0,∞] be given by

ν∗(E) =


0, E = ∅

|E|
1+|E| , E finite

1, E infinite
Show that ν∗ is an outer measure and find M(X).

Answer. The function f(t) = t
1+t is increasing and subadditive (proof at the

end) on [0,∞).
We have ν∗(∅) = 0 by definition. If A ⊂ B and |A| = ∞, then |B| = ∞

and ν∗(A) = 1 = ν∗(B). If |A| < ∞ and |B| = ∞, then

ν ∗ (A) = |A|
1 + |A|

< 1 = ν∗(B).

When both A,B are finite, ν ∗ (A) = f(|A|) ≤ f(|B|) = ν∗(B). So ν∗(A) ≤
ν∗(B) every time we have A ⊂ B.

Let E1, . . . , En ⊂ N. If any of these sets is infinite, then their union is
infinite and we have

ν∗(E1 ∪ · · · ∪ En) = ∞ ≤ ∞ =
∑
k

ν∗(Ek)

since at least one term on the right is infinite. If instead all of E1, . . . , En are
finite, then their union is finite. We have, since∣∣∣ n⋃

k=1
Ek

∣∣∣ ≤
n∑
k=1

|Ek|

and the function f(t) = t
1+t is increasing and subadditive,

ν∗
( n⋃
k=1

Ek

)
=

∣∣∣⋃nk=1 Ek

∣∣∣
1 +

∣∣∣⋃nk=1 Ek

∣∣∣ ≤
∑n
k=1 |Ek|

1 +
∑n
k=1 |Ek|

≤
n∑
k=1

|Ek|
1 + |Ek|

=
n∑
k=1

ν∗(Ek).

Now consider infinitely many E1, E2, . . . ⊂ N with infinitely many of them
nonempty, then

∞∑
k=1

ν∗(Ek) ≥
∞∑
k=1

1
2 = ∞.

So we have

ν∗
( ∞⋃
k=1

Ek

)
≤

∞∑
k=1

ν∗(Ek)

regardless. Hence ν∗ is an outer measure.
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As for M(X), if E ⊂ N is a proper subset then Ec is nonempty and at
least one of them is infinite. Then ν∗(E) + ν∗(Ec) > 1. Therefore

ν∗(N) = 1 < ν∗(E) + ν∗(Ec),
showing that E ̸∈ M(X). Hence M(X) = {∅, X}.

Let us now finish the answer by proving that f is increasing and sub-
additive. We have

f ′(t) =
(

t

1 + t

)′
=
(

1 − 1
1 + t

)′
= 1

(1 + t)2 > 0

for all t ∈ R. So f is increasing. As for the subadditivity, if t, s ≥ 0
1

1 + t
+ 1

1 + s
≤ 2

1 + t+ s
≤ 2 + t+ s

1 + t+ s
= 1 + 1

1 + t+ s
.

Then
f(t+ s) = 1 − 1

1 + t+ s
≤ 2 − 1

1 + t
− 1

1 + s
= f(t) + f(s).

(2.3.14) Suppose that in Definition 2.3.11 we replace “countable cover”
with “finite cover”. Show that this would give m∗(Q∩ [0, 1]) =
1, and that this would imply that m∗ is not an outer measure.

Answer. Let I1, . . . , Im be open intervals such that Q∩[0, 1] ⊂ I1∪· · ·∪Im. By
removing any interval entirely contained in another and reordering if needed,
we may assume that Ik = (ak, bk), where bk ≥ ak+1 > ak for all k (the second
inequality by prescription, and the first one because there can be no gaps
between the intervals), a1 < 0, bm > 1. Then∑

k

ℓ(Ik) =
∑
k

bk − ak = bm − a1 +
m−1∑
k=1

bk − ak+1 > bm − a1 > 1.

Therefore m∗(Q ∩ [0, 1]) ≥ 1. As (−ε, 1 + ε) is also a cover for each ε > 0,
m∗(Q ∩ [0, 1]) = 1.

We would then have∑
q∈Q∩[0,1]

m∗({q}) = 0 < 1 = m∗
( ⋃
q∈Q∩[0,1]

{q}
)
,

contradicting the definition of outer measure.

(2.3.15) Let E ⊂ R such thatm∗(E) > 0. Show that there exist a, b ∈ E
such that a− b is irrational.
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Answer. Fix a ∈ E. Suppose that a− b ∈ Q for all b ∈ E. If we enumerate
Q = {qk}, this means that b = a − qk for some k. Thus E ⊂ {a − qk : k ∈
N} ⊂ a− Q. As m∗ is translation invariant,

m∗(E) ≤ m∗(a− Q) = m∗(Q) = 0.
This means that if m∗(E) > 0, there has to exist b ∈ E with a− b ̸∈ Q.

(2.3.16) Let E ⊂ R be the set of all numbers in [0, 1] that do not have a
1 anywhere in their decimal expansion. Is E measurable? Find
m∗(E).

Answer. We assume the same convention as we did when dealing with the
Cantor set, which is that we consider 0.199 · · · instead of 0.2. This is im-
portant because it means that 0.2 has a 1 in its expansion! For each k ∈ N,
let

Ek =
{ ∞∑
n=1

an
10n ∈ [0, 1] : ak = 1, a1, . . . , ak−1 ̸= 1

}
.

Each Ek is a finite union of intervals, so measurable. To see this, note that
E1 = [0.1, 0.2], E2 = [0.01, 0.02]∪[0.21, 0.22]∪[0.31, 0.32]∪· · ·∪[0.91, 0.92],
and

Ek =
⋃

a1,...,ak−1 ̸=1
[0.a1 · · · ak−11, 0.a1 · · · ak−12].

That is, the Ek are pairwise disjoint and each is made of 9k−1 (because we
have 9 choices for each of the a1, . . . , ak−1) intervals of length 10−k. Then
E = [0, 1] \

⋃
n

En is measurable, and

m(E) = 1 −
∑
k

m(Ek) = 1 −
∑
k

9k−1

10k = 1 − 1
9

∑
k

9k

10k

= 1 − 1
9

9
10

1 − 9
10

= 1 − 1
9

9
1 = 0.

(2.3.17) Let A,B ⊂ R be Lebesgue measurable with m(A) < ∞. Show
that the function f : R → [0,∞) given by f(x) = m((A+ x) ∩
B) is continuous. (Hint: the assertion is easier to prove for
intervals)
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Answer. Let ε > 0. Then there exists V open with V ⊃ A and m(V \A) <
ε/4. Note that this implies that m(V ) < ∞ since m(A) < ∞. Now
m((V + x) ∩B) −m((A+ x) ∩B) = m((V \A) + x) ∩B) ≤ m(V \A).

Then, for any x, y,
|f(y) − f(x)| ≤ ε/2 +m((V + y) ∩B) −m((V + x) ∩B).

Now since V is an open subset of R, we may write it as a disjoint union of
open intervals, V =

⋃
n

(an, bn). The finite measure of V gives
∑
n(bm−an) =

m(V ) < ∞. For any E,F ⊂ R, from E ∪ F = E ∪ (F \E) = (E \ F ) ∪ F we
obtain

m(E) −m(F ) = m(E \ F ) −m(F \ E).
Then, for x < y, with In = (an, bn),

|m((In + y) ∩B) −m((In + x) ∩B)| ≤ m((an + x, an + y))

+m((bn + x, bn + y))

= 2(y − x).
So, we choose n0 such that

∑
n>n0

(bn−an) < ε/4. Then if |y−x| < ε/(2n0),

|f(y) − f(x)| ≤ ε

2 +m(V + y) ∩B) −m(V + x) ∩B)

= ε

2 +
∑
n

m((an, bn) + y) ∩B) −m((an, bn) + x) ∩B)

≤ ε

2 + ε

4 +
∑
n≤n0

m((an, bn) + y) ∩B) −m((an, bn) + x) ∩B)

≤ ε

2 + ε

4 + 2n0ε|y − x|
2n0

= ε.

(2.3.18) Show that the relation x ∼ y if x − y ∈ Q is an equivalence
relation in R.

Answer. Reflexive: x−x = 0 ∈ Q. Symmetric: if x−y ∈ Q, then y−x(−(x−
y) ∈ Q. Transitive: if x−y ∈ Q and y−z ∈ Q, then x−z = (x−y)+(y−z) ∈ Q.

(2.3.19) Fix c ∈ (0, 1). Construct an open set V ⊂ [0, 1], dense in [0, 1]
and with m(V ) = c (Hint: in Exercise 2.2.8 this was done for
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c = 1
2 ; an entirely different approach is possible with an idea

similar—but not equal—to Exercise 2.3.17) .

Answer. When we consider middle thirds (length of the interval is a power
of 3) for the Cantor set, all the intervals together form a dense open set of
measure 1. So we need to remove smaller intervals; this guarantees that there
will be no overlaps, as the intervals we will consider are subintervals of those
middle thirds removed for the Cantor set.

Fix a ∈
[
0, 1

3
]
. On the nth step we “remove” (in the end, in this case,

we want to “keep” them) 2n−1 middle lopen intervals Vn,1, . . . , Vn,2n−1 each
of length an. Then we put

V =
∞⋃
n=1

2n−1⋃
k=1

Vn,k.

This set is open, being a union of open intervals, and it is dense because in
each step, when we consider the middle interval of length an inside (c, d), this
latter interval gets divided into two intervals each of length less than d−c

2 .
This means that for ε > 0 and t ∈ [0, 1] either t ∈ V or there exist n, k such
that dist(t, Vn,k) < ε.

Finally,

m(V ) =
∞∑
n=1

2n−1∑
k=1

an = 1
2

∞∑
n=1

(2a)n = 1
2

2a
1 − 2a = a

1 − 2a.

Solving for a in a
1−2a = c, we get a = c

1+2c . This works as expected: when
c = 0 we get a = 0, and when c = 1 we get a = 1

3 . So by continuity any value
c ∈ [0, 1] can be achieved by an appropriate a ∈

[
0, 1

3
]
.

For the second approach, let {qk} be an enumeration of Q ∩ [0, 1], and
put

A = (0, 1) ∩
⋃
k

(
qk − c

2k+2 , qk + c

2k+2

)
.

Then A ⊂ [0, 1] is open, dense, and

m(A) ≤
∞∑
k=1

c

2k+1 = c

2 .

Let f(x) = m(A∪ (0, x)). Then f(0) = m(A) < c, f(1) = m((0, 1)) = 1. The
function f is continuous by an argument similar to Exercise 2.3.17). By the
Intermediate Value Theorem, there exists x such that f(x) = c. So A∪ (0, x)
is a dense open set of measure c.
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Here is yet another approach, related to the first one. Write c in base

3, c =
∞∑
n=1

an 3−n, with an ∈ {0, 1, 2} for all n. Let {r(n)} be the increasing

sequence of indices such that ar(n) ̸= 0. So

c =
∞∑
n=1

ar(n)

3r(n)

Define numbers bn = ar(n)
2n−1 . Now we remove middle thirds as with

the Cantor set, but in each step the length of the removed intervals will
be bn3−r(n) instead of 3−n. Explicitly, if {(an,k, bn,k)}n∈N, 1≤k≤2n−1 are the
intervals removed from the usual Cantor ternary set, we can define

δn = 1
2

( 1
3r(n) − 2ar(n)

2n3r(n)

)
,

and let

V =
∞⋃
n=1

2n−1⋃
k=1

(
ar(n),k + δn, br(n),k − δn

)
.

By construction, V is open. Also,

m(V ) =
∞∑
n=1

2n−1∑
k=1

( 1
3r(n) − 2δn

)
=

∞∑
n=1

2nar(n)

2n3r(n) = c.

Finally, if t ∈ V c, then t ̸∈
⋃2n−1

k=1 (an,k+δn, bn,k−δn). These are 2n−1 disjoint
intervals inside [0, 1]. Thus dist(t, V ) < 1

2n−1 . This can be done for any n, so
dist(t, V ) = 0, which shows that V = [0, 1].

(2.3.20) Let (X,A, µ) be a measure space with µ(X) < ∞. Show that
µ is outer regular if and only if it is inner regular by closed
sets.

Answer. Fix ε > 0. If µ is outer regular and E ∈ A, then X \E ∈ A and by
hypothesis there exists V open such that X \E ⊂ V and µ(V \ (X \E)) < ε.
Let K = X \ V . Then K is closed, K = X \ V ⊂ X \ (X \ E) = E, and

µ(E \K) = µ(E ∩ (X \K)) = µ(E ∩ V

= µ((X \ (X \ E)) ∩ V ) = µ(V \ (X \ E)) < ε.

As this can be done for any e > 0, we get that
µ(E) = sup{µ(K) : K ⊂ E, K closed}.

The converse is proven in an entirely similar way.
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(2.3.21) Show that Lebesgue measure is not outer regular by closed sets,
nor inner regular by open sets.

Answer. Let A be the open set from Exercise 2.3.19, where c = 1/2. If C is
closed and C ⊃ A then C ⊃ [0, 1], forcing m(C) ≥ 1. This shows that outer
regularity by closed sets fails.

If we consider the complement of A in [0, 1] we get a closed set that
has no open subsets; for any open V ⊂ [0, 1] \ A would give us A ⊂ V c and
so m(V c) = 1, giving us mu(V ) = 0. So m is not inner regular by open sets
either.

(2.3.22) Show that a Borel measure on a locally compact Hausdorff
space is locally finite if and only if it is finite on compact sets.

Answer. Suppose that µ is locally finite. Fix E compact. For each x ∈ E,
there exists Vx open with x ∈ Vx and µ(Vx) < ∞. By compactness, there exist
x1, . . . , xn ∈ E such that E ⊂ Vx1 ∪ · · · ∪ Vxn . Then µ(E) ≤

∑n
k=1 µ(Vxk) <

∞.
Conversely, if µ is not locally finite, then there exists x ∈ X such

that every open set V with x ∈ V satisfies µ(V ) = ∞. Since X is locally
compact, there exists an open set W with x ∈ W and W compact. Then
µ(W ) ≥ µ(W ) = ∞. That is, there exists a compact set of infinite measure.

(2.3.23) Show that if X is a Hausdorff topological space, the Dirac
delta is a Radon measure on B(X). Show an example that the
assertion can fail if X is not Hausdorff.

Answer. Denote by 0 ∈ X the distinguished element such that δ(E) = 1
if and only if 0 ∈ E. For any E ⊂ X, if 0 ∈ E and V ⊃ E with V open,
then δ(V ) = 1; and if 0 ̸∈ E, by X being Hausdorff X \ {0} is open, and
E ⊂ X \{0} with δ(X \{0}) = 0. We have shown that δ is outer regular. For
inner regularity, if 0 ∈ E then K = {0} is compact that δ(K) = 1 = δ(E);
and if 0 ̸∈ E, then any K ⊂ E does not have 0, and hence δ(K) = 0.

Let X = {0, 1, 2} with the topology {∅, X, {0}, {0, 2}, {0, 1}}. Then 0
and 1 cannot be separated, and X is not Hausdorff. The set E = {1} is Borel,
as it is closed: {1} = X \ {0, 2}. We have δ(E) = 0, while δ(V ) = 1 for all
V ⊃ E open. Thus δ is not outer regular.
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(2.3.24) Let X be a Polish space (separable, metric, compact, com-
plete). Show that any finite measure on B(X) is Radon.

Answer. Fix x0 ∈ X. Being a metric space, we have x0 =
⋂
nB1/n(x0). By

continuity of the measure (Proposition 2.3.8, we use here that the measure is
finite) we have

µ({x0}) = lim
n
µ(B1/n(x0)). (AB.2.3)

Now fix E ∈ B(X) and ε > 0. Because X is separable and metric, every
subset is separable (Proposition 1.8.5) so there exists X0 = {xn}n ⊂ E such
that E = X0. Using (AB.2.3), choose numbers {rn} such that µ(Brn(xn)) <
µ({xn}) + ε/2n. Then

E ⊂ V =
⋃
n

Brn(xn).

The set V is open and

µ(V ) ≤
∑
n

µ(Brn(xn) <
∑
n

µ({xn}) + ε/2n = ε+
∑
n

µ({xn})

= ε+ µ(X0) ≤ ε+ µ(E).
Then

µ(V \ E) = µ(V ) − µ(E) < ε.

Thus µ is outer regular. As µ is finite, it is inner regular by closed sets
by Exercise 2.3.20. As X is compact and Hausdorff, every closed subset is
compact, so µ is inner regular. And µ is Radon as µ is finite everywhere and
in particular on compact sets.

(2.3.25) Show that the counting measure on Rn is not Radon.

Answer. Any open set on Rn is uncountable, so µ(V ) = ∞ for all open
V . Hence no finite set can be approximated in measure from above by open
sets. The counting measure is inner regular: if E is finite, then it is compact
and can be approximated; and if E is infinite, it can be approximated by
finite sets of arbitrary size, and hence of arbitrary large measure. Finally, the
counting measure also fails to be locally finite, and infinite compact sets will
have infinite measure.

(2.3.26) Let (X,A, µ) be a measure space. The measure µ is semifinite
if whenever µ(E) = ∞ for some E ∈ A, there exists F ∈ A
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with F ⊂ E and 0 < µ(F ) < ∞. Show that for such µ,
µ(E) = sup{µ(F ) : F ∈ A, F ⊂ E, µ(F ) < ∞}, E ∈ A.

(2.2)
Show also that the equality above fails for a measure that is
not semifinite.

Answer. Let α = sup{µ(F ) : F ∈ A, F ⊂ E, µ(F ) < ∞}. It is immediate
that α ≤ µ(E) since µ(E) is an upper bound. So if α = ∞ we are done.
When α < ∞, choose {Fn} ⊂ A with Fn ⊂ E, of finite measure, and such
that α = limn µ(Fn). Let F =

⋃
n Fn ∈ A. For each n,

⋃
k<n Fk ⊂ E and

has finite measure, so by continuity of the measure

µ(F ) = lim
n
µ
( ⋃
k<n

Fn

)
≤ α ≤ sup

n
µ(Fn) ≤ µ(F ).

Thus µ(F ) = α. If G ⊂ E \F is measurable and µ(G) < ∞, then F ∪G ⊂ E
and α = µ(F ) ≤ µ(F ) + µ(G) = µ(F ∪ G) = α, so µ(G) = 0. This prevents
µ(E\F ) = ∞, for in such case it would have subsets of positive measure. Then
µ(E \ F ) < ∞ but now the argument we just did implies that µ(E \ F ) = 0.
Therefore µ(E) = µ(F ) = α.

When µ is not semifinite, there exists E ∈ A with µ(E) = ∞ and
µ(F ) = 0 for every measurable subset of E with finite measure. Thus the
supremum in (2.2) is zero.

(2.3.27) Let K be a topological space and {µj} a collection of Borel
measures on K. Let X =

⋃
j K × {j}. We write π1 for the

coordinate function π1(a, b) = a.

(a) Show that
Σ =

{
B ⊂ X : π1(B ∩ (K × {j})) ∈ B(K) for all j

}
is a σ-algebra.

(b) Show that µ given by µ(B) =
∑
j

µj
(
π1(B ∩ (K × {j})

)
is

a measure on Σ.

Answer.

(a) We have X ∈ Σ, since K is a Borel subset of itself. Given B ∈ Σ, we have
B =

⋃
j Bj × {j} with Bj ⊂ K Borel. Then

π1
(
(X \B) ∩ (K × {j})

)
= π1

(
(K \Bj) × {j}

)
= K \B
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is Borel for each j. So X \ B ∈ Σ. If now {Bn}n∈N ⊂ Σ, we have
Bn =

⋃
j Bn,j × {j} with Bn,j ⊂ K Borel for all j. Then

π1

(⋃
n

Bn ∩ (K ∩ {j})
)

= π1

(⋃
n

⋃
J

(Bn,k × {k}) ∩ (K ∩ {j})
)

= π1

(⋃
n

Bn,j × {j}
)

=
⋃
n

Bn,j

which is Borel in K. So Σ is a σ-algebra.
(b) All we need to check is the σ-additivity. If {Bn}n∈N ⊂ Σ are pairwise

disjoint, we have

Bn ∩Bm =
(⋃

j

Bn,j × {j}
)

∩
(⋃

k

Bn,k × {k}
)

=
⋃
j

(Bn,j ∩Bn,j) × {j}.

So {Bn,j}n are pairwise disjoint for each j. Then (using Tonelli)

µ
(⋃

n

Bn

)
=
∑
j

µj

(⋃
n

Bn ∩ (K × {j})
)

=
∑
j

µj

(⋃
n

Bn,j

)
=
∑
j

∑
n

µj(Bn,j) =
∑
n

∑
j

µj(Bn,j) =
∑
n

µ(Bn).

2.4. Measurable Functions

(2.4.1) Let (X,A) be a measurable spaces and f : X → Y a function.
Show that

F = {E ⊂ Y : f−1(E) ∈ A}
is a σ-algebra.

Answer. We have ∅ ∈ F , since f−1(∅) = ∅ ∈ A. If E ∈ F , then f−1(Ec) =
(f−1(E))c ∈ A. And if {En} is a countable family with En ∈ F for all n,
then

f−1
(⋃

n

En

)
=
⋃
n

f−1(En) ∈ A

since A is a σ-algebra and f−1(En) ∈ A for all n.
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(2.4.2) Let (X,A) and (Y,B) be measurable spaces and f : X → Y a
function. Show that

A0 = {f−1(B) : B ∈ B}
is a σ-algebra. What is the relation between A0 and A?

Answer. We have ∅ = f−1(∅) ∈ A0. If A ∈ A0, then A = f−1(B) for some
B ∈ B; hence, since preimages preserve all set operations, Ac = f−1(Bc) ∈ A0
since Bc ∈ B. If {En} ⊂ A0 is a countable family with En ∈ A0 for all n,
there exist {Bn} ⊂ B with En = f−1(Bn) for each n. Then⋃

n

En =
⋃
n

f−1(Bn) = f−1
(⋃

n

Bn

)
∈ A0

since the countable unions of sets in B stays in B. Therefore A0 is a σ-algebra.
In general there is not much relation between A0 and A. For instance

take X = R, A = MR, Y = R, B = P(R), f = id. Then A0 = R ⊋ A. If
we reverse the roles of A and B we get A ⊋ A0. There need be no inclusion
either. For instance fix some A,B ⊂ R such that A∩B ̸= ∅ and A ⊊ A∪B,
B ⊊ A ∪B; and let

A = {∅, A,Ac,R}, B = {∅, B,Bc,R}.
Then, with f = id we have A0 = B and A ∩ B = {∅,R}.

(2.4.3) Let f : R → R be non-decreasing. Show that f is Borel-
measurable (that is, pre-image of open is Borel).

Answer. We need to show that A = f−1(a,∞) is Borel for all a ∈ R. So fix
a ∈ R and consider the corresponding A. If A = ∅, then it is Borel. Now we
assume that A ̸= ∅.

We have A = {x : f(x) > a}. If z ∈ A, we have f(z) > a; for any
y > z, f(y) ≥ f(z) > a. So [z,∞) ⊂ A.

Let b = inf A. If b = −∞, then for any z ∈ R there exists z′ ∈ A with
z′ < z; by the above [z,∞) ⊂ A for all z ∈ R. So A ⊃

⋃
z∈R

[z,∞) = R, giving

us A = R. Otherwise, if b > −∞, for any n ∈ N there exists zn ∈ A with
b < zn < b+ 1

n . By the above, [b+ 1
n ,∞) ⊂ A. If b ̸∈ A, then

A ⊃
⋃
n∈N

[b+ 1
n
,∞) = (b,∞);
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as b = inf A it follows that A = (b,∞), so Borel. The other possibility is that
b ∈ A; in that case we can repeat what we did and obtain A = [b,∞). In all
cases, A is Borel.

(2.4.4) Let f : R → R be non-decreasing. Show that f is continuous
almost everywhere, by showing that the set of discontinuity
points of f is at most countable.

Answer. Fix an interval [−m,m], m ∈ N. Fix x0 ∈ [−m,m]. By the
monotonicity we have that f([−m,m]) ⊂ [f(−m), f(m)].

Since f(x) ≤ f(x0) for all x < x0, l(x0) = limx→x−
0
f(x) exists. Sim-

ilarly, r(x0) = lim
x→x+

0

f(x) also exists. Since a function is continuous at a

point if and only if the lateral limits exist and are equal, we have that f is
continuous at x0 if and only if l(x0) = r(x0).

If we let X be the set of discontinuity points of f and we write Xn =
{x : r(x) − l(x) > 1

n}, then X =
⋃
nXn. Suppose that x1 < · · · < xw ∈ Xn.

Then
r(x1) − l(x1) + r(x2) − l(x2) + · · · + r(xw) − l(xw) > w

n
We also have
w∑
j=1

r(xj) − l(xj) = −l(x1) + r(xw) +
w−1∑
j=2

[r(xj) − l(xj+1)] ≤ f(m) − f(−m).

From the two inequalities we obtain w ≤ n(f(m) − f(−m)); so Xn is finite.
Then X is countable.

For the general case, R =
⋃
m[−m,m] and each [−m,m] contains at

most countably many discontinuity points of f , so R contains at most count-
ably many discontinuity points of f .

(2.4.5) Let f : R → C be Lebesgue-measurable. Show that there exists
g : R → C, Borel-measurable, with f = g a.e. (Hint: do it first
for f ≥ 0)

Answer. By the usual trick of writing a complex valued function as a linear
combination of four nonnegative functions, we may assume without loss of
generality that f ≥ 0. Let {sn} be an nondecreasing sequence of Lebesgue-
measurable simple functions with 0 ≤ sn ↗ f . As in Theorem 2.4.13 we may
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write

sn = n 1f−1([n,∞]) +
n2n∑
k=1

k − 1
2n 1Ek,n ,

where Ek,n = f−1([k − 1
2n ,

k

2n
))

. By Proposition 2.3.25 there exist sets Fk,n ∈
B(R) with Fk,n ⊂ Ek,n and m(Fk,n) = m(Ek,n) for all k, n. Define

tn = n 1f−1([n,∞]) +
n2n∑
k=1

k − 1
2n 1Fk,n ,

Then each tn is Borel-measurable and so is g = limn tn (this converges for
every point because tn = sn on each Fk,n). The set {f ̸= g} is contained in
the countable union

⋃
k,n

[
Ek,n \ Fn,k

]
, a nullset.

(2.4.6) Let (X,A) be a measurable space. If f : E → R is a mea-
surable function relative to the measurable space (E,AE) (cfr.
Exercise 2.3.7), show that the extension f̃ : X → R of f given
by f̃ = f 1E is measurable with respect to A.

Answer. Given a ∈ R, we consider
f̃−1(a,∞) = {x ∈ X : f(x) 1E(x) > a}.

We have
f̃−1(a,∞) = [f̃−1(a,∞) ∩ E] ∪ [f̃−1(a,∞) ∩ Ec]

= {x ∈ E : f(x) 1E(x) > a} ∪ {x ∈ Ec : f(x) 1E(x) > a}
= {x ∈ E : f(x) > a} ∪ {x ∈ Ec : 0 > a}
= f−1(a,∞) ∪ {x ∈ Ec : 0 > a}.

The first set is in AE ⊂ A by hypothesis, while the second is either Ec or ∅,
and in both cases it is in A. The union is then in A.

(2.4.7) If f̃ : X → R is a measurable function with respect to A, and
if f = f̃ |E (the restriction of f̃ to E), show that f : E → R is
measurable with respect AE .

Answer. We have, for any a ∈ R, and using that f̃ is measurable,
f−1(a,∞) = {x ∈ E : f(x) > a} = E ∩ f̃−1(a,∞) ∈ AE .
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(2.4.8) Let (X,A) be a measurable space and f : X → [0,∞] mea-
surable. Show that if sn is as in Theorem 2.4.13, then for
x ∈ f−1[0, n) we have

sn(x) = ⌊2nf(x)⌋
2n .

Answer. By definition, sn(x) = k−1
2n when k−1

2n ≤ f(x) < k
2n . These in-

equalities can be written as k − 1 ≤ 2nf(x) < k, which in turn are precisely
⌊2nf(x)⌋ = k − 1. Thus

sn(x) = k − 1
2n = ⌊2nf(x)⌋

2n .

(2.4.9) Let (X,A, µ) be a measure space and f : X → C measurable.
Show that ess ran f is closed.

Answer. Let α ∈ ess ran f . Fix ε > 0. Then there exists β ∈ ess ran f such
that |α− β| < ε/2. If |γ − β| < ε/2, then

|α− γ| ≤ |α− β| + |β − γ| < ε

2 + ε

2 = ε.

This means that Bε/2(β) ⊂ Bε(α). Thus

µ(f−1(Bε(α))) ≥ µ(f−1(Bε/2(β))) > 0
since β ∈ ess ran f . So α ∈ ess ran f and ess ran f is closed.

(2.4.10) Show an example of a measure space, g measurable, and f = g
a.e. with f not measurable.

Answer. Consider ([0, 1],B(R),m), and let g = 1 − 1C , the characteristic of
the complement of the Cantor set. We know that there exists V ⊂ C that is
not in B(R), as in the proof of Proposition 2.3.24. Let f = g + 1V . Then
f = g outside of C, but f is not measurable, since V = f−1({1}) ∩ C ̸∈ B(R).

(2.4.11) Let (X,A, µ) be a measure space with µ(X) = 1. Show that
the following statements are equivalent:
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(a) µ(E) ∈ {0, 1} for all E ∈ A;
(b) if f : X → R is measurable, there exists c ∈ R with f = c

a.e.

Answer. Suppose that µ(A) = {0, 1} and let f be measurable. We may
assume without loss of generality that f maps into the interval [0, 1], for
we might replace it by composition with a continuous bijection, say g ◦ f
where g(t) = 1

2 + 1
π arctan t. Write I0,1 = [0, 1] and consider disjoint dyadic

partitions

[0, 1] =
2n⋃
j=1

In,j .

Then, for each n, the 2n disjoint sets Xn,j = f−1(In,j), j = 1, . . . , 2n, form
a partition of X. Since 1 = µ(X) =

∑
j µ(Xn,j), for each n there exists a

single jn with µ(Xn,jn) = 1. Then f = f 1Xn,jn a.e. Necessarily (by the
fact that they are either disjoint or one inside the other, and looking at their
measures) we have Xn+1,jn+1 ⊂ Xn,jn for all n. Let X0 =

⋂
nXn,jn ; by

continuity of the measure, µ(X0) = 1. We also have In+1,j+1 ⊂ In,j for all n.
Then

⋂
n In,jn = {s} for some s ∈ [a, b] by Proposition 1.8.19 (or by forming

s in base 2). We have

µ(f−1({s})) = µ

(
f−1

(⋂
n

In,jn

))
= µ

(⋂
n

f−1(In,jn)
)

= µ(X0) = 1.

Thus f = s a.e.
Conversely, if every measurable function is constant a.e., let E ∈ A.

If 1E = 0 a.e., then µ(E) = 0; otherwise 1E = 1 a.e., which means that
µ(E) = 1.

2.5. The Lebesgue Integral

(2.5.1) Show, without using the convergence theorems, that if µ is the
counting measure on N, for a non-negative sequence {an} we
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have ∫
N
a dµ =

∞∑
n=1

an.

Answer.
We can do it by working just with the definition. For any k ∈ N,

k∑
n=1

an =
∫
N

k∑
n=1

an 1{n} dµ ≤
∫
N
a dµ,

since sn =
∑k
n=1 an 1{n} is a simple function that satisfies 0 ≤ sn ≤ a.

For the converse, fix ε > 0 and let s be a non-negative simple function
with 0 ≤ s ≤ a and ∫

N
a dµ < ε+

∫
N
s dµ.

Writing the inequality this way allows us to deal both with the case where the
integral is finite and the case where it is infinite. We have s =

∑r
j=1 λj 1Ej ,

with λj > 0 for all j. If |Ej | = ∞ for some j, this would imply
∑∞
n=1 an = ∞,

contradicting our assumption. So each Ej is finite; by writing each Ej as

a finite union of points, we can write s =
m∑
n=1

αn 1{n}. From s ≤ a we

immediately get αn ≤ an for n = 1, . . . ,m. Then∫
N
a dµ < ε+

∫
N
s dµ = ε+

m∑
n=1

αn ≤ ε+
∞∑
n=1

an.

As this can be done for all ε > 0, we obtain
∫
N
a dµ ≤

∞∑
n=1

an, which shows

the equality.

(2.5.2) Show, using the convergence theorems, that if µ is the counting
measure on N, for a non-negative sequence {an} we have∫

N
a dµ =

∞∑
n=1

an.

Answer. We can write

a =
∞∑
n=1

an 1{n}.
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Note that for each k ∈ N the series a(k) has only one nonzero term, so there
is no issue with convergence. Then Corollary 2.5.8 gives directly∫

N
a dµ =

∫
N

∞∑
n=1

an 1{n} dµ =
∞∑
n=1

∫
N
an 1{n} dµ =

∞∑
n=1

an.

(2.5.3) Show that if f ≥ 0 a.e. and
∫
X

f dµ = 0, then f = 0 a.e.

Conclude that if f is measurable and
∫
X

|f | dµ = 0, then f = 0
a.e.

Answer. Let E = {f > 0}, En = {f > 1
n}, n ∈ N. Then E =

⋃
nEn. Since

the union is increasing, by continuity of the measure (Proposition 2.3.8) there
exists m with µ(Em) > 0. Then∫

X

f dµ ≥
∫
Em

f dµ ≥ 1
m

∫
Em

1 dµ = µ(Em)
m

> 0,

a contradiction. So µ(E) = 0, that is f = 0 a.e.
This can also be proven by definition, in the following way. Let s =∑

j sj 1Ej be simple, with 0 ≤ s ≤ f . Then

0 ≤
∑
j

sj µ(Ej) =
∫
X

s dµ ≤
∫
X

f dµ = 0.

So, for each j, either sj = 0 or µ(Ej) = 0. It follows that s = 0 a.e. Now, as f
is measurable, there exists a monotone sequence {sn} of nonnegative simple
functions with 0 ≤ sn ≤ f and sn → f . By the above, sn = 0 a.e. for all n,
so f = lim sn = 0 a.e.

For arbitrary measurable f , we apply the above to |f | to conclude that
|f | = 0 a.e., and so f = 0 a.e.

(2.5.4) Let (X,A, µ) be a measure space, and f : X → R. Let {En} ⊂
A be a pairwise disjoint sequence. Let E =

⋃
nEn. Show that,

if the integral on the left exists,∫
E

f dµ =
∑
n

∫
En

f dµ.
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Answer. We have that 1E =
∑
n 1En and the limit is monotone. Suppose

f ≥ 0. By Monotone Convergence and linearity,∫
E

f dµ =
∫
X

1Ef dµ =
∑
n

∫
X

1Enf dµ =
∑
n

∫
En

f dµ.

For general f , if the integral exists, the equality follows by linearity.

(2.5.5) Let X be any set, Σ = P(X), x0 ∈ X. Consider the Dirac
measure (cfr. Exercise 2.3.6) δ : Σ → [0,∞] by

δ(A) =
{

1, x0 ∈ A

0, x0 ̸∈ A

Show that for any f : X → R,∫
X

f dδ = f(x0).

Answer.
If x0 ∈ E we have ∫

X

f dδ =
∫
E

f dδ

since δ(X \ E) = 0. In particular∫
X

f dδ =
∫

{x0}
f dδ =

∫
X

f 1{x0} dδ =
∫
X

f(x0) 1{x0} dδ

= f(x0)δ({x0}) = f(x0).

(2.5.6) Let f : [0,∞) → C be integrable with respect to Lebesgue
measure, and such that∫ x

0
f dm = 0, x > 0.

Show that f = 0 a.e. (This can be certainly done with the
techniques from this chapter, but the argument might not be all
that direct)

Answer. For any 0 < a < b,∫
(a,b]

f dm =
∫ b

0
f dm−

∫ a

0
f dm = 0 − 0 = 0.
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By Dominated convergence∫
{b}

f dm = lim
n

∫
(b−1/n,b]

f dm = 0.

So we also have
∫

(a,b) f dm = 0 for all 0 < a < b. Given any open set
V ⊂ [0,∞), by Proposition 1.8.1 we can write V =

⋃
n(an, bn) as a disjoint

union. Then, by Exercise 2.5.4 (or, by Dominated Convergence),∫
V

f dm =
∑
n

∫
(an,bn)

f dm = 0.

For any E ∈ M([0,∞)), by Proposition 2.3.25 we can find a decreasing
sequence {Vn} of open sets with E =

⋂
n Vn a.e. Then 1E = limn 1Vn a.e.

and by Dominated Convergence∫
E

f dm =
∫
f 1E dm = lim

n

∫
f 1Vn dm = lim

n

∫
Vn

f dm = 0.

Now we provide two different arguments for the rest of the proof.

(a) As any simple function is a linear combination of characteristic functions
of measurable set, linearity of the integral implies that∫

[0,∞)
f g dm = 0

for all g simple. Let Kn = {|f | ≤ n}. On Kn the function f is bounded,
so by Theorem 2.4.13 we have a uniform limit f = limn gn with gn simple.
Then∫

Kn

|f |2 dm =
∣∣∣∣ ∫
Kn

|f |2 dm−
∫
Kn

fgn dm

∣∣∣∣ ≤
∫
Kn

|f | |f − gn| dm

≤ sup
Kn

{|f(x) − gn(x)|}
∫

[0,∞)
|f | dm.

As ∥f − gn∥∞ can be made arbitrarily small, we get that∫
Kn

|f |2 dm = 0,

and hence f = 0 a.e. on Kn by Proposition 2.5.2. As this can be done for
any n, f = 0 a.e.

(b) Let E = {Re f > 0}. As f is measurable, so is E. Then

0 = Re
∫
E

f dm =
∫
E

Re f dm.

By Proposition 2.5.2, m(E) = 0. In a similar way we can prove that
m({Re f < 0}) = 0, m({Im f > 0}) = 0, and m({Im f < 0}) = 0. This
implies that m({f ̸= 0}) = 0, so f = 0 a.e.
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With more tools available, a very straightforward proof is available, see
Exercise 2.11.2.

(2.5.7) (Change of variable) Let (X,A, µ) be a measure space and Y
a topological space. Let g : X → Y measurable. Let ν(E) =
µ(g−1(E)). Show that ν is a measure on B(Y ) and that∫

Y

f dν =
∫
X

f ◦ g dµ (2.3)

for all f : Y → R which are Borel measurable and such that
either integral exists.

Answer. Assume first that f ≥ 0.
Because g is measurable and E is Borel, g−1(E) ∈ A (Proposition 2.4.3);

as preimages preserve all set operations and µ is a measure, ν is a measure.
If E ∈ B(Y ) and f = 1E ,∫
Y

1E dν = ν(E) = µ(g−1(E)) =
∫
X

1g−1(E) dµ =
∫
X

1E ◦ g dµ.

By linearity of the integral the equality holds for all simple functions. Theo-
rem 2.4.13 and Monotone Convergence then give us the equality (2.3) for all
non-negative measurable f .

Finally, for arbitrary f we write f = f+−f− and, because by hypothesis
either the integral for f+ or f− is finite (on both sides!) the equality holds.

(2.5.8) Consider the interval [0, 1] with Lebesgue measure. Let g :
[0, 1] → C measurable and such that

∫
[0,1] |g| < ∞. Prove that

the function
γ : s 7−→

∫ s

0
|g|

is continuous.

Answer. Since |g| ≥ 0, the function γ is monotone non-decreasing. Let
s ∈ [0, 1] and {sn} a sequence with sn → s. We denote by (s, sn) the interval
between these two numbers which could be (sn, s) if sn < s. The functions
1(sn,s) |g| converge pointwise to 0. By Dominated Convergence (since |g| is
integrable and 1(sn,s) |g| ≤ |g|) we have

lim
n→∞

|γ(sn) − γ(s)| = lim
n→∞

∫ 1

0
1(sn,s) |g| =

∫ 1

0
0 = 0.

So γ(sn) → γ(s) for any such sequence, and thus γ is continuous at s.
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(2.5.9) (Change of variable, II) Let (X,A, µ) be a measure space and
f : X → [0,∞] measurable. Define ν : A → [0,∞] by

ν(E) =
∫
E

f dµ.

(a) Show that ν is a measure on (X,A) and that ν(E) = 0
whenever E ∈ A with µ(E) = 0.

(b) Show that for any measurable function g : X → R,∫
X

g dν =
∫
X

gf dµ (2.4)

if the left integral exists.

Answer.

(a) If
∫
X

f 1E dµ = ν(E) > 0, then by Exercise 2.5.3 we have the fact that

µ({f 1E > 0}) > 0. As {f 1E > 0} ⊂ E, we get that µ(E) > 0. Thus
µ(E) = 0 forces ν(E) = 0, showing the last part. Also, ν(∅) = 0.

Now let {Ek} be a countable family of pairwise disjoint measurable
sets. We have

1⋃
k
Ek

=
∞∑
k=1

1Ek .

The equality is easily checked by evaluating at each x ∈ X. Note that,
for all x, terms in the series are all zero with the exception of at most one
term. Then, by Monotone Convergence (in the second to last equality),

ν(
⋃
k

Ek) =
∫⋃

k

f dµ =
∫
X

f 1⋃
k
Ek
dµ =

∫
X

∑
k

f 1Ek dµ

=
∑
k

∫
X

f 1Ek dµ =
∑
k

ν(Ek).

(b) When g = 1E ,∫
X

g dν = ν(E) =
∫
E

f dµ =
∫
X

1E f dµ =
∫
X

gf dµ.

Since integrals are linear and simple functions are linear combinations of
characteristic functions, this implies that∫

X

s dν =
∫
X

sf dµ

for all s simple. Now if g ≥ 0, by Theorem 2.4.13 there exists a sequence
{sn} of simple functions such that 0 ≤ sn ↗ g. By Monotone Convergence
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(twice, and note that since f ≥ 0 we also have 0 ≤ snf ↗ gf),∫
X

g dν = lim
n

∫
X

sn dν = lim
n

∫
X

snf dµ =
∫
X

gf dµ.

For arbitrary g, the equality (2.4) holds for g+ and g−, and so it holds for
g if the integral exists; note that since f ≥ 0, (gf)+ = g+f , (gf)− = g−f .

(2.5.10) (Change of variable, III) Use Exercises 2.5.7, 2.5.9 and 1.8.19 to
show that if g : [a, b] → [c, d] is continuously differentiable then
(2.3) gives the usual calculus change of variable (substitution)
formula ∫ g(b)

g(a)
f(t) dt =

∫ b

a

f(g(t)) g′(t) dt.

Answer. Take (ak, bk) and (a′
k, b

′
k) as in Exercise 1.8.19 applied to the func-

tion g. Since g′ = 0 on each (ak, a′
k) and each (b′

k, bk) we have∫ b

a

f(g(t)) g′(t) dt =
∑
k

∫ b′
k

a′
k

f(g(t)) g′(t) dt,

and ∫ g(b)

g(a)
f(t) dt =

∑
k

∫ bk

ak

f(t) dt =
∑
k

∫ b′
k

a′
k

f(t) dt.

The above equalities show that we can assume, without loss of generality, that
g is strictly monotone on [a, b], which makes it invertible by Exercise 1.8.38.

Assume first that g′ > 0. Take X = [a, b], Y = [c, d], and µ the measure
given by

µ(E) =
∫
E

g′ dm.

Let ν be the measure ν(E) = µ(g−1(E)). For any [c′, d′] ⊂ [c, d],

ν([c′, d′]) = µ(g−1([c′, d′])) =
∫ g−1(d′)

g−1(c′)
g′(t) dt

= g(g−1(d′)) − g(g−1(c′)) = d′ − c′ = m([c′, d′]).
As they agree on intervals, ν = m on Borel sets. Then, using first (2.3) and
then (2.4),∫ d

c

f(t) dt =
∫

[c,d]
f dν =

∫
[a,b]

f ◦ g dµ =
∫ g−1(d)

g−1(c)
f(g(t)) g′(t) dt.

As c = g(a) and d = g(b), we are done.
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When g′ < 0, we can replace g′ with −g′ in the definition of µ, and all
that this does is to account for the reverse the order of g−1(c′) and g−1(d′).

(2.5.11) Use Monotone Convergence to show that if f : R → [0,∞)
is piecewise continuous with jump discontinuities, then with
respect to Lebesgue measure∫

[a,b]
f dm =

∫ b

a

f(t) dt.

Answer. If {ak} are the discontinuity points of f , then f is continuous on
each s

(2.5.12) Show that a linear combination of integrable functions is inte-
grable.

Answer. If f, g are integrable and λ ∈ C, then∫
X

|f + λg| dµ ≤
∫
X

(
|f | + |λ| |g|

)
dµ =

∫
X

|f | + |λ|
∫
X

|g| < ∞.

(2.5.13) Compute
∫

[0,1]
αdm, where α is Cantor’s ternary function.

Answer. Since the Cantor set is a nullset, we can simply calculate the integral
on its complement. So we use that α is equal a.e. to

∞∑
k=1

2k−1∑
j=1

2j − 1
2k 1(bk,j/3k,(bk,j+1)/3k),

where the numbers bk,j are the left endpoints of the ternary intervals Ck,j
of length 3−k that are removed in the kth step. Note that we don’t need to
know the bk,j since, because α is constant on the interval, all that matters for
the integral is the length of the interval times the value of the function. On
the interval (bk,j/3k, (bk,j+1)/3k), the function α takes the value (2j−1)/2k.
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Then ∫
[0,1]

αdm =
∞∑
k=1

2k−1∑
j=1

2j − 1
2k

1
3k =

∞∑
k=1

1
6k

2k−1∑
j=1

2j − 1

=
∞∑
k=1

1
6k

(
22k−1(2k−1 + 1)

2 − 2k−1
)

=
∞∑
k=1

2k

6k =
∞∑
k=1

1
3k = 1/3

1 − 1/3

= 1
2 .

A simpler possibility is to notice that α(1−x) = 1−α(x) (this is obvious
visually, and not too hard to show by looking at the intervals symmetric with
respect to x = 1/2; see Exercise 2.2.12). Then∫ 1

0
α(x) dx =

∫ 1

0
α(1 − x) dx =

∫ 1

0
(1 − α(x)) dx = 1 −

∫ 1

0
α(x) dx,

and the result follows.
Yet another way, if we know that the sequence {fn} as in Section 2.2

converges to α, is to notice that∫ 1

0
fn+1 =

∫ 1/3

0

1
2 fn(3x) dx+ 1

6 +
∫ 1

2/3

[1
2 + 1

2fn(3x− 2)
]
dx = 1

3 + 1
3

∫ 1

0
fn.

So Dominated Convergence gives us the relation L = 1
3 + L

3 , from where
L = 1

2 .

(2.5.14) Consider the function f : [0, 1] → R given by the series

f(x) =
∞∑
n=0

x

(1 + x)n .

(a) Show that f(x) = x+ 1 if x ∈ (0, 1], and that f(0) = 0.
(b) Does the series converge uniformly on [0, 1]?
(c) Is is true that∫ 1

0

( ∞∑
n=0

x

(1 + x)n

)
dx =

∞∑
n=0

∫ 1

0

x

(1 + x)n dx ?

Answer.
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(a) It is clear that f(0) = 0. When x > 0,
∞∑
n=0

x

(1 + x)n = x

1 − 1
1+x

= x+ 1.

(b) The series does not converge uniformly on [0, 1]. If it did, its limit would
be continuous.

One can also check this explicitly:∣∣∣∣∣f(x) −
N∑
n=0

x

(1 + x)n

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

n=N+1

x

(1 + x)n

∣∣∣∣∣ = x
1

(1+x)N+1

1 − 1
1+x

= 1
(1 + x)N .

For fixed N , taking x very close to 0 allows us to have the difference as
close to 1 as we want.

(c) Yes. The series has positive terms, so Monotone Convergence (more specif-
ically, Corollary 2.5.8) applies. Let us verify:∫ 1

0

( ∞∑
n=0

x

(1 + x)n

)
dx =

∫ 1

0
(x+ 1) dx = 3

2 ,

while (applying dominated convergence to exchange the integral with the
series, and noting that the series is telescopic)
∞∑
n=0

∫ 1

0

x

(1 + x)n dx =
∫ 1

0
x dx+

∫ 1

0

x

1 + x
dx+

∫ 1

0

x

(1 + x)2

+
∞∑
n=3

∫ 1

0

x

(1 + x)n dx

= 1
2 + (1 − log 2) + (log 2 − 1

2) +
∞∑
n=3

∫ 1

0

x

(1 + x)n dx

= 1 +
∞∑
n=3

∫ 1

0

(
1

(1 + x)n−1 − 1
(1 + x)n

)
dx

= 1 +
∫ 1

0

∞∑
n=3

(
1

(1 + x)n−1 − 1
(1 + x)n

)
dx

= 1 +
∫ 1

0

1
(1 + x)2 dx

= 1 + 1
2 = 3

2 .
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(2.5.15) Prove that

s = lim
k→∞

∞∑
n=1

exp
(

−n+ k

n
e−k/n

)
exists and find its value.

Answer. We have

exp
(

−n+ k

n
e−k/n

)
= exp (−n) exp

(
k

n
e−k/n

)
.

This function is always positive, and

exp
(
k

n
e−k/n

)
≤ max{xe−x : x ∈ [0,∞)} = e−1.

Then
exp

(
−n+ k

n
e−k/n

)
≤ exp(e−1) e−n ≤ 2e−n,

which is integrable, and so by Dominated Convergence we get

lim
k→∞

∞∑
n=1

exp
(

−n+ k

n
e−k/n

)
=

∞∑
n=1

exp
(

−n+ lim
k→∞

k

n
e−k/n

)

=
∞∑
n=1

e−n = e−1

1 − e−1 = 1
e− 1 .

(2.5.16) Find

lim
n→∞

∫ n

0
x1/n e−x dx.

Answer. We have∫ n

0
x1/n e−x dx =

∫ ∞

0
x1/n e−x 1[0,n] dx

We also have
0 ≤ x1/n e−x 1[0,n] ≤ 1[0,1] + xe−x,

which is integrable. By Dominated Convergence we get

lim
n→∞

∫ n

0
x1/n e−x dx = lim

n→∞

∫ ∞

0
x1/n e−x 1[0,n] dx =

∫ ∞

0
e−x dx = 1.
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(2.5.17) Fix α, β > 0.

(a) Show that
∞∑
n=0

(−1)n

α+ nβ
=
∫ 1

0

xα−1

1 + xβ
dx.

(b) Show that
∞∑
n=1

(−1)n+1

n
= log 2.

(c) Show that
∞∑
n=0

(−1)n

2n+ 1 = π

4 .

Answer.

(a) We have
∞∑
n=0

(−1)n

α+ nβ
=

∞∑
n=0

(−1)n
∫ 1

0
xα−1+nβ dx

= lim
M→∞

M∑
n=0

(−1)n
∫ 1

0
xα−1+nβ dx

= lim
M→∞

∫ 1

0
xα−1

M∑
n=0

(−1)nxnβ dx

= lim
M→∞

∫ 1

0
xα−1 1 − (−1)M+1xnβ(M+1)

1 + xβ
dx

=
∫ 1

0

xα−1

1 + xβ
dx.

The last equality is justified using Dominated Convergence, using as upper
bound the function g(x) = 2xα−1

1+xβ .
An alternative proof that does not use measure theory is as follows.

Consider the power series

f(x) =
∞∑
n=0

(−1)n xα+nβ

α+ nβ
.

One can check that the radius of convergence is 1, so for 0 ≤ x < 1 we
can differentiate term by term. As f(0) = 0 (since α, β > 0) and f ′ is
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continuous,
∞∑
n=0

(−1)n

α+ nβ
= f(1) − f(0) =

∫ 1

0
f ′(x) dx =

∫ 1

0

∞∑
n=0

(−1)n xα+nβ−1 dx

=
∫ 1

0
xα−1

∞∑
n=0

(−xβ)n dx

=
∫ 1

0

xα−1

1 + xβ
dx.

(b) Taking α = β = 1 above, we get
∞∑
n=1

(−1)n+1

n
=

∞∑
n=0

(−1)n

1 + n
=
∫ 1

0

1
(1 + x) dx = log 2.

(c) Taking α = 1 and β = 2, we get
∞∑
n=0

(−1)n

2n+ 1 =
∫ 1

0

1
1 + x2 dx = π

4 .

(2.5.18) If an,m ≥ 0 for all n,m ∈ N, use Monotone Convergence to
show that

∞∑
n=1

∞∑
m=1

an,m =
∞∑
m=1

∞∑
n=1

an,m.

Show by example that the equality can fail in general.

Answer. Because each an,m ≥ 0, the series
∑∞
m=1 an,m always exists (even if

it is infinite) as a non-negative function of n. By Monotone Convergence and
seeing the sum over n as an integral with respect to the counting measure,

∞∑
n=1

∞∑
m=1

an,m =
∞∑
n=1

lim
M

M∑
m=1

an,m = lim
M

∞∑
n=1

M∑
m=1

an,m

= lim
M

M∑
m=1

∞∑
n=1

an,m =
∞∑
m=1

∞∑
n=1

an,m.

As for the example, consider

an,m = (−1)n

m+
⌊
n+1

2
⌋ .
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Since a2n−1,m + a2n,m = 0 and an,m → 0 with n, we have that
∑
n an,m = 0.

Then
∞∑
m=1

∞∑
n=1

an,m = 0.

Meanwhile,
∞∑
n=1

∞∑
m=1

an,m =
∞∑
n=1

(−1)n
∞∑
m=1

1
m+

⌊
n+1

2
⌋

does not exist, as the inner series is infinite and so the alternating series on
n is not defined.

Another more or less canonical example is to take

an,m =


1, n = m

−1, n = m+ 1

0, otherwise
For fixed m, we have an,m = 0, 0, · · · , 0, 1,−1, 0, · · · with the 1 and −1 in the
m and m+ 1 positions. Thus

∞∑
m=1

∞∑
n=1

an,m = 0.

Meanwhile, when n is fixed the same happens, but there is an exception for
n = 1. In that case, we have a1,m = 1, 0, . . . . Therefore

∞∑
n=1

∞∑
m=1

an,m = 1.

(2.5.19) Let (X,A, µ) be a measure space and {Xn} ⊂ A a non-de-
creasing sequence such that X =

⋃
n

Xn. Show that, for any

f ≥ 0 measurable,∫
X

f dµ = lim
n→∞

∫
Xn

f dµ.

Answer. The sequence {f 1Xn} is increasing, since f ≥ 0 and 1Xn+1 ≥ 1Xn .
Then, by Monotone Convergence,

lim
n→∞

∫
Xn

f dµ = lim
n→∞

∫
X

f 1Xn dµ =
∫
X

lim
n→∞

f 1Xn dµ =
∫
X

f dµ.
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(2.5.20) Let (X,A, µ) be a measure space and f : X → C integrable
and such that ∣∣∣ ∫

X

f dµ
∣∣∣ =

∫
X

|f | dµ.

Show that there exists α ∈ C, with |α| = 1 and g : X → [0,∞)
integrable such that f = αg a.e.

Answer. If
∫
X

f dµ = 0, then
∫
X

|f | dµ = 0 and so f = 0 a.e. Otherwise, let

β =

∣∣∣ ∫
X

f dµ
∣∣∣∫

X

f dµ

.

Then ∫
X

|f | dµ =
∣∣∣ ∫
X

f dµ
∣∣∣ = β

∫
X

f dµ =
∫
X

βf dµ.

So ∫
X

(|f | − βf) dµ = 0.

Looking at the real part,

0 =
∫
X

(|f | − Reβf) dµ.

As |Reβf | ≤ |βf | = |f |, we get from Exercise 2.5.3 that |f | = Reβf a.e. As
|βf | = |f |, this forces βf = |f | a.e. Because if Im βf ̸= 0, then |f | = Reβf <
|βf | = |f |.

Now |f | = β f , and we can define g = |f | and take the scalar to be
α = β−1.

(2.5.21) Let (X,A, µ) be a measure space. If f : X → C is measurable
and E ∈ A with 0 < µ(E) < ∞, show that

1
µ(E)

∫
E

f dµ ∈ convf(E),

the closed convex hull of f(E); that is, the average is a limit
of convex combinations of values of f .

Answer. Assume first that f ≥ 0. We will construct a sequence of simple
functions that increase to f . The only difference with the simple functions
from Theorem 2.4.13 will be that instead of taking the coefficients to be k−1

2n ,
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we will take some value of f inside the interval
[
k−1
2n ,

k
2n
]
. So we can write

sn =
k(n)∑
j=1

λn,j En,j ,

where {En,j}n is a partition of E and λn,j ∈ f(E). Since E =
⋃
j Ej is a

disjoint union, we have
k(n)∑
j=1

µ(Ej)
µ(E) = 1,

so the numbers µ(Ej)/µ(E) are convex coefficients and

1
µ(E)

∫
E

sn dµ =
k(n)∑
j=1

µ(Ej)
µ(E) λn,j ∈ conv f(E).

Then, using Monotone Convergence,
1

µ(E)

∫
E

f dµ = lim
n

1
µ(E)

∫
E

sn dµ ∈ convf(E).

Now if f : X → R, by as above we construct sequences of simple functions
{s+
n } and {s−

n } such that s+
n ↗ f+ and s−

n ↗ f− and choosing the coefficients
so that s+

n (x) − s−
n (x) ∈ f(E); this is achieved by using the same x in each

interval
[
k−1
2n ,

k
2n
]
. Then

1
µ(E)

∫
E

f dµ = lim
n

1
µ(E)

∫
E

(s+
n − s−

n ) dµ ∈ convf(E).

When f : X → C, again we may arrange the simple functions so that
when we take the averages we get elements in conv f(E).

(2.5.22) Let (X,A, µ) be a measure space such that µ(X) < ∞. Let
f : X → C be integrable, and S ⊂ C closed, and such that

1
µ(E)

∫
E

f dµ ∈ S, whenever E ∈ A, µ(E) > 0.

Show that f(x) ∈ S a.e.

Answer. As Sc is open, Sc =
⋃
nDn, a countable union of disks. Fix n and

D ⊂ Dn be a closed disk. If µ(f−1(D)) > 0, we would have
1

µ(f−1(D))

∫
f−1(D)

f dµ ∈ S,

a contradiction since an average as above is a limit of convex combinations of
values of f and so it is in D ⊂ Sc. As this can be done for any disk D ⊂ Dn,
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we conclude that µ(Dn) = 0. Then µ(Sc) = 0 (countable union of nullsets),
and so f(x) ∈ S a.e.

(2.5.23) Let (X,A, µ) be a measure space, and {fn} a sequence of mea-
surable functions such that fn → 0 uniformly. Does this imply
that

∫
X

fn dµ→c⃝ 2024 Mart́ın Argerami All Rights Reserved 0?

Answer. In a finite measure space, yes. If µ(X) < ∞, given ε < 0 there
exists n0 such that |fn| < ε/µ(X) for all n > n0. Then, for such n,∣∣∣ ∫

X

fn dµ
∣∣∣ ≤

∫
X

|fn| dµ < ε.

When µ(X) = ∞, the assertion can fail. On the real line, let fn = 1
n .

Then fn → 0 uniformly, but
∫
R

|fn| dm = ∞ for all n.

(2.5.24) Let f : X → [0,∞] measurable, with c =
∫
X

f dµ < ∞, and
α > 0. Show that

lim
n→∞

∫
X

n log
[
1 +

(
f

n

)α]
dµ =


∞, 0 < α < 1

c, α = 1

0, 1 < α < ∞

Answer. As a preliminary task, let us establish some basic calculus inequal-
ities. If g(x) = ex − 1 − x, then g(0) = 0 and g′(x) = ex − 1. So the critical
point is x = 0. As g′′(x) = ex ≥ 0, the only critical point is a local mini-
mum, has to be a global minimum since the function is smooth everywhere.
It follows that

1 + x ≤ ex, x ∈ R.
When x ≥ −1, taking logarithm we get

log(1 + x) ≤ x, x ∈ (−1,∞).
For x ≥ −1, n ∈ N and applying the above inequality to x

n , we get n log(1 +
x
n ) ≤ x. Exponentiating, we obtain(

1 + x

n

)n
≤ ex x ∈ (−1,∞). (AB.2.4)

We will also need the well known limit, obtained either by the Mean Value
Theorem, by using Taylor approximations, or by L’Hôpital’s Rule. With the
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Mean Value Theorem, of h(x) = log(1 + x) we have
log(1 + x)

x
= g(x) − g(1)

x
= g′(ξ)x

x
= g′(ξ) = 1

1 + ξ
,

for ξ between 1 and 1 + x. As x → 0 we have ξ → 0, and so the limit is 1. A
by-product of this is

lim
n→∞

(
1 + x

n

)n
= lim
n→∞

en log(1+ x
n ) = lim

n→∞
e
x

log(1+ x
n

)
x
n = ex.

Back to our original problem, we note that the integrand is zero when
f is zero. So by restricting to the appropriate set, we may assume that f > 0
everywhere. We also assume that µ(X) > 0; otherwise, all integrals are zero.

Assume first that 0 < α < 1. We have, for t > 0,

lim
n→∞

n log
[
1 +

(
t

n

)α]
= tα lim

n→∞
n1−α

(
t

n

)−α
log
[
1 +

(
t

n

)α]
= ∞
(AB.2.5)

(using that limx→0 x
−1 log(1 + x) = 1). By Fatou’s Lemma,

lim inf
n→∞

∫
X

n log
[
1 +

(
f

n

)α]
dµ ≥

∫
X

lim
n→∞

n log
[
1 +

(
f

n

)α]
dµ = ∞.

When α = 1, by our Calculus homework above we have

n log
[
1 + f

n

]
=≤ f.

By Dominated Convergence,

lim
n→∞

∫
X

n log
[
1 + f

n

]
dµ =

∫
X

lim
n
n log

[
1 + f

n

]
dµ =

∫
X

f = c.

And when α > 1, from log(1 + x) ≤ x we obtain α log(1 + x) ≤ αx; applying
the exponential,

(1 + x)α ≤ eαx.

Then
1 + xα ≤ (1 + x)α ≤ eαx,

which gives
log(1 + xα) ≤ αx, x > 0.

Thus
n log

[
1 +

(
f

n

)α]
≤ nα

(
f

n

)
= αf.

Then, Dominated Convergence applies. We can use (AB.2.5), where now
α > 1 gives us that the limit is 0. Thus

lim
n→∞

∫
X

n log
[
1 +

(
t

n

)α]
dµ =

∫
X

lim
n
n log

[
1 +

(
t

n

)α]
dµ

= 0.
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(2.5.25) Let (X,A, µ) be a measure space, and f : X → [0, 1] integrable.
Find

lim
n→∞

∫
X

fn dµ.

Answer. Let A = {f = 1}. Since f is measurable, A ∈ A. Because
f(X) ⊂ [0, 1], we have that |fn| ≤ |f |, and so Dominated convergence applies.
We can then write∫

X

fn dµ =
∫
A

fn dµ+
∫
X\A

fn −−−−→
n→∞

∫
A

1 dµ = µ(A).

(2.5.26) Let (X,A) be a measurable space and f : X → [0,∞], mea-
surable. Show that∫ ∞

0
1f−1[t,∞)(s) dt = f(s), s ∈ X. (2.5)

This is sometimes called the layer-cake representation of f .

Answer. Let g(t) = 1f−1[t,∞)(s). We have
g(t) = 1f−1[t,∞)(s) = 1[t,∞)(f(s)) = 1[0,f(s)](t).

Now we can see that g is measurable, since

g−1[t,∞) = {r : g(t) ≥ r} =


∅, r > 1

f−1[t,∞), 0 < r ≤ 1

[0,∞), r = 0
Knowing that g is measurable and nonnegative, the integral exists and∫ ∞

0
1f−1[t,∞)(s) dt =

∫ ∞

0
1[0,f(s)](t) dt =

∫ f(s)

0
1 dt = f(s).

(2.5.27) Find a sequence {fn} of continuous functions fn : [0, 1] → R
such that

• 0 ≤ fn ≤ 1;

• for each x ∈ [0, 1], limn fn(x) does not exist;
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• lim
n

∫ 1

0
fn = 0.

Answer. We are going to construct a “travelling bump” that goes along [0, 1]
over and over again (to make the limit fail to exist) while getting thinner
(to make the integrals go to zero). Initially we index our sequence with two
positive integers m,n, with 1 ≤ m ≤ 2n+1 − 3.

So we define, for m ≥ 2,

gm,n =



0, m−1
2n+1 ≤ x ≤ m

2n+1

2n+1x−m, m
2n+1 ≤ x ≤ m+1

2n+1

1, m+1
2n+1 ≤ x ≤ m+2

2n+1

−2n+1x+m+ 2, m+2
2n+1 ≤ x ≤ m+3

2n+1

0, m+3
2n+1 ≤ x ≤ 1

and for m = 1,

g1,n =


1 − 2n+1x, 0 ≤ x ≤ 1

2n+1

0, 1
2n+1 ≤ x ≤ 1 − 1

2n+1

2n+1x+ 1 − 2n+1, 1 − 1
2n+1 ≤ x

By construction each gm,n is continuous, 0 ≤ gm,n ≤ 1. We have∫ 1

0
gm,m ≤ m+ 3

2n+1 − m

2n+1 = 3
2n+1

so the sequence of integrals go to zero as the indices increase. Finally, given
any x ∈ (0, 1), we can choose a subsequence {mk} such that mk+1

2n+1 ≤ x ≤
mk+2
2n+1 ; then gmk,n(x) = 1 for all x, so the limit of the subsequence at x is

1. But we can also choose mk such that, for large enough n, x ≤ m
2n+1 , and

we get another subsequence with gmk,n(x) = 0 for all k and all n sufficiently
large. For the cases x = 0 and x = 1 we can consider the subsequence g1,n,
with g1,n(x) = 1 for all n; and the subsequence g2n,n with g2n,n(x) = 0. So
the limit doesn’t exist either at 0 nor 1.

(2.5.28) Find a sequence of continuous functions fn : [0, 1] → [0,∞)
such that

• lim
n
fn(x) = 0 for all x;
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• lim
n

∫ 1

0
fn = 0;

• lim
n

∫ 1

0
sup fn = ∞.

(note that these functions fail the hypotheses of DCT but they
do satisfy the conclusion)

Answer. In this case we want functions that grow higher while losing area.
We may choose

fn(x) =
{√

n− n3/2|x− 1
n |, 0 ≤ x ≤ 2

n

0, 2
n ≤ x

Then max{fn(x) : x ∈ [0, 1]} = n, so
∫ 1

0 sup fn =
√
n. We have fn(0) = 0

for all n, and if x > 0, we get fn(x) = 0 for all n > 2/x; so limn fn(x) = 0.
Finally,∫ 1

0
fn =

∫ 1/n

0
fn +

∫ 2/n

1/n
fn

=
∫ 1/n

0

(√
n− n3/2( 1

n
− x)

)
dx+

∫ 2/n

1/n

(√
n− n3/2(x− 1

n
)
)
dx

= 1√
n
.

2.6. Some More Topology

(2.6.1) Show that If X is a Hausdorff topological space and K1,K2 ⊂
X are disjoint compact sets, there exist disjoint open sets V1, V2
with K1 ⊂ V1 and K2 ⊂ V2. Conclude that a compact Haus-
dorff space is normal.

Answer. By Lemma 2.6.3, for each x ∈ K2 there exists Vx open with C1 ⊂ Vx
and Wx open with x ∈ Wx and Vx∩Wx = ∅. We have K1 ⊂

⋃
x∈K2

Vx, so by
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compactness there exist x1, . . . , xn with K1 ⊂
⋃n
j=1 Vxj . Let V =

⋃n
j=1 Vxj

and W =
⋂n
j=1 Wxj . These two sets are open, disjoint, with K1 ⊂ V and

K2 ⊂ W .
When X is compact Hausdorff and C1, C2 ⊂ X are closed and disjoint,

they are compact by Lemma 1.8.16, so the above applies.

(2.6.2) Let T be a Hausdorff topological space and f : T → C contin-
uous. Show that the following statements are equivalent:

(a) f vanishes at infinity;
(b) for each ε > 0, the set {|f | ≥ ε} is compact.

Answer. Suppose first that f vanishes at infinity and fix ε > 0. By definition
there exists K ⊂ T , compact, with |f | < ε outside of K. This means that the
closed set {|f | ≥ ε} lies inside K. Being a closed subset of a compact set, it
is compact.

Conversely, suppose that {|f | ≥ ε} is compact for all ε > 0. If we fix
one such ε > 0, we can take K = {|f | ≥ ε}, and then |f | < ε outside of K.

(2.6.3) Show that ifX = [0, 1] with the usual topology, A = P(X), and
µ is the counting measure, there exists measurable f : X → C
such that the locally compact version of Lusin’s Theorem fails.
Discuss which hypothesis of the theorem is not satisfied in this
example.

Answer. Take f = 1Q. For any ε < 1, if µ(B) < ε then B = ∅. So we need
f = g everywhere, but f is not continuous anywhere. The hypothesis that is
not satisfied is that µ is not outer regular: a singleton {x0} has µ({x0}) = 1,
but any open set that contains {x0} has infinite measure.

(2.6.4) Show that if X = R with the usual topology, A = B(X) is the
Borel σ-algebra, and µ is the Lebesgue measure, there exists
measurable f : X → C (taking nonzero values in a set of infinite
measure) such that Lusin’s Theorem fails.

Answer. Take f = 1. If g has compact support, then the set where f ̸= g
has infinite measure.
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(2.6.5) In the proof of Theorem 2.6.9, write the details of the argument
that the inequalities in (2.29) show that the series converges to
f on K, and that it converges uniformly on T .

Answer. We can rewrite the first inequality as∣∣∣f −
n∑
k=1

fk

∣∣∣ ≤
(2

3
)n
.

This shows that f =
∑
n fn, uniformly, on K. For the everywhere uniform

convergence, the tails of the series satisfy∣∣∣∑
k>n

fn

∣∣∣ ≤
∑
k>n

|fn| ≤ 1
3

∑
k>n

(2
3
)k−1 = 1

3

( 2
3
)n

1 − 2
3

=
(2

3
)n
.

So the sequence of partial sums is uniformly Cauchy, thus showing that the
series converges uniformly everywhere on T .

(2.6.6) Let K ⊂ R be compact. Is K the support of a continuous real
or complex-valued function? If it is, show how to construct
such a function; if it isn’t, describe which compact sets are
supports of continuous functions. Does your answer apply to
other topological spaces?

Answer. In general, no. The following reasoning applies to any metric space.
If K = supp f , then by definition K = {|f | > 0}, so K is the closure of its
interior (the set {|f | > 0} is open by continuity of f). Conversely, if V is an
open set with compact closure K, define

f(x) = d(x, V c) = inf{d(x, y) : y ∈ V c}.
We have for any y ∈ V c and any z

d(x, y) + d(x, z) ≥ d(y, z) ≥ f(z), d(x, z) + d(z, y) ≥ d(x, y) ≥ f(x)
As we can do this for any y ∈ V c, we obtain

f(x) + d(x, z) ≥ f(z), d(x, z) + f(z) ≥ f(x),
which combine into

|f(x) − f(z)| ≤ d(x, z).
So f is continuous. For any x ∈ V , since V is open, f(x) > 0. So V ⊂ supp f .
As f |V c = 0, we get that supp f = V .
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(2.6.7) Let X be compact Hausdorff, and f ∈ C(X). Suppose that
f(x) ̸= 0 for all x ∈ X. Show that 1/f ∈ C(X).

Answer. Let g = |f |, and fix x ∈ X. Since g(x) > 0, there exists a neigh-
bourhood Vx of x such that g(y) > g(x)

2 for all y ∈ Vx. We have X ⊂
⋃
x Vx,

so by compactness there exist x1, . . . , xn ∈ X with X ⊂
⋃n
j=1 Vxj . This

means that if c = 1
2 min{g(x1), . . . , g(xn)}, then g(x) ≥ c for all x. That is,

|f(x)| ≥ c > 0 for all x ∈ X. Now∣∣∣ 1
f(x) − 1

f(y)

∣∣∣ = |f(y) − f(x)|
|f(x)f(y)| ≤ 1

c
|f(y) − f(x)|.

As f is continuous, given ε > 0 there exists a neighbourhood V of x such
that |f(y) − f(x)| < cε for all y ∈ V . Then∣∣∣ 1

f(x) − 1
f(y)

∣∣∣ ≤ 1
c

|f(y) − f(x)| < ε

for all y ∈ V , and so 1/f is continuous.

(2.6.8) Let X be a locally compact Hausdorff space. Show that the
following statements are equivalent:

(a) every f ∈ C0(X) is constant;
(b) X is a singleton.

Answer. If X = {x0}, then f = f(x0) for all x ∈ X. Conversely, suppose
that x1, x2 ∈ X with x1 ̸= x2. Applying Urysohn’s Lemma to K = {x1} and
V open with x1 ∈ V and x2 ̸∈ V , there exists f ∈ C0(X) with f(x1) = 1 and
f(x0) = 0; hence f is not constant.

(2.6.9) The goal of this exercise is to consider an alternative proof
of Lusin’s Corollary 2.6.13 in the case where X is a metric
space. Concretely, we want to show that if f : X → C is
measurable then for every ε > 0 there exists K ⊂ X compact,
with µ(X \ K) < ε, and g ∈ C(X) such that g|K = f |K and
∥f∥∞ = ∥g∥∞.

(a) Assume that f is real-valued. Show that because µ is inner
regular, the proof Theorem 2.6.11 can be repeated with
“compact” in place of “closed”.
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(b) Fix ε > 0 and let K be the compact subset obtained in
the modified version of Theorem 2.6.11; that is, K ⊂ X is
compact with µ(X \K) < ε and such that f |K continuous.
Conclude that f is uniformly continuous.

(c) Define the modulus of continuity ω of f , to be the function
ω1 : [0,∞) → [0,∞) with
ω1(t) = sup{|f(y) − f(x)| : x, y ∈ K, d(x, y) ≤ t}.

Show that |f(x) − f(y)| ≤ ω1(d(x, y)) for all x, y ∈ K, that
ω1(0) = 0, and that ω is non-decreasing and continuous at
0.

(d) Let

ω(t) = 1
t

∫ 2t

t

ω1(s) ds.

Show ω is continuous, that we can define ω(0) = 0 while
maintaining continuity, and |f(x) − f(y) ≤ |ω(d(x, y)) for
all x, y ∈ K.

(e) Define
g(x) = inf{f(y) + ω(d(x, y)) : y ∈ K}. (2.6)

Show that g is continuous and that g|K = f |K .
(f) Show that if f is complex-valued, a continuous function g

as above exists for f .
(g) If ∥f∥∞ < ∞, show that g can be replaced with h◦g, in the

sense that there exists a continuous function H : C → C
such that ∥h ◦ g∥∞ = ∥f∥∞, and h ◦ g is still a continuous
function that agrees with f on K.

Answer.

(a) Because µ is inner regular, the inner regularity by closed sets in Theo-
rem 2.6.11 can be replaced with inner regularity by compacts. Then the
closed subsets produced in the proof will be compact.

(b) A real-valued function f on a metric compact set K is uniformly contin-
uous by Exercise 1.8.17.

(c) By definition, if we take t = d(x, y) then ω1(t) ≥ |f(x) − f(y)|. When
t = 0 the inequality d(x, y) ≤ 0 forces x = y, and then ω1(0) = 0. When
we increase t more pairs x, y because possibly available, so the supremum
is greater; therefore ω1 is non-decreasing. As for the continuity, fix ε > 0.
As f is uniformly continuous on K, there exists δ > 0 such that d(x, y) < δ
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implies |f(x) − f(y)| < ε. So if 0 ≤ t < δ, then ω1(t) < ε; that is, ω1 is
continuous at 0.

(d) Since ω1 is continuous at 0, given ε > 0 there exists δ > 0 with ω1(t) < ε
when 2t < δ. Then, for such t,

ω(t) = 1
t

∫ 2t

t

ω1(s) ds ≤ ε
1
t

∫ 2t

t

1 ds = ε.

This shows that limt→0 ω(t) = 0. For t > 0, as f is bounded on K we have
that ω1 is also bounded, and then ω depends continuously on t. Namely,

ω(t) = 1
t

(∫ 2t

0
ω1 −

∫ t

0
ω1

)
,

and the integrals are continuous because∣∣∣∣ ∫ t+h

0
ω1 −

∫ t

0
ω1

∣∣∣∣ =
∣∣∣∣ ∫ t+h

t

ω1

∣∣∣∣ ≤ h ∥ω1∥∞.

Finally,

ω(d(x, y)) = 1
d(x, y)

∫ 2d(x,y)

d(x,y)
ω1(s) ds ≥ ω1(d(x, y)) ≥ |f(x) − f(y)|.

(e) By definition, g(x) ≤ f(x) when x ∈ K. And since
f(y) + ω(d(x, y)) ≥ f(y) + f(x) − f(y) = f(x),

g = f on K. As for the continuity of g, we proceed as follows. Since K
is compact, the function K ∋ y 7−→ d(x, y) is uniformly continuous and
hence bounded, say d(x, y) ≤ c for all y ∈ K. As the interval [0, c] is
compact, the function ω is uniformly continuous on [0, c]. Fix x ∈ X and
ε > 0 and choose δ > 0 such that

|s− t| < δ =⇒ |ω(s) − ω(t)| < ε, s, t ∈ [0, c]
and

d(y, y′) < δ =⇒ |f(y) − f(y′)| < ε, y, y′ ∈ K.

Suppose that d(x, z) < δ. Then
|d(z, y) − d(x, y)| ≤ d(x, z) < δ, y ∈ X.

For any y ∈ K,
|f(y) + ω(d(x, y)) − [f(y) + ω(d(z, y))]| = |ω(d(z, y)) − ω(d(x, y))| < ε.

By definition of g(x) there exists y ∈ K such that f(y) + ω(d(x, y)) <
g(x) + ε. From (2.6) we have

g(z) ≤ f(y) + ω(d(z, y)) < f(y) + ω(d(x, y)) + ε < g(x) + 2ε.
So g(x) − g(z) < 2ε. Exchanging roles and combining both inequalities
we get that |g(x) − g(z)| < 2ε, and hence g is continuous. .
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(f) Suppose that f = f1 + if2, with f1, f2 real. Fix ε > 0. By the real part
of the theorem, there exist K1,K2 compact with µ(X \Kj) < ε

2 , j = 1, 2,
and functions f̃1, f̃2 ∈ C(X) with f̃1|K1 = f1|K1 and f̃2|K2 = f2|K2 . Let
K = K1 ∩K2. Then K is compact, and

X \K = X \ (K1 ∩K2) = (X \K1) ∪ (X \K2).
So

µ(X \K) < ε

2 + ε

2 = ε.

Put g = f̃1 + if̃2. Then g ∈ C(X) and g|K = f |K .
(g) If ∥f∥∞ < ∞, consider the function h : C → C given by

h(reiθ) =
{
reiθ, r ≤ ∥f∥∞

∥f∥∞ eiθ, r > ∥f∥∞
.

The function h is continuous, so we may replace g with h ◦ g. This keeps
all requirements for g, and it satisfies ∥h ◦ g∥∞ = ∥f∥∞.

(2.6.10) This exercise sketches the constructive proof of Lusin’s Theo-
rem (Corollary 2.6.13) given in [Rud87, Theorem 2.24]. Prop-
erly, the statement to be proven is that in the situation of
Corollary 2.6.13, when the measure space is complete and the
measure µ is outer and inner regular, if there exists A ∈ A with
µ(A) < ∞ and f |X\A = 0, then for every ε > 0 there exists
g ∈ Cc(X) and B ∈ A, such that µ(X \ B) < ε, f = g on B.
If ∥f∥∞ < ∞ we can choose g with ∥f∥∞ = ∥g∥∞.

(a) Assume A compact and 0 ≤ f ≤ 1. Show that there exists
V open with V compact and A ⊂ V .

(b) Show that there exists a sequence {sn} of simple functions
with sn ↗ f uniformly, and such that

sn(X) ⊂
{
m

2n , m ∈ N
}

and
sn(x) − sn−1(x) ∈ {0, 2−n}, x ∈ X.

(c) Define simple functions {tn} by
t1 = s1, tn = sn − sn−1, n ∈ 1 + N.
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Show that, with s0 = 0,
∞∑
n=1

tn = f.

(d) For each n ∈ N, let Tn = t−1
n ({2−n}). Show that Tn is

measurable, and Tn ⊂ A ⊂ V for all n.
(e) Show that for each n there exist Kn compact and Vn open,

with Kn ⊂ Tn ⊂ Vn ⊂ V and with µ(Vn \ Kn) < ε
2n , and

gn ∈ Cc(X) with gn|Kn = 1, 0 ≤ g ≤ 1, and supp gn ⊂ Vn.
(f) Define

g =
∞∑
n=1

2−n gn.

Show that 0 ≤ gn ≤ 1, g ∈ Cc(X), and B ∈ A with µ(X \
B) < ε and f = g on B.

(g) Extend the result to arbitrary A measurable and arbitrary
f .

Answer.

(a) Lemma 2.6.4 gives us V open, with V compact and A ⊂ V .
(b) Because f is bounded and non-negative, Theorem 2.4.13 provides a se-

quence {sn} of simple functions with 0 ≤ sn ≤ sn+1 ≤ f for all n, and
with sn ↗ f uniformly. The construction in the proof guarantees that sn
only takes values of the form m/2n, and also that sn− sn−1 can only take
the values 0 and 2−n.

(c) We have
∞∑
n=1

tn = lim
N→∞

N∑
n=1

(sn − sn−1) = lim
N→∞

sN = f.

(d) Tn is measurable because tn is and singletons are closed in R. Also, Tn ⊂
A ⊂ V since tn(x) > 0 implies f(x) > 0.

(e) For each n, by the regularity of the measure, where exist Kn compact and
Vn open, with Kn ⊂ Tn ⊂ Vn and µ(Vn \Kn) < ε

2n . We may also assume
that Vn ⊂ V , by replacing Vn with Vn ∩ V . By Urysohn’s Lemma there
exists gn ∈ Cc(X) with gn|Kn = 1, 0 ≤ g ≤ 1, and supp gn ⊂ Vn.

(f) We have

g =
∞∑
n=1

2−n gn.
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As 0 ≤ gn ≤ 1, the series converges uniformly and so g is continuous.
Since gn = 0 on V c, we have that supp g ⊂ V , and so g ∈ Cc(X). Let

B′ =
⋃
n

Vn \Kn.

Then µ(B′) < ε. If x ∈ X \ B′ =
⋂
n

V cn ∪ Kn, then for each n we have

that x ∈ V cn or x ∈ Kn. If x ∈ V cn , then gn = 0 and tn = 0; and if x ∈ Kn,
then gn = 1 and tn = 2−n; in both cases, the corresponding summands in
the series for f and g agree. So f = g on X \B′. We put B = X \B′.

(g) Now we assume that A is just measurable, and still 0 ≤ f ≤ 1. Since
µ(A) < ∞, by the outer regularity there exists V open with V ⊂ A and
µ(V \ A) < ε/2. By the inner regularity there exists K compact with
K ⊂ V and µ(V \ K) < ε/2. By the first part of the proof, applied to
f 1K , there exists g ∈ Cc(X) and B0 measurable with µ(B0) < ε/2 and
g = f on K ∩Bc0. As f = g = 0 on V c,

{f ̸= g} ⊂ B0 ∪ (V \K).
Taking B′ = B0 ∪ (V \K), we showed that f = g on X \B′ and

µ(B′) ≤ µ(B0) + µ(V \K) < ε

2 + ε

2 = ε.

Then we put B = X \B′.
When f non-negative and bounded, 0 ≤ f ≤ c, we apply the above to

f/c.
When f ≥ 0 and unbounded, let Hn = {f ≥ n}. The measurable sets

{Hn} form a decreasing sequence of sets of finite measure (since Hn ⊂ A);
and on

⋂
n

Hn, f would have to take the value ∞. As this is not possible,

the measure of the intersection is 0, and by continuity of the measure
µ(Hn) → 0. This allows us to choose n so that µ(Hn) < ε/2 and f is
bounded on the complement. We apply the previous part of the proof to
f on Hn: so there exists g ∈ Cc(X) and B0 ⊂ Hc

n with µ(B0) < ε/2 and
f = g on Hc

n \ B0. Then B′ = Hn ∪ B0 satisfies µ(B′) < ε and f = g on
X \B′. We put B = X \B′.

When f is real valued, we can write f = f+−f−, and use the previous
part of the proof to find g1, g2 ∈ Cc(X) and B1, B2 measurable, with
µ(Bj) < ε/2, and f+ = g1 on X \ B1 and f− = g2 on X \ B2. Then if
B′ = B1 ∪B2, we have µ(B′) < ε and f = g1 − g2 on X \B′. And again
we put B = X \B′.

When f : X → C, we write f = f1 + if2, with f1, f2 real-valued, and
apply the previous paragraph.
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If ∥f∥∞ then |f | ≤ c a.e. for some c. Define γ : C → C by

γ(z) =
{
z, |z| ≤ c

cz/|z|, |z| > c

and replace the g previously obtained with γ ◦ g. By construction γ is
continuous, so γ ◦ g ∈ Cc(X). Whenever g = f , we have γ ◦ g = g = f ;
and clearly |h ◦ g| ≤ c. As we can do this with c = ∥f∥∞, we get that
∥h ◦ g∥∞ = ∥f∥∞.

(2.6.11) Determine where in the proof of Egorov’s Theorem 2.6.16 is
the condition µ(E) < ∞ used.

Answer. When using continuity of the measure in the proof, what one gets
is that µ(E) = limn µ(Emn ); the complete computation is then

µ(E \ Emn ) = µ(E) − µ(Emn ) −−−−→
n→∞

0.

(2.6.12) Let (X,M, µ) be a positive measure space. We use the follow-
ing notation, that will be introduced formally soon: L1(µ) is
the set of integrable functions; and ∥f∥1 =

∫
X

|f | dµ. A set

Φ ⊂ L1(µ) is said to be uniformly integrable if for each ε > 0
there exists δ > 0 such that∣∣∣∣∫

E

f dµ

∣∣∣∣ < ε (2.7)

whenever f ∈ Φ and µ(E) < δ.

(a) Prove that every finite subset of L1(µ) is uniformly inte-
grable.

(b) Prove the following convergence theorem of Vitali: if
(i) µ(X) < ∞;
(ii) {fn} is uniformly integrable;
(iii) fn(x) → f(x) a.e.;
(iv) |f(x)| < ∞ a.e.;
then f ∈ L1(µ) and ∥fn − f∥1 → 0.

Suggestion: Egorov.



2. SOME MORE TOPOLOGY 117

(c) Show that (b) fails for the Lebesgue measure on R, even if
∥fn∥1 ≤ c for all n. So the finite-measure hypothesis cannot
be omitted.

(d) Show that for a measure space X with finite measure, Vi-
tali’s Theorem (b) implies the Dominated Convergence The-
orem.

Answer. Note first that we can replace the condition (2.7) with∫
E

|f | dµ < ε. (AB.2.6)

Indeed, if f is uniformly integrable, we may apply the definition to the sets
E ∩ {f ≥ 0} and E ∩ {f < 0} to obtain that both f+ and f− are uniformly
integrable. And then |f | = f+ + f− is also uniformly integrable by using ε/2
and the least δ between the one from f+ and the one from f−.

(a) Consider first a single f ∈ L1(µ). If Xn = {|f | ≤ n}, then f − f 1Xn →
0 pointwise (because

⋃
Xn = X up to a nullset by (2.6.12(b)iv)). By

Dominated Convergence,
∥f − f 1Xn∥1 →c⃝ 2024 Mart́ın Argerami All Rights Reserved 0.

Fix ε > 0. By the above there exist n ∈ N, g ∈ L1(µ), with |g| ≤ n, and
with ∥f − g∥1 ≤ ε

2 . Let δ = ε/(2n). If µ(E) < δ, then∫
E

|f | dµ ≤
∫
E

|f − g| dµ+
∫
E

|g| dµ ≤ ε

2 + nµ(E) < ε.

So f is uniformly integrable. If Φ = {f1, . . . , fm}, for each j there is a δj
as above. Now choose δ = min{δ1, . . . , δm}.

(b) Fix ε > 0. Since {fn} is uniformly integrable, there exists δ > 0 such that∫
E

|fn| < ε/3 when µ(E) < δ. By Egorov, there exists measurable B ⊂ X
with µ(X \ B) < δ and fn → f uniformly on B. So choose n0 such that
|fn − f | < ε/(3µ(X)) on B when n ≥ n0. Then, for n ≥ n0 (and using
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Fatou at the end),

∥fn − f∥1 =
∫
X

|fn − f | dµ =
∫
B

|fn − f | dµ+
∫
X\B

|fn − f | dµ

≤ ε

3µ(X)

∫
B

1 dµ+
∫
X\B

|fn| dµ+
∫
X\B

|f | dµ

≤ ε

3 + ε

3 + lim inf
n

∫
X\B

|fn| dµ

≤ ε

3 + ε

3 + ε

3 = ε.

As ε was arbitrary, this shows that ∥fn − f∥1 → 0 and that f ∈ L1 (since
L1 is complete).

(c) Let
fn(x) = 1

n
1[0,n].

Then limn fn(x) = 0 for all x. Given ε > 0, if µ(E) < ε then∫
E

fn(x) dx = µ(E ∩ [0, n])
n

≤ µ(E) < ε.

So the {fn} are uniformly integrable. Also, ∥fn∥1 = 1 for all n. Thus
∥fn − f∥1 = 1 for all n, contradicting Vitali’s Theorem.

(d) The situation for Dominated Convergence is that |fn| ≤ g for some g ∈
L1(µ). By (2.6.12(b)i), the function g is uniformly integrable. Then since∫
E

|fn| dµ ≤
∫
E
g dµ for all E and all n, the sequence {fn} is uniformly

integrable. From |fn| ≤ g for all n we obtain |f | ≤ g. As g is integrable,
we get that |f | < ∞ a.e. Then the four conditions in Vitali’s Theorem
apply and we obtain that f ∈ L1(µ) and ∥fn − f∥1 → 0.

2.7. Product Measures

(2.7.1) Write another proof for Proposition 2.7.2 by showing the set
S = {E ⊂ X × Y : Ex ∈ B, Ey ∈ A for all x ∈ X, y ∈ Y }.

is a σ-algebra that contains the measurable rectangles.
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Answer. Since (A × B)x is either B or ∅ and (A × B)y is either A or ∅,
A×B ∈ S whenever A ∈ A and B ∈ B. For any E ∈ S,

(Ec)x = {y ∈ Y : (x, y) ̸∈ E} = {y ∈ Y : (x, y) ∈ E}c = (Ex)c ∈ B,
and similarly (Ec)y = (Ey)c ∈ A. So S contains complements. If {En} ⊂ S,(⋃

n

En

)
x

=
{
y ∈ Y : (x, y) ∈

⋃
n

En
}

=
⋃
n

{y ∈ Y : (x, y) ∈ En} =
⋃
n

(En)x ∈ B;

and similarly the y-section of a countable union is the union of the y-sections
and so in A. Thus S is a σ-algebra that contains all measurable rectangles
and so A ⊡ B ⊂ S. In particular, Ex ∈ B and Ey ∈ A for all measurable E.

(2.7.2) Let E,Ek ⊂ X × Y for k ∈ N, and x ∈ X. Show that(⋃
k

Ek

)
x

=
⋃
k

(Ek)x,
(⋂

k

Ek

)
x

=
⋂
k

(Ek)x,

and
(Ec)x = (Ex)c

Answer. If y ∈ (Ek)x for some k, this means that (x, y) ∈ Ek. Thus
(x, y) ∈

⋃
k Ek, showing that y ∈

(⋃
k Ek

)
x
. All the implications we just did

are reversible, so this proves that(⋃
k

Ek

)
x

=
⋃
k

(Ek)x.

Now if y ∈ (Ec)x, then (x, y) ∈ Ec, so (x, y) ̸∈ E, and hence y ̸∈ Ex. Thus
(Ec)x ⊂ (Ex)c. Again the implications are reversible, and this shows that
(Ec)x = (Ex)c.

As for the intersections, combining the other two properties(⋂
k

Ek

)
x

=
[(⋂

k

Ek

)cc]
x

=
[(⋃

k

Eck

)c]
x

=
(⋃

k

(Eck)x
)c

=
(⋃

k

(Ek)cx
)c

=
(⋂

k

(Ek)x
)cc

=
⋂
k

(Ek)x.
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(2.7.3) Show that every σ-finite measure µ is semifinite (see Exer-
cise 2.3.26). Show also an example of a semifinite measure
that is not σ-finite.

Answer. Suppose that µ is σ-finite. This means that we can write X =⋃
nXn, with µ(Xn) < ∞ for all n, and Xn ⊂ Xn+1 for all n. Let E be

measurable with µ(E) = ∞. Since E =
⋃
n(E ∩ Xn), by continuity of the

measure we have µ(E) = limn µ(E ∩Xn). So there exists n such that µ(E ∩
Xn) > 0, and also µ(E ∩Xn) ≤ µ(Xn) < ∞.

As an example that the reverse implication fails, let X = R and µ the
counting measure. Then every nonempty set contains a point, which has
positive finite measure. But the space is not σ-finite, since R is uncountable.

(2.7.4) Let X and Y be separable metric spaces. Show that B(X ×
Y ) = B(X) ⊡ B(Y ).

Answer. We may generate the product topology with the metric
d((a, b), (c, d)) = dx(a, c) + dY (b, d).

This way we can see that X × Y is a separable metric space, and that for
any open set Z ⊂ X × Y and any (x, y) ∈ Z there exists an open rectangle
V ×W with (x, y) ∈ V ×W ⊂ Z.

Let {qn} ⊂ X, {pn} ⊂ Y be dense. Then {qn × qm}n,m ⊂ X × Y is
dense. Given any open Z ⊂ X × Y , combining what we have just seen we
can find for each (qn, pm) an open rectangle Vn,m × Wn,m with (pn, qm) ∈
Vn,m × Wn,m ⊂ Z. So Z is a countable union of open rectangles. This
shows that B(X) ⊡ B(Y ) is a σ-algebra that contains all open sets, and thus
B(X × Y ) ⊂ B(X) ⊡ B(Y ).

The reverse inclusion holds without the separability (nor metric) re-
quirements. If V ⊂ X and W ⊂ Y are open, then V × W is open in X × Y
and hence V ×W ∈ B(X × Y ). Let

S = {E ⊂ X : E × Y ∈ B(X × Y )}.
Since B(X × Y ) is a σ-algebra and all set operations will happen in the first
coordinate, it follows easily that S is a σ-algebra. As V × Y ∈ B(X × Y ) for
all open V ⊂ X, we have that S is a σ-algebra that contains all open sets in
X. Thus B(X) ⊂ S. In particular, E × Y ∈ B(X × Y ) for all E ∈ B(X).
We can similarly show that X × F ∈ B(X × Y ) for all F ∈ B(Y ). Then
E × F = (E × Y ) ∩ (X × F ) ∈ B(X × Y ). Thus the σ-algebra B(X × Y )
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contains all rectangles E × F with E ∈ B(X), F ∈ B(Y ); this shows that
B(X) ⊡ B(Y ) ⊂ B(X × Y ).

(2.7.5) Show that for any ε > 0 there exists V ⊂ Rn, open, dense, and
with m(V ) < ε. Then answer the following questions:

(a) Does the measure of an open subset of Rn agree with the
measure of its closure?

(b) Is the measure of the boundary of every open subset of Rn
zero?

Answer. The set Qn is dense and countable. Write Qn = {qk}k∈N. Given
ε > 0, let

V =
∞⋃
k=1

B2−k−1 ε/c(qk),

where c = m(B1(0)). Then V is open, dense (since it contains Qn) and
m(V ) < ε. As the closure of V is all of Rn, we have m(V ) < ε and m(V ) = ∞.
Similarly, as every point in Rn is a boundary point for V , the boundary of V
has infinite measure.

(2.7.6) Show that, in R × R, the set⋂
n

n⋃
k=1

[
k − 1
n

,
k

n

]2
= {(x, x) : 0 ≤ x ≤ 1}

is not a countable union of rectangles (measurable or not).
Conclude that the set of countable unions of rectangles does
not form a σ-algebra.

Answer. If A × B is a rectangle with both A and B having at least two
elements a1, a2 ∈ A, b1, b2 ∈ B, then {(a1, b1), (a1, b2), (a2, b1), (a2, b2)} ⊂
A×B has different points that share a coordinate. That does not happen on
{(x, x) : x}, so it cannot contain a non-trivial rectangle. So we are left with
only rectangles of the form {x} × {x}, but then we need uncountably many
of these to cover the whole diagonal.

(2.7.7) Let (X,A, µ) and (Y,B, ν) be measure spaces and {Ak ×Bk} a
countable family of rectangles. Use Lemma 2.7.4 to show that
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there exists a pairwise disjoint countable family of rectangles
{A′

k ×B′
k} such that⋃

k

A′
k ×B′

k =
⋃
k

Ak ×Bk

and ∑
k

µ(A′
k)ν(B′

k) ≤
∑
k

µ(Ak)ν(Bk).

Answer. Let S1 = A1 ×B1 and

Sk = (Ak ×Bk) \
k⋃
j=1

Sj .

By Lemma 2.7.4 each Sk is a finite disjoint union of rectangles Sk =
⋃
j

Ck,j×

Dk,j with {Ck,j}j pairwise disjoint for each k. Then⋃
k

Ak ×Bk =
⋃
k

Sk =
⋃
k,j

Ck,j ×Dk,j

as a disjoint union. Because Sk is a disjoint union of rectangles and Sk ⊂
Ak ×Bk, it follows that Ck,j ⊂ Ak, Dk,j ⊂ Bk for all j. Then, because they
are pairwise disjoint,∑

j

µ(Ck,j) = µ
(⋃
j

Ck,j
)

≤ µ(Ak).

All terms are non-negative, so∑
j

µ(Ck,j)ν(Dk,j) ≤
∑
j

µ(Ck,j)ν(Bk) ≤ µ(Ak)ν(Bk)

and hence ∑
k,j

µ(Ck,j)ν(Dk,j) ≤
∑
k

µ(Ak)ν(Bk).

Finally, we relabel {Ck,j ×Dk,j} as {A′
k ×B′

k}.

(2.7.8) Show that m×m is outer regular.

Answer. Let E ∈ M(R × R). Fix ε > 0. By Lemma 2.7.7 there exists a
countable union of rectangles R such that E ⊂ R and (m×m)(R \E) < ε/2.
We may assume without loss of generality that R =

⋃
k Rk with all rectangles

disjoint (we did this in the proof of Proposition 2.7.5). Now Rk = Ak × Bk,
with Ak, Bk ∈ M(R). By the outer regularity of m (Corollary 2.3.26) there
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exist open sets Vk,Wk with Ak ⊂ Vk, Bk ⊂ Wk, and m(Vk \Ak) <
√
ε/2k+1,

m(Wk \Bk) <
√
ε/2k+1. Then V =

⋃
k Vk ×Wk is open and

(m×m)(V \R) = (m×m)
(⋃

k

(Vk ×Wk) \
⋃
k

Rk

)
≤ (m×m)

(⋃
k

(Vk ×Wk) \Rk
)

= (m×m)
(⋃

k

(Vk \Ak) × (Wk \Bk)
)

≤
∑
k

ε

2k+1 = ε

2 .

Finally, we have that E ⊂ V and
(m×m)(V \ E) = (m×m)((V \R) ∪ (R \ E)) ≤ ε

2 + ε

2 = ε.

(2.7.9) Let (X,A, µ) and (Y,B, ν) be measure spaces. Let f : X×Y →
C be A⊡B-measurable. Show that the sections fx and fy are
measurable.

Answer. Let V ⊂ C be open. Then
f−1
x (V ) = {y ∈ Y : f(x, y) ∈ V } = {y ∈ Y : (x, y) ∈ f−1(V )}

=
(
f−1(V )

)
x
.

By Proposition 2.7.2 we conclude that f−1
x (V ) is measurable.

(2.7.10) Let (X,A, µ) and (Y,B, ν) be complete measure spaces, and
f : X × Y → C measurable. Show that the sections fx and fy
are measurable a.e.

Answer. Given V ⊂ C open, we have that f−1(V ) ∈ M(X × Y ). By
Lemma 2.7.7 we can write f−1(V ) = F ∪G with F ∈ A⊡B and G a nullset.
Then

(fx)−1(V ) = {y ∈ Y : f(x, y) ∈ V } = (f−1(V ))x = (F ∪G)x = Fx ∪Gx.

Now Fx is measurable by Proposition 2.7.2 and, by the completeness, so is
Gx by Lemma 2.7.9. Then fx is measurable µ-a.e., precisely where Gx is
measurable.



124 CHAPTER 2

(2.7.11) Show an example of an M(X×Y )-measurable function f such
that fx is not measurable for x in a set of positive measure.

Answer. Since every measure can be completed, there is no way to make this
exciting, as we can only play with sets that are equal a.e. with measurable
sets.

Take for instance X = Y = R with Borel measure; that is, we consider
the Lebesgue measure but we take B(R) to be our σ-algebra in each of X and
Y . Choose H ∈ M(R) \ B(R), and put E = [0, 1] ×H. Then E ∈ M(R×R);
to see this, note that by Proposition 2.3.28 we can write H = B ∪ H0, with
B ∈ B(R) and m(H0) = 0. Then

E = ([0, 1] ×B) ∪ ([0, 1] ×H0) ∈ M(R × R),
since both sets in the union are measurable (the first one is Borel while the
second one is a nullset). Now take f = 1E . Then f is measurable, as E is.
But for x ∈ [0, 1],

(fx)−1(0, 2) = {y : (x, y) ∈ E} = H,

so fx is not measurable for all x ∈ [0, 1].

(2.7.12) Let (X,A, µ) be a measure space. Show that the following
statements are equivalent:

(a) there exist {Xn} ⊂ A, pairwise disjoint, with µ(Xn) < ∞
for all n and X =

⋃
n

Xn;

(b) there exist {Xn} ⊂ A, with Xn ⊂ Xn+1 and µ(Xn) < ∞
for all n, and with X =

⋃
n

Xn.

Answer. Suppose first that {Xn} are pairwise disjoint, with finite measure,

and X =
⋃
n

Xn. Let Yn =
n⋃
k=1

Xk ∈ A. Then µ(Yn) ≤
∑

1 µ(Xk) < ∞, and

X ⊃
⋃
n

Yn ⊃
⋃
n

Xn = X,

so X =
⋃
n

Yn.
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Conversely, suppose that X =
⋃
n

Xn with Xn ⊂ Xn+1 and µ(Xn) < ∞

for all n. Let Y1 = X1 and inductively let

Yn = Xn \
n−1⋃
k=1

Xk.

Then the Yn are pairwise disjoint by construction. Also, µ(Yn) ≤ µ(Xn) < ∞
for all n. And, given any x ∈ X there exists n such that x ∈ Xn, which implies
that x ∈ Y1 ∪ · · · ∪ Yn. Thus X =

⋃
n Yn.

(2.7.13) Let f : Rd → C be integrable. Show that∫
Rd
f(t) dm(t) =

∫
Rd
f(x− t) dm(t), x ∈ Rd. (2.8)

Answer. This can be done using Exercise 2.5.7, but we will write an explicit
argument.

Assume first that f = 1E for some measurable E with m(E) < ∞.
Then, using that Lebesgue measure is translation and reflection invariant,∫

Rd
1E(x− t) dt =

∫
Rd

1x−E(t) dt = m(x− E) = m(E) =
∫
Rd

1E(t) dt.

By linearity, it follows that (2.8) holds for f simple. We can then use Mono-
tone Convergence to obtain the equality for f ≥ 0, and then it will hold for
f = f+ − f− by linearity of the integral.

(2.7.14) Use Fubini’s Theorem and the equality∫ ∞

0
e−xt dt = 1

x
, x > 0,

to show that ∫ ∞

0

sin x
x

dx = π

2 .

Note that x 7−→ sin x
x is not integrable.

Answer. There is a bit of a subtlety in that the integral exists as an improper
Riemann integral, and not as a Lebesgue integral. By definition,∫ ∞

0

sin x
x

dx = lim
k→∞

∫ 2kπ

0

sin x
x

dx.
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Looking at the iterated integral of the absolute value,∫ 2kπ

0

∫ ∞

0
| sin x e−xt| dt dx =

∫ 2kπ

0
| sin x|

∫ ∞

0
e−xt dt dx

=
∫ 2kπ

0

| sin x|
x

dx < ∞,

since sin x
x is continuous on [0, 2kπ]. As this iterated integral of the absolute

value converges, by Fubini the double integral exists and is equal to the
iterated integrals. Thus∫ 2kπ

0

sin x
x

dx =
∫ 2kπ

0

∫ ∞

0
sin x e−xt dt dx =

∫ ∞

0

∫ 2kπ

0
sin x e−xt dx dt

=
∫ ∞

0

1 − e−2kπt

1 + t2
dt.

Since the integrand is nonnegative and bounded by the integrable function
t 7−→ 1

1+t2 , by Dominated Convergence we get∫ ∞

0

sin x
x

dx = lim
k→∞

∫ ∞

0

1 − e−2kπt

1 + t2
dt =

∫ ∞

0

1
1 + t2

dt = π

2 .

(2.7.15) Let f : X → [0,∞) be measurable. Use the layer-cake repre-
sentation (2.5) to conclude that∫

X

f dµ =
∫ ∞

0
µ({f ≥ t}) dt.

Answer. We use (2.5) and Tonnelli to get∫
X

f dµ =
∫
X

∫ ∞

0
1f−1[t,∞)(s) dt dµ(s) =

∫ ∞

0

∫
X

1f−1[t,∞)(s) dµ(s) dt

=
∫ ∞

0
µ(f−1[t,∞)) dt =

∫ ∞

0
µ({f ≥ t}) dt.

(2.7.16) Let (X,A, µ) be a σ-finite measure space. Let f : X → [0,∞)
be measurable.

(a) Show that the graph of f is a (µ×m)-nullset.
(b) Show that if

B = {(x, t) ∈ X × R : 0 < t < f(x)}
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then (µ×m)(B) =
∫
X

f dµ.

(c) Does the above work if we replace the codomain with an
arbitrary measure space?

Answer.

(a) The graph of f is the set G = {(x, f(x)) : x ∈ X}. It is measurable
because the function g(x, t) = f(x) − t is measurable (since it is a linear
combination of measurable) and then

G = g−1({0})
is measurable.

Note that 1G(x, t) = 1 if t = f(x), and zero otherwise; so the set
{t : 1G(x, t) = 1} consists of the single point f(x). Using Tonelli, we have

(µ×m)(G) =
∫
X×R

1G d(µ×m) =
∫
X

∫
R

1G(x, t) dm(t) dµ(x)

=
∫
X

0, dµ = 0.

Below is a second argument without Tonelli. If X =
⋃
nXn with

µ(Xn) < ∞, then G =
⋃
nGn, where Gn is the graph of f |Xn . Hence

we can assume without loss of generality that µ(X) < ∞. Similarly, we
can partition [0,∞) =

⋃
n[n, n + 1), which allows us—again without loss

of generality—to assume that f(X) ⊂ [0, 1]. Fix k ∈ N and let {Ij} be a
dyadic partition of [0, 1]; that is, m(Ij) = 2−k for all j. Then

(µ×m)(G) = (µ×m)
(⋃

j

(G ∩ (X × Ij))
)

=
∑
j

(µ×m)(G ∩ (X × Ij))

≤
∑
j

(µ×m)(f−1(Ij) × Ij) =
∑
j

µ(f−1(Ij))m(Ij)

= 2−k
∑
j

µ(f−1(Ij)) = 2−kµ(X).

As this can be done for any k, (µ×m)(G) = 0.
(b) With the same g as above, B = g−1[0,∞) is measurable. Then we can

use Tonneli to see

(µ×m)(B) =
∫
X⊗R

1B d(µ×m) =
∫
X

∫
R

1B(x, t) dm(t) dµ(x)

=
∫
X

m({t : 0 ≤ t ≤ f(x)} dµ(x) =
∫
X

f(x) dµ(x).
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And here is an argument without Tonelli. Suppose for a moment that
µ(X) < ∞. Suppose first that f = 1E . Then

B = {(x, t) : 0 < t < 1E(x)} = E × (0, 1),
and

(µ×m)(B) = µ(E) =
∫
X

1E dµ.

When f =
∑
j αj1Ej is simple,

B =
⋃
j

Ej × (0, αj),

and then
(µ×m)(B) =

∑
j

αjµ(Ej) =
∫
X

f dµ.

Now assume that f is bounded. Given ε > 0, there exists s =
∑
j α1Ej

with |s(x) − f(x)| < ε for all x. Since s ≤ f , we have Bs ⊂ Bf . Then
(µ×m)(Bf ) − (µ×m)(Bs) = (µ×m)(Bf \Bs)

= (µ×m)({(x, t) : s(x) < t < f(x)}

≤ (µ×m)
(⋃

j

Ej × (αj , α+ ε)
)

= ε
∑
j

µ(Ej) = ε µ(X).

It follows that if {sn} is an increasing sequence of simple functions that
converge uniformly to f , then by Monotone Convergence

(µ×m)(Bf ) = lim
n

(µ×m)(Bsn) = lim
n

∫
X

sn dµ =
∫
X

f dµ.

When f is unbounded, let fn = min{f, n}. Then fn is measurable and
fn ↗ f . We have Bfn ⊂ Bfn+1 for all n, and Bf =

⋃
nBfn . By continuity

of the measure and Monotone Convergence,

(µ×m)(Bf ) = lim
n

(µ×m)(Bfn) = lim
n

∫
X

fn dµ =
∫
X

f dµ.

Finally, for arbitrary σ-finite X we have X =
⋃
nXn with µ(Xn) < ∞ for

all n and Xn ∩Xm = ∅ if n ̸= m. Then

(µ×m)(B) =
∑
n

(µ×m)(Bn) =
∑
n

∫
Xn

f dµ =
∫
X

f dµ.

(c) Let X = Y = N with the counting measure. Any function is measurable.
Let f : X → Y be the function f(x) = 1. Then the graph of f is N × {1}
and (µ × µ)(N × {1}) = ∞ × 1 = ∞. The integral equality requires R
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on the codomain for the integral to make sense. Consider X = R with
µ = m, and the counting measure on the codomain. Let f(x) = x. Then

(m× µ)(B) ≥ (m× µ)([1/2, 1] × [1/2, 1]) = 1
2 µ([1/2, 1]) = ∞,

but
∫
X

f dm = 1
2.

(2.7.17) (Polar Coordinates in Rn). Let Sn−1 be the unit sphere on Rn
(i.e., those u with |u| = 1). Show that any nonzero x ∈ Rn can
be written x = ru, with r > 0 and u ∈ Sn−1. Thus Rn \ {0}
can be seen as the cartesian product (0,∞) × Sn−1.

Let m be the Lebesgue measure on Rn, and define a
measure σ on the Borel sets of Sn−1 by

σ(A) = nm(Ã),
where Ã = {ru : 0 < r < 1, u ∈ A}. Show that for every
Borel f ≥ 0,∫

Rn
f dm =

∫ ∞

0

∫
Sn−1

rn−1 f(ru) dσ(u) dr. (2.9)

Hint: if A ⊂ Sn−1 is open and 0 < r1 < r2, let E = {ru :
r1 < r < r2, u ∈ A}. Show the equality for 1E , and then pass
to characteristics of Borel sets.

Answer. For any nonzero x ∈ Rn, we have x = |x| (x/|x|). Note also that
for any measurable X ⊂ Rn, and any r > 0, we have m(rX) = rnm(X).
This can be seen by calculating the outer measure (the covers for rX are
precisely rn times the covers for X) or by using the corresponding property
for the 1-dimensional Lebesgue measure and considering the n-dimensional
Lebesgue measure as the product measure.

Let A and E as in the hint. We have, since r1Ã ⊂ r2Ã when r1 < r2,∫
Rn

1E dm = m(E) = m(r2Ã \ r1Ã) = m(r2Ã) −m(r1Ã) = (rn2 − rn1 )m(Ã).

On the other hand, since ru ∈ E if and only if r1 < r < r2 and u ∈ A,∫ ∞

0

∫
Sn−1

rn−1 1E(ru) dσ(u) dr =
∫ r2

r1

rn−1
∫
A

1 dσ dr

= σ(A)
∫ r2

r1

rn−1 dr = σ(A)
n

(rn2 − rn1 )

= (rn2 − rn1 )m(Ã).
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So (2.9) holds for such E when A is open.
For any x ∈ E we have x = ru, u ∈ A. As A is open, there is a ball

B0 (of dimension n− 1) in A with u ∈ B0; so x ∈ (r1, r2) ×B0, an open set.
Then there exists a ball B in Rn with x ∈ B ⊂ (r1, r2) ×B0; showing that E
is open.

Let V ⊂ Rn be open and bounded, say V ⊂ BR(0); assume also that
m(V ) = m(V ). This last condition happens for instance when V is a finite
union of balls and can fail for countable unions (proof of both facts at the
end).

Given 0 < r1 < r2 let

U(r1, r2) =
⋃

t∈[r1,r2)

(1
t
V
)

∩ Sn−1.

Each U(r1, r2) is open in the relative topology of Sn−1 since it is a union of
open sets. For each n ∈ N define

En =
2n⋃
k=1

{
ru : (k − 1)R

2n ≤ r <
kR

2n , u ∈ U
( (k − 1)R

2n ,
kR

2n
)}
.

Each En is a finite disjoint union of sets where (2.9) holds, so by additivity
of the integral we get (2.9) for each En. Since UI ⊂ UJ when I ⊂ J , the
sequence En is decreasing. Now we claim that, with X0 either {0} or the
empty set

V ⊂ X0 ∪
⋂
n

En ⊂ V (AB.2.7)

(proof at the end). Our hypothesis about the boundary of V implies that
1V = 1V a.e. By (AB.2.7) and continuity of the measure we also have∫

1En = m(En) −−−−→
n→∞

m(V ) =
∫

1V . (AB.2.8)

As 1En − 1V is monotone non-increasing a.e., its pointwise limit has to be
0 a.e. (because on the set where the limit is not zero (AB.2.8) fails). Thus
1V = limn 1En a.e. As 1En satisfies (2.9), Dominated Convergence (justified
by V being bounded, so we are integrating inside BR(0) and thus any bounded
measurable function is integrable) then gives us (2.9) for 1V and thus for V .

For arbitrary V open we can write V =
⋃
n

Bn, a countable union of

balls. Putting Fn =
n⋃
k=1

Bn allows us to write V =
⋃
n

Fn, an increasing union

of sets which are finite unions of balls. Each Fn satisfies (2.9) by the previous
paragraph; and then so does V via Monotone Convergence.

Finally, let B ⊂ Rn be Borel. By the outer regularity of the Lebesgue
measure, for each h ∈ N there exists Vh open with B ⊂ Vh and m(Vh \B) <
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1/h. Replacing Vh+1 with Vh+1 ∩ Vh, we can get the sequence Vh to be
decreasing. If m(B) < ∞, we can apply Dominated Convergence twice to get∫

Rn
1B dm = lim

h

∫
Rn

1Vh dm = lim
h

∫ ∞

0

∫
Sn−1

rn−1 1Vh(ru) dσ(u) dr

=
∫ ∞

0

∫
Sn−1

rn−1 1B(ru) dσ(u) dr.

When m(B) = ∞ we can write it as an increasing union of Borel sets, and
we get the equality (with infinity on both sides) via Monotone Convergence.

So (2.9) holds for all characteristics of Borel sets. Then by linearity
it holds for all simple Borel functions; and by Monotone Convergence the
equality holds for all measurable f ≥ 0.

Proof that for a finite union of balls, the Lebesgue measure of the closure
of their union is equal to the measure of the union. For a single ball centered
at the origin take A = Sn−1 and r1 = 1 − 1

k , r2 = 1 + 1
k , which gives us

m
(
B1(0) \B1(0)

)
≤ m(B1+ 1

k
(0) \B1− 1

k
(0))

=
[(

1 + 1
k

)n −
(
1 − 1

k

)n]
m(B1(0)) −−−−→

k→∞
0.

For a finite union of balls we obtain m(V ) = m(V ) from the unit ball case
by translation, scaling, and finite subadditivity of the Lebesgue measure.

To see that this cannot hold in general for countable unions, let {qn}
be an enumeration of Q ∩ [0, 1], fix ε > 0, and let Vn = (qn − ε

2n , qn + ε
2n ).

Then if V =
⋃
n Vn we have

m(V ) ≤
∑
n

m(Vn) =
∑
n

ε

2n−1 = 2ε,

while m(V ) = m([0, 1]) = 1.

Proof of (AB.2.7). If tu ∈ V with u ∈ Sn−1 and t > 0, then for all n
we have u ∈ U

( (kn−1)R
2n , knR2n

)
, where {kn} is a sequence of positive integers

such that t ∈
[ (kn−1)R

2n , knR2n
)
. So tu ∈ En for all n. Thus V ⊂ X0 ∪

⋂
n

En.

Conversely, if tu ∈
⋂
n

En then for each n there exists kn ∈ N with (kn−1)R
2n ≤

t < knR
2n and un ∈ U

( (kn−1)R
2n , knR2n

)
with tu = tnun. For each un there exists

sn ∈
[ (kn−1)R

2n , knR2n
)

with snun ∈ V . Note that sn → t since the intervals
squeeze to t. By compactness of Sn−1 there exists a convergent subsequence
{unj} and so tu = limj snjunj ∈ V . If 0 ∈ V we will also get X0 = {0} ⊂ V .
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(2.7.18) Show that, when n = 2, the equality (2.9) becomes the usual
Calculus polar coordinate change of variable; that is, for f ∈
Cc(R2), ∫

R2
f dm =

∫ ∞

0

∫ 2π

0
r f(r cos t, r sin t) dt dr.

Answer. We have ∫
R2
f dm =

∫ ∞

0

∫
S1

r f(ru) du dr.

We can parametrize S1, the unit circle, as (cos t, sin t) for t ∈ [0, 2π]. For an
arc A = (cos t, sin t) with a ≤ t ≤ b, we have

σ(A) = 2m(Ã) = 2π b− a

2π = b− a.

So σ can be seen as the Lebesgue measure on the arc length. As f(ru) =
f(r cos t, r sin t),∫

R2
f dm =

∫ ∞

0

∫ 2π

0
r f(r cos t, r sin t) dt dr.

(2.7.19) (Volume of a ball in Rn) Let Br(0) be the ball of radius r, in
Rn, centered at the origin.

(a) Show that m(B1(0)) = σ(Sn−1)/n.

(b) Calculate
∫
Rn
e−|x|2

dm using Fubini.

(c) Calculate
∫
Rn
e−|x|2

dm, using (2.9), in terms if σ(Sn−1)
and the Gamma Function from Exercise 3.1.6.

(d) Show that m(Br(0)) = rnm(B1(0)).
(e) Use what you found to write a formula for m(Br(0)).
(f) Let Cn ⊂ Rn denote the hypercube of side 2 centered at

the origin, and Bn ⊂ Rn the ball of radius 1 centered at
the origin. Show that limn→∞

m(Bn)
m(Cn) = 0. This result

is not so anti-intuitive when you notice that diamBn = 2,
while diamCn = 2

√
n. Another way of seeing it as natural

is that the unit ball cannot touch the areas near the corners
of the cube. The square has four corners, the cube has eight
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corners, and in dimension n the hypercube has 2n corners.
So as dimension grows, there are more an more parts of the
cube that cannot be touched by the ball.

Answer.

(a) We have, using the previous question,

m(B1(0)) =
∫
Rn

1B1(0) dm =
∫ ∞

0
rn−1

∫
Sn−1

1B1(0)(ru) dσ dr

=
∫ 1

0
rn−1

∫
Sn−1

1 dσ dr = σ(Sn−1)
n

.

Alternatively, we can note that B1(0) = S̃n−1.

(b) By Fubini, and using that e−|x|2 = e−x2
1 · · · e−x2

n ,∫
Rn
e−|x|2

dm =
(∫

R
e−t2 dt

)n
= πn/2.

(c) Now, using the substitution s = r2,∫
Rn
e−|x|2

dm =
∫ ∞

0
rn−1

∫
Sn−1

e−r2|u|2
dσ(u) dr

=
∫ ∞

0
rn−1

∫
Sn−1

e−r2
dσ(u) dr

= σ(Sn−1)
∫ ∞

0
rn−1 e−r2

dr = σ(Sn−1)
2

∫ ∞

0
sn/2−1 e−s ds

= σ(Sn−1)
2 Γ

(n
2
)
.

(d) This is the same as in the previous question:
m(Br(0)) = m(r B1(0)) = rnm(B1(0)),

using the outer measure (or approximating from within by boxes).
(e) Now

m(Br(0)) = rnm(B1(0)) = rn

n
σ(Sn−1) = 2πn/2 rn

nΓ(n/2) = πn/2 rn

Γ(n2 + 1) .

(f) Since m(Cn) = 2n, we are doing

lim
n→∞

πn/2

2nΓ(n2 + 1) ≤ lim
n→∞

πn/2

2n = 0

as
√
π < 2.
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(2.7.20) Let α > 0, n ∈ N. In Rn, evaluate∫
|x|≤1

1
|x|α

dx, and
∫

|x|≥1

1
|x|α

dx.

Answer. We use (2.9). Let f(x) = 1
|x|α 1B1(0). Then∫

|x|≤1

1
|x|α

dx =
∫ ∞

0

∫
Sn−1

rn−1 1
|ru|α

1B1(0)(ru) dσ(u) dr

=
∫ 1

0

∫
Sn−1

rn−1−α dσ(u) dr = nm(B1(0))
∫ 1

0
rn−1−α dr.

Thus ∫
|x|≤1

1
|x|α

dx =


nπn/2

(n− α) Γ(n2 + 1) , α < n

∞, α ≥ n

For the integral from 1 to ∞, all that changes is the convergence of the integral
on r at the end. So∫

|x|≥1

1
|x|α

dx =


∞, α ≤ n

nπn/2

(α− n) Γ(n2 + 1) , α > n

(2.7.21) Let (X,A, µ) be a σ-finite measure space and f : X → C mea-
surable. Let ωf : [0,∞) → [0,∞) be the distribution function

ωf (t) = µ({|f | > t}).
Prove that∫

X

|f |p =
∫ ∞

0
p tp−1 ωf (t) dt, 1 ≤ p < ∞.

More generally, show that if γ : [0,∞) → [0,∞) is increasing,
differentiable, and γ(0) = 0, then∫

X

γ ◦ f dµ =
∫ ∞

0
ωf (t) γ′(t) dt.
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Answer. We have, using Tonelli since we have iterated integrals of nonneg-
ative functions,∫

X

γ ◦ |f | dµ =
∫
X

∫ |f(x)|

0
γ′(t) dt dµ(x) =

∫
X

∫ ∞

0
γ′(t) 1{|f |>t}(t) dt dµ(x)

=
∫ ∞

0

∫
X

γ′(t) 1{|f |>t}(t) dµ(x) dt

=
∫ ∞

0
γ′(t)µ({|f | > t}) dµ(x) dt.

2.8. Lp-Spaces

(2.8.1) Let (X,A, µ) be a measure space. Show that the relation
defined in (2.44) is an equivalence relation. Show that ad-
dition, multiplication, and p-norms of classes are well-defined
by means of their representatives.

Answer. Since f = f everywhere, we have f ∼ f . If f = g on A and
µ(Ac) = 0, then g = f on A and µ(Ac) = 0, so g ∼ f . If f ∼ g and g ∼ h,
there exist A,B with µ(Ac) = µ(Bc) = 0 with f = g on A and g = h on
B. Let C = A ∩ B. On C we have f = g = h; and µ(Cc) = µ(Ac ∪ Bc) ≤
µ(Ac) + µ(Bc) = 0, so f ∼ h.

If f ∼ f ′ and g ∼ g′ then there exist A,B with f = f ′ on A, g = g′

on B, and µ(Ac) = µ(Bc) = 0. Let C = A ∩ B. On C, f + g = f ′ + g′ and
fg = f ′g′. And µ(Cc) = µ(Ac ∪Bc) ≤ µ(Ac) + µ(Bc) = 0.

Finally, if f = g on A and µ(Ac) = 0,∫
X

|f |p dµ =
∫
A

|f |p dµ =
∫
A

|g|p dµ =
∫
X

|g|p dµ.

(2.8.2) Let p ∈ [1,∞] and f ∈ Lp(X). Show that {|f | = ∞} is a
nullset.
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Answer. Suppose first that p = ∞. Then µ({|f | = ∞}) ≤ µ(∥f∥ > ∥f∥∞ =
0.

When p < ∞, if µ({|f | = ∞}) > 0 then

∥f∥pp =
∫
X

|f |p dµ ≥
∫

{|f |=∞}
|f |p dµ = ∞,

a contradiction.

(2.8.3) Show that |f | ≤ ∥f∥∞ a.e.

Answer. By definition, for each n ∈ N there exists An such that |f | ≤
∥f∥∞+1/n on An and µ(Acn) = 0. Let A =

⋂
n

An. Then µ(Ac) = µ(
⋂
n

Acn) ≤∑
n

µ(Acn) = 0. And on A we have |f | ≤ ∥f∥∞ + 1/n for all n, so |f | ≤ ∥f∥∞

a.e.

(2.8.4) Show that if (X,A, µ) is a measure space and {fn} ⊂ Lp(X),
then ∥∥∥ ∞∑

k=1
|fk|
∥∥∥
p

≤
∞∑
k=1

∥fk∥p,

and the inequality still holds even if one or both sides are infi-
nite.

Answer. We have, using Monotone Convergence and both continuity and
monotonicity of the exponential functions,∥∥∥ ∞∑

k=1
|fk|
∥∥∥
p

=
(∫

X

( ∞∑
k=1

|fk|
)p
dµ

)1/p
=
(∫

X

lim
K→∞

( K∑
k=1

|fk|
)p
dµ

)1/p

= lim
K→∞

(∫
X

( K∑
k=1

|fk|
)p
dµ

)1/p
= lim
K→∞

∥∥∥ K∑
k=1

|fk|
∥∥∥
p

≤ lim
K→∞

K∑
k=1

∥fk∥p =
∞∑
k=1

∥fk∥p.

(2.8.5) Let p ∈ [1,∞). Show that if a ∈ ℓp(N), then a is bounded.
Can we say the same for f ∈ Lp(R)?
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Answer. We have

|a(n)| ≤
( ∞∑
k=1

|a(k)|p
)1/p

= ∥a∥p.

So ∥a∥∞ ≤ ∥a∥p.
In Lp(R) there are unbounded functions. For instance we can consider

f(x) =


0, x ≤ 0

x−1/(2p), x ∈ (0, 1)

0, x ≥ 1
Or

f(x) =
∞∑
n=1

n 1[
n,n+ 1

np+2

].

(2.8.6) Show that the hypothesis that ∥f∥r < ∞ for some r in Propo-
sition 2.8.11 cannot be omitted.

Answer. Let X = R with Lebesgue measure, and take f = 1. Then ∥f∥∞ =
1, while ∥f∥p = ∞ fora all p < ∞.

(2.8.7) Show that a Cauchy sequence {fn} ⊂ Lp(X) is uniformly
bounded in Lp(X): that is, there exists c > 0 such that ∥fn∥p <
c for all n.

Answer. This holds in any metric space. Let ε > 0. Since {fn} is Cauchy,
there exists n0 such that for all n,m ≥ n0 we have

∥fn − fm∥p < ε.

Then ∣∣∥fn∥p − ∥fm∥p
∣∣ < ε,

showing that the sequence of real numbers {∥fn∥p}n is Cauchy. As Cauchy
sequences in R are bounded, there exists c > 0 with ∥fn∥p < c for all n.

Another way to answer the question is to use the standard argument
that a Cauchy sequence in a metric space is bounded.

(2.8.8) Show that ℓp(N), 1 ≤ p < ∞ is separable, while ℓ∞(N) is not
separable.
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Answer. With {ej} as usual the canonical basis, let

X =
{ n∑
j=1

cjej : n ∈ N, cj ∈ Q + iQ
}
.

Then X is countable; let us show it is dense. Given f ∈ ℓp(N), we have

f =
∞∑
j=1

fjej , where
∞∑
j=1

|fj |p < ∞.

Fix ε > 0. Choose n such that
∑∞
j=n+1 |fj |p < (ε/2)p. Choose cj ∈ Q + iQ

with |cj − fj | < (εp/2j+1)1/p. Then y =
∑n
j=1 cjej ∈ X, and

∥f − y∥p =

∥∥∥∥∥∥
n∑
j=1

(fj − cj)ej +
∞∑

j=n=1
fjej

∥∥∥∥∥∥
p

≤
( n∑
j=1

|fj − cj |p
)1/p

+
( ∞∑
j=n+1

|fj |p
)1/p

≤
( n∑
j=1

εp

2j+1

)1/p
+ ε

2 ≤ ε

2 + ε

2 = ε.

On the other hand, ℓ∞(N) is not separable. Consider the uncountable
set P(N), and let α : P(N) → ℓ∞(N) be given by α(R) = 1R. That is, we
map R to the sequence x that has xk = 1 if k ∈ R, and xk = 0 otherwise.
For any two sets R,S ∈ P(N) with R ̸= S, there exists k ∈ (R \ S) ∪ (S \R).
Then (1R − 1S)(k) = 1 and so ∥1R − 1S∥∞ = 1. We have uncountable many
points all at distance 1 from each other, and so ℓ∞(N) cannot be separable.

Here is another argument to show that ℓ∞(N) is not separable. Assume
that A ⊂ ℓ∞(N) is countable. Write A = {an : n ∈ N}. Now construct
x ∈ ℓ∞ by

x(m) =
{

0, |am(m)| ≥ 1
1, |am(m)| < 1

Then |x(m) − am(m)| ≥ 1, giving us ∥x− am∥ ≥ 1 for all m. Thus A is not
dense.

(2.8.9) Show that the subspace
c00 = {x : N→c⃝ 2024 Mart́ın Argerami All Rights Reserved C, with finite support}

is dense in ℓp(N), 1 ≤ p < ∞. What about the case p = ∞?
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Answer. Taking the set X from question (2.8.8), X ⊂ c00, so
ℓp(N) = X ⊂ c00 ⊂ ℓp(N).

.
When p = ∞ it cannot be dense, again by (2.8.8), since c00 is separable,

so we would have that ℓ∞(N) is separable.

(2.8.10) Show that if f ∈ L1(µ), then for each ε > 0 there exists δ > 0
such that

∫
E

|f |dµ < ε whenever µ(E) < δ. Can δ be chosen
independently of f?

Answer. The argument we need was already used to answer Exercise 2.6.12.
Fix ε > 0. For n ∈ N, let An = {|f | > n}, Bn = {|f | ≤ n}. We have

µ(An) =
∫
An

1 dµ = 1
n

∫
An

ndµ ≤ 1
n

∫
An

|f | dµ ≤ ∥f∥1

n
.

So ∫
E

|f | dµ =
∫
E∩An

|f | dµ+
∫
E∩Bn

|f | dµ ≤ ∥f∥1

n
+ nµ(E).

Choose n so that n > 2∥f∥1/ε, and let δ = ε
2n . Then, if µ(E) < δ,∫

E

|f | dµ ≤ ∥f∥1

n
+ nµ(E) ≤ ε

2 + ε

2 = ε.

Here is a slightly different argument, though in the end it uses the
same idea. Given f ∈ L1(µ) and ε > 0, by Proposition 2.8.16 there exists
g ∈ L∞(µ) with ∥f − g∥1 < ε/2. If we put δ = ε/(2∥g∥∞), then if µ(E) < δ
we have ∫

E

|f | dµ ≤ ε

2 +
∫
E

|g| dµ ≤ ε

2 + ∥g∥∞µ(E) < ε

2 + ε

2 = ε.

The choice of δ is intrinsically dependent on f . Consider the functions
fn = n 1[0, 1

n ]. Then for En = [0, 1
n ] we have

∫
En
fn = 1, while µ(En) = 1

n . If
we fix ε > 0 with ε < 1 and we fix δ > 0, then for n > 1

δ we have µ(En) < δ

while
∫
En
fn > ε.

(2.8.11) Let (X,A, µ) be a measure space. Let p, q ∈ (1,∞) with 1
p +

1
q = 1. Let f ∈ Lp(X), g ∈ Lq(X). Show that the following
statements are equivalent:

(a) ∥fg∥1 = ∥f∥p∥g∥q ;
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(b) either f = 0, g = 0, or there exists α ∈ (0,∞) with |f |p =
α|g|q.

(Hint: for the nontrivial part, try to undo the proof of Young’s
Inequality)

Answer. If f = 0 or g = 0, the equality holds trivially. If |f |p = α|g|q, then

∥fg∥1 =
∫
X

|fg| dµ =
∫
X

α1/p|g|q/p+1 dµ = α1/p
∫
X

|g|q dµ,

and

∥f∥p∥g∥q =
(∫

α|g|q dµ
)1/p(∫

X

|g|q dµ
)1/q

= α1/p
∫
X

|g|q dµ

Conversely, assume that ∥fg∥1 = ∥f∥p∥g∥q. If ∥f∥p∥g∥q = 0, then either
f = 0 or g = 0. So we assume that ∥f∥p > 0 and ∥g∥q > 0. By replacing
f with f/∥f∥p and g with g/∥g∥q, we may assume that ∥fg∥1 = 1 and
∥f∥p = ∥g∥q = 1. So we have∫

X

|f | |g| = 1 = 1
p

∫
X

|f |p + 1
q

∫
X

|g|q.

We may rewrite this as

0 =
∫
X

(
1
p

|f |p + 1
q

|g|q − |fg|
)
.

By Young’s Inequality, the integrand above is nonnegative, so from the equal-
ity we conclude that

|fg| = 1
p

|f |p + 1
q

|g|q a.e.

Now fix an x where the equality holds; writing a = |f(x)|p, b = |g(x)|q, we
have

a1/pb1/q = 1
p
a+ 1

q
b.

Applying logarithm, we obtain
1
p

log a+ 1
q

log b = log
(

1
p
a+ 1

q
b

)
.

Because of the concavity of log, this equality can only happen if a = b. So
|f(x)|p = |g(x)|q for all such x; that is, |f |p = |g|q a.e. Going back to
the original f and g, we get |f |p/∥f∥pp = |g|q/∥g∥qq a.e., and we can take
α = ∥f∥pp/∥g∥qq.
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(2.8.12) Let (X,A, µ) be a measure space. Let p, q ∈ (1,∞) with 1
p +

1
q = 1. Let f ∈ Lp(X), g ∈ Lq(X). Show that the following
statements are equivalent:

(a) ∥f + g∥p = ∥f∥p + ∥g∥p;
(b) there exist α, β ≥ 0, not both zero, with αf = βg a.e.

Answer.
If f + g = 0 then the equality 0 = ∥f∥p + ∥g∥ + p implies f = g = 0.

If f = 0, we can take β = 0, α = 1. Similarly, if g = 0 we can take α = 0,
β = 1.

Otherwise, both f, g are nonzero and we can rewrite ∥f + g∥p = ∥f∥p+
∥g∥p as

∥f + g∥pp =
(
∥f∥p + ∥g∥p

)
∥f + g∥p−1

p .

If we now look into the inequalities used to prove Minkowski’s inequality, we
get equality in the two Hölder inequalities in between. By Exercise 2.8.11
there exist numbers a′, b′ ∈ C, with at least one of them nonzero, such that
|f |p = b′ |f + g|p, |g|p = a′ |f + g|p a.e. In fact, since |f | ̸= 0 and |g|ne0, we
can a′b′ > 0. Thus we have α, β > 0 with

|f | = β |f + g|, |g| = α |f + g|.
This implies that α |f | = β |g|. The equalities in the proof of Minkowsky’s
inequality also give∫

X

[
|f + g| − |f | − |g|

]
|f + g|p−1 dµ = 0.

This means that |f |+ |g| = |f +g| whenever |f +g| ≠ 0; but when |f +g| = 0
we have |f | = |g| = 0, and thus |f + g| = |f | + |g| a.e. This last equality
occurs if and only if fg ≥ 0 a.e. Indeed, by squaring and cancelling we get
|fg| = Re fg; and the equality |z| = Re z for z ∈ C implies z ≥ 0.

So whenever both f ̸= 0 and g ̸= 0, if h = fg,

f = h

|g|
g.

Taking absolute value (recall that h ≥ 0), h
|g| = β

α , constant. Then αf = βg.
The converse is trivial: if αf = βg with α, β ≥ 0 and α ̸= 0 we have

∥f + g∥p =
∥∥∥β
α
g + g

∥∥∥
p

= β

α
∥g∥p + ∥g∥p = ∥f∥p + ∥g∥p.

If α = 0 then β ̸= 0 and we can exchange roles.
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(2.8.13) Show by example that the p-norm is not a norm when p < 1.

Answer. We want to show that the triangle inequality fails. In Lp({1, 2}),
let f = (1, 0), g = (0, 1). Then

∥f∥p = ∥g∥p = 1, ∥f + g∥p = 21/p.

As 0 < p < q, we get
∥f + g∥p = 21/p > 2 = ∥f∥p + ∥g∥p.

(2.8.14) Prove the following generalization of Hölder’s Inequality for
functions f1, . . . , fn. Namely, if p1, . . . , pn ≥ 1 with

∑n
j=1

1
pj

=
1, and fj ∈ Lpj (X), j = 1, . . . , n. Then

∥f1 · · · fn∥1 ≤ ∥f1∥p1 · · · ∥fn∥pn . (2.10)

Answer. We will do induction on the usual Hölder inequality. As a base
case, we can take the case n = 2. So now assume that (2.10) holds for n. Let

r = 1
1
p1

+ · · · + 1
pn

.

Then, using first Hölder with conjugate exponents r and pn+1 and later with
exponents

p1/r, . . . , pn/r,

we get

∥f1 · · · fn+1∥1 =
∫
X

|f1 · · · fn| |fn+1| dµ ≤ ∥f1 · · · fn∥r ∥fn+1∥pn+1

=
(∫

X

|f1|r · · · |fn|r dµ
)1/r

∥fn+1∥pn+1

≤
(

∥f1∥rp1
· · · ∥fn∥rpn

)1/r
∥fn+1∥pn+1

= ∥f1∥p1 · · · ∥fn∥pn+1 .

The argument can be simplified slightly by using the inequality from Exer-
cise 2.8.15.

The proof can also be made by mimicking the proof of the original
Hölder inequality, but using a version of Young’s inequality with n terms,
that also follows from the convexity of the log function.



2. LP -SPACES 143

(2.8.15) Use Hölder’s Inequality to prove the following more general
inequality: if f ∈ Lp(X), g ∈ Lq(X), where p, q ≥ 1 and r is
such that 1

r = 1
p + 1

q , then

∥fg∥r ≤ ∥f∥p∥g∥q. (2.11)

Answer. Note that r cannot be infinite. We can apply the usual Hölder, with
exponents p/r and q/r. Then

∥fg∥r = ∥ |f |r |g|r ∥1/r
1 ≤ ∥ |f |r ∥1/r

p/r ∥ |g|r ∥1/r
q/r = ∥f∥p ∥g∥q.

This works even when one of p, q is infinite, as long as the original relation
1
r = 1

p + 1
q is satisfied.

(2.8.16) Show that if f, g have compact support, then f ∗g has compact
support.

Answer. Suppose that F = supp f and G = supp g have finite measure.
Then

(f ∗g)(x) =
∫
X

f(t) g(x−t) dt =
∫
F

f(t) g(x−t) dt =
∫
F∩(x−G)

f(t) g(x−t) dt.

For y ∈ G, x−y ∈ F if and only if x ∈ y+F ⊂ G+F . Thus supp f∗g ⊂ G+F .

(2.8.17) (Young’s Convolution Inequality) Prove Young’s Convolution
Inequality (2.48). (Hint: for non-negative f, g and p, q, r finite,

(f ∗ g)(x) =
∫
Rd
f(t)p/rg(x− t)q/r f(t)p/p1 g(x− t)q/p2 dt

and use (2.10) for the exponents r, p1, p2, where 1
p1

= 1
p − 1

r

and 1
p2

= 1
q − 1

r )

Answer. We have 1
p + 1

q = 1
r + 1, and

1
r

+ 1
p1

+ 1
q1

= 1
r

+ 1
p

− 1
r

+ 1
q

− 1
r

= 1
p

+ 1
q

− 1
r

= 1.

As with the original Hölder inequality, we may assume without loss of gener-
ality that f, g ≥ 0, for they always appear inside an absolute value. Following
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the hint,

(f ∗ g)(x) =
∫
Rd
f(t)p/rg(x− t)q/r f(t)p/p1 g(x− t)q/p2 dt

≤
(∫

Rd
f(t)pg(x− t)qdt

)1/r(∫
Rd
f(t)pdt

)1/p1(∫
Rd
g(x− t)qdt

)1/p2

=
(∫

Rd
f(t)pg(x− t)q dt

)1/r
∥f∥p/p1

p ∥g∥q/p2
q .

Then, as rp/p1 = r − p and rq/p2 = r − q,

∥f ∗ g∥rr =
∫
Rd

|(f ∗ g)(x)|r dx

≤ ∥f∥rp/p1
p ∥g∥rq/p2

q

∫
Rd

∫
Rd
f(t)pg(x− t)q dt dx

= ∥f∥r−p
p ∥g∥r−q

q

∫
Rd

∫
Rd
f(t)pg(x− t)q dx dt

= ∥f∥r−p
p ∥g∥r−q

q ∥f∥pp ∥g∥qq = ∥f∥rp ∥g∥rq.

Taking the rth root we get (2.48).
It remains to address the case where at least one of p, q, r is ∞. When

r = ∞ we have 1
p + 1

q = 1, and

|(f ∗ g)(x)| ≤
∫
Rd

|f(t)| |g(x− t)| dx ≤ ∥f∥p ∥g∥q

by Hölder’s Inequality. If p = ∞ this forces q = 1 and r = ∞ and again we
can apply the Hölder. Same when q = ∞.

(2.8.18) (Interpolation). Let (X,A, µ) be a measure space. Let r, s ∈
[1,∞] with r < s. Show that if f ∈ Lr(X) ∩ Ls(X), then
f ∈ Lp(X) for all p ∈ (r, s).

Answer. There exists t ∈ (0, 1) with 1
p = t

r + 1−t
s (this works even if s = ∞).

Using Exercise 2.8.15,
∥f∥p = ∥|f |t |f |1−t∥p ≤ ∥ |f |t ∥r/t ∥ |f |1−t ∥s/(1−t) = ∥f∥tr ∥f∥1−t

s < ∞.
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(2.8.19) Let fn : X → [0,∞) be measurable for all n, with f1 ≥ f2 ≥
· · · ≥ 0, with fn → f pointwise, and such that there exists n0
with fn0 ∈ L1(µ). Prove that

lim
n→∞

∫
X

fndµ =
∫
X

fdµ.

Show that the assertion fails if the L1 condition is omitted.

Answer. The limit is the same if the sequence begins at n0; so without loss
of generality we may assume that f1 ∈ L1(µ). Then Dominated Convergence
applies, with g = f1.

If no integrability is required, consider X = R with Lebesgue measure,
and fn = 1

n . Then fn ↘ 0, and∫
X

fn = ∞ for all n,
∫
X

f = 0.

(2.8.20) Let X be a set. Show that if 1 ≤ p < q < ∞, then ℓq(X) ⊂
ℓp(X) ⊂ ℓ∞(X).

Answer. Assume first that 1 ≤ p < q < ∞. Since p < q we have p/q < 1.
Then ( m∑

n=1
|an|q

)p/q
≤

m∑
n=1

|an|qp/q =
m∑
n=1

|an|p.

This idea works for any finite subset of X, and taking limit works for any
countable subset. Even if X is uncountable, a ∈ ℓp(X) implies that an ̸= 0
only on a countable subset. So ∥a∥q ≤ ∥a∥p, showing that ℓq(X) ⊂ ℓp(X).
When q = ∞, any element of ℓp(X) is bounded, so ℓp(X) ⊂ ℓ∞(X).

(2.8.21) For some measures, r < s implies Lr(µ) ⊂ Ls(µ); for others,
the reverse inclusion holds; for others, Lr(µ) = Ls(µ); and still
for others, no inclusion holds if r ̸= s. Show examples of all
these situations, and find conditions on µ under which each
case occurs.

Answer. If r < s, then ℓr(N) ⊂ ℓs(N). Indeed, if
∑
k |ak|r < ∞, then

eventually |ak| < 1. Then |ak|s ≤ |ak|r for all k sufficiently large. This shows
that

∑
k |ak|s < ∞. This will happen whenever A contains infinitely many

pairwise disjoint sets {Ej} with 0 < µ(Ej) < ∞.
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If µ(X) < ∞, then r < s implies Ls(µ) ⊂ Lr(µ). Indeed, if
∫
X

|f |r =
∞, then

∫
|f |≥1 |f |r = ∞ (otherwise, as µ(X) < ∞, we would have that the

whole integral is finite). Then
∫

|f |≥1 |f |s ≥
∫

|f |≥1 |f |r = ∞.
If A is finite (in particular, if X is finite), then Lr(X) = Ls(X) for all

r, s, as f ∈ Lp(X) if and only if |f | < ∞ a.e. and f |A = 0 a.e. if µ(A) = ∞;
independently of p.

On the real line with the Lebesgue measure, there is no inclusion
Lr(R) ⊂ Ls(R) if r ̸= s, as shown in Exercise 2.8.22.

(2.8.22) Given p ≥ 1, find f ∈ Lp(R) such that f ̸∈ Lq(R) for any q ̸= p.

Answer. Let fn : (0, 1] → R be fn(x) = x(−1+1/n)/p. Then fn ∈ Lp[0, 1] and
fn ̸∈ Lq[0, 1] for all q ≥ p/(1 − 1

n ). Similarly, let gn(x) = x(−1− 1
n )/p. Then

gn ∈ Lp[1,∞) while gn ̸∈ Lq[1,∞) for all q ≤ p/(1 + 1
n ).

An easy computation shows that∫ 1

0
|fn|p =

∫ ∞

1
|gn|p = n.

The idea is to use the infinitely many intervals available to us to patch
things and “use all n”. Let γ : N × N → Z be a bijection. Define intervals

Im,n = [γ(m,n), γ(m,n) + 1).
As γ is bijective, the intervals Im,n are pairwise disjoint and cover all of R.
Let

f(x) =
{

2−n/pn−1/p fn(x− γ(1, n)), x ∈ I1,n

2−n/pn−1/p gn(x− γ(m,n) +m− 1), x ∈ Im,n, m > 1
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Now∫
R

|f |p =
∑
m,n

∫
Im,n

|f |p

=
∑
n

2−nn−1
∫
I1,n

|fn(x− γ(1, n))|p

+
∑
n

2−nn−1
∞∑
m=2

∫
Im,n

|gn(x− γ(m,n) +m− 1)|p

=
∑
n

2−nn−1
∫ 1

0
|fn(x)|p +

∑
n

2−nn−1
∞∑
m=2

∫ 1

0
|gn(x+m− 1)|p

=
∑
n

2−nn−1
∫ 1

0
|fn(x)|p +

∑
n

2−nn−1
∞∑
m=2

∫ m

m−1
|gn(x)|p

=
∑
n

2−nn−1
∫ 1

0
|fn(x)|p +

∑
n

2−nn−1
∫ ∞

1
|gn(x)|p

= 2.

On the other hand, if q > p there exists n with q > p/(1 − 1
n ). Then∫

R
|f |q ≥

∫
I1,n

|f |q = 2−nq/pn−q/p
∫ 1

0

1
x
q
p (1− 1

n ) dx = ∞.

And if q < p there exists n with q < p/(1 + 1
n ). Then∫

R
|f |q ≥

∫⋃
m
Im,n

|f |q =
∫ ∞

1

1
q
p (1 + 1

n )
dx = ∞.

For a fancier example, let

f(x) =


1

x1/p(log2 x+ 1)
, x > 0

0, otherwise
Then∫

R
|f |p dx ≤

∫ 1

0

1
x log2 x

dx+
∫ ∞

1

1
x log2 x

dx = 2 < ∞.

If q > p, using the substitution t = − log x,∫
R

|f |q dx ≥
∫ 1

0

1
xq/p(log2 x+ 1)q

dx =
∫ ∞

0

et(
q
p−1)

(t2 + 1)q dt = ∞.

And if q < p,∫
R

|f |q dx ≥
∫ ∞

1

1
xq/p log2q/p x

dx =
∫ ∞

1

et(1− q
p )

(t2 + 1)q dt = ∞.
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(2.8.23) Do Propositions 2.8.14, 2.8.16 and 2.8.18 hold in ℓ∞(N)? Give
proofs or counterexamples.

Answer. All three fail in ℓ∞(N). When N is considered with the discrete
topology, the counting measure is a Radon measure, and so the compactly
supported continuous functions are precisely the measurable functions with
finite support, which in turn are simply the functions with finite support. If
a has finite support, then a(n) = 0 for some n; this gives ∥1 − a∥∞ ≥ 1; that
is, the constant function 1 is at distance 1 from the sets of finitely supported
functions and of compactly supported continuous functions.

(2.8.24) Prove Lemma 2.8.19.

Answer. Fix ε > 0. By Proposition 2.8.18 there exists g ∈ Cc(X) with
∥f − g∥p < ε/3. As g has compact support E, we will show at the end of
the proof that there exists an open neighbourhood V of 0 such that |g(x −
t) − g(x)| < ε/(3µ(E)1/p) for all x, whenever t ∈ V . From this estimate we
obtain ∥gt − g∥p < ε/3, and then

∥ft − f∥p ≤ ∥ft − gt∥p + ∥gt − g∥p + ∥g − f∥p
= 2∥g − f∥p + ∥gt − g∥p

<
2ε
3 + ε

3 = ε.

We now prove the inequality for |g(x − t) − g(x)|. Let ε′ = ε/(3µ(E)1/p);
since g is continuous for each x ∈ E there exists an open set Vx, with 0 ∈ Vx
and such that y − x ∈ Vx implies |g(y) − g(x)| < ε′/2. By replacing Vx with
Vx ∩ (−Vx) if needed, we may assume that −Vx = Vx. The continuity of
addition guarantees that there exists an open neighbourhood Wx of 0 with
Wx+Wx ⊂ Vx, and again we may assume that −Wx = Wx. As E is compact
and E ⊂

⋃
x∈E

(x+Wx), there exist x1, . . . , xn with E ⊂ (x1 +Wx1)∪· · ·∪(xn+

Wxn). Let V =
n⋂
j=1

Wxj . Then V is open, −V = V , and 0 ∈ V . If t ∈ V and

x ∈ E as E ⊂ (x1 +Wx1) ∪ · · · ∪ (xn+Wxn) there exists j with x ∈ xj +Wxj ;
so |g(x) − g(xj)| < ε′/2. As x− t− xj = (x− xj) − t ∈ Wxj −Wxj ⊂ Vxj , we
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also have |g(x− t) − g(xj)| < ε′/2. Then

|g(x− t)−g(x)| ≤ |g(x− t)−g(xj)|+ |g(xj)−g(x)| < ε′

2 + ε′

2 = ε′ = ε

3µ(E)1/p .

When x ̸∈ E, we have g(x) = 0. Since X \E is open there exists a neighbour-
hood W of 0 such that x + W ⊂ X \ E and −W = W . For any t ∈ W ,
x − t ∈ X \ E, and so g(x − t) = 0. So for t ∈ V ∩ W the estimate
|g(x− t) − g(x)| < ε′ holds for all x ∈ X.

(2.8.25) Show that (2.46) can fail when p = ∞, even if µ(X) < ∞.

Answer. Let X = [0, 1] with Lebesgue measure, and f = 1[0, 1
2 ]. Then

ft − f = 1( 1
2 ,

1
2 +t), so ∥ft − f∥∞ = 1 for all t.

(2.8.26) Let (X,µ) and (Y, ν) be σ-finite complete measure spaces such
that L2(X) and L2(Y ) are separable. Fix orthonormal bases
{fn} and {gn} for L2(X) and L2(Y ) respectively. Show that
{fn(x)gm(y)}n,m is an orthonormal basis for L2(X × Y ).

Answer. First,∫
X

∫
Y

|fn(x)fs(x)| |gm(y)gt(y)| dν(y) dµ(x) =
(∫

Y

|gm(y)gt(y)| dν(y)
)

(∫
X

|fn(x)fs(x)| dµ(x)
)

≤ ∥gm∥2∥gt∥2∥fn∥2∥fs∥2 < ∞.

Then Fubini (Theorem 2.7.16) guarantees that the double integral exists and
agrees with the iterated integrals. Thus

⟨fngm, fsgt⟩ =
∫
X×Y

fn(x)fs(x) gm(y)gt(y) d(µ× ν)(x, y)

= ⟨fn, fs⟩⟨gm, gt⟩ = δ(n,s),(m,t)

and thus the set {fn(x)gm(y)}n,m is orthonormal. It remains to see that it is
total. If ⟨h, fn × gm⟩ = 0 for all n,m, we have

0 =
∫
X

(∫
Y

h(x, y) gm(y) dν(y)
)
fn(x) dµ(x);
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so, as n is arbitrary, the function x 7→
∫
Y
h(x, y) gm(y) dν(y) is zero almost

everywhere for each m. Let

Em = {x ∈ X :
∫
Y

h(x, y) gm(y) dν(y) ̸= 0}.

Each Em is a null-set (so measurable, by the completeness), and then so is
its (countable) union E. Outside of E,∫

Y

h(x, y) gm(y) dν(y) = 0 for all m.

Thus for each x ∈ X \E, h(x, y) = 0 almost everywhere. As |h|2 is integrable,
its integral agrees with the iterated integrals, so∫

X×Y
|h(x, y)|2 d(µ× ν) =

∫
X

∫
Y

|h(x, y)|2 dν(y) dµ(x)

=
∫
X\E

∫
Y

|h(x, y)|2 dν(y) dµ(x) = 0.

So h = 0 in L2(X × Y ).

(2.8.27) Let (X,Σ, µ) be a measure space. A sequence {fn} of complex
measurable functions on X is said to converge in measure to
the measurable function f if for every ε > 0 there exists N
such that

µ({x : |fn(x) − f(x)| > ε}) < ε, n > N.

Prove:

(a) Show that if µ(X) < ∞ and fn → f a.e., then fn → f in
measure (Hint: use Egorov’s Theorem).

(b) For 1 ≤ p ≤ ∞, if fn ∈ Lp(µ) for all n and ∥fn − f∥p → 0,
then fn → f in measure.

(c) If fn → f in measure, then there exists a subsequence fnk
that converges to f a.e.

Answer.

(a) Let ε > 0. Since µ(X) < ∞, Egorov’s Theorem applies. So there exists
E ⊂ X, with µ(X \ E) < ε and such that fn → f uniformly on E. So
there exists N ∈ N such that |fn − f | < ε, on E, when n > N . Then

µ{|fn − f | > ε} ≤ µ(Ec) < ε.
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(b) If fn does not converge in measure to f , then there exists ε > 0 such
that for every N ∈ N there exists n > N with µ({|fn − f | > ε} ≥ ε.
This means that we can choose an unbounded sequence {nk} such that
µ({|fnk − f | > ε} ≥ ε. Then, if p < ∞,

∥fnk − f∥pp =
∫
X

|fn − f | dµ ≥
∫

{|fn−f |>ε}
|fn − f | dµ ≥ ε2

for all k, so ∥fn − f∥p does not go to zero. When p = ∞ we have ∥fnk −
f∥∞ ≥ ε for all k, so we obtain the same conclusion.

(c) Let En,k = {|fn − f | > 1
k}. By hypothesis there exists nk > nk−1 such

that µ(Enk,k) < 1
k . We have Enk+1,k+1 ⊂ Enk,k. Let E =

⋂
k

Ek. By

continuity of the measure, µ(E) = 0. If x ∈ X \ E =
⋃
k

(X \ Enk,k), then

there exists k0 such that x ∈ X \ Enk0 ,k0 . As the union is increasing,
x ∈ X \Enk,k for all k > 0; so |fnk(x) − f(x) < 1

k , showing that fnk → f
outside of E.

(2.8.28) Let {an} be a sequence of positive numbers, (X,Σ, µ) be a
finite measure space, and fn : X → [0,∞), n ∈ N measurable
functions such that∫

X

fn dµ = n,

∫
X

f2
n dµ = ann

2, n ∈ N.

(2.12)

(i) Show that if the sequence {an} is bounded, then fn
does not converge to 0 a.e. (Hint: one possible ap-
proach uses Egorov’s Theorem)

(ii) Does the above hold when {an} is unbounded?

Answer.
Suppose that (2.12) holds, that fn → 0 a.e. and that an ≤ c for all n.

By Egorov’s Theorem (2.6.16) there exist sets Ek ∈ Σ with m(Ek) < 1
k and

fn → 0 uniformly on X \ Ek. In particular for each k there exists n(k) ≥ 2
such that fn|X\Ek <

1
2µ(X\Ek) for all n ≥ n(k). Then (writing n = n(k) from

now on, for simplicity)∫
Ek

fn dµ = n−
∫
X\Ek

fn dµ > n− 1
2 > n− 1.
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This gives us, using Cauchy Schwarz/Hölder,

n− 1 <
∫
Ek

fn dµ ≤ µ(Ek)1/2
(∫

X

f2
n dµ

)1/2
= µ(Ek)1/2 a1/2

n n <
c1/2 n

k1/2 .

Thus
1
2 ≤ 1 − 1

n
<

c1/2

k1/2 .

As the inequality 1
2 <

c1/2

k1/2 is impossible for k big enough, we conclude that
fn → 0 a.e. is not possible.

For the case where an is unbounded, let X = [0, 1] with Lebesgue
measure, fn = n2 1[0, 1

n ] and an = n. Then∫
X

fn dm = n,

∫
X

f2
n dm = n3 = an n

2,

and fn → 0 a.e.

(2.8.29) Suppose that µ(X) < ∞, f ∈ L∞(µ), ∥f∥∞ > 0, and

αn =
∫
X

|f |n dµ, n ∈ N.

Prove that
lim
n→∞

αn+1

αn
= ∥f∥∞.

Answer. Since µ(X) < ∞,
αn+1

αn
=
∫
X

|f |n+1 dµ∫
X

|f |n dµ
≤ ∥f∥∞

∫
X

|f |n dµ∫
X

|f |n dµ
= ∥f∥∞.

So
lim sup

n

αn+1

αn
≤ ∥f∥∞.

Now we use Hölder (with p = (n+ 1)/n, q = n+ 1) to obtain

∥f∥nn =
∫
X

|f |n ≤
(∫

X

|f |n+1
)n/(n+1)

µ(X)1/(n+1) = ∥f∥nn+1 µ(X)1/(n+1).

Then
αn+1

αn
= ∥f∥n+1

n+1
∥f∥nn

≥ ∥f∥n+1
n+1

∥f∥nn+1 µ(X)1/(n+1) = ∥f∥n+1 µ(X)−1/(n+1).

Then, as the right-hand-side converges to ∥f∥∞ (Proposition 2.8.11),

lim inf
n→∞

αn+1

αn
≥ ∥f∥∞.
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(2.8.30) Let h1 as in (2.50). Suppose that g ∈ C∞(−δ, δ) for some δ > 0
and 0 ≤ g(x) ≤ h1(x) for all x ∈ (0, δ). Show that g(k)(0) = 0
for all k ∈ N.

Answer. Since g is C∞ we know by hypothesis that its derivatives exist at
all points in (−δ, δ). So it is enough to show that the right derivatives at
0 are 0. The inequality 0 ≤ g(x) ≤ h1(x), after taking limit as x → 0+,
gives us directly that g(0) = 0. Suppose for induction that g(k)(0) = 0 for
k = 0, 1, . . . , n. Then we can write the Taylor polynomial of g as

g(x) = g(n+1)(ξ(x))
(n+ 1)! xn+1, x ∈ (−δ, δ)

with |ξ(x)| ≤ |x|. Then

0 ≤ |g(n+1)(ξ(x))| = (n+ 1)!g(x)
|x|n+1 ≤ (n+ 1)! h1(x)

xn+1 .

Taking limit as x → 0, we get ξ(x) → 0 and 0 ≤ g(n+1)(0) ≤ 0, so g(n+1)(0) =
0 (because gn+1 is continuous, any way of approaching zero will do). We then
get by induction that g(n+1)(0) = 0 for all n ∈ N.

The limit for h1 comes (with the substitution t = 1/x2) from

lim
x→0+

e−1/x2

xn
= lim
t→∞

tn/2e−t = 0.

(2.8.31) (this is not an easy one; the topic of which Lp spaces are sepa-
rable is subtle) Let (X,A, µ) be a σ-finite measure space such
that A is countably generated. Show that if µ is σ-finite, then
Lp(µ) is separable for p ∈ [1,∞).

Answer. By hypothesis X =
⋃
nXn, pairwise disjoint, with µ(Xn) < ∞ for

all n. This produces a decomposition of Lp(µ) into summands Lp(µXn). So
we may assume without loss of generality that µ is finite .

Let {An} be a countable family that generates A. For each k ∈ N let
Xk = Σ({A1, . . . , Ak}), which is finite. Let Ã =

⋃
kXk. Then Ã is countable.

Define an outer measure
µ∗(E) = inf

{∑
r

µ(Akr ) : Ak1 , . . . , Aks ∈ Ã, E ⊂
⋃
r

Ak,r

}
.

By Carathéodory’s Theorem there exists a σ-algebra E ⊂ P(X) such that µ∗

is a measure on E . As Ã ⊂ E , we have that A ⊂ E . And µ∗(E) = µ(E) for
all E ∈ Ã, so µ∗ extends µ to E . What this gives us is that for any E ∈ A
there exists E′ ∈ Ã with E ⊂ E′ and µ(E′ \ E) arbitrarily small. So, by
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Proposition 2.8.17
spanQ{1E , i 1F : E,F ∈ Ã}

is a countable dense set in Lp(µ).

2.9. The Riesz–Markov Theorem

(2.9.1) Show that under the hypotheses of Riesz–Markov, if a measure
µ satisfies (2.54) then µ(K) < ∞ for all K compact.

Answer. Since T is locally compact and K is compact, by Urysohn’s Lemma
there exists f ∈ Cc(T ), 0 ≤ f ≤ 1 and f |K = 1. Then

µ(K) =
∫
T

1K dµ ≤
∫
T

f dµ = φ(f) < ∞.

(2.9.2) Use Riesz–Markov to construct Lebesgue measure in Rn, n ∈
N. Prove that the measure you constructed is the Lebesgue
measure, by showing that it agrees with Lebesgue outer mea-
sure on boxes. Show that the σ-algebra M from the theorem
is M(Rn).

Answer. As mentioned in Remark 2.9.5, we apply Riesz–Markov to Cc(Rn)
and the linear functional

f 7−→
∫ b1

a1

· · ·
∫ bn

an

f(x1, . . . , xn) dx1 · · · dxn,

where supp f ⊂ [a1, b1] × · · · × [an, bn]. If B1 and B2 are two boxes such that
each contains supp f , we know from Eq. (2.32)—together with the fact that
intersection of intervals is an interval—that the intersection B1 ∩B2 is a box,
and of course it contains supp f . By (2.33) we know that the complement
of B1 ∩ B2 is a union of boxes. So we can write B1 = (B1 ∩ B2) ∪

⋃
j Cj ,

where each Cj is a box and f = 0 on each Cj . Then, as B2 admits a similar
decomposition, ∫

B1

f dx =
∫
B1∩B2

f dx =
∫
B2

f dx.
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So the linear functional is well-defined. Positivity is clear, as any Riemann
sum of a nonnegative function will be nonnegative, and so will their limits.

Next we need to show that the measure µ such that∫
B

f dx =
∫
B

f dµ

satisfies µ(B) =
∏
j

(bj − aj). Let

hk,a,b(t) =



0, t < a− 1
k or t > b+ 1

k

k(t− a) + 1, a− 1
k ≤ t < a

1, a ≤ t ≤ b

k(t− b) + 1, b < t < b+ 1
k

and

fk(x1, . . . , xn) =
n∏
j=1

hk,aj ,bj (xj).

Then each fk is continuous, fk ↘ 1B , and by Monotone Convergence

µ(B) = lim
k

∫
Rn
fk dx

= lim
k

n∏
j=1

[ ∫ aj

aj− 1
k

(
k(t− aj) + 1

)
dt+

∫ bj

aj

1 dt

+
∫ bj+ 1

k

bj

(
k(bj − t) + 1

)
dt

]

= lim
k

n∏
j=1

[1
k

+ bj − aj

]
= lim

k
o
(1
k

)
+

n∏
j=1

(bj − aj)

=
n∏
j=1

(bj − aj).

So µ agrees with m on open boxes. As the open boxes generate B(Rn), the
two measures agree on Borel sets.

The uniqueness of the measure is guaranteed by Riesz–Markov, so the
only remaining question is the comparison between M and M(Rn). And
these are equal by (iv) in Proposition 2.9.10 and the outer regularity of µ and
m, which guarantees that both measures have the same nullsets.
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(2.9.3) Let X be a topological space and µ a Borel measure. The
support of µ is the set

suppµ = {x ∈ X : µ(V ) > 0 for all V open with x ∈ V }.
Prove that suppµ is closed, and that its complement is the
largest open nullset.

Answer. If x ̸∈ suppµ, then there exists V open with x ∈ V and µ(V ) = 0.
Since V is open, for any y ∈ V there exists W ⊂ V , open, with y ∈ W . Then
µ(W ) ≤ µ(V ) = 0, so µ(W ) = 0 and y ̸∈ suppµ. Thus (suppµ)c is open, and
so suppµ is closed. The argument shows that if W ⊂ X is any open set with
µ(W ) = 0 then W ⊂ (suppµ)c, showing that (suppµ)c is the largest open
nullset.

(2.9.4) Let X be a compact Hausdorff space, and µ a Borel measure
with µ(X) = 1.

(a) Show that µ(suppµ) = 1.
(b) If H ⊊ suppµ is compact, show that µ(H) < 1.

Answer.
We know from Exercise 2.9.3 that (suppµ)c is the largest nullset. Then

1 = µ(X) = µ(suppµ ∪ (suppµ)c) = µ(suppµ) + µ((suppµ)c) = µ(suppµ).
As X is compact Hausdorff, it is normal (Exercise 2.6.1). If H ⊊ suppµ,

let x ∈ suppµ \H. As H is compact, there exist V,W open with V ∩W = ∅
and x ∈ V , K ⊂ W (Lemma 2.6.3). As x ∈ suppµ we have that µ(V ) > 0,
and so µ(H) ≤ µ(W ) ≤ 1 − µ(V ) < 1.

(2.9.5) On X = R2, define

d((x1, y1), (x2, y2)) =
{

|y1 − y2|, x1 = x2

1 + |y1 − y2|, x1 ̸= x2

(a) Show that d is a metric.
(b) Show that (X, d) is locally compact.
(c) For f ∈ Cc(X), show that there are only finitely many

x1, . . . , xn such that f(xj , y) ̸= 0 for at least one y.
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(d) Let

Λf =
n∑
j=1

∫ ∞

−∞
f(xj , y) dy,

and show that Λ : Cc(X) → C is linear and positive.
(e) Let µ be the measure corresponding to Λ via Riesz–Markov.

Let E = {(x, 0) : x ∈ R}. Show that µ(E) = ∞ and that
µ(K) = 0 for all K ⊂ E compact. Does this contradict the
Riesz–Markov theorem?

Answer.

(a) Let (xj , yj) ∈ X, j = 1, 2, 3. If x1 = x2, then
d((x1, y1), (x2, y2)) = |y1 − y2| ≤ |y1 − y3| + |y3 − y2|

≤ d((x1, y1), (x3, y3)) + d((x3, y3), (x2, y2)).
And if x1 ̸= x2, then either x1 ̸= x3 or x2 ̸= x3. Then

d((x1, y1), (x2, y2)) = 1 + |y1 − y2| ≤ 1 + |y1 − y3| + |y3 − y1|

≤ d((x1, y1), (x3, y3)) + d((x3, y3), (x2, y2)).
So the triangle inequality holds. If d((x1, y1), (x2, y2)) = 0 then since
1 + |y1 − y2| > 0 we get that x1 = x2 and y1 = y2 directly from the
definition, so that (x1, y1) = (x2, y2).

(b) Let us first identify the balls. If x1 ̸= x2 then d((x1, y1), (x2, y2)) ≥ 1. So
for a fixed (x1, y1) and r > 0, if r < 1 we have

Br((x1, y1) = {(x1, y) : |y − y1| < r},
a vertical segment containing the point (x1, y1). If r ≥ 1, then
Br((x1, y1) = {(x1, y) : |y − y1| < r} ∪ {(x, y) : |y − y1| ≤ r − 1}.

It is important to notice that the second coordinates of the open balls are
open sets on the y-axis.

Now given (x1, y1) ∈ X, consider the neighbourhood B1/2((x1, y1)).
Its closure {(x1, y) : |y − y1| ≤ 1/2 is compact: indeed, if {Vα} is an
open cover, the sets Wα = π2(Vα) give an open cover of the segment
[y1 −1/2, y1 +1/2]. By compactness, there is a finite subcover with indices
α1, . . . , αn. Then

B1/2((x1, y1)) = {x1} × [y1 − 1/2, y1 + 1/2] ⊂ Vα1 ∪ · · · ∪ Vαn .

So B1/2((x1, y1)) is compact, and thus (X, d) is locally compact.
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(c) If K ⊂ X is compact, then π1(K) is finite (because if π1(K) is infinite,
then {{x} ×R : x ∈ π1(K)} is an infinite open cover that does not admit
a finite subcover).

On the second components, we need π2(K) to be compact (a contin-
uous function maps a compact to a compact, and it is easy to check that
π2 is continuous). So the compact sets in (X, d) are precisely those of the
form

K =
n⋃
j=1

{xj} × Lj , (AB.2.9)

where Lj ⊂ R is compact.
So, if f has compact support, it can be nonzero on finitely many

x1, . . . , xn.
(d) The functional Λ is well-defined by the previous item, since the integral

will occur in a compact subset of R. More importantly, the definition is
ok if we enlarge the set of xj to include other values of x where f(x, y) = 0
for all y. This makes linearity trivial, since we may work with the same
set
⋃n
j=1{xj} × Lj for both f and g. Positivity is obvious.

(e) Since µ comes from Riesz–Markov, it is outer regular. We have
µ(E) = inf{µ(V ) : E ⊂ V, V open}.

And for an open set V ,
µ(V ) = sup{Λf : f ≺ V }.

For ε > 0, let V be open with E ⊂ V . For each x ∈ R, there exists δx > 0
such that {x}×(−δx, δx) ⊂ V . Since there are uncountably many x, there
exists δ > 0 such that there are infinitely many x with δx > δ; denote such
set as D.

Now, for any n ∈ N let x1, . . . , xn ∈ D. Let

gj(y) =


1, y ∈ (− δxj

2 ,
δxj

2 ),

0, |y| ≥ δxj
linear segment in between

and

f(x, y) =
n∑
j=1

δxj gj .

Then f ∈ Cc(X)+ with f ≺ V . And

Λf =
n∑
j=1

∫
R
f(xj , y) dy ≥

n∑
j=1

δxj
2 ≥ nδ

2 .

It follows that µ(V ) ≥ nδ for all n, so µ(V ) = ∞. As V was an arbitrary
open with E ⊂ V , we get that µ(E) = ∞.
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For any compact K ⊂ E, we have K = {(x1, 0), . . . , (xn, 0)}. Fix
ε > 0, and let V =

⋃n
j=1{xj} × (−ε/(2n), ε/(2n)). If f ≺ V , then

Λf =
n∑
j=1

∫ ε/2

−ε/2
f(xj , y) dy ≤

n∑
j=1

ε

n
= ε.

As this occurs with any f ≺ V , we get that µ(V ) ≤ ε. Then µ(K) ≤
µ(V ) ≤ ε. And so µ(K) = 0.

There is no contradiction because Riesz–Markov only promises inner
regularity for finite-measure sets.

(2.9.6) Consider the same topological space X from Exercise 2.9.5.

(a) Show that if E ∈ B(X), then each vertical slice Ex is Borel.
(b) Define

µ(E) =
∑
x

m(Ex), E ∈ B(X).

Show that µ is a measure, inner regular.
(c) Show that the µ-nullsets are those Borel sets that inter-

sect each vertical line in a nullset. Show that the diagonal
D = {(x, x) : x ∈ R} is a nullset, and that every open V
with D ⊂ V intersects each vertical line in a set of positive
measure. Conclude that µ is not outer regular.

(d) Define

ν(E) =
{
µ(E), if E intersects countably many vertical lines

∞, otherwise
Show that ν is inner regular (on open sets), and outer reg-
ular on Borel sets.

(e) Show that∫
X

f dµ =
∫
X

f dν, f ∈ Cc(X).

Answer.

(a) Let
S = {E ∈ B(X) : Ex ∈ B(R) for all x}.
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As shown in the proof of Proposition 2.7.2 sections preserve all σ-algebra
operations. So S is a σ-algebra. If 0 < r ≤ 1, then

Br((x1, y1)) = {(x1, y) : |y − y1| < r}.
Then Br((x1, y1))x = {y : |y − y1| < r} = Br(y1) ∈ B(R). And if r > 1,
Br((x1, y1)) = {(x1, y) : |y − y1| < r} ∪ {(x, y) : |y − y1| < r − 1}.

Then Br((x1, y1))x = {y : |y − y1| < r} = Br(y1) ∈ B(R). So S contains
the open balls and thus all the Borel σ-algebra B(R).

(b) Since every summand is nonnegative, µ makes sense even if m(Ex) > 0
for uncountably many x. If {Ek} is a countable pairwise disjoint family
in B(X) then for fixed x the sets {(Ek)x} are pairwise disjoint; so

µ
(⋃

k

Ek

)
=
∑
x

m

((⋃
k

Ek

)
x

)
=
∑
x

m
(⋃

k

(Ek)x
)

=
∑
x

∑
k

m((Ek)x)

=
∑
k

∑
x

m((Ek)x) =
∑
k

µ(Ek).

First equality is the definition of µ. The third equality is the σ-additivity
of m. The exchange of sums is a direct application of Tonelli’s Theorem.
So µ is a measure.

The compact sets are of the form (AB.2.9). Let E ∈ B(X). Let
R = {x : m(Ex) > 0}. We consider cases:

• R is finite. Say, R = {x1, . . . , xn}. Fix ε > 0. Since Exj ∈ B(R),
by Proposition 2.3.25 there exists Lj ⊂ Exj , compact, with m(Exj \

Lj) < ε/2j . Then K =
n⋃
j=1

{xj} × Lj is compact, K ⊂ E, and

µ(E \K) < ε.
• R is countably infinite. If µ(E) = ∞, we proceed as in the un-

countable case below. Otherwise, R = {x1, x2, . . .}. Fix ε > 0. There
exists n such that

∑
j>nm(Exj ) < ε/2. On x1, . . . , xm we proceed

as in the finite case to obtain K compact, K ⊂ E, and µ(E \K) < ε.
• R is uncountable. Now µ(E) = ∞. Given s > 0 there exist
x1, . . . , xn such that

∑n
j=1 m(Exj ) > 2s. Choosing K as in the cases

above we get K ⊂ E and µ(K) > s.
So µ is inner regular.

(c) If µ(E) = 0, then m(Ex) = 0 for all x. So E intersects the vertical line at
x in the nullset Ex. For the diagonal,

µ(D) =
∑
x

m({x}) = 0.

If V is open and D ⊂ V , then there exist numbers rx > 0 such that
Brx({x, x}) ⊂ V for all x. By reducing them if needed, we may assume
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that rx < 1 for all x. Then W =
⋃
x

Brx(x) is open, D ⊂ W ⊂ V , and

µ(V ) ≥ µ(W ) =
∑
x

m((x− rx, x+ rx)) =
∑
x

2rx = ∞

since any series with uncountably many nonzero terms is divergent. So
µ(D) = 0 and µ(V ) = ∞ for any open V with D ⊂ V , showing that µ is
not outer regular.

(d) Let V be open and nonempty. If ν(V ) < ∞, as ν(V ) = µ(V ) we proceed
as in the proof of the inner regularity of µ. When ν(V ) = ∞, there is
an uncountable set R ⊂ R and intervals Jx, x ∈ R, with {x} × Jx ⊂ V .
Since there are uncountable many Jx, there exists δ > 0 and R′ ⊂ R,
infinite, such that m(Jx) > δ for all x ∈ R′. Fix Kx ⊂ Jx, compact, with
m(Kx) > δ. Given x1, . . . , xn ∈ R′, the set K =

⋃n
j=1{xj} × Kxj ⊂ V is

compact, and ν(K) = µ(K) =
∑n
j=1 m(Kxj ) > nδ. So we can produce

K ⊂ V , compact, with ν(K) arbitrarily big.
Outer regularity is automatic when ν(E) = ∞. If ν(E) < ∞, then

E cuts countably many vertical lines and µ(E) < ∞. So there exist
{x1, x2, . . .} such that ν(E) =

∑
jm(Exj ). Fix ε > 0. By Propo-

sition 2.3.25 there exist open sets Vj ⊂ R such that Exj ⊂ Vj and
m(Vj \ Exj ) < ε/2j . In turn we can decompose each Vj as a count-
able union of Vj,k with Vj,k an interval of length less than 1. Then
V =

⋃
j,k{xj} × Vj,k is a union of balls, so open, E ⊂ V , and

ν(V \ E) =
∞∑
j=1

m(Vj \ Exj ) < ε.

We cannot have full inner regularity for ν. For instance let E =
{(x, x + q) : x ∈ R, q ∈ Q}. Then E crosses uncountably many vertical
lines and so ν(E) = ∞. If K ⊂ E is compact, K =

⋃n
j=1{xj} × Lj

with Lj compact. As K ⊂ E this means that each Lj is countable.
Then µ(K) =

∑
j µ(Kxj ) =

∑
jm(Lj) = 0. Note that ν(E) = ∞, while

µ(E) = 0.
(e) If f ∈ Cc(X), let K = suppT . As K is compact, µ(K) < ∞, and so

ν(K) = µ(K). For any Borel set E ⊂ K, we also have ν(E) = µ(E). So
the integrals will agree on any simple function that approximates f , and
thus ∫

X

f dµ =
∫
X

f dν.
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2.10. Complex Measures and Differentiation

(2.10.1) Let {cn}n∈N ⊂ C such that
∑
n cn converges. Show that

∑
n cn

converges absolutely if and only if the limit does not change
under permutations; concretely, show that the following state-
ments are equivalent:

(a)
∑
n cn converges absolutely;

(b)
∑
n cσ(n) =

∑
n cn for all permutations σ : N → N;

(c)
∑
n cσ(n) converges for all permutations σ : N → N.

Answer. (a) =⇒ (b) Let σ : N → N be a bijection. Write L =
∑
n cn.

Suppose that
∑
n |cn| < ∞ and let ε > 0. Then there exists n0 such that∑

n>n0
|cn| < ε. Let n1 = max{σ−1(k) : k = 1, . . . , n0}. If n > n1, then

n ̸= σ−1(k) for all k = 1, . . . , n0; so σ(n) > n0. Then∣∣∣∣L−
n1∑
n=1

cσ(n)

∣∣∣∣ ≤
∑
n>n1

|cσ(n)| ≤
∑
n>n0

|cn| < ε,

showing that
∑
n cσ(n) =

∑
n cn.

(b) =⇒ (c) Trivial.
(c) =⇒ (a) Suppose first that cn ∈ R for all n. Then we can write cn =

c+
n − c−

n as a difference of non-negative numbers. Because
∑
n cn converges

we have that cn → 0, so c+
n → 0 since c+

n ≤ |cn|. If
∑
n c

+
n = ∞, then we can

choose 1 = n0 < n1 < n2 < · · · such that
∑
nk≤n<nk+1

c+
n > 1 + c−

k for all k.
So if σ is the permutation that gives the order

c+
1 , . . . , c

+
n1−1, c

−
1 , c

+
n1
, . . . , c+

n2−1, c
−
2 , . . .

Then for all k
nk+1∑
j=1

cσ(j) >

k∑
r=1

1 = k,

and this would make
∑
n cσ(n) = ∞, a contradiction. So

∑
n c

+
n < ∞. Re-

peating the argument with the series
∑
n(−cn) gives us

∑
n c

−
n < ∞. Then∑

n |cn| ≤
∑
n c

+
n +

∑
n c

−
n < ∞ and the series converges absolutely. In the

general case, the convergence of
∑
n cn is equivalent to that of

∑
n Re cn and∑

n Im cn, so by the above these latter two series converge absolutely and
then from |cn| ≤ |Re cn| + |Im cn| we get that

∑
n |cn| < ∞.
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(2.10.2) Prove Proposition 2.10.6.

Answer.

(a) Suppose that λ is concentrated on A. Since λ(E) = λ(E ∩ A) for all
E, the same happens for each partition in the definition of |λ|; so |λ| is
concentrated in A.

(b) As a consequence, if λ1 ⊥ λ2 then |λ1| ⊥ |λ2|, as they will be concentrated
respectively in the same disjoint sets.

(c) If λ1, λ2 ⊥ µ, say λ1 is concentrated on A1, λ2 on A2, and µ on B. Then
A1∩B = A2∩B = ∅. Thus (A1∪A2)∩B = ∅. As λ1+cλ2 is concentrated
on A1 ∩A2, we get that λ1 + cλ2 ⊥ µ.

(d) If λ1, λ2 ≪ µ and µ(E) = 0, then (λ1 + cλ2)(E) = λ1(E) + cλ2(E) =
0 + c0 = 0. So λ1 + cλ2 ≪ µ.

(e) If λ ≪ µ and µ(E) = 0, then µ(Ej) = 0 for all j and any partition of E,
giving us |λ|(E) = 0. So |λ| ≪ µ.

(f) If λ1 ≪ µ and λ2 ⊥ µ, let A2 be a measurable set where λ2 is concentrated,
and B a measurable set where µ is concentrated. Then A2 ∩B = ∅. Since
µ(Bc) = 0, we have λ1(Bc) = 0, so λ1(E) = λ1(E ∩B) for all E. So λ1 is
concentrated on B, and thus λ1 ⊥ λ2.

(g) If λ ≪ µ and λ ⊥ µ, by the previous paragraph we have that λ ⊥ λ. This
can only happen if λ is concentrated on the empty set: that is, λ = 0.

(h) Since E is itself a partition, |λ(E)| ≤ |λ|(E). If |λ|(E) = 0, then λ(E) = 0.
Thus λ ≪ |λ|.

(2.10.3) Let µ be a complex measure on a σ-algebra A. For E ∈ A,
define

λ(E) = sup
{ m∑
j=1

|µ(Ej)| : Ej ∈ A disjoint,
⋃
j

Ej = E
}
.

Show that λ = |µ|.

Answer. Since the definition of |µ| allows countable partitions, we have
λ ≤ |µ|. By Theorem 6.4, |µ|(E) < ∞. Now fix ε > 0 and let {Ej}∞

j=1
be a partition of E such that

∑
j |µ(Ej)| ≥ |µ|(E) − ε/2. As |µ|(E) ≥
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j=1 |µ(Ej)|, there exists m such that

m∑
j=1

|µ(Ej)| ≥
∞∑
j=1

|µ(Ej)| − ε/2 ≥ |µ|(E) − ε/2 − ε/2.

So λ(E) ≥ |µ|(E) − ε. As ε was arbitrary, λ(E) ≥ |µ|(E), showing the
equality.

(2.10.4) Let λ1, λ2 be mutually singular complex measures on a σ-
algebra A over X. Show that

|λ1 + λ2| = |λ1| + |λ2|.

Answer. Fix E ∈ A and {En} ⊂ A a countable partition of E. Then∑
k

|(λ1 + λ2)(Ek)| ≤
∑
k

|λ1(Ek)| +
∑
k

|λ2(Ek)| ≤ |λ1|(E) + |λ2|(E).

So |λ1 + λ2|(E) ≤ |λ1|(E) + |λ2|(E).
By definition there exist disjoint A1, A2 ∈ A with A1 ∩ A2 = X and

such that λ1 is concentrated on A1 and λ2 is concentrated on A2. Fix E ∈ A
and ε > 0. Then there exist partitions {En} and {Fn} of E such that∑

k

|λ1(Ek)| + ε > |λ1|(E),
∑
k

|λ2(Ek)| + ε > |λ2|(E).

We have∑
k

|λ1(Ek)| =
∑
k

|λ1(Ek ∩A1)| =
∑
k

|(λ1 + λ2)(Ek ∩A1)|,

and ∑
k

|λ1(Ek)| =
∑
k

|λ2(Fk ∩A2)| =
∑
k

|(λ1 + λ2)(Fk ∩A2)|.

Since {Ek∩A1} and {Fk∩A2} are partitions of E∩A1 and E∩A2 respectively,
their union is a partition of E, and hence

(|λ1| + |λ2|)(E) ≤ 2ε+
∑
k

|λ1(Ek)| +
∑
k

|λ1(Ek)|

= 2ε+
∑
k

|(λ1 + λ2)(Ek ∩A1)| +
∑
k

|(λ1 + λ2)(Fk ∩A2)|

≤ 2ε+ |λ1 + λ2|(E).
As the inequality holds for all ε > 0 and the reverse inequality was already
shown, we have |λ1 + λ2|(E) = |λ1|(E) + |λ2(E)|.
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(2.10.5) Use Proposition 2.10.7 for an alternative proof of Exercise 2.5.8.

Answer. Define a measure γ̃ on [0, 1] by γ̃(E) =
∫
E

|g| dm. Then γ̃ ≪ m.
Fix s ∈ [0, 1] and ε > 0. Let δ be as in Proposition 2.10.7. If t > s. |t−s| < δ,
then m([s, t]) < δ and so

|γ(t) − γ(s)| =
∣∣∣∣ ∫ t

s

|g|
∣∣∣∣ = |γ̃([s, t])| < ε.

For t < s the estimate is entirely similar. Hence γ is continuous.

(2.10.6) (Radon–Nikodym and Lebesgue’s Decomposition can fail when
X is not σ-finite) Let µ be the Lebesgue measure on (0, 1)
and λ the counting measure on M((0, 1)). Show that λ has no
Lebesgue decomposition relative to µ, and that µ ≪ λ and µ
is bounded, but there is no measurable function h such that
dµ = h dλ.

Answer. Suppose that λ = λa + λs with λa ≪ µ. As λs ⊥ µ, there exists a
µ-nullset A with λs supported on A. On B = (0, 1)\A, λs(B) = 0, µ(B) = 1,
λa(B) = λ(B) = ∞. But for any b ∈ B we get

1 = λ({b}) = λa({b}), while µ({b}) = 0,
a contradiction.

For the second part, we trivially have µ ≪ λ, since λ is zero only on the
empty set. Now suppose that µ(E) =

∫
E
h dλ for all E ∈ M((0, 1)). Then,

for any t ∈ [0, 1],
0 = µ({t}) =

∫
{t}

h dλ = h(t).

So we would have h = 0, a contradiction.

(2.10.7) Suppose that {gn} is a sequence of positive continuous func-
tions on [0, 1]. Let µ be a positive Borel measure on [0, 1], and
suppose also that

(a) limn→∞ gn(x) = 0 a.e.[m]

(b)
∫

[0,1]
gn dm = 1 for all n
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(c) lim
n→∞

∫
[0,1]

fgn dm =
∫

[0,1]
f dµ for all f ∈ C[0, 1].

Does it follow that µ ⊥ m?
(Hint: Egorov’s Theorem. There are probably other ways

to attack this)

Answer. Yes. Let E = {x : limn gn(x) = 0}. By hypothesis, m(E) = 1. So
m is concentrated on E: if E ∩ A = ∅, then m(A) = 0. It remains to show
that µ is concentrated on [0, 1] \ E.

Because the gn are continuous, E is Borel:

E =
⋂
m

⋃
n

⋂
k≥n

{gk <
1
m

}.

Fix ε > 0. By Egorov’s Theorem, there exists a Borel set B ⊂ E such that
µ(E \B) < ε and gn → 0 uniformly on B; so there exists n0 such that, on B,
gk < ε whenever k ≥ n0. Then, for any f ∈ C[0, 1] and n ≥ n0∫

B

f gn dm ≤ ε

∫
B

|f | dm.

We can do this for any ε, so we conclude that limn

∫
B
f gn dm = 0. Then∫

[0,1]
f dµ = lim

n→∞

∫
B

fgn dm+
∫
Bc
fgn dm = lim

n→∞

∫
Bc
fgn dm.

If we look carefully at the proof of Egorov’s Theorem, it is clear that we can
assume B to be open: that’s because the sets in the proof can be defined in
terms of strict inequality which makes them open, and then B is obtained as
a (countable, although not important for this) union of open sets.

Since B ⊂ [0, 1] is open, it can be written as a countable union of open
intervals, and from there we see that we can construct {fj} ⊂ C[0, 1] such
that fj ↗ 1B . Then

µ(B) =
∫

[0,1]
1B dµ = lim

j

∫
[0,1]

fj dµ = lim
j

lim
n

∫
Bc
fj gn dm = 0,

since each fj is supported in B.
We have shown that for each ε > 0 there exists B ⊂ E with µ(E\B) < ε

and µ(B) = 0. Then
µ(E) = µ(E \B) + µ(B) = µ(E \B) < ε

for all ε > 0, and thus µ(E) = 0. So µ is supported in Ec, which is a nullset
for m.
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(2.10.8) Let (X,A) be a measurable space, and µ, λ positive measures
such that µ is σ-finite and λ ≪ µ. Let g = dλ/dµ. Show that,
for any measurable f : X → C such that

∫
X
f dλ exists,∫

E

f dλ =
∫
E

fg dµ. (2.13)

Answer. The Radon–Nikodym derivative definition gives us that∫
X

1E dλ = λ(E) =
∫
E

g dµ =
∫
X

1E g dµ.

By linearity we obtain that ∫
X

s dλ =
∫
X

s g dµ

for all simple functions s. For f ≥ 0 measurable, there exists a sequence {sn}
with 0 ≤ sn ↗ f . Then Monotone Convergence gives us∫

X

f dλ =
∫
X

s f dµ.

Now for general f , we can write f = f1 − f2 + i(f3 − f4) with fj ≥ 0 and
at least three of their integrals are finite; for each fj the above applies, and
at least three of the four integrals against g dµ are finite, so (2.13) occurs by
linearity.

(2.10.9) Let (X,A, µ) be a finite measure space and f ∈ L1(X). Define
ν : A → C by

ν(E) =
∫
E

f dµ.

(a) Show that ν is a complex measure on (X,A) and that
ν(E) = 0 whenever E ∈ A with µ(E) = 0.

(b) Show that for any measurable function g : X → C,∫
X

g dν =
∫
X

gf dµ (2.14)

if the left integral exists.

Answer.

(a) By writing f = f1 − f2 + i(f3 − f4) with fj ≥ 0 for all j we get that

ν = ν1 − ν2 + i(ν3 − ν4), where νj(E) =
∫
E

fj dµ. These are positive
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measures, all finite since

|νj(E)| ≤
∫
E

|fj | dµ ≤
∫
E

|f | dµ ≤ ∥f∥1 < ∞.

By Exercise 2.5.4, if {En} ⊂ A is a pairwise disjoint sequence,

νj

(⋃
n

En

)
=
∫⋃

n
En

fj dµ =
∑
n

∫
En

fj dµ =
∑
n

νj(En).

By linearity, we get that ν is a complex measure.
If µ(E) = 0, then 0 =

∫
E

f dµ = ν(E).

(b) Writing f = f1 − f2 + i(f3 − f4), with fj ≥ 0 for all j, we have

ν(E) =
∫
E

f1 dµ−
∫
E

f2 dµ+ i

(∫
X

f3 dµ−
∫
x

f4 dµ

)
.

We denote by νj each of the four (positive) measures, that is νj(E) =∫
E

fj dµ. When g ≥ 0, we can use Exercise 2.5.9 to get
∫
X

g dνj =∫
X

gfj dµ. By linearity∫
X

g dν =
∫
X

gf dµ, g ≥ 0.

As this equality is linear on g, and in general g will be a linear combination
of four non-negative functions, the equality holds for all g such that the
integral on the left exists.

(2.10.10) Let (X,A) be a measurable space, and let µ, λ be σ-finite pos-
itive measures such that λ ≪ µ and µ ≪ λ. Show that

dλ

dµ
=
(
dµ

dλ

)−1
a.e. (µ, λ).

Answer. Write f = dλ/dµ and g = dµ/dλ. Then, for any E ∈ A,∫
E

1 dλ = λ(E) =
∫
E

f dµ =
∫
E

fg dλ.

As E is arbitrary, 1−fg = 0 a.e. (λ). Exchanging roles we get that 1−gf = 0
a.e. (µ).
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(2.10.11) If dν = f dµ and dλ = g dν for positive measures µ and ν, show
that λ ≪ µ and find the Radon–Nikodym derivative dλ/dµ.

Answer. Using Exercise 2.10.8 we have

λ(E) =
∫
E

g dν =
∫
E

fg dµ.

This shows that dλ = fg dµ, so λ ≪ µ and the Radon–Nikodym derivative is
fg.

(2.10.12) Let (X,Σ) be a measurable space and M(X) the set of complex
measures on Σ. Show that, with the norm ∥µ∥ = |µ|(X) and
the obvious addition and multiplication by scalars, M(X) is
complete with the metric d(µ, η) = ∥µ− η∥.

Answer. Since |µ| is defined in terms of a supremum and sums of absolute
values, the triangle inequality for the absolute value gives ∥µ+ν∥ ≤ ∥µ∥+∥ν∥.
Similarly, ∥c µ∥ = |c| ∥µ∥. If ∥µ∥ = 0, then |µ|(X) = 0, so |µ| = 0 and thus
µ = 0. So the norm is indeed a norm.

It remains to check completeness. Let {µk} be a Cauchy sequence. For
any E ∈ B(X), we have
|µk(E)−µj(E)| = |(µk−µj)(E)| ≤ |µk−µj |(E) ≤ |µk−µj |(X) = ∥µk−µj∥.
So the number sequence {µk(E)} is Cauchy in C, and thus convergent to a
number µ(E). This is a measure, because if {En} are pairwise disjoint then

µ
(⋃

n

En

)
= lim

k
µk

(⋃
n

En

)
= lim

k

∑
n

µk(En) =
∑
n

µ(En),

where the last equality is due to Tonelli’s Theorem. Finally, given ε > 0
choose k0 such that ∥µj − µk∥ < ε whenever k, j > k0. Then, if k > k0,

∥µk − µ∥ = |µk − µ|(X)

= sup
{∑

j

∣∣(µk − µ)(Ej)
∣∣ : X =

⋃
j

Ej , pairwise disjoint
}
.

For any such sum we have∑
j

∣∣(µk − µ)(Ej)
∣∣ = lim

ℓ

∑
j

∣∣(µk − µℓ)(Ej)
∣∣ ≤ lim sup

ℓ
∥µk − µℓ∥ < ε.

So, if k > k0 we get ∥µk − µ∥ < ε, showing that µk → µ.
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(2.10.13) Let (X,A, µ) be a σ-finite measure space, and λ1, λ2 positive
σ-finite measures, with λ1 ≪ µ and λ2 ≪ µ. Give a neces-
sary and sufficient condition, in terms of the Radon–Nikodym
derivatives, for λ1 ≪ λ2. In such case, express dλ1/dλ2 in
terms of dλ1/dµ and dλ2/dµ.

Answer. The necessary and sufficient condition is that
{g = 0} ∩ E ⊂ {f = 0} ∩ E for all E such thatµ(E) > 0.

Let f, g be the respective Radon–Nikodym derivatives, so that λ1 = f dµ,
λ2 = g dµ. If λ1 ≪ λ2 and µ(E) > 0, we have that g|E = 0 a.e. (µ) implies
f |E = 0 a.e. (µ). So {g = 0} ∩E ⊂ {f = 0} ∩E for all E such that µ(E) > 0.

Conversely, assume {g = 0} ∩ E ⊂ {f = 0} ∩ E for all E such that
µ(E) > 0 and suppose λ1(E) = 0. If µ(E) = 0, then λ2(E) = 0. If µ(E) > 0,
then g|E = 0 a.e. (µ) and so by the assumption we have f |E = 0 a.e. (µ). So
λ1(E) = 0 and λ1 ≪ λ2.

For the Radon–Nikodym derivative, note that from dλ2 = g dµ we get,
if E ⊂ {g ̸= 0},

µ(E) =
∫
E

1 dµ =
∫
E

1
g
g dµ =

∫
E

1
g
dλ2.

So dµ = 1
g dλ2 on those sets where g ̸= 0.

When λ2 ≪ λ1 we have, with h = dλ1/dλ2 and E ⊂ {g ̸= 0},∫
E

h dλ2 = λ1(E) =
∫
E

f dµ =
∫
E

f

g
dλ2.

So
dλ1

dλ2
= f

g
1{g ̸=0} = dλ1/dµ

dλ2/dµ
1{dλ2/dµ̸=0}.

(2.10.14) Let (X,Σ, µ) be a σ-finite measure space. Show that there
exists a finite measure ν on Σ such that ν ≪ µ and µ ≪ ν.
Does such a ν always exist when µ is not necessarily σ-finite?

Answer. By hypothesis we have X =
⋃
nXn with {Xn} ⊂ Σ, pairwise

disjoint and µ(Xn) < ∞ for all n. Let

ν(E) =
∑
n

1
2nµ(Xn) µ(E ∩Xn), E ∈ Σ.
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Then ν(X) = 1, ν(∅) = 0, and if {Ek} ⊂ Σ are pairwise disjoint we have,
using Tonelli,

ν
(⋃

k

Ek

)
=
∑
n

1
2nµ(Xn)

∑
k

µ(Ek ∩Xn)

=
∑
k

∑
n

1
2nµ(Xn)µ(Ek ∩Xn) =

∑
k

ν(Ek).

So ν is a finite measure on Σ. If µ(E) = 0 then ν(E) = 0, so ν ≪ µ. And if
ν(E) = 0, then µ(E ∩Xn) = 0 for all n, and therefore

µ(E) =
∑
n

µ(E ∩Xn) = 0.

Thus µ ≪ ν.
The σ-finiteness is crucial. Let X = [0, 1] and µ the counting measure.

This is not σ-finite. Suppose that ν is a finite measure on Σ = P([0, 1]).
We will always have ν ≪ µ, for µ(E) = 0 if and only if E = ∅. If we
had µ ≪ ν, this means that ν cannot be zero on any nonempty set. Let
Rn = {t ∈ [0, 1] : ν({t}) > 1/n}. If Rn were finite for all n ∈ N, then
the set {t : ν({t} ≠ 0} would be countable, contradicting that ν is nonzero
on all nonempty sets. Hence there exists n such that Rn is infinite. Then
ν(Rn) ≥

∑
t∈Rn 1/n = ∞, showing that ν cannot be finite.

(2.10.15) Show that a linear combination of absolutely continuous func-
tions is again absolutely continuous.

Answer. It is enough to show that if f1, f2 : [a, b] → C are absolutely
continuous and c ∈ C then cf1 +f2 is absolutely continuous. Let ε > 0. Then
there exist δk, k = 1, 2, such that

n∑
j=1

|fk(bj) − fk(aj)| <
ε

2(|c| + 1)

for any partition a ≤ a1 < b1 < a2 < b2 < · · · < bn ≤ b and
∑
j |bj −aj | < δk.

Put δ = min{δ1, δ2}. Then, for a partition
a ≤ a1 < b1 < a2 < b2 < · · · < bn ≤ b



172 CHAPTER 2

with
∑
j |bj − aj | < δ, we have

n∑
j=1

|cf1(bj) + f2(bj) − cf1(aj) − f2(aj)| ≤
n∑
j=1

|c| |f1(bj) − f1(aj)|

+
n∑
j=1

|f2(bj) − f2(aj)|

< |c| ε

2(|c| + 1) + ε

2(|c| + 1) ≤ ε.

(2.10.16) Assume that both f and Mf are in L1(Rn). Prove that f = 0
a.e.

Answer. Assume, without loss of generality, that f ≥ 0. Suppose that f is
not zero a.e. Then there exists some ball Br(x0) with c0 =

∫
Br(x0) f > 0.

Now, for any x with ∥x∥ ≥ ∥x0∥+r, we have the inclusion Br(x0) ⊂ B2∥x∥(x)
(since, for y with ∥y∥ ≤ r, ∥x0 + y− x∥ ≤ ∥x0∥ + r+ ∥x∥ ≤ 2∥x∥). Then, for
x with ∥x∥ ≥ ∥x0∥ + r,

Mf(x) ≥ 1
m(B2∥x∥)

∫
B2∥x∥(x)

f ≥ 1
m(B2∥x∥)

∫
Br(x0)

f ≥ c0

m(B2∥x∥) = c

∥x∥n

for some constant c. Note that one can use the definition of the Lebesgue
measure, via boxes, to deduce that m(αE) = αnm(E), so we don’t need to
actually know the formula for the volume of a ball above.

Then, with R = ∥x0∥ + r, using Tonelli, and writing m(Bs(0)) = snd,∫
Rn
Mf ≥

∫
∥x∥≥R

c

∥x∥n
dx = c

∫
∥x∥≥R

∫ ∞

∥x∥

n

sn+1 ds dx

= cn

∫ ∞

R

∫
∥x∥≤s

1
sn+1 dx ds = cn

∫ ∞

R

m(Bs(0))
sn+1 ds

= cdn

∫ ∞

R

1
s
ds = ∞.

(2.10.17) Let X be a locally compact Hausdorff space. We say that a
complex measure µ on B(X) is regular if |µ| is regular, and
Radon if |µ| is Radon. Let γ be a positive Radon measure on
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B(X), g ∈ L∞(X), and define a complex Borel measure µ by

µ(E) =
∫
E

g dγ.

Show that µ is regular if γ is regular, and Radon if γ is Radon.

Answer. By Proposition 2.10.12,

|µ|(E) =
∫
E

|g| dγ.

If E ∈ B(X) and ε > 0, by the outer regularity of γ there exists V open with
E ⊂ V and γ(V \ E) < ε. Then

|µ|(V \ E) =
∫
V \E

|g| dγ ≤ ∥g∥∞ γ(V \ E) < ∥g∥∞ ε.

Thus |µ|(E) = inf{|µ|(V ) : V open and E ⊂ V }. Similarly, if K ⊂ E and
γ(E \K) < ε, then with the same inequality |µ|(E \K) ≤ ∥g∥∞ ε. Finally, if
K is compact, |µ|(K) ≤ ∥g∥∞ γ(K) < ∞.

(2.10.18) Let X ⊂ C be compact and µ a complex Radon measure on
X. Show that if

∫
X
f dµ ≥ 0 for all polynomials f such that

f(X) ⊂ [0,∞), then µ is a positive measure.

Answer. Since X is compact, we may approximate any continuous function
uniformly by polynomials (Stone–Weierstrass: Theorem 7.4.20). So we obtain
that

∫
X
f dµ ≥ 0 for all f ∈ C(X). Given any closed E ⊂ X, choose a

decreasing sequence {Vn} of open sets with m(Vn \ E) < 1/n. By Urysohn’s
Lemma (Theorem 2.6.5) there exist continuous functions fn, with 0 ≤ fn ≤ 1,
fn|E = 1, and supported in Vn. We have fn → 1E a.e., since

m(E ∩
⋂
n

Vn) = m(
⋂
n

Vn \ E) = lim
n
m(Vn \ E) = 0.

Then by Dominated Convergence we get

µ(E) =
∫
X

1E dµ = lim
n

∫
X

fn dµ ≥ 0.

In particular µ(X) ≥ 0. For any V ⊂ X open, µ(V ) = µ(X) − µ(X \E) ≥ 0.
And then, by regularity, µ(E) ≥ 0 for any Borel set E.
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(2.10.19) Let X be a compact Hausdorff space and µ a regular complex
Borel measure on A. Let φ : C(X) → C be given by φ(f) =∫
X
f dµ. Show that φ is multiplicative if and only if µ = δx0

for some x0 ∈ X.

Answer. We have δx0(fg) = (gf)(x0) = f(x0)g(x0) = δx0(f)δx0(g).
Conversely, assume that φ is multiplicative. There is a fairly sleek proof

of this in Proposition 7.4.6 (that does not even require the existence of the
measure µ, let alone its regularity), but we will provide an ad hoc proof here.
We have the advantage that we know that the multiplicative functional is
given by a measure.

Given E ⊂ X Borel, by Corollary 2.6.14 there exists a sequence {gn} ⊂
C(X) such that gn → 1E . We may assume that the sequence is non-negative
and uniformly bounded by 2, as we can replace gn with p◦q◦gn, where p(x) =
max{x, 0} and q(x) = min{x, 2}. Then Dominated convergence applies (as
µ = µ1 − µ2 + i(µ3 − µ4) with µj positive measures) and so

µ(E) =
∫
X

1E dµ = lim
n

∫
X

gn dµ = lim
n
φ(gn).

If F is another Borel subset of X and {hn} ⊂ C(X) are bounded positive
functions that converge pointwise to h, then gnhn → 1E1F = 1E∩F . Then

µ(E ∩ F ) = lim
n
φ(gnhn) = lim

n
φ(gn)φ(hn) = µ(E)µ(F ).

In particular µ(E) = µ(E ∩ E) = µ(E)2. So µ(E) ∈ {0, 1} for all Borel
sets E; in particular, µ is a positive measure. We can write 1 = µ(X) =
µ(E ∪Ec) = µ(E) + µ(Ec) so µ(E) = 1 if and only if µ(Ec) = 0. We deduce
that if E1, E2, . . . are Borel and disjoint with

⋃
nEn = X, then there exists

k such that µ(Ek) = 1 and µ(Ej) = 0 for all j ̸= k.
Let

X0 =
⋂

{E ⊂ X : compact, µ(E) = 1}. (AB.2.10)

Let E1, . . . , En ⊂ X be compact with µ(Ej) = 1 for all j. We will show by
induction on n that µ(E1 ∩ · · · ∩ En) = 1. When n = 1, there is nothing to
prove. Suppose that µ(E1 ∩ · · · ∩ Ek) = 1. Then

Ek+1 =
(
Ek+1 \ (E1 ∩ · · · ∩ Ek)

)
∪ (E1 ∩ · · · ∩ Ek ∩ Ek+1).

As µ(E1 ∩ · · · ∩ Ek) = 1, we get that µ(Ek+1 \ (E1 ∩ · · · ∩ Ek)) = 0, as this
last set lies in T \ (E1 ∩ · · · ∩ Ek). Then µ(E1 ∩ · · · ∩ Ek ∩ Ek+1) = 1.

The family of compact sets in (AB.2.10) has the finite intersection prop-
erty and so X0 ̸= ∅ by Proposition 1.8.19. If x0, x1 ∈ X0 are distinct, by
X being Hausdorff there exist disjoint open sets V ′

0 , V
′

1 ⊂ X with x0 ∈ V ′
0 ,

x1 ∈ V ′
1 . Using Lemma 2.6.4 there exist V0, V1 ⊂ X, open, disjoint, with dis-

joint compact closure, and x0 ∈ V0, x1 ∈ V1. For any E ⊂ X compact with
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µ(E) = 1, we have x0, x1 ∈ X0 ⊂ E. If µ(V0) = 0, then E \ V0 is compact
and µ(E \ V0) = 1, giving us X0 = X0 \ V0, contradicting that x0 ∈ X0.
Thus µ(V0) = 1, and similarly µ(V1) = 1. But as V0 and V1 are disjoint,
only one of them can have measure 1 (indeed, if µ(V0) = µ(V1) = 1, we get
1 ≥ µ(V0 ∪ V1) = 1 + 1 = 2). So X0 = {x0}. Now is the time to use that µ
is regular. If µ({x0}) = 0, then by the regularity there exists V open with
x0 ∈ V and µ(V ) < 1, so µ(V ) = 0. Then for every E ⊂ X compact with
µ(E) = 1, E\V is compact and µ(E\V ) = 1, so V ∩X0 = ∅, a contradiction.
So µ({x0}) = 1 and so µ = δx0 .

2.11. Differentiation

(2.11.1) Consider R with Lebesgue measure, and E ⊂ R measurable. If
it exists, the number

dE(x) = lim
ε→0

m(E ∩ (x− ε, x+ ε))
2ε

is the density of E at x. Show that dE(x) = 1E a.e. Can you
formulate and prove an analog result in Rn?

Answer. In Rn, we can define

dE(x) = lim
ε→0

m(E ∩Bε(x))
m(Bε(x)) .

We have
m(E ∩Bε(x))
m(Bε(x)) = 1

m(Bε(x))

∫
Bε(x)

1E dm −−−→
ε→0

1E a.e.

by Theorem 2.11.9. Note that while 1E might not be integrable, we only care
about its behaviour on balls, where it is integrable. So we may replace 1E
in the integral with 1E∩Bn(0) and we get the equality a.e. over an increasing
countable union of sets.

(2.11.2) Let f ∈ L1[0,∞) be such that∫ x

0
f dm = 0, x > 0.
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Show that f = 0. This was already done in Exercise 2.5.6 but
now a much much shorter proof is available.

Answer. By Lebesgue differentiation (Theorem 2.11.13) we have

f(x) = 1
2x

∫ 2x

0
f = 0

almost everywhere.

(2.11.3) For a closed square and a closed disk in R2, calculate the den-
sity at every point.

Answer. The density is

dE(x) = lim
r→0

m(E ∩Br(x))
m(Br(x)) .

For any interior point, a small enough ball will be entirely within the set,
and so dE(x) = 1. In the boundary of the square, for any point not a vertex
a small enough ball will have precisely half in the square and half outside,
so dE(x) = 1

2 . In each of the four vertices, for a small enough ball precisely
a quarter of the ball will be inside the square, so dE(x) = 1

4 . For points in
the boundary of the disk, for small enough r the boundary of the disk will
be basically a straight line, so it divides the small ball almost in half: thus
dE(x) = 1

2 .

(2.11.4) For E ⊂ R2, the boundary ∂E is the closure of E minus the
interior of E.

(a) Show that E is Lebesgue measurable if m(∂E) = 0.
(b) Suppose that E is an arbitrary union of a collection of closed

disks with radii at least c for some c > 0. Show that E is
measurable.

(c) Show that the radii above don’t need to be restricted.
(d) Show that some unions of closed disks of radius 1 are not

Borel sets.
(e) Can disks be replaced by triangles, rectangles, arbitrary

polygons, etc.? What is the relevant geometric property?
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Answer. Write Eo for the interior of E.

(a) If m(∂E) = 0, then ∂E is measurable. More importantly, E ∩ ∂E ⊂ ∂E
is a null-set. Then

E = Eo ∪ (E ∩ ∂E)
is measurable as Eo is open.

(b) Write E =
⋃
j

Brj (xj). Let x ∈ E \ Eo. As
⋃
j

Brj (xj) ⊂ Eo, we get

that x ∈ E \
⋃
j

Brj (xj). Let s > 0 with s < c/4. As x ∈ E, there

exists k such that dist(x,Brk(xk)) < s/2. Looking at the segment that
joins x and xk, because rk ≥ c > 4s we can fit a ball Bs/4(y) of radius
s/4 in the intersection Bs(x) ∩ Brk(xk). As this little ball lies outside of
E \

⋃
j

Brj (xj), it lies outside of E \ Eo.

Bs(x)
Brk(xk)

Bs/4(y)

Then
m((E \ Eo) ∩Bs(x))

m(Bs(x)) ≤ m(Bs(x) \Bs/4(y))
m(Bs(x)) = 1 − πs2/16

πs2 = 1 − 1
16 .

As s was arbitrary, this shows that dE\Eo(x) < 1 for all x ∈ E \Eo. Since
by Exercise 2.11.1 the density is 1 a.e., this implies that m(E \ Eo) = 0.
That is, m(∂E) = 0 and so E is measurable.

(c) Let Jn = {j : rj ≥ 1/n}. Then⋃
j

Brj (xj) =
⋃
n

⋃
j∈Jn

Brj (xn)

and the case with minimum radii applies to each union of Jn, so we get a
countable union of measurable sets.
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(d) Let V ⊂ R be measurable but not Borel. Let E =
⋃
v∈V B1(v, 0). By the

above, E is measurable. But if E is Borel, so is
E ∩ (R × {1}) = V × {1}.

As V = f−1(V × {1}) with f : x 7−→ (x, 1), this would imply that V is
Borel (Proposition 2.4.3), a contradiction.

(e) The key feature seems to be convexity. That is what guarantees that we
can put the smallest copy in the intersection, as in the picture.

(2.11.5) Let {fn} be a sequence of non-decreasing functions fn : R →
[0,∞), such that f(x) =

∑
n fn(x) < ∞ for all x. Show that

f ′(x) =
∑
n f

′
n(x) a.e.

Answer. Since derivatives are local we may restrict the domain to an interval
[a, b]. Since we can do this for any interval and a countable union of nullsets
is a nullset, we do not lose generality.

We know that f ′
n exists a.e. (because fn is monotone). By removing

a countable union of nullsets, we may consider only those x such that f ′
n(x)

exists for all n. Fix one such x. Let
g(x) =

∑
n

f ′
n(x).

This exists because f ′
n(x) ≥ 0 for all n. The monotonicity of fn makes all

Newton quotients non-negative. Then
N∑
n=1

fn(x+ h) − fn(x)
h

≤
∞∑
n=1

fn(x+ h) − fn(x)
h

= f(x+ h) − f(x)
h

.

Taking the limit as h → 0, and then as N → ∞,

g(x) =
∞∑
n=1

f ′
n(x) ≤ f ′(x) (AB.2.11)

Let hN =
∑N
n=1 fn. Then hN ↗ f . Choose numbers {Nk}k ⊂ N, with

Nk+1 > Nk and f(b) − hNk(b) < 2−k. Define

s(x) =
∑
k

(
f(x) − hNk(x)

)
=
∑
k

∑
n>Nk+1

fn(x).

This function s is monotone on [a, b], since the fn are; so 0 ≤ s(x) ≤ s(b) ≤ 1,
where the last inequality is guaranteed by the choice of the Nk. It follows
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that s is differentiable a.e., and then applying (AB.2.11) to s

0 ≤
∑
k

(
f ′(x) − h′

Nk
(x)
)

≤ s′(x) a.e.

This in particular implies that h′
Nk

(x) → f ′(x) a.e., which is
∑
n f

′
n(x) =

f ′(x) a.e.

(2.11.6) Suppose that E ⊂ [a, b], m(E) = 0. Construct an absolutely
continuous monotonic function f on [a, b] so that f ′(x) = ∞ for
all x ∈ E. (Hint: E ⊂

⋂
n Vn, with Vn open and m(Vn) < 2−n;

consider
∑
n 1Vn)

Answer. Since E is measurable, for each n there exists Wn ⊃ E, open, with
m(Wn \ E) < 2−n. Define

Vn =
n⋂
j=1

Wj .

Then Vn is open, Vn ⊃ E, and m(Vn \ E) ≤ m(Wn \ E) < 2−n. Let

f(t) =
∫ t

a

∑
n

1Vn dm.

There are no problems defining this, since everything is nonnegative. Also
(using monotone convergence)

0 ≤ f(t) ≤
∑
n

∫ t

a

1Vn dm ≤
∑
n

2−n = 1.

Being the antiderivative of a nonnegative function, f is nondecreasing. It
is absolutely continuous, because it maps nullsets to nullsets and it is the
integral of its derivative (the derivative exists a.e. by Lebesgue differentiation,
proven below).

For every Lebesgue point of g =
∑
n 1Vn (so, almost everywhere), we

have
lim
r→0

f(x+ r) − f(x)
r

= lim
r→0

1
r

∫ x+r

x

g dm = g(x),

so f ′ = g a.e. For each x ∈ E, we have f ′(x) = g(x) =
∑
n 1Vn(x) = ∞.

(2.11.7) Let f : [a, b] → C be of bounded variation. Show that f admits
side-limits at all points.
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Answer. Let x0 ∈ [a, b]. Suppose that limx→x+
0
f(x) does not exist. This

means that there exists ε > 0 and a monotone sequence {xn} ⊂ [a, b] such
that xn ↘ x and |f(xn+1) − f(xn)| ≥ ε. Indeed, the non-existence of the
limit means that there exists ε > 0 such that for all δ > 0 there exist y, z ∈
(x0, x0 +δ) that satisfy |f(y)−f(z)| ≥ ε. Start with δ1 > 0 with x+δ < b and
choose y1, z1 with x0 < z1 < y1 < x0 + δ and |f(y1) −f(z1)| ≥ ε. Inductively,
given y1, . . . , ym and z1, . . . , zm with

x0 < zm < ym < zm−1 < ym−1 < · · · < z1 < y1 < x0 + δ1,

let δm+1 = zm − x0. Since the limit does not exist, there exist zm+1, ym+1
with x0 < zm+1 < ym+1 < zm and |f(ym+1)−f(zm+1)| ≥ ε and the induction
is complete.

Define

xn =
{
y(n+1)/2, n odd

zn/2, n even
Then xn ↘ x0, and

m∑
k=1

|f(xk+1) − f(xk)| ≥ mε.

As this can be done for any m, the total variation of f is infinite. The
contradiction implies that the right-limit exists. An analog argument shows
that left-limits also exist.

(2.11.8) Let f : [a, b] → R. Show that f is of bounded variation if and
only if there exist g, h : [a, b] → R, both monotone, and such
that f = g − h.

Answer. The total variation F is monotone by construction; in fact, it is
proven in Proposition 2.11.16 that both g = F + f and h = F are monotone,
so f = g − h.

Conversely, if f = g − h with g, h monotone, let a = t0 < t1 < · · · <
tn = b. Then

n∑
j=1

|f(tj) − f(tj−1)| ≤
n∑
j=1

(g(tj) − g(tj−1) + h(tj) − h(tj−1)

= g(b) − g(a) + h(b) − h(a)
for any partition of [a, b]. Thus F (b) ≤ g(b) − g(a) + h(b) − h(a) < ∞ and f
is of bounded variation.
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(2.11.9) Let f : [a, b] → C be a function of bounded variation. Show
that f is Riemann integrable.

Answer. By Exercise 2.11.8 we can write f = g−h with g, h monotone non-
decreasing. So the assertion reduces to arguing that a monotone function g
is Riemann-integrable. We may assume without loss of generality that g ≥ 0
(replacing g with g − g(a)).

If ε > 0, let P = {a0, . . . , an} be a partition of [a, b] with ∆j = aj −
aj−1 <

ε
g(b)−g(a) . Then, using that g is monotone,

U(g, P ) − L(g, P ) =
n∑
k=1

[
g(aj) − g(aj−1)

]
∆j

≤ ε

g(b) − g(a)

n∑
k=1

g(aj) − g(aj−1) = ε.

Thus g is Riemann-integrable.
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CHAPTER

A Bit of Complex Analysis

3.1. Analytic and Holomorphic Functions

(3.1.1) Construct an example of a convergent series of positive terms∑
k bk such that α > 1 and β < 1.

Answer. Choose s, t ∈ (0, 1) with s < t. Define

bk =
{
sk, k even

tk−1, k odd

Then
∑
k bk ≤

∑
k s

k +
∑
k t
k < ∞. Also, when k is even,

|bk+1|
|bk|

= tk

sk
→c⃝ 2024 Mart́ın Argerami All Rights Reserved ∞.

And when k is odd,
|bk+1|
|bk|

= sk

tk
→c⃝ 2024 Mart́ın Argerami All Rights Reserved 0.

So α = ∞, β = 0.

183
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Let us now get an example of a convergent series with finite α > 1.
Choose any convergent series

∑
k ak with |ak+1|

|ak| → 1, for instance ak = 1/k2.
Form

bk =
{
a(k−1)/2, k odd

αak/2, k even
Then, when k = 2h+ 1 is odd,

|bk+1|
|bk|

= αah+1

ah
→c⃝ 2024 Mart́ın Argerami All Rights Reserved α.

And when k = 2h is even,
|bk+1|
|bk|

= ah
αah

= 1
α
.

(3.1.2) Construct an example of a divergent series of positive terms∑
k bk such that α > 1 and β < 1.

Answer. Choose any α > 1. Choose any divergent series
∑
k ak with |ak+1|

|ak| →
1, for instance ak = 1/k. Form

bk =
{
a(k−1)/2, k odd

αak/2, k even
Then, when k = 2h+ 1 is odd,

|bk+1|
|bk|

= αah+1

ah
→c⃝ 2024 Mart́ın Argerami All Rights Reserved α.

And when k = 2h is even,
|bk+1|
|bk|

= ah
αah

= 1
α
.

(3.1.3) Show that the function f(z) = z is not holomorphic anywhere
in the complex plane.

Answer. When h = t is real,
f(z + h) − f(z)

h
= t

t
= 1.z

But when h = it is imaginary,
z + h) − f(z)

h
= −it

it
= −1.
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Then f is not differentiable at z and thus not holomorphic at z.

(3.1.4) Prove the Dirichlet Criterion: If {an}, {bn} ⊂ C and

(a) lim
n→∞

an = 0;

(b)
∞∑
n=1

|an+1 − an| < ∞;

(c) there exists M > 0 such that
∣∣∣ m∑
n=1

bn

∣∣∣ < M for all m.

Show that
∑
n

anbn converges.

Answer. The trick is to use summation by parts. If sk =
∑k
n=1 anbn and

tk =
∑k
n=1 bn, then

sk = ak+1tk +
k∑

n=1
tn(an − an+1).

As |tn| < M by hypothesis, the series above converges absolutely, and so

lim
k→∞

sk =
∞∑
n=1

tn(an − an+1).

(3.1.5) Show that in Exercise 3.1.4 the hypothesis “
∞∑
n=1

|an+1 − an| <

∞” can be replaced, when it makes sense, by “{an} is mono-
tone”.

Answer. Suppose that {an} is non-decreasing. Then
k∑

n=1
|an+1 − an| =

k∑
n=1

an+1 − an = ak+1 − a1 −−−−→
k→∞

−a1,

so the series converges. Similarly, if {an} is non-increasing,
k∑

n=1
|an+1 − an| =

k∑
n=1

an − an+1 = a1 − ak+1 −−−−→
k→∞

a1,

In both cases, the hypothesis in Exercise 3.1.4 is satisfied.
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(3.1.6) Show that the Gamma Function

Γ(z) =
∫ ∞

0
tz−1e−t dt

defines a holomorphic function on the semiplane Re z > 0.
Show also that Γ(z+ 1) = zΓ(z) for every z in its domain, and
that Γ(n) = (n− 1)! for all n ∈ N.

Answer. First we check that the integral exists. If z = a + ib with a > 0
then

tz−1 = ta−1+ib = ta−1 eib log t.

Then
Γ(z) =

∣∣∣∣ ∫ ∞

0
e(t−1)r ei(t−1)θ e−t dt

∣∣∣∣ ≤
∫ ∞

0
e(a−1) log t−t dt.

Taking t0 such that (a− 1 log < t/2 for all t ≥ t0,∫ ∞

t0

e(a−1) log t−t dt ≤
∫ ∞

t0

e−t/2 dt < ∞,

so the integral converges.
Now we look at the Newton quotients. Given sequence {hn} with |hn| ≤

1 for all n and hn → 0, we have by Dominated Convergence

lim
n→∞

Γ(z + hn) − Γ(z)
hn

=
∫

0
lim
n→∞

tz−1+hn − tz−1

hn
e−t dt =

∫ ∞

0
tz−1 log t e−t dt.

As this can be done for any sequence that converges to 0, the limit of the
Newton quotients exists (the integral converges as the exponential wins over
the power of t and the logarithm). So Γ is holomorphic.

Integrating by parts,

Γ(z + 1) =
∫ ∞

0
tz e−t dt =

∫ ∞

0
ztz−1 e−t dt = zΓ(z).

The expression for n follows by induction, since Γ(1) = 1 and Γ(n) = (n −
1)Γ(n− 1).

3.2. Inverses of Holomorphic Functions and the Logarithm
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3.3. Line Integrals

(3.3.1) Show that if γ : [a, b] → C is piecewise continuously differen-
tiable, then it is of bounded variation.

Answer. Let a = a0 < a1 < · · · < an = b be a partition of [a, b]. We have
n∑
k=1

|γ(ak) − γ(ak−1)| =
n∑
k=1

∣∣∣ ∫ ak

ak−1

γ′(t) dt
∣∣∣

≤
n∑
k=1

∫ ak

ak−1

|γ′(t)| dt

=
∫ b

a

|γ′(t)| dt

≤ (b− a) ∥γ′∥∞.

We know that γ′ is bounded because it is continuous on each of the finitely
many intervals [ak−1, ak].

(3.3.2) Let γ(t), t ∈ [a, b] be a curve. Show that it is natural to define
the length of γ as

L(γ) =
∫ b

a

|γ′(t)| dt

Answer. If we partition the interval [a, b] as a = t0 < t1 < · · · < tn = b,
an approximation to the length of the curve would be

∑n
j=1 |γ(tj) − γ(tj−1|.

Then we can do, using the Mean Value Theorem,
n∑
j=1

|γ(tj) − γ(tj−1| =
n∑
j=1

|γ(tj) − γ(tj−1|
tj − tj−1

(tj − tj−1) =
n∑
j=1

|γ′(t′j)| (tj − tj−1)

for some t′j ∈ [tj−1, tj ], and now the sum is a Riemann sum for the integral∫ b
a

|γ′|.
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3.4. The Index

3.5. Cauchy’s Theorem

3.6. Zeros of Holomorphic Functions

(3.6.1) Show that the order of a zero is well-defined, in the sense that
if (z−w)ng(z) = (z−w)mh(z) with g, h holomorphic at w and
g(w)h(w) ̸= 0, then n = m.

Answer. Assume without loss of generality that m ≥ n. Since both g and
h are nonzero at w and they are continuous, there exists a disk w + rD
around w where both g and h are nonzero. For any z ∈ w + rD, we have
(z − w)ng(z) = (z − w)mh(z), and since g(z) ̸= 0 and h(z) ̸= 0 this gives us
(z − w)n = (z − w)m. That is, (z − w)m−n − 1 = 0 for all z ∈ w + r DD.
Then all derivatives will be zero on the disk. If m−n > 0, this gives us, after
differentiating m−n− 1 times, z−w = 0 for all z ∈ w+ rD, a contradiction.
Thus m = n.

(3.6.2) Let V be open and f holomorphic on V . Show that f has at
most countably many zeros.

Answer. Since V is an open subset of the plane, we can cover it with count-
ably many closed disks (for instance, Bn(0). By Corollary 3.6.3, each of the
closed disks can only have finitely many zeros, so the union of all of them can
have at most countably many.
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(3.6.3) Let V be a simply connected region and f holomorphic on V
such that it has no zeros on V . Show if a ∈ V and

g(z) = log f(a) +
∫
γa,z

f ′(w)
f(w) dw,

then f(z) = eg(z). Note that we know from the proof of Propo-
sition 3.3.8 how to differentiate the integral.

Answer. We have that
g′(z) = f ′(z)

f(z) .

Then
(f(z)e−g(z))′ =

(
f ′(z) − f(z)g′(z)

)
e−g(z) = 0,

so there exists c ∈ C such that f(z) = ceg(z). Evaluating at z = a, f(a) =
cf(a), so c = 1 (note that f(a) ̸= 0 by hypothesis).

3.7. Maximum Modulus Principle and Liouville’s Theorem

3.8. Consequences of Cauchy’s Theorem

3.9. The General Cauchy Theorem

(3.9.1) Let f be entire and such that there exist c, r > 0 and n ∈ N
such that |f(z)| ≤ c|z|n for all z with |z| > r. Prove that f is
a polynomial with deg f ≤ n.
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Answer. Consider z with r < |z| < 2r, k ∈ N with k > 2r, and let γ(t) =
z + keit, t ∈ [0, 2π]. By Corollary 3.9.4,

|f (n+1)(z)| = 1
2π

∣∣∣ ∫ 2π

0

f(z + keit)
kn+2e(n+1)it ki e

it dt
∣∣∣ ≤ c k (2r + k)n

kn+2 = c (2r + k)n

kn+1 .

As we are free to choose k as big as we want, we conclude that fn+1(z) = 0.
So the holomorphic function fn+1 agrees with zero in a set with a cluster
point; thus fn+1 = 0 by Corollary 3.6.2. By writing f as its Taylor series
centered at 0, it follows that f is a polynomial of degree at most n.

(3.9.2) Let f be entire and such that, for z big enough, Re f(z) ≤ c|z|s
for some c > 0 and s > 0. Show that f is a polynomial of degree
at most m = ⌊s⌋.

Answer. Let n = m+ 1. Using Corollary 3.9.4,

f (n)(0) = n!
2πi

∮
rT

f(z)
zn+1 dz = n!

2πi

∫ 2π

0

f(reiθ)
rn+1ei(n+1)θ rie

iθ dθ

= n!
2πrn

∫ 2π

0
f(reiθ) e−inθ dθ.

Applying Cauchy’s Theorem to zn−1f(z) we get

0 =
∮
rT
f(z)zn−1 dz =

∫ 2π

0
f(reiθ)rn−1ei(n−1)θ rieiθ dθ

= irn
∫ 2π

0
f(reiθ)einθ dθ.

Complex conjugation then gives

0 =
∫ 2π

0
f(reiθ)e−inθ dθ.

This allows us to write, since Re f = f + f ,

|f (n)(0)| = n!
πrn

∣∣∣∣ ∫ 2π

0
Re f(reiθ) e−inθ dθ

∣∣∣∣
= n!
πrn

∣∣∣∣ ∫ 2π

0

(
crs − Re f(reiθ)

)
e−inθ dθ

∣∣∣∣
≤ n!
πrn

∫ 2π

0

(
crs − Re f(reiθ)

)
dθ

= 2crs−n − 2n!Re f(0)r−n.
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As we are free to choose r, it follows that f (n)(0) = 0 and f is a polynomial
of degree at most m.

3.10. Meromorphic Functions and Residues

(3.10.1) Let V ⊂ C be open, z0 ∈ V , and f : V → C a function. Show
that the following statements are equivalent:

(a) there exists n ∈ N such that (z − z0)nf(z) has a removable
singularity at z0;

(b) there exist a1, . . . , an ∈ C, with an ̸= 0, such that on some
disk around z0

f(z) −
n∑
k=1

ak
(z − z0)k

has a removable singularity at z0;
(c) there exist coefficients {ck}∞

k=−n ⊂ C such that, on some
disk around z0,

f(z) =
∞∑

k=−n

ck(z − z0)k.

Answer. Suppose that (z−z0)nf(z) is holomorphic at z0. By Corollary 3.5.2
there is a disk around z0 such that

(z − z0)nf(z) =
∞∑
k=0

bk(z − z0)k.

We can rewrite this, splitting the sum as convenient and defining ak = bn−k,

f(z) =
∞∑
k=0

bk(z − z0)k−n =
n−1∑
k=0

bk(z − z0)k−n +
∞∑
k=n

bk(z − z0)k−n

=
n∑
k=1

ak(z − z0)−k +
∞∑
k=0

bn−k(z − z0)k,

which gives the desired expression for f .
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If we now assume that f(z)−
∑n
k=1

ak
(z−z0)k has a removable singularity

at z0, on some disk we can write

f(z) −
n∑
k=1

ak
(z − z0)k =

∞∑
k=0

bk(z − z0)k.

This is

f(z) =
∞∑

k=−n

ck(z − z0)k, (AB.3.1)

if we put ck = a−k for k < 0, and ck = bk for ak ≥ 0.
Finally, if f is as in (AB.3.1), then

(z − z0)nf(z) =
∞∑

k=−n

ck(z − z0)k+n =
∞∑
k=0

ck−n(z − z0)k

and so (z − z0)nf(z) is analytic at z0.

(3.10.2) For each of the following functions, classify its singularities.

(a) f(z) = sin z
z , z ∈ C \ {0};

(b) f(z) = ez

z2 , z ∈ C \ {0};

(c) f(z) = e1/z, z ∈ C \ {0}.

Answer.

(a) The function is bounded on any disk that does not contain 0. Since we
have

sin z
z

= 1 − z2

3 + o(z5),
the singularity is removable.

(b) We have
f(z) = 1

z2 + 1
z

+ 1
2 + z

6 + o(z2).
By Exercise 3.10.1, f has a pole of order 2 at 0.

(c) The singularity at 0 is essential. For

znf(z) =
∞∑
k=0

zn−k

k!

is always unbounded on disks around 0. This can be seen for instance by
taking z = 1

m(n+1)! and then znf(z) ≥ m (by considering the (n + 1)th

term of the series).
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(3.10.3) Use the Residue Theorem to evaluate
∮

|z|=2

1
z2(z − 1) dz.

Answer. Since we have a circle, the index is 1. The integrand has poles at
z = 0 (order 2) and z = 1) (order 1). Since

f(z) = − 1
z2 − 1

z
+ 1
z − 1 ,

we see that Res(f, 0) = −1 and Res(f, 1) = 1. Then∮
|z|=2

1
z2(z − 1) dz = 2πi(−1 + 1) = 0.

(3.10.4) Find
∮

|z|=3

ez

z2 + π2 dz.

Answer. Since ez is nonzero and entire, the only poles ±iπ of order 1. These
lie outside the simple curve |z| = 3, so our integrand is analytic on the interior
of the curve, and hence the integral is zero by Cauchy’s Theorem.

(3.10.5) Find
∮

|z−i|=3

ez

z2 + π2 dz.

Answer. As mentioned in the answer to Exercise 3.10.4, the poles are ±iπ.
Now the curve has iπ inside of it, and −iπ outside (so with index 0). We
have

Res(f, iπ) = lim
z→iπ

ez

z + iπ
= eiπ

2iπ = − 1
2iπ .

Therefore ∮
|z−i|=3

ez

z2 + π2 dz = −2πi 1
2πi = 1.

(3.10.6) Find
∫ 2π

0

1
5 + 4 cos t dt.
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Answer. If we put z = eit, then cos t = 1
2 (z + z−1). Then∫ 2π

0

1
5 + 4 cos t dt =

∫ 2π

0

ieit

ieit(5 + 2(eit + e−it)) dt =
∮

|z|=1

1
iz(5 + 2(z + z−1)) dz

= −i
∮

|z|=1

1
2z2 + 5z + 2 dz.

The function f(z) = (2z2 + 5z + 2)−1 has simple poles at z = −2 (outside
the curve) and z = −1/2 (inside the curve). The residue is

Res(f,−1
2) = lim

z→− 1
2

z + 1
2 1

(2z + 1)(z + 2) = 1
2
(

− 1
2 + 2

) = 1
3 .

Thus ∫ 2π

0

1
5 + 4 cos t dt = −i 2πi 1

3 = 2π
3 .

(3.10.7) Compute
∫ ∞

−∞

1
x2 + 4x+ 5 dx.

Answer. Since x2 + 4x + 5 = (x + 2)2 + 1, its two roots are −2 ± i. Let
γR = γ1 + γ2, where

γ1(t) = −R+ t, t ∈ [0, R]
and

γ2(t) = Reit, t ∈ [0, π].
So γR is a closed curve, going from −R to R on the real line, and then coming
back as an arc towards −R. Write f(z) = (z2 + 4z + 5)−1. Since −2 + i is
the only pole (simple) of f inside γR and

Res(f,−2 + i) = lim
z→−2+i

(z + 2 − i)
(z + 2 − i)(z + 2 + i) = 1

2i ,

we have ∫
γR

f(z) dz = 2iπ 1
2i = π.

Also, when |z| = R,
|z2 + 4z + 5| ≥ |z2| − |4z| − 4 = R2 − 4R− 5

so ∣∣∣ ∫
γ2

f(z) dz
∣∣∣ =

∣∣∣ ∫ π

0

iReit

(Reit)2 + 4Reit + 5 dt
∣∣∣ ≤

∫ π

0

R

R2 − 4R− 5 dt ≤ 2π
R
.
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Thus∫ ∞

−∞

1
x2 + 4x+ 5 dx = lim

R→∞

∫ R

−R

1
x2 + 4x+ 5 dx = lim

R→∞

∫
γR

1
z2 + 4z + 5 dz = π.

(3.10.8) Compute
∫ ∞

−∞

cosx
1 + x2 dx.

Answer. Consider γ1, γ2, γR as in the answer to Exercise 3.10.7. Since cos z
is not bounded on an arc, we will instead use that∫ ∞

−∞

cosx
1 + x2 dx = Re

∫ ∞

−∞

eix

1 + x2 dx.

So let f(z) = eiz/(1 + z2). This function has simple poles ±i, and

Res(f, i) = lim
z→i

(z − i)eiz

(z − i)(z + i) = ei
2

2i = e−1

2i .

When |z| = R we have |1 + z2| ≥ R2 − 1, which shows that |Reit/(1 +
(Reit)2)| ≤ R/(R2 − 1) and thus

∫
γ2
f(z) dz → 0 with R. Then∫ ∞

−∞

cosx
1 + x2 dx = lim

R→∞
Re
∫
γR

eiz

1 + z2 dz = 2πi Res(f, i) = π

e
.

(3.10.9) Show that if s ∈ (0, 1) then
∫ ∞

0

xs−1

x+ 1 dx = π

sin πs .

Answer.
Consider f(z) = zs−1/(z + 1). We use a “keyhole” contour that leaves

out the positive x-axis:
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γ1

γ2

γ3

γR

R−ε−1

This allows us to choose the branch of the logarithm where 0 < θ <
2π. Which is crucial because we need the logarithm to calculate zs−1. It
is common to use a small circle around the origin (which justifies better the
name “keyhole”) but using straight lines simplifies the computations a bit;
most sources will gloss over the estimates below to avoid the effort.

Over γ1(t) = t+ iε, t ∈ [−ε,
√
R2 − ε2],∫

γ1

f(z) dz =
∫ √

R2−ε2

−ε

(t+ iε)s−1

t+ 1 + iε
dt

=
∫ √

R2−ε2

−ε

(t2 + ε2)(s−1)/2 ei(s−1) arctan ε
t

t+ 1 + iε
dt

−−−−→
R→∞
ε→0

∫ ∞

0

xs−1

x+ 1 dx.

The limit is taken via Dominated convergence, since for big enough t∣∣∣ (t2 + ε2)(s−1)/2 ei(s−1) arctan ε
t

t+ 1 + iε

∣∣∣ ≤ 4s−1ts−2

which is integrable since 0 < s < 1.
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Over γ2(t) =
√
R2 − ε2 − ε − t − iε, t ∈ [−ε,

√
R2 − ε2], now we need

to look carefully at the log branch we are using. Concretely,

(a− iε)s−1 = (a2 + ε2)(s−1)/2 ei(s−1)
(

2π−arctan ε
a

)
.

Then ∫
γ2

f(z) dz =
∫ √

R2−ε2

−ε

(
√
R2 − ε2 − ε− t− iε)s−1

√
R2 − ε2 − ε− t+ 1 − iε

(−1) dt

= −
∫ √

R2−ε2

−ε

(t− iε)s−1

t+ 1 − iε
dt

= −e2π(s−1)i
∫ √

R2−ε2

−ε

(t2 + ε2)(s−1)/2 e−i(s−1) arctan ε
t

t+ 1 − iε
dt

−−−−→
R→∞
ε→0

−e2π(s−1)i
∫ ∞

0

xs−1

x+ 1 dx.

Over γR(t) = Reit, t ∈
[

arctan ε
R , 2π − arctan ε

R

]
we have, as long as

R > 2,
|f(Reit)| ≤ Rs−1

|Reit + 1|
≤ R(s−1)

R− 1 ≤ 2Rs−1

R
= 2Rs−2.

From Lemma 3.3.4 we get∣∣∣∣ ∫
γR

f(z) dz
∣∣∣∣ ≤ 2Rs−2 2πR = 4π Rs−1 −−−−→

R→∞
0.

And over γ3(t) = −ε+ it, t ∈ [−ε, ε], as long as ε < 1
2∣∣∣∣ ∫

γε

f(z) dz
∣∣∣∣ =

∣∣∣∣ ∫ ε

−ε

(−ε+ it)s−1

−ε+ 1 + it
i dt

∣∣∣∣ ≤
∫ ε

−ε

|t− ε|s−1

1 − ε
dt ≤ 4ε(2ε)s−1 −−−→

ε→0
0.

Therefore we have shown that

(1 − e2π(s−1)i)
∫ ∞

0

xs−1

x+ 1 dx = lim
R→∞
ε→0

∫
γ

f(z) dz.

Now we calculate the integral using its residue at the only pole z = −1. The
pole is simple, and we have

Res(f,−1) = lim
z→−1

(z + 1)zs−1

z + 1 = (−1)s−1 = eiπ(s−1).

Therefore
(1 − e2π(s−1)i)

∫ ∞

0

xs−1

x+ 1 dx = 2πieiπ(s−1).
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Thus, using that eiπ(s−1) = eiπse−iπ = −eiπs,∫ ∞

0

xs−1

x+ 1 dx = 2πieiπ(s−1)

1 − e2π(s−1)i = π

1 − e2π(s−1)i

2i eiπ(s−1)

= π

e−iπ(s−1) − eiπ(s−1)

2i

= π

−e−iπs + eiπs

2i

= π

sin πs.

(3.10.10) Evaluate
∫ ∞

−∞

x sin x
x2 + 4x+ 20 dx.

Answer. As before we use the same curve γR from 3.10.7 and we work with
the real part: ∫ ∞

−∞

x sin x
x2 + 4x+ 20 dx = Re

∫ ∞

−∞

xeix

x2 + 4x+ 20 dx.

The function f(z) = zeiz/(z2 + 4z + 20) has poles at z = −2 ± 4i. Only
−2 + 4i lies inside γR, and its residue is

Res(f,−2 + 4i) = (−2 + 4i)ei(−2+4i)

−2 + 4i+ 2 + 4i = (−2 + 4i)e−2i

8e4i
.

Then∫ ∞

−∞

x sin x
x2 + 4x+ 20 dx = Re

(
2πi (−2 + 4i)e−4−2i

8i

)
= π

4e4 Re
(
(−2 + 4i)e−2i)

= π(2 cos 2 + sin 2)
2e4 .

(3.10.11) Show that, for 0 < s < 1,
∫ ∞

−∞

esx

1 + ex
dx = π

sin sπ .

Answer. The poles of f(z) = esz

1+ez occur when ez = −1; that is, when
z = (2k + 1)πi, k ∈ Z. The residue at πi is

Res(f, πi) = lim
z→πi

(z − πi)esz

1 + ez
= lim
ω→0

ωes(ω+πi)

1 + ew+πi = lim
ω→0

ωes(ω+πi)

1 − ew
= −esπi

We let γr be the curve describing the rectangle with vertices
−R,R,R+ 2πi,−R+ 2πi
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(so only πi lies inside the curve). That is, γr = γ1 + γ2 + γ3 + γ4, where
γ1(t) = t, t ∈ [−R,R];

γ2(t) = R+ 2πit, t ∈ [0, 1];

γ3(t) = −t+ 2πi, t ∈ [−R,R];

γ4(t) = −R+ 2πi(1 − t), t ∈ [0, 1].
Then ∫

γ1

f(z) dz =
∫ R

−R

esx

1 + ex
dx

and ∫
γ3

f(z) dz = −
∫ R

−R

e−sx+2πis

1 + e−x+2πi dx = −e2πis
∫ R

−R

esx+2πis

1 + ex
dx.

We have the estimates∣∣∣ ∫
γ2

f(z) dz
∣∣∣ ≤

∫ 1

0

2πesR

|1 + eR+2πit|
dt ≤ 2πesR

eR − 1 −−−−→
R→∞

0,

and ∣∣∣ ∫
γ4

f(z) dz
∣∣∣ ≤

∫ 1

0

2πe−sR

|1 + e−R+2πi(1−t)|
dt ≤ 2πe−sR

1 − e−R −−−−→
R→∞

0.

Then
lim
R→∞

∮
γR

f(z) dz = (1 − e2πis)
∫ ∞

−∞

esx

1 + ex
dx.

Therefore∫ ∞

−∞

esx

1 + ex
dx = 2πi

1 − e2πis Res(f, πi) = −2πiesπi

1 − esπi
= −π

e−sπi−esπi
2i

= π

sin sπ .

(3.10.12) Show that if −1 < α < 3, then
∫ ∞

0

xα

(1 + x2)2 dx = π(1 − α)
4 cos απ2

.

Answer. We have to deal with the expression zα. This is eα log z, but depends
on the branch of the logarithm we choose. Since we will only work in the
semiplane Im z ≥ 0, we may use the branch of the logarithm where 0 ≤ θ ≤ π.
Then, when z = Reiθ with Im z ≥ 0 we have 0 ≤ θ and then

(Riθ)α = eα log(Reiθ) = eα(logR+iθ) = Rα eiαθ.
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With this interpretation we have, when x < 0, xα = (−x)α eiαπ. Then∫ R

−R

xα

(1 + x2)2 dx =
∫ R

0

xα

(1 + x2)2 dx+
∫ 0

−R

xα

(1 + x2)2 dx

=
∫ R

0

xα

(1 + x2)2 dx+ eiαπ
∫ 0

−R

(−x)α

(1 + x2)2 dx

= (1 + eiαπ)
∫ R

0

xα

(1 + x2)2 dx.

We consider the upper semicircle given by γ1(t) = −R + t, t ∈ [0, 2R] and
γ2(t) = Reit, t ∈ [0, π]. We have, using that when R ≥

√
2

|1 +R2e2it|2 = R4 + 1 − 2R2 cos 2t ≥ R4 + 1 − 2R2 = (R2 − 1)2 ≥ R4

4 ,

the estimates∣∣∣∣ ∫
γ2

zα

(1 + z2)2 dz

∣∣∣∣ =
∣∣∣∣ ∫ π

0

(Reit)αRi eit

(1 +R2e2it)2 dt

∣∣∣∣ ≤
∫ π

0

Rα + 1
|1 +R2e2it|2

dt

≤
∫ π

0

4Rα+1

R4 dt = 4πRα−3 −−−−→
R→∞

0.

It follows that∫ ∞

0

xα

(1 + x2)2 dx = 1
(1 + eiαπ) lim

R→∞

∫
γ1+γ2

zα

(1 + z2)2 dz

= 2πi
(1 + eiαπ) Res(f(z), i).

It remains to calculate the residue. We have

Res
(

zα

(1 + z2)2 , i
)

= lim
z→i

d

dz

(z − i)2zα

(1 + z2)2 = lim
z→i

d

dz

zα

(z + i)2

= lim
z→i

zα−1

(z + i)3 (α(z + i) − 2z) = 1 − α

4 e(α−1)π2 i.

Hence ∫ ∞

0

xα

(1 + x2)2 dx = 2πi
(1 + eiαπ)

1 − α

4 e(α−1)π2 i

= 2π
eiαπ/2(e−iαπ/2 + eiαπ/2)

1 − α

4 eα
π
2 i

= 2π
2eiαπ/2 cosαπ2

1 − α

4 eα
π
2 i = π(1 − α)

4 cos απ2
.
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(3.10.13) Using the ideas in Example 3.10.6 show that, for any mero-
morphic function f with no integer poles and such that there
exist s, c > 0 with N1+s |f(γN )| ≤ c for all N , where γN is the
curve from Example 3.10.6,∑

n∈Z
f(n) = −π

∑
w∈P

Res
(
f(z)cosπz

sin πz , w
)
, (3.1)

where P is the set of poles of f .

Answer. Let g(z) = f(z) cosπz
sinπz . Since f has no integer poles, the poles of g

are P . The integer poles are of order one, reasoning as in Example 3.10.6.
We have

Res
(
f(z) cosπz

sin πz , n
)

= lim
z→n

(z − n)f(z) cosπz
sin πz = lim

ω→0

ωf(ω + n) cosπ(ω + n)
sin π(ω + n)

= lim
ω→0

ωf(ω + n) cosπω
sin πω = f(n)

π
.

So
1

2πi

∮
γN

f(z) cosπz
sin πz dz =

∑
|w|<N

Res
(
f(z) cosπz

sin πz , w
)

+ 1
π

∑
n<|N |

f(n). (AB.3.2)

We also consider the square γN with vertices
(
N + 1

4
)
(±1 ± i) as in Exam-

ple 3.10.6. We ran the estimates as in the example, only that now instead of
(3.26) (where we had f(z) = z−2) we obtain∮

γN

∣∣∣ cosπz
z2 sin πz

∣∣∣ dz ≤ (3 − e−π
2 )(8N + 2)

(1 − e−π
2 )

cN−1−s −−−−→
N→∞

0.

Then, taking the limit on (AB.3.2),∑
n∈Z

f(n) = −π
∑
w∈P

Res
(
f(z) cosπz

sin πz , w
)

(3.10.14) Show that
∑
n∈Z

1(
n− 1

2
)2 = π2.

Answer. Here we are taking f(z) = 1
(z− 1

2 )2 , with a single pole of order 2 at
z = 1

2 . So

Res(f, 1
2 ) = lim

z→ 1
2

d

dz

[ (z − 1
2 )2 cosπz

(z − 1
2 )2 sin πz

]
= lim
z→ 1

2

d

dz

[cosπz
sin πz

]
= lim
z→ 1

2

[ −π
sin2 πz

]
= −π.
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Then (3.1) gives us ∑
n∈Z

1(
n− 1

2
)2 = π2.

(3.10.15) Show that, for any r > 0,
∞∑
n=1

1
n2 + r2 = π

2r + π

r(e2πr − 1) − 1
2r2 .

Answer. We want to apply (3.1) to the function f(z) = 1
z2+r2 . This function

has poles at ±ri. The residues are

Res
( cosπz

(z2 + r2) sin πz , ri
)

= lim
z→ri

(z − ri) cosπz
(z − ri)(z + ri) sin πz = cosπri

2ri sin πri

= − erπ + e−rπ

2r(erπ − e−rπ) = − 1 + e−2rπ

2r(1 − e−2rπ)
and

Res
( cosπz

(z2 + r2) sin πz ,−ri
)

= lim
z→−ri

(z + ri) cosπz
(z − ri)(z + ri) sin πz = cosπri

2ri sin πri

= − erπ + e−rπ

2r(erπ − e−rπ) = − 1 + e−2rπ

2r(1 − e−2rπ) .

Therefore ∑
n∈Z

f(n) = π
1 + e−2rπ

r(1 − e−2rπ) .

Since f(0) = 1
r2 ,

∞∑
n=1

1
n2 + r2 = 1

2

(
− f(0) +

∑
n∈Z

f(n)
)

= 1
2

(
− 1
r2 + π

1 + e−2rπ

r(1 − e−2rπ)

)
= π

2r + π

r(e2rπ − 1) − 1
2r2 .

(3.10.16) Let r ∈ R \ Z. Show that
∞∑
n=1

1
n2 − r2 = 1

2r2 − π cosπr
2r sin πr .

Answer. We apply Exercise 3.10.13 to f(z) = (z2 − r2)−1. This has two
simple poles ±r. The residues are

Res
( cosπz

(z2 − r2) sin πz , r
)

= lim
z→r

cosπz
(z + r) sin πz = cosπr

2r sin πr .
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Similarly,

Res
( cosπz

(z2 − r2) sin πz ,−r
)

= lim
z→r

cosπz
(z − r) sin πz = cosπr

2r sin πr .

As f(0) = − 1
r2 ,
∞∑
n=1

1
n2 − r2 = −f(0)

2 + 1
2

∑
n∈Z

f(n) = 1
2r2 − π cosπr

2r sin πr .

(3.10.17) Show that the function 1
sinπz is bounded on the square with

vertices (N + 1
4 ) (±1 ± i), independently of N . Conclude that

if f is meromorphic, it has no integer poles, and there exist
s, c > 0 such that N1+s |f(γN )| ≤ c for all N , where γN is the
curve from Example 3.10.6, then∑

n∈Z
(−1)nf(n) = −π

∑
w∈P

Res
(
f(z)

sin πz , w
)
, (3.2)

where P is the set of poles of f .

Answer. We have
1

| sin πz| = 2
|eiz − e−iz|

.

We consider the same square γN as in Example 3.10.6. This time we need
estimates for 1

sinπz . On the vertical line (N + 1
2 ) (1 + it), consider first the

case t ≥ 1
4
(
N+ 1

2
) . We have

|eiz − eiz| ≥
∣∣ |eiz| − |e−iz|

∣∣ = eπt(N+ 1
2 ) − e−πt(N+ 1

2 ) ≥ eπ/4 − 1 ≥ eπ/4 − 1
The case t ≤ − 1

4(N+ 1
4 )

is dealt with similarly, by exchanging z with −z (which

doesn’t change the absolute value). When |t| < 1
4
(
N+ 1

2
) ,∣∣∣2 sin

((
N + 1

2
)
π + iπt

(
N + 1

2
))∣∣∣ = 2

∣∣∣sin(π2 + iπt
(
N + 1

2
))∣∣∣

=
∣∣∣eiπ/2e−π(N+ 1

2 )t − e−iπ/2eπ
(
N+ 1

2
)
t
∣∣∣

=
∣∣∣e−π

(
N+ 1

2
)
t + eπ

(
N+ 1

2
)
t
∣∣∣

= 2
∣∣∣cos

(
π
(
N + 1

2
)
t
)∣∣∣ ≥

√
2.

For the other vertical line the estimates are the same as we can exchange
the roles of z and −z without changing the absolute values. And the same
happens with the horizontal lines, as these are obtained from the vertical
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lines by multiplying them by i. In all, we have shown that there exists c′ > 0,
independent of N , such that

1
| sin πz| ≤ c′

on γN . By hypothesis, there exists c′′ > 0 with |f(n)| ≤ c′′

|n|1+s for sufficiently
big n. Then, with c = max{c′, c′′} and N ≥ 4,∣∣∣∮

γN

f(z)
sin πz dz

∣∣∣ ≤ c(8N + 4)
N1+s ≤ 12c

Ns
−−−−→
N→∞

0.

The residue of 1
sinπz at z = n is (using that sin(z + πn) = (−1)n sin z)

lim
z→n

(z − n)
sin πz = lim

z→ n

(−1)n

π

1
sinπ(z−n)
π(z−n)

= (−1)n

π
.

Thus
Res

(
f(z)

sin πz , n
)

= (−1)nf(n)
π

.

As the poles of f(z)
sinπz occur at n ∈ Z and at the poles of f , the equality (3.25)

becomes (3.2).

(3.10.18) Show that for any r ∈ R \ Z we have
∑
n∈Z

(−1)n

(n+ r)2 = π2 cosπr
sin2 πr

.

Answer. We apply Exercise 3.10.17 to the function f(z) = 1
(z+r)2 . The only

pole of f occurs at z = −r, with order 2. So

Res(f,−r) = lim
z→−r

d

dz

(z + r)2

(z = r)2 sin πz = lim
z→−r

π cosπz
sin2 πz

= −π cosπr
sin2 πr

,

and then (3.2) gives us∑
n∈Z

(−1)n

(n+ r)2 = (−π)−π cosπr
sin2 πr

= π2 cosπr
sin2 πr

(3.10.19) Find
∞∑
n=1

(−1)n

1 + n2 .
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Answer. We apply Exercise 3.10.17 to the function f(z) = 1
1+z2 . The poles

are ±i. The residues are

Res
(
f(z)

sin πz , i
)

= lim
z→i

1
(z + i) sin πz = 1

2i sin πi = 2i
2i(e−π − eπ) = − 1

eπ − e−π

and

Res
(
f(z)

sin πz ,−i
)

= lim
z→−i

1
(z − i) sin πz = 2i

−2i(eπ − e−π) = − 1
eπ − e−π .

By Exercise 3.10.17 ∑
n∈Z

(−1)n

1 + n2 = 2π
eπ − e−π .

Therefore
∞∑
n=1

(−1)n

1 + n2 = 1
2

(
− 1 +

∑
n∈Z

(−1)n

1 + n2

)
= 1

2

(
− 1 + 2π

eπ − e−π

)
= π

eπ − e−π − 1
2 .

(3.10.20) Consider the Gamma Function from Exercise 3.1.6. It is only
defined for Re z > 0. But it can be continued analytically
(doing analytic continuation) in the following way. We know
that Γ(z + 1) = zΓ(z). This we can write as

Γ(z) = Γ(z + 1)
z

,

which suggests a way to extend the function “to the left”, first
to the strip −1 < Re z ≤ 0 (avoiding z = 0), and subsequently
to each strip −(n + 1) < Re z ≤ −n (avoiding z = −n). We
have to avoid 0 because otherwise it appears on the denomina-
tor, and this makes the extension undefined on all non-positive
integers. The formula, using that Γ is holomorphic, shows that
this extension is holomorphic. So we get a meromorphic func-
tion with poles at −n+ 1 for n ∈ N.

(a) Show that these poles are simple.
(b) Show that, for all z ∈ C \ Z,

Γ(z)Γ(1 − z) = π

sin πz .

Exercise 3.10.9, via a substitution of the form y = t/x,
should be useful.

(c) Show that there exist a, b > 0 such that for all z ∈ C

|Γ(z)| ≤ aeb|z| log |z|.
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(d) Show that there exist a, b > 0 such that for all z ∈ C
1

|Γ(z)| ≤ aeb|z| log |z|.

Answer.

(a) For each pole −n with n ∈ {0} ∪ N,

lim
z→−n

(z + n)Γ(z) = lim
z→−n

(z + n)Γ(z + 1)
z

= lim
z→−n

(z + n)Γ(z + 2)
z(z + 1)

= · · · = lim
z→−n

(z + n) Γ(z + n+ 1)
z(z + 1) · · · (z + n)

= (−1)nΓ(1)
n! = (−1)n

n! .

So the residue of first order exists and hence each pole is simple.
(b) For s ∈ (0, 1), and using Tonelli and the substitution y = t/x,

Γ(s)Γ(1 − s) =
∫ ∞

0
ts−1e−t dt

∫ ∞

0
x−se−x dx

=
∫ ∞

0

∫ ∞

0
ts−1x−se−x−t dt dx

=
∫ ∞

0

∫ ∞

0

(
t

x

)s
e−x−t 1

t
dt dx

=
∫ ∞

0

∫ ∞

0
yse−x(y+1) 1

y
dy dx

=
∫ ∞

0

∫ ∞

0
ys−1e−x(y+1) dy dx

=
∫ ∞

0

∫ ∞

0
ys−1e−x(y+1) dx dy∫ ∞

0

ys−1

y + 1 dy = π

sin πs,

the last equality coming from Exercise 3.10.9. By Corollary 3.6.2, the
equality Γ(z)Γ(1 − z) = π

sinπz extends to all z where the function is holo-
morphic, which is z ∈ C \ Z.
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(c) Suppose first that Re z > 1
2 . Let k = ⌊|z|⌋. Then

|Γ(z)| =
∣∣∣∣ ∫ ∞

0
tz−1 e−t dt

∣∣∣∣ =
∣∣∣∣ ∫ ∞

0
tRe z−1 ei(Im z) log t e−t dt

∣∣∣∣
≤
∫ ∞

0
tRe z−1 e−t dt =

∫ 1

0
tRe z−1 e−t dt+

∫ ∞

1
tRe z−1 e−t dt

≤
∫ 1

0
t−1/2e−t dt+

∫ ∞

1
tke−t dt = c1 + Γ(k + 1)

= c1 + k! ≤ c1 + kk = c1 + ek log k

Next consider the case where |Re z| ≤ 1
2 . When |Im z| ≤ 1 we have a

continuous function on a compact set, so there exists c2 > 0 with |Γ(z)| ≤
c2 there. When |Im z| > 1, noting that |z| ≥ |Im z| > 1 and Re z + 1 > 1

2 ,

|Γ(z)| = |Γ(z + 1)
|z|

≤ |Γ(z + 1)| ≤ c1 + ek log k

for k = ⌊|z|⌋. So in this case |Γ(z)| ≤ c1 + c2 + ek log k.
Finally, when −n − 1

2 ≤ Re z ≤ −n + 1
2 for n ∈ N, we reduce to the

previous case by

|Γ(z)| = |Γ(z + n)|
|z(z + 1) · · · (z + n− 1)| ≤ 4

3 |Γ(z + n)| ≤ 4
3
(
c1 + c2 + ek log k),

where we used that |z+m| ≥ −Re z−m ≥ n− 1
2 −m for m = 0, . . . , n−1.

Now combining all the estimates and replacing c1 and c2 by 4c2/3 and
4c2/3, we have that |Γ(z)| ≤ c1 + c2 + ek log k where k = ⌊|z|⌋. So

|Γ(z)| ≤ c1 + c2 + e|z| log |z| ≤ aeb|z| log |z|,

where we can choose a = b = c1 + c2 + 1.
(d) By the previous part of the answer we know that

1
|Γ(z)| = |Γ(1 − z) sin πz|

π
.

We also know that
| sin πz| = 1

2
∣∣eπz − e−πz∣∣ ≤ 1

2
(
e|z| + 1

)
≤ e|z|.

Therefore, using that |1 − z| ≤ 1 + |z|,
1

|Γ(z)| ≤ 1
π
aeb|1−z| log |1−z|e|z| ≤ 1

π
aeb(1+|z|) log(1+|z|)e|z|

≤ 1
π
aeb(1+2|z| log |z|)e|z| = 1

π
aebe2b|z| log |z|e|z|

≤ 1
π
aebe(2b+1)|z| log |z|
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Renaming the constants we get
1

|Γ(z)| ≤ aeb|z| log |z|.

3.11. Weierstrass’ Factorization Theorem

(3.11.1) Let h, k : V → C be functions defined on a region V . Show
that if both functions are nonzero and differentiable at z = z0,
then

(hk)′(z0)
h(z0)k(z0) = h′(z0)

h(z0) + k′(z0)
k(z0)

and
(h/k)′(z0)
h(z0)/k(z0) = h′(z0)

h(z0) − k′(z0)
k(z0) .

Answer. Using the product rule,
(hk)′(z0)
h(z0)k(z0) = h(z0)k′(z0) + h′(z0)k(z0)

h(z0)k(z0) = h′(z0)
h(z0) + k′(z0)

k(z0) .

Similarly,
(h/k)′(z0)
h(z0)/k(z0) = h′(z0)k(z0) − h(z0)k′(z0)

k(z0)2h(z0)/k(z0) = h′(z0)
h(z0) − k′(z0)

k(z0) .

(3.11.2) Find the Weierstrass factorization of the entire function f(z) =
sin πz.

Answer. The zeros of f are zn = n, n ∈ Z. We can take pn = 1 for all n to
satisfy (3.34). We also note that z = 0 is a zero of order 1. Then

sin πz = z eg(z)
∏
n ̸=0

(
1 − z

n

)
ez/n.

If we index by only the positive integers, the terms for −n have corresponding
factors of the form (1 + z

n )e−z/n. Therefore

sin πz = z eg(z)
∏
n>0

(
1 − z2

n2

)
. (AB.3.3)
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Using logarithmic differentiation repeatedly (and using the convergence of
the product and the series),

π cosπz
sin πz = 1

z
+ g′(z) +

∞∑
n=1

−2z/n2(
1 − z2

n2

) = 1
z

+ g′(z) +
∞∑
n=1

−2z
n2 − z2 .

We know from (3.28) that

π cosπz
sin πz = 1

z
+

∞∑
n=1

−2z
n2 − z2 .

Comparing the two expressions we conclude that g′(z) = 0, so g is constant.
From (AB.3.3) we have, writing c = eg(z),

sin πz
z

= c
∏
n>0

(
1 − z2

n2

)
.

Taking limit as z → 0, we get π = c. Thus

sin πz = πz
∏
n>0

(
1 − z2

n2

)
.

(3.11.3) Show that Theorem 3.11.9 holds for entire functions with the
convention that the empty product is equal to 1. That is, given
f entire there exists g entire with f = eg.

Answer. We can repeat the corresponding part of the argument in the proof
of the Weierstrass factorization. Let f be entire. Then f ′/f is entire. Let
g = f ′/f . Then

(fe−g)′ = f ′e−g − f g e−g = 0.
So there exists c ∈ C with f = ceg. Choose c0 ∈ C with ec0 = c, and then
f = ec0g.

(3.11.4) Show that the Weierstrass product

f(z) = z

∞∏
n=1

(
1 − z

n

)
ez/n

converges uniformly on compact sets and defines an entire func-
tion.
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Answer. Since
∑
n

1
n2 < ∞, the proof Proposition 3.11.8, with fn(z) =

1 − z/n, gives us that
∞∏
n=1

(
1 − z

n

)
ez/n

converges uniformly on compact sets. As compact sets are bounded, multi-
plication by z does not affect the uniform convergence.

(3.11.5) Find an entire function with simple zeros at z = n2 for all
n ∈ N. Ensure that you choose the minimal k in each factor
Ek(z).

Answer. Using Proposition 3.11.8 and the condition
∑
n

1
n4 < ∞ guarantees

that

f(z) =
∞∏
n=1

(
1 − z

n2

)
ez/n

2

works. However even the choice pn = 0 for all n works, since
∑
n

1
n2 < ∞, so

we can also consider

g(z) =
∞∏
n=1

(
1 − z

n2

)
,

and that would be the minimal choice.

(3.11.6) Considering the Gamma function as a meromorphic function
as in Exercise 3.10.20, show that f(z) = 1/Γ(z) is entire and

1
Γ(z) = zeγz

∞∏
n=1

(
1 + z

n

)
e−z/n

where γ is the Euler constant

γ =
∞∑
n=1

1
n

− log
(

1 + 1
n

)
.

Answer. From Exercise 3.10.20 we know that Γ(z) is defined everywhere on
C with the exception of −n for n ∈ {0} ∪ N. We also know from the same
exercise that

lim
z→−n

(z + n)Γ(z) = (−1)n

n! .
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In particular there exists r > 0 such that for all z ∈ Br(−n) we have

|z + n| |Γ(z)| > 1
2n! .

That is, ∣∣∣∣ 1
Γ(z)

∣∣∣∣ = 1
|Γ(z)| < 2n! |z + n|, |z + n| < r.

This shows that 1/Γ(z) has a removable singularity at z = −n, and that
it can be extended as 0 at the point. As Γ takes finite values for all other
choices of z, it follows that 1/Γ(z) extends to an entire functions with zeros
zn = −n, n ∈ N, and z = 0. The estimates from Exercise 3.10.20 allow us to
use Theorem 3.11.12 with k = 1, so

1
Γ(z) = z eaz+b

∞∏
n=1

(
1 + z

n

)
e−z/n

for certain a, b ∈ C. As zΓ(z) = Γ(z + 1), we get that limz→0 zΓ(z) = 1.
Then

1 = lim
z→0

1
zΓ(z) = lim

z→0
eaz+b

∞∏
n=1

(
1 + z

n

)
e−z/n = eb

since the product is holomorphic (hence continuous) by Proposition 3.11.8.
So b = 0. Now evaluating at z = 1,

1 = ea
∞∏
n=1

(
1 + 1

n

)
e−1/n = ea exp

(
log
( ∞∏
n=1

(
1 + 1

n

)
e−1/n

))

= ea exp
( ∞∑
n=1

log
(

1 + 1
n

)
− 1
n

= eae−γ .

So a = γ and we are done.

(3.11.7) Show the inequalities

|En(z)| ≥ e−2|z|n+1
, |z| < 1

2
and

|En(z)| ≥ |1 − z|ecn|z|n , |z| ≥ 1
2

for constants cn > 0, n ∈ N.

Answer. Assume first that |z| < 1
2 . Recall that for such z we have the

expansion

log(1 − z) = −
∞∑
k=1

zk

k
.
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Then

|En(z)| = |1 − z|
∣∣∣e∑n

k=1
zk

k

∣∣∣ = |1 − z|
∣∣∣e− log(1−z)−

∑∞
k=n+1

zk

k

∣∣∣
=
∣∣∣e−
∑∞

k=n+1
zk

k

∣∣∣ ≥ e
−
∑∞

k=n+1
|z|k
k

= e
−|z|n+1

∑∞
k=n+1

|z|k−n−1
k ≥ e

−|z|n+1
∑∞

k=n+1
2n+1−k

k

≥ e−2|z|n+1
.

When |z| ≥ 1
2 , since

|En(z)| = |1 − z|
∣∣∣e∑n

k=1
zk

k

∣∣∣ ≥ |1 − z| e−
∑n

k=1
|z|k
k

= |1 − z| e−|z|n
∑n

k=1
|z|k−n
k

≥ |1 − z| e−|z|n
∑n

k=1
2k−n

= |1 − z| e−(2(1−2−n)|z|n .

(3.11.8) Show that if {zn} is a sequence with
∑
n |zn|−s < ∞ for any

s > k, such that |{|zn| < r}| ≤ c0r
s, and |z−zn| > |zn|−k−1 for

all n, then there exist a, b > 0 such that for any s ∈ (k, k + 1)∣∣∣ ∞∏
n=1

Ek

(
z

zn

)∣∣∣ ≥ ae−b|z|s .

Answer. We can write∣∣∣ ∞∏
n=1

Ek

(
z

zn

)∣∣∣ =
∏

|z|
|zn|<

1
2

∣∣∣Ek( z

zn

)∣∣∣ ∏
|z|

|zn| ≥ 1
2

∣∣∣Ek( z

zn

)∣∣∣.
Using Exercise 3.11.7,∏

|z|
|zn|<

1
2

∣∣∣Ek( z

zn

)∣∣∣ ≥
∏

|z|
|zn|<

1
2

e−2|z/zn|s = exp
(

−2
∑

|z|
|zn|<

1
2

|z/zn|s
)

≥ exp
(

−2|z|s
∞∑
n=1

1
|zn|s

)
= e−cs|z|s ,

where cs = 2
∑∞
n=1

1
|zn|s .
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For the other product, using again Exercise 3.11.7,∏
|z|

|zn| ≥ 1
2

∣∣∣Ek( z

zn

)∣∣∣ ≥
∏

|z|
|zn| ≥ 1

2

∣∣∣1 − z

zn

∣∣∣ ∏
|z|

|zn| ≥ 1
2

e−c2

∣∣ z
zn

∣∣k
.

For the first of these products, using the hypothesis that we have |zn| ≤ 2|z|
(which in particular means that the product has finitely many factors, namely
|{|zn| ≤ 2|z|}| ≤ c0(2|z|)s),∏

|z|
|zn| ≥ 1

2

∣∣∣1 − z

zn

∣∣∣ =
∏

|z|
|zn| ≥ 1

2

∣∣∣zn − z

zn

∣∣∣ ≥
∏

|z|
|zn| ≥ 1

2

|zn|−k−2

≥
∏

|z|
|zn| ≥ 1

2

(2|z|)−k−2 = (2|z|)−(k+2)c0(2|z|)s

= e−(k+2)c0(2|z|)s log 2|z| ≥ e−a0|z|s
′

For an appropriate constant a0 and s′ > s. But then the inequality holds for
s, too (namely, we could have worked with an s0 < s and use s where we
used s′).

For the second of the products,∏
|z|

|zn| ≥ 1
2

e−c2

∣∣ z
zn

∣∣k
=

∏
|z|

|zn| ≥ 1
2

e−2c2

∣∣ 2z
zn

∣∣k
≥

∏
|z|

|zn| ≥ 1
2

e−2c2

∣∣ 2z
zn

∣∣s

= exp
(

−2
∑

|z|
|zn| ≥ 1

2

|z/zn|s
)

≥ exp
(

−2|z|s
∞∑
n=1

1
|zn|s

)
= e−c′

s|z|s

Collecting the estimates we have∣∣∣ ∞∏
n=1

Ek

(
z

zn

)∣∣∣ ≥ e−cs|z|se−a0|z|se−c′
s|z|s = e−b|z|s .

(3.11.9) Let R > 0 and f analytic on RD, with f(0) ̸= 0 and f ̸=
0 on the boundary. Denote the finitely many roots of f by
{z1, . . . , zm}, counting multiplicities. Show Jensen’s formula

log |f(0)| =
∑
n

log |zn|
R

+ 1
2π

∫ 2π

0
log |f(Reiθ)| dθ.

by going through the following steps.
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(a) Show that it is enough to prove the case R = 1.
(b) Prove the case where f has not roots.
(c) Show that the formula behaves nicely with products.
(d) Prove the case where f(z) = z − z1.
(e) Conclude the general case.

Answer.

(a) The case for general R > 0 follows from applying the case R = 1 to
g(z) = f(Rz).

(b) If f has no roots, then f(z) = eg(z) by Exercise 3.6.3. So |f(z)| = eRe g(z).
Then from Cauchy’s Theorem

log |f(0)| = Re g(0) = Re 1
2π

∫ 2π

0
g(eiθ) dθ = 1

2π

∫ 2π

0
log |f(eiθ)| dθ.

(c) We have
log |f1(0)f2(0)| = log |f1(0)| + log |f2(0)|.

and∫ 2π

0
log |f1(Reiθ)f2(Reiθ)| dθ =

∫ 2π

0
log |f1(Reiθ)| dθ+

∫ 2π

0
log |f2(Reiθ)| dθ.

(d) If f(z) = z − z1, we have 0 < |z1| < 1 since R = 1 and f has no zeros on
the boundary nor at 0. We may write z− z1 = z1(z/z1 − 1). The formula
holds trivially for a constant and it works nicely with products as we just
proved above, so it is enough to show the formula for f(z) = 1 − z/z1.
Then f(0) = 1, so the formula to be proven becomes

0 =
∫ 2π

0
log |1 − eiθ/z1| dθ =

∫ 2π

0
log
∣∣∣ 1
z1

(1 − e−iθz1)
∣∣∣ dθ.

The function h(z) = 1
z1

(1−z1z) has no roots on the disk (because |z1| < 1)
so the previous part applies and the integral is indeed zero.

(e) Given any f with the given conditions, we know from Corollary 3.6.3 that
f(z) = (z− z1) · · · (z− zn)g(z), with g(z) holomorphic with no zeros. The
previous parts of the exercise show that Jensen’s formula applies to each
factor, and then it applies to the product.
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(3.11.10) Let R > 0 and f analytic on RD, with f(0) ̸= 0 and f ̸= 0
on the boundary. Denote the finitely many roots of f by
{z1, . . . , zm}, counting multiplicities. Let n(r) denote the num-
ber of nonzero roots of f which have absolute value less than
r. Show the following variation of Jensen’s formula:

log |f(0)| = −
∫ R

0

n(x)
x

dx+ 1
2π

∫ 2π

0
log |f(Reiθ)| dθ. (3.3)

Answer. We need to show that

−
∫ R

0

n(x)
x

dx =
∑
n

log |zn|
R
.

The formula reduces immediately to the caseR = 1 as in the previous exercise.
Let hn(x) = 1 if x > |zn| and 0 otherwise. So n(x) =

∑
n hn(x). Then

−
∫ 1

0

n(x)
x

dx = −
∑
n

∫ 1

0

hn(x)
x

dx−
∑
n

∫ 1

zn

1
x
dx =

∑
n

log |zn|.

(3.11.11) Let f be entire with {zn} its nonzero roots and such that
|f(z)| ≤ aeb|z|s for certain constants a, b and all s > s0 > 0.

(a) Show that there exists c > 0 with n(r) ≤ crs0 for large
enough r.

(b) Show that
∞∑
n=1

1
|zn|s

< ∞

for all s > s0.

Answer.

(a) If f(0) = 0, we replace f with g(z) = f(z)/zm for appropriate m. The
function f has the same zeros as f with the exception of 0, and outside
a small disk around the origin we still have |g(z)| ≤ aeb|z|s after possibly
redefining a. So we may assume that f(0) ̸= 0. Fix r > 0 and let R = 2r.
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Using (3.3) and that n(r) ≤ n(x) if r ≤ x,

n(r) log 2 = n(r)
∫ R

r

1
x
dx ≤

∫ R

r

n(x)
x

dx

≤
∫ R

0

n(x)
x

dx

= − log |f(0)| + 1
2π

∫ 2π

0
log |f(Reiθ)| dθ

≤ c1 + 1
2π

∫ 2π

0
log(aebR

s

) dθ

= c1 + log a+ 2sbrs.
Taking limit as s → s0 we get

n(r) ≤ c1 + log a
log 2 + 2s0b

log 2 r
s0 .

So as long as r ≥ (c1 + log a)1/s0 ,

n(r) ≤ 2s0b+ 1
log 2 rs0 .

Now the series. Choose n0 such that n(r) ≤ crs0 for all r ≥ 2n0 . Then for
s > s0 ∑

|zn|≥2n0

|zn|−s =
∞∑

k=n0

∑
2k≤|zn|<2k+1

|zn|−s ≤
∞∑

k=n0

n(2k+1)
2ks

≤ c

∞∑
k=n0

2(k+1)s0

2ks = 2s0 c

∞∑
k=n0

2k(s0−s) < ∞

since 2s0−s < 1. Thus
∑∞
n=1

1
|zn|s < ∞.

(3.11.12) Use Exercises 3.9.2, 3.11.7, 3.11.8 and 3.11.11 to write the proof
of Theorem 3.11.12.

Answer. Fix s > s0. Using Theorem 3.11.9 we can write

f(z) = zm eg(z)
∞∏
n=1

En

(
z

zn

)
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The condition |f(z)| ≤ aeb|z|s gives us, via Exercise 3.11.11, that
∞∑
n=1

1
|zn|s

< ∞.

Then Proposition 3.11.8 allows us to take pn = ⌊s0⌋ for all n; we denote this
number by k.

Using the hypothesis on f and Exercise 3.11.8 there exist c, d positive
with

eRe g(z) = |eg(z)| =
∣∣∣∣ f(z)∏∞

n=1 Ek

(
z
zn

)∣∣∣∣ ≤ aeb|z|s

ce−d|z|s = ac−1e(b+d)|z|s .

It follows, after renaming constants, that for each s > k there exist a, b > 0
such that Re g(z) ≤ a+b|z|s. Then Exercise 3.9.2 shows that g is a polynomial
of degree at most k.

(3.11.13) Consider the entire function s(z) =
∞∑
n=0

zn

(2n+ 1)! .

(a) Show that
s(z2) = sinh z

z
.

(b) Show that

s(z) =
∞∏
n=1

(
1 + z2

n2π2

)
.

Answer.

(a) We have

s(z2) =
∞∑
n=0

z2n

(2n+ 1)! = 1
z

∞∑
n=0

z2n

(2n+ 1)! = sinh z
z

.

(b) We can estimate, for |z| ≥ 1
4 ,

|s(z)| ≤
∞∑
n=0

|z|n

(2n+ 1)! = sinh |z|1/2

|z|1/2 ≤ 2e|z|1/2

|z|1/2 ≤ 4e|z|1/2
.

The roots of s are
{
inπ : n ∈ Z \ {0}

}
. Then Theorem 3.11.12 with

k = ⌊1/2⌋ = 0 gives us

s(z) = c
∏

n∈Z\{0}

(
1 − z

inπ

)
= c

∏
n∈N

(
1 + z2

n2π2

)
.

Evaluating at z = 0 we get that c = 1.
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4
CHAPTER

Hilbert spaces

4.1. Basic Definitions

(4.1.1) Prove that each of the examples in Examples 4.1.2 is actually
a Hilbert space.

Answer.

(a) Since Cn is finite-dimensional, it is complete. The sesquilinearity is
obtained directly from doing arithmetic on the expression y∗x.

(b) The formula for the inner product is a series version of y∗x, so the
sesquilinearity is automatic. The series for ⟨x, y⟩ converges by the
Cauchy–Schwarz inequality:∑

n

|xnyn| ≤
(∑

n

|xn|2
)1/2(∑

n

|yn|2
)1/2

< ∞

showing that the series converges absolutely. The completeness is a
consequence of Riesz–Fischer (Theorem 2.8.12).

219
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(c) Again the inner product is sesquilinear by elementary computations.
And again the Cauchy–Schwarz inequality guarantees that the in-
tegral for the inner product converges. Completeness is give by
Riesz–Fischer. When ⟨f, f⟩ = 0, then [f ] = [0] by definition, so the
inner product is definite.

(d) Finite-dimensional, so complete. The expression Y ∗X is sesquilinear
and the trace is linear, so the inner product is indeed sesquilinear.
When ⟨X,X⟩ = 0, this is Tr(X∗X) = 0, and this is

0 = Tr(X∗X) =
∑
k,j

|xkj |2,

so X = 0.

(4.1.2) Show that c00 is dense in ℓ2(N).

Answer. Let x ∈ ℓ2(N). Fix ε > 0 and let n0 ∈ N such that
∑
n>n0

∥xn∥2 <

ε2. Let z ∈ c00 be given by zk = xk for k ≤ n0 and zk = 0 for k > n0. Then

∥x− z∥2
2 =

∑
n>n0

∥xn∥2 < ε2.

As ε was arbitrary, this shows that c00 = ℓ2(N).

(4.1.3) Find examples of pre-Hilbert spaces which are not Hilbert
spaces.

Answer. An already mentioned example is c00 in ℓ2(N). Another example
is C[0, 1] in L2[0, 1].
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4.2. The role of the inner product in the topological structure

(4.2.1) Prove (4.3).

Answer. This simply requires expanding:
∥ξ + η∥2 = ⟨ξ + η, ξ + η⟩ = ⟨ξ, ξ⟩ + ⟨η, η⟩ + ⟨ξ, η⟩ + ⟨η, ξ⟩

= ∥ξ∥2 + ∥η∥2 + 2Re ⟨ξ, η⟩.

(4.2.2) Let n ∈ N and H = Cn. Show that H admits infinitely many
inner products that are not multiples of each other, and that
they all induce the same topology (for this, show that the in-
duced norms are equivalent).

Answer. Given t1, . . . , tn ∈ (0,∞), define t̄ = (t1, . . . , tn) and

⟨x, y⟩t̄ =
n∑
k=0

tk xk yk.

The inner product properties are proven with the exact same proofs as in the
usual case (which is t1 = · · · = tn = 1), since tk > 0 for all k. Then

∥x∥t̄ =
( n∑
k=0

|tk|2 |xk|2
)1/2

,

and with respect to the Euclidean norm we have
min{t̄} ∥x∥2 ≤ ∥x∥t̄ ≤ max{t̄} ∥x∥2

More generally, for A ∈ Mn(C) positive definite we can define ⟨x, y⟩A =
⟨Ax, y⟩.

(4.2.3) Prove the Polarization Identity (4.6).
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Answer. We have, since
∑3
k=0 i

k =
∑3
k=0 i

2k = 0,
3∑
k=0

ikψ(ξ + ikη, ξ + ikη) =
3∑
k=0

ik
(
ψ(ξ, ξ) + ψ(η, η) + ikψ(η, ξ) + i−kψ(ξ, η)

)
= (ψ(ξ, ξ) + ψ(η, η))

3∑
k=0

ik

+ ψ(η, ξ)
3∑
k=0

i2k + ψ(ξ, η)
3∑
k=0

1

= 4ψ(ξ, η).

(4.2.4) Prove the Parallelogram Identity (4.2).

Answer. We have
∥ξ + η∥2 + ∥ξ − η∥2 = ⟨ξ + η, ξ + η⟩ + ⟨ξ − η, ξ − η⟩

= 2⟨ξ, ξ⟩ + 2⟨η, η⟩ + 2Re ⟨ξ, η⟩ − 2Re ⟨ξ, η⟩

= 2∥ξ∥2 + 2∥η∥2.

(4.2.5) Use the Parallelogram Identity (4.2) to show that none of the
examples on Section 5.1 is a Hilbert space, with the exception of
Example 5.1.4 and the case p = 2 in Examples 5.1.7 and 5.1.8.

Answer. Consider first ℓp(N). Let ξ = (1, 0, 0, 0, . . .), η = (0, 1, 0, 0, . . .).
Then

∥ξ + η∥2
p + ∥ξ − η∥2

p = 2(1p + 1p)2/p = 21+ 2
p ,

while
2∥ξ∥2

p + 2∥η∥2
p = 2 + 2 = 4..

The equality is only possible when p = 2 (since 21+ 2
p = 22 implies p = 2), so

∥ · ∥p is never a Hilbert space norm when p ̸= 2.
For Lp(X) we can use the same idea as above.
For c0, use the same ξ and η from the ℓp example: now we have

∥ξ + η∥2
∞ + ∥ξ − η∥2

∞ = 1 + 1 = 2,
2∥ξ∥2

∞ + 2∥η∥2
∞ = 2 + 2 = 4.
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(4.2.6) Fix n ≥ 3, and let ω ∈ C be an nth primitive root of unity. Let
ψ : H × H → C be a sesquilinear form. Show that

ψ(ξ, η) = 1
n

n−1∑
k=0

wkψ(ξ + ωkη, ξ + ωkη). (4.1)

Answer. We have, since
∑n−1
k=0 ω

k =
∑n−1
k=0 ω

2k = 0,
n−1∑
k=0

ωkψ(ξ + ωkη, ξ + ωkη) =
n−1∑
k=0

ωk(ψ(ξ, ξ) + ψ(η, η)

+ ωkψ(η, ξ) + ωkψ(ξ, η))

= (ψ(ξ, ξ) + ψ(η, η))
n−1∑
k=0

ωk

+ ψ(η, ξ)
n−1∑
k=0

ω2k + ψ(ξ, η)
n−1∑
k=0

1

= nψ(ξ, η).

(4.2.7) Does (4.1) work for n = 2? Why?

Answer. No, it doesn’t. When n = 2, the roots are 1 and −1, so there are
no conjugates; conjugates were essential in the sum corresponding to ψ(ξ, η)
being nonzero. Concretely, the root −1, which is the only primitive root of
unity of order 2, does not satisfy (−1)2 + 12 = 0.

Explicitly,
1∑
k=0

(−1)kψ(ξ + (−1)kη, ξ + (−1)kη) = ψ(ξ + η, ξ + η) − ψ(ξ − η, ξ − η)

= 2ψ(ξ, η) + 2ψ(η, ξ).
In other words, when n = 2 the expression in (4.1) gives Reψ(ξ, η).
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(4.2.8) Let ψ : H × H → C be a sesquilinear form. Show that

ψ(ξ, η) = 1
2π

∫ 2π

0
eitψ(ξ + eitη, ξ + eitη) dt. (4.2)

Answer. This is exactly the same computation as with the roots of unity,
only now using the identities

∫ 2π
0 eit dt =

∫ 2π
0 e2it dt = 0. So∫ 2π

0
eitψ(ξ + eitη, ξ + eitη) =

∫ 2π

0
eit(ψ(ξ, ξ) + ψ(η, η)

+ eitψ(η, ξ) + e−itψ(ξ, η)) dt

= (ψ(ξ, ξ) + ψ(η, η))
∫ 2π

0
eit dt

+ ψ(η, ξ)
∫ 2π

0
e2it dt+ ψ(ξ, η)

∫ 2π

0
1 dt

= 2πψ(ξ, η).

(4.2.9) Let H be a Hilbert space and ξ, η, ν ∈ H with ∥ξ∥ = 1 and
∥η∥ ≤ 1, ∥ν∥ ≤ 1. Fix ε > 0. Show that∥∥∥ξ − η + ν

2

∥∥∥ < ε implies ∥ξ − η∥ < 2
√
ε and ∥ξ − ν∥ < 2

√
ε.

Answer. From ∥ξ∥ = 1 we get

1 = ∥ξ∥ ≤
∥∥∥ξ − η + ν

2

∥∥∥+
∥∥∥η + ν

2

∥∥∥ < ε+
∥∥∥η + ν

2

∥∥∥,
giving us ∥∥∥η + ν

2

∥∥∥2
> (1 − ε)2.

Also,
Re ⟨ξ, η⟩ ≤ |⟨ξ, η⟩| ≤ ∥ξ∥ ∥η∥ ≤ 1.
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So 1 − Re ⟨ξ, η⟩ ≥ 0 and similarly 1 − Re ⟨ξ, ν⟩ ≥ 0. Now
∥ξ − η∥2 = ∥ξ∥2 + ∥η∥2 − 2Re ⟨ξ, η⟩

≤ 2(1 − Re ⟨ξ, η⟩)

≤ 2(1 − Re ⟨ξ, η⟩ + 1 − Re ⟨ξ, ν⟩)) = 2(2 − Re ⟨ξ, η + ν⟩)

≤ 2(1 + (1 − ε)2 − Re ⟨ξ, η + ν⟩ + 1 − (1 − ε)2)

≤ 2
(

∥ξ∥2 +
∥∥∥η + ν

2

∥∥∥2
− 2Re

〈
ξ,
η + ν

2

〉
+ 2ε− ε2

= 2
(∥∥∥ξ − η + ν

2

∥∥∥2
+ 2ε− ε2

)
< 2(ε2 + 2ε− ε2) = 4ε.

Taking square root we get ∥ξ − η∥ < 2
√
ε. Exchanging the roles of η and ν

gives us the other inequality.

4.3. Orthogonality

(4.3.1) (Definition of convexity) Let K ⊂ H. Show that the following
statements are equivalent:

(a) for any ξ, η ∈ K and t ∈ [0, 1], tξ + (1 − t)η ∈ K;
(b) for any ξ1, . . . , ξn ∈ K and t1, . . . , tn ∈ [0, 1] with

∑
j tj = 1,

we have
∑
j tjξj ∈ K.

Answer. (a) =⇒ (b) We proceed by induction. Assume that for any
ξ1, . . . , ξk ∈ K and t1, . . . , tk ∈ [0, 1] with

∑
j tj = 1, we have

∑
j tjξj ∈ K.

Then, if ξ1, . . . , ξk+1 ∈ K and t1, . . . , tk+1 ∈ [0, 1] with
∑
j tj = 1 and

tk+1 ̸= 1, let

s =
k∑
j=1

tj , sj = tj
s
, j = 1, . . . , k.
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Then 0 < s ≤ 1, sj ≥ 0 for all j, and
∑k
j=1 sj = 1. By the inductive

hypothesis,
∑k
j=1 sjξj ∈ K. Then, since 1 − s = tk+1,

k+1∑
j=1

tjξj = s
( k∑
j=1

sjξj

)
+ (1 − s)ξk+1 ∈ K.

When tk+1 = 1 we have t1 = · · · = tk = 0, so
k+1∑
j=1

tjξj = ξk+1 ∈ K.

(b) =⇒ (a) Trivial, taking n = 2.

(4.3.2) Prove Lemma 4.3.15.

Answer. Suppose ξ1, . . . , ξm are orthonormal and c1, . . . , cn ∈ C. We proceed
by induction. For the base case, we have ∥c ξ1∥ = |c| ∥ξ1∥ = |c|. Assume as
inductive hypothesis that ∥∥∥ k∑

j=1
cjξj

∥∥∥2
=

k∑
j=1

|cj |2.

Then∥∥∥ k+1∑
j=1

cjξj

∥∥∥2
=
∥∥∥ k∑
j=1

cjξj + ck+1ξk+1

∥∥∥2

=
∥∥∥ k∑
j=1

cjξj

∥∥∥2
+ ∥ck+1ξk+1∥2 + 2Re

〈 k∑
j=1

cjξj , ck+1ξk+1

〉

=
k∑
j=1

|cj |2 + |ck+1|2 + 2
k∑
j=1

cjck+1⟨ξj , ξk+1⟩

=
k+1∑
j=1

|cj |2.

(4.3.3) Let η1, η2, . . . , ηn be linearly independent. Show that if ξ1 =
η1/∥η1∥ and

ξk+1 =
ηk+1 −

∑k
j=1⟨ηk+1, ξj⟩ ξj

∥ηk+1 −
∑k
j=1⟨ηk+1, ξj⟩ ξj∥

(4.3)
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then ξ1, . . . , ξn is orthonormal and
span{ξ1, . . . , ξn} = span{η1, . . . , ηn}.

Show that the same algorithm works if the original set of vec-
tors is countably infinite. This process of “orthonormalizing a
basis” is called the Gram–Schmidt Process.

Answer. We write

ξk+1 = ck+1

(
ηk+1 −

k∑
j=1

⟨ηk+1, ξj⟩ ξj
)
,

where ck+1 is the constant given by dividing by the norm; note that ck+1 ̸=
0 by the linear independence. By induction, assuming that ξ1, . . . , ξk are
orthonormal, we have for j = 1, . . . , k

1
ck+1

⟨ξk+1, ξj⟩ = ⟨ηk+1, ξj⟩ − ⟨ηk+1, ξj⟩ = 0.

This shows, without loss of generality, that ⟨ξk, ξj⟩ = 0 when j ̸= k. And
⟨ξk, ξk⟩ = 1, since the ξk are normalized by construction. Also by (4.3),
ηk+1 ∈ span{ξ1, . . . , ξk+1} for all k. As the n linearly independent vec-
tors ξ1, . . . , ξn span the n-dimensional subspace span{η1, . . . , ηn}, we get the
equality

span{ξ1, . . . , ξn} = span{η1, . . . , ηn}.
This latter argument does not work when we are dealing with infinitely many
vectors. In such case we can prove the equality

span{ξ1, . . . , ξn} = span{η1, . . . , ηn}
for all n by induction, which shows that they span the same space.

(4.3.4) Let K ⊂ H be a subspace, and let ξ ∈ H. Prove that if
0 ≤ ∥ν∥2 + 2Re ⟨ξ, ν⟩, ν ∈ K,

then ξ ∈ K⊥.

Answer. Fix ν ∈ K. For any z ∈ C, we have
0 ≤ |z|2 ∥ν∥2 + 2Re z̄ ⟨ξ, ν⟩.

Choose θ ∈ R so that eiθ⟨ξ, η⟩ = |⟨ξ, ν⟩|. For t ∈ R we may use z = −e−iθ t
to get

0 ≤ t2 ∥ν∥2 − 2t |⟨ξ, ν⟩|.
We can rewrite this inequality, for t > 0, as

2|⟨ξ, ν⟩| ≤ t ∥ν∥2.
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As t can be chosen arbitrarily, ⟨ξ, ν⟩ = 0. And since this can be done for any
ν ∈ K, we have shown that ξ ∈ K⊥.

(4.3.5) Let J be a set and c : J → C a function. If
∑
j |c(j)|2 < ∞,

show that {j ∈ J : c(j) ̸= 0} is countable.

Answer. We have
{j ∈ J : c(j) ̸= 0} =

⋃
n∈N

{
j ∈ J : |c(j)| > 1

n

}
.

If J is uncountable, then at least one of the sets in the union is infinite, say
Jm = {j : |c(j)| > 1

m}. Then∑
j

|c(j)|2 ≥
∑
j∈Jm

1
m

= ∞.

(4.3.6) Show that any orthonormal basis of C2 is of the form shown in
(4.11).

Answer. Let {x, y} ⊂ C2 be an orthonormal basis. Then
|x1|2 + |x2|2 = 1, |y1|2 + |y2|2 = 1, x1y1 + x2y2 = 0.

From the first two equalities we get that (we reversed the order of sin and
cos in y for convenience)

x1 = eia cos t, x2 = eib sin t, y1 = eic sin s, y2 = eid cos s,
with a, b, c, d, r, s ∈ R. By absorbing the sign of the sine and/or cosine into
the exponentials, we can modify these coefficients so that we can assume that
s, t ∈ [0, π/2); indeed, cos t and sin t are two real numbers with cos2 t+sin2 t =
1, so with some combination of signs they can both be made positive and
there exists t′ ∈ [0, π/2) with | cos t| = | cos t′| and | sin t| = | sin t′|, and
the sign can be absorbed by the exponential like if cos t′ = − cos t then
eia cos t = ei(a+π) cos t′. Now the orthogonality equality becomes

ei(a−c) cos t sin s+ ei(b−d) sin t cos s = 0.
If sin s = 0 the cos s ̸= 0, which forces sin t = 0, and s = t. We similarly
get s = t if cos s = 0. When sin s cos s ̸= 0, we get | tan t| = | tan s|, but
t, s ∈ [0, π/2) and then t = s. Now the equation becomes

(ei(a−c) + ei(b−d)) sin t cos t = 0, .
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so ei(a−c) = −ei(b−d) = ei(b−d+π). Then a− c = b− d+ π (possibly plus 2kπ,
but again we can re-adjust a, say, to absorb this) and thus d = π− a+ b+ c.

(4.3.7) For each of the Hilbert spaces considered in Examples 4.3.17,
find examples of orthonormal bases other than the canonical
ones.

Answer. The possibilities are endless, but since we need to check orthonor-
mality, we cannot get too crazy.

In Cn, given the canonical basis {e1, . . . , en}, we can form an orthonor-
mal basis by doing

f1 = 1√
2 (e1 + e2), f2 = 1√

2 (e1 − e2), . . . f2k−1

= 1√
2 (e2k−1 + e2k), 1√

2 (e2k−1 − e2k),

(how to finish depends on whether n is even or odd). And the same example
works in ℓ2(N) and L2(T). Orthonormality is easily checked, and since each
ek is in the span of this new elements (like, for example, e1 = 1√

2 (f1 + f2),
and e2 = 1√

2 (f1 − f2)), the new orthonormal system is total.
In general, we can take U to be a unitary and apply it to any orthonor-

mal basis to obtain another one.
An easy way to perturb orthonormal bases while still getting orthonor-

mal bases is to play with phases. For instance, if {ξj} ⊂ H is an orthonormal
basis and we choose numbers {θj} ⊂ R, then {eiθjξj} is an orthonormal basis.

In L2(T) we can do any of the above tricks. For instance we can let
gk =

√
2 Re zk, k ∈ {0} ∪ N, and gk =

√
2 Im zk−, −k ∈ N.

(4.3.8) Prove that the inner product in a Hilbert space is jointly con-
tinuous in its two variables.

Answer. If ξn → ξ and ηn → η, then
| ∥ηn∥ − ∥η∥ | ≤ ∥ηn − η∥ →c⃝ 2024 Mart́ın Argerami All Rights Reserved 0.
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So ∥ηn∥ → ∥η∥, implying in particular that there exists r > 0 with ∥ηn∥ ≤ r
for all n. Then

|⟨ξn, ηn⟩ − ⟨ξ, η⟩| = |⟨ξn − ξ, ηn⟩ + ⟨ξ, ηn − η⟩|

≤ |⟨ξn − ξ, ηn⟩| + |⟨ξ, ηn − η⟩|

≤ ∥ξn − ξ∥ ∥ηn∥ + ∥ξ∥ ∥ηn − η∥

≤ r ∥ξn − ξ∥ + ∥ξ∥ ∥ηn − η∥,
and the continuity follows.

(4.3.9) Let K1,K2 ⊂ H be subspaces. Show that
(K1 + K2)⊥ = K⊥

1 ∩ K⊥
2 .

Show also that the equality is not true for arbitrary subsets.

Answer. Since K1 ⊂ K1 + K2, we immediately have (K1 + K2)⊥ ⊂ K⊥
1 ; as

we can do the same for K2, we have shown that (K1 + K2)⊥ ⊂ K⊥
1 ∩ K⊥

2 .
Conversely, if ν ∈ K⊥

1 ∩ K⊥
2 and ξ + η with ξ ∈ K1, η ∈ K2, then

⟨ν, ξ + η⟩ = ⟨ν, ξ⟩ + ⟨ν, η⟩ = 0 + 0 = 0,
and so K⊥

1 ∩ K⊥
2 ⊂ (K1 + K2)⊥.

When K1,K2 are not subspaces, we can fix nonzero ξ ∈ H and take
K1 = {ξ}, K2 = {−ξ}. Then

(K1 + K2)⊥ = {0}⊥ = H, while K⊥
1 ∩ K⊥

2 = {ξ}⊥.

As long as dim H ≥ 2, {ξ}⊥ ̸= H.

(4.3.10) Let A ⊂ H. Use Proposition 4.3.8 to obtain directly that
A⊥⊥ = spanA.

Answer. We will apply Proposition 4.3.8 to K = spanA. We have K⊥ = A⊥;
indeed, if ξ ∈ K⊥, then ξ ∈ A⊥ (since A ⊂ K). Conversely, if ξ ∈ A⊥, then
for any η1, . . . , ηm ∈ A and a1, . . . , am ∈ C,

⟨ξ,
∑
j

ajηj⟩ =
∑
j

aj⟨ξ, ηj⟩ = 0.

Taking limits, we get that ξ ∈ (spanA)⊥ = K⊥. So it is enough to show that
K⊥⊥ = K.

By Proposition 4.3.8,
PK⊥⊥ = I − PK⊥ = I − (I − PK) = PK.
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This shows that if ξ ∈ K⊥⊥ then ξ = PK⊥⊥ξ = PKξ ∈ K. Hence K ⊂ K⊥⊥ ⊂
K and the equality follows.

(4.3.11) Let A ⊂ H. Show that (spanA)⊥ = A⊥.

Answer. Since A ⊂ spanA, we get that (spanA)⊥ ⊂ A⊥. Now, if ξ ∈ A⊥,
then for

∑m
k=1 ckak ∈ spanA,

⟨ξ,
m∑
k=1

ckak⟩ =
m∑
k=1

ck⟨ξ, ak⟩ = 0.

Thus ξ ∈ (spanA)⊥. And if η = limn ηn, with ηn spanA, then
⟨ξ, η⟩ = ⟨ξ, lim

n
ηn⟩ = lim

n
⟨ξ, ηn⟩ = 0.

So ξ ∈ (spanA)⊥.

(4.3.12) Let {Hj} be a family of closed subspaces of H. Show that(⋃
j

Hj

)⊥

=
⋂
j

H⊥
j ,

(⋂
j

Hj

)⊥

= span
⋃
j

H⊥
j .

Answer. Let ξ ∈
(⋃

j Hj

)⊥

, and η ∈ Hk. As η ∈
⋃
j Hj , we have ⟨ξ, η⟩ = 0,

and so ξ ∈ Hk. As this can be done for all k, ξ ∈
⋂
j H⊥

j . Conversely, if
ξ ∈

⋂
j H⊥

j and η ∈
⋃
j Hj , there exists k with η ∈ Hk; as ξ ∈ H⊥

k , ⟨ξ, η⟩ = 0

and so ξ ∈
(⋃

j Hj

)⊥

. This establishes the first equality.

The second equality follows from the first one by taking orthogonals
and using Exercise 4.3.11.

(4.3.13) Show that if K ⊂ H is a closed subspace, then kerPK = K⊥.

Answer. By Proposition 4.3.8 we have H = K + K⊥ as a direct sum, and if
ξ = ξK + ξ⊥, then PKξ = ξK. So if PKξ = 0, this means that ξ = ξ⊥ ∈ K⊥.
Conversely, if ξ ∈ K⊥, then ξ = ξ⊥ and thus PKξ = 0.
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(4.3.14) Let A ⊂ H. Prove that A⊥⊥ is equal to the intersection of all
closed subspaces of H that contain A.

Answer. The intersection of all closed subspaces that contain A is span∥·∥ A.
As A⊥⊥ is closed (any orthogonal is closed), we have span∥·∥ A ⊂ A⊥⊥.

As A⊥ is a closed subspace of H, we have H = A⊥ + A⊥⊥, as a direct
sum. This in particular shows that (A⊥⊥)⊥ = A⊥. We have (span∥·∥ A)⊥ =
A⊥: the inclusion A ⊂ span∥·∥ A gives automatically that (span∥·∥ A)⊥ ⊂ A⊥;
and if ξ ∈ A⊥, then ξ will be orthogonal to any limit of linear combinations
of elements of A, so A⊥ ⊂ (span∥·∥ A)⊥, showing the equality. Taking or-
thogonal on the equality, we get

A⊥⊥ = (span∥·∥ A)⊥⊥ = span∥·∥ A.

The last equality above follows from the fact that we can see, for K a closed
subspace of H, the equality H = K + K⊥ as showing that K⊥⊥ = K.

(4.3.15) Let K ⊂ H be a subspace. Show that K is dense in H if and
only if K⊥ = {0}.

Answer. If K⊥ = {0}, then K = K⊥⊥ = {0}⊥ = H, so K is dense. Con-
versely, if K⊥ ̸= {0}, then from H = K + K⊥ as a direct sum we obtain that
K is not dense: for given any ξ ∈ K⊥, we have dist(ξ,K⊥) = ∥ξ∥ > 0, so
ξ ̸∈ K.

(4.3.16) Prove the equality (4.14).

Answer. Because the inner product is continuous, we can put limits (and
hence series) in and out. So

⟨ξ, η⟩ =
〈∑

j

⟨ξ, ξj⟩ ξj ,
∑
k

⟨η, ξk⟩ ξk
〉

=
∑
k,j

⟨ξ, ξj⟩⟨η, ξk⟩ ⟨ξj , ξk⟩ =
∑
j

⟨ξ, ξj⟩⟨η, ξk⟩.
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(4.3.17) Let A ⊂ H be a set and f : H → H a function such that
f(H) ⊂ A and ξ − f(ξ) ∈ A⊥ for all ξ ∈ H. Show that A is a
closed subspace and that f = PA.

Answer. Given any ξ ∈ H, we can write
x = f(ξ) + (ξ − f(ξ)) ∈ A+A⊥.

This shows that H = A+A⊥.
We will show that A = A⊥⊥, which makes it a closed subspace. Indeed,

if ξ ∈ A⊥⊥, then writing ξ = η + ν with η ∈ A and ν ∈ A⊥, we have
0 = ⟨ξ, ν⟩ = ∥ν∥2 + ⟨η, ν⟩ = ∥ν∥2.

So ν = 0 and then ξ = η ∈ A.
Given ξ ∈ H, as ξ = f(ξ) + [ξ− f(ξ)] with f(ξ) ∈ A and ξ− f(ξ) ∈ A⊥,

we have that f(ξ) = PAξ.

(4.3.18) Let {ξn}n ⊂ H be an orthonormal basis, and put

M =
{
η ∈ H :

∞∑
n=1

(
1 + 1

n

)2 ∣∣⟨η, ξn⟩
∣∣2 ≤ 1

}
.

Show that M is bounded, closed, convex, and that it has no
element with greatest norm. (This gives us an example of a
bounded, closed, convex subset and an R-valued nonnegative
continuous function that does not attain its maximum. Of
course, M is not compact).

Answer. For any η ∈ M ,

∥η∥2 =
∑
n

|⟨η, ξn⟩|2 ≤
∑
n

(
1 + 1

n

)2
|⟨η, ξn⟩|2 ≤ 1.

if ∥η∥ = 1, then∑
n

(
1 + 1

n

)2
|⟨η, ξn⟩|2 >

∑
n

|⟨η, ξn⟩|2 = ∥η∥2 = 1,

so η ̸∈ M . That is ∥η∥ < 1 for all η ∈ M . On the other hand,
ηm = 1(

1+ 1
m

) ξm ∈ M,

and ∥ηm∥ → 1.
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Convexity: if ξ, η ∈ M , t ∈ [0, 1], and writing bn = 1 + 1/n to manage
the spacing,∑

n

b2
n |⟨tξ + (1 − t)η, ξn⟩|2 =

∑
n

b2
n

[
t2|⟨ξ, ξn⟩|2 + (1 − t)2|⟨η, ξn⟩|2

+ 2Re t(1 − t)⟨ξ, ξn⟩⟨η, ξn⟩
]

≤
∑
n

b2
n

[
t2|⟨ξ, ξn⟩|2 + (1 − t)2|⟨η, ξn⟩|2

+ 2t(1 − t)|⟨ξ, ξn⟩| |⟨η, ξn⟩|
]

= t2
∑
n

b2
n |⟨ξ, ξn⟩|2 + (1 − t)2

∑
n

b2
n |⟨η, ξn⟩|2

+ 2t(1 − t)
∑
n

b2
n |⟨ξ, ξn⟩| |⟨η, ξn⟩|

≤ t2 + (1 − t)2

+ 2t(1 − t)
[∑

n

b2
n |⟨ξ, ξn⟩|2

]1/2 [∑
n

b2
n |⟨η, ξn⟩|2

]1/2

≤ t2 + (1 − t)2 + 2t(1 − t) = 1.
It remains to check that M is closed. If ηm ∈ M for all m and ηm → η, then

k∑
n=1

(
1 + 1

n

)2
|⟨η, ξn⟩|2 = lim

m

k∑
n=1

(
1 + 1

n

)2
|⟨ηm, ξn⟩|2 ≤ 1,

for all k. Then, with k → ∞, we obtain that η ∈ M .

(4.3.19) (While nothing is wrong with this exercise, the examples known
to the author are far from trivial, so not being able to do this
exercise does not show any lack of expertise) Show an example
of a non-separable Hilbert space H with a dense subspace K
such that K contains no orthonormal basis.

Answer. Let H1 = L2[0, 1]. Consider the set {gt : t ∈ (0, 1), where gt =
1(0,t). This set is uncountable, and linearly independent. Let H2 be a Hilbert
space with orthonormal basis {ηt}t∈(0,1); we can achieve this by taking H2 =
ℓ2(0, 1), note the little ℓ. Let K = span{(gt, ηt) : t ∈ (0, 1)} ⊂ H1 ⊕ H2, and
let H = K. Then H is a Hilbert space, with dense subspace K. We claim
that K cannot contain an orthonormal basis for H. Let {xa : a ∈ A} be an
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orthonormal set in K. By definition, each xa can be written as

xa =
na∑
j=1

cj (gtj , ηtj ).

Let {hn : n ∈ N} be an orthonormal basis of H1. An element of a Hilbert
space can have only countably many nonzero coefficients in a given orthonor-
mal basis. So, for each n, there are at most countably many a ∈ A such
that ⟨(hn, 0), xa⟩ ≠ 0. As N is countable and countable union of countable is
countable, there exist countably many a ∈ A such that ⟨hn, xa⟩ ≠ 0 for some
n. As any element of H1 is expressed with countably many coefficients over
{hn}, there exists A0 ⊂ A, countable, such that ⟨g, xa⟩ = 0 for all a ∈ A \A0
and all g ∈ H1. Note that

∑
j cjgtj ̸= 0, since the gtj are linearly independent

and c ̸= 0 since xa ̸= 0. As〈(∑
j

cjgtj , 0
)
, xa

〉
=
∥∥∥∑

j

cjgtj

∥∥∥2
> 0

for all a ∈ A \ A0, this says that A \ A0 is countable (because {xa} is an
orthonormal basis), and hence A = A0 ∪ (A \ A0) is countable. So there is
no uncountable orthonormal set in K, which precludes K from containing an
orthonormal basis for H.

(4.3.20) Let H be a Hilbert space. Since R ⊂ C, we can see H as a real
vector space, that we denote HR.

(a) Show that HR is a real Hilbert space with the inner product
⟨ξ, η⟩ = Re ⟨ξ, η⟩.

(b) Show that if {ξj} is an orthonormal basis for H, then {ξj}∪
{iξj} is an orthonormal basis for HR.

(c) We say that ξ, η ∈ H are real orthogonal, denoted ξ ⊥R η,
if Re ⟨ξ, η⟩ = 0. Show that ξ ⊥ η if and only if ξ ⊥R η and
iξ ⊥R η.

(d) Show that if H ⊂ H is a real subspace, then (iH)⊥
R = iH⊥

R .

Answer.

(a) Since ⟨ξ, ξ⟩ ≥ 0, if Re ⟨ξ, ξ⟩ = 0 then ξ = 0. The real bilinearity follows
directly from the sesquilinearity, so we do get a real inner product.

(b) For any ξ ∈ H we have Re ⟨ξ, iξ⟩ = −Re i∥ξ∥2 = 0. So Re ⟨ξj , iξk⟩ = 0 for
all k, j. If ξ is real orthogonal to all of {ξj} and {iξj}, then for each j we
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have
0 = Re ⟨ξ, ξj⟩ + iRe ⟨ξ, iξj⟩ = Re ⟨ξ, ξj⟩ + iRe (−i)⟨ξ, ξj⟩

= Re ⟨ξ, ξj⟩ + iIm ⟨ξ, iξj⟩ = ⟨ξ, ξj⟩.

So ξ ∈ {ξj}⊥ = {0} and hence {ξj} ∪ {iξj} is an orthonormal basis for
HR.

(c) If ⟨ξ, η⟩ = 0, then Re ⟨ξ, η⟩ = 0. Conversely, if both Re ⟨ξ, η⟩ = 0 and
Re ⟨ξ, iη⟩ = 0, then ⟨ξ, η⟩ = 0 as in the previous paragraphs.

(d) We have
(iH)⊥

R = {ξ ∈ H : Re ⟨ξ, iη⟩, η ∈ H} = {ξ ∈ H : Re ⟨−iξ, η⟩, η ∈ H}

= {iξ ∈ H : Re ⟨ξ, η⟩, η ∈ H} = iH⊥
R .

4.4. Dimension

(4.4.1) Write a complete proof of Corollary 4.4.5, without using The-
orem 4.4.4. (Hint: show that the linear operator induced by
mapping one orthonormal basis to another is an isomorphism)

Answer. Suppose that π : H1 → H2 is an isomorphism. Let {ξj} be an
orthonormal basis of H1. We have

⟨π(ξj), π(ξk)⟩2 = ⟨ξj , ξk⟩1 = δk,j

so the set {π(ξj)}j ⊂ H2 is orthonormal. If ν ⊥ π(ξj) for all j, use that π is
surjective to get η ∈ H1 with π(η) = ν. Then

0 = ⟨ν, π(ξj)⟩2 = ⟨π(η), π(ξj)⟩2 = ⟨η, ξj⟩1.

It follows that η = 0, so ν = 0, and {π(ξj}j is total, and thus an orthonormal
basis. Such basis obviously has the same cardinality as {ξj}, so dim H2 =
dim H1.

Conversely, if dim H1 = dim H2, let {ξj}j∈J and {νj}j∈J be orthonor-
mal bases of H1 and H2 respectively. Define π : H1 → H2 by

π
(∑

j

cjξj

)
=
∑
j

cjνj .
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This is well-defined, by the uniqueness of the representation of a vector in an
orthonormal basis. Clearly

∥π(ξ)∥ =
∑
j

|⟨ξ, ξj⟩|2 = ∥ξ∥,

so π is an isometry. And π is surjective: given any
∑
j cjνj ∈ H2, we can

write it as π(
∑
j cjξj). So H1 ≃ H2.

(4.4.2) Show that a finite-dimensional Hilbert space is separable.

Answer. Let {ξ1, . . . , ξm} be an orthonormal basis for H. Let

Q =
{ m∑
j=1

(cj + idj) ξj : cj , dj ∈ Q
}
.

This set is countable, as it can be written as

Q =
⋃

c1,d1,...,cm,dm∈Q
{
m∑
j=1

(cj + idj) ξj}.

And it is dense: given ξ =
∑m
j=1(aj + ibj) ξj ∈ H, and ε > 0, choose rational

numbers c1, d1, . . . , cm, dm ∈ Q with |aj − cj | < ε/
√

2m, |bj − dj | < ε/
√

2m.
Then ∥∥∥ξ −

m∑
j=1

(cj + idj) ξj
∥∥∥ =

∥∥∥ m∑
j=1

[(aj − cj) + i(bj − dj)] ξ
∥∥∥

=
( m∑
j=1

(aj − cj)2 + (bj − dj)2
)1/2

< ε.

(4.4.3) Prove Proposition 4.4.6.

Answer. If H has countable dimension, let {ξn}n∈N be an orthonormal basis.
Now form the set

X =
{∑

n

(an + ibn)ξn : an, bn ∈ Q

}
.

Given ε > 0 and ξ ∈ H, write ξ =
∑
n cnξn, and choose an, bn ∈ Q such that

|cn − (an + ibn)| < ε/2n. Then

∥ξ −
∑
n

(an + ibn)ξn∥2 =
∑
n

|cn − (an + ibn)|2 < ε2
∑
n

2−2n < ε2,
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and X is dense.
Conversely, suppose that dim H = |J | with |J | > |N|. Let {ξj}j∈J be an

orthonormal basis for H. Since ∥ξj − ξk∥ =
√

2 for all j ̸= k, the uncountable
family of open balls {B√

2/2(ξj)}j∈J is disjoint. So H is not separable.

(4.4.4) Show that the unit ball of a finite-dimensional Hilbert space is
compact.

Answer. Since H is a metric space, it is enough to show that any sequence
in the unit ball admits a convergent subsequence. Let {ηn}n be a sequence
with ∥ηn∥ ≤ 1 for all n. Fix an orthonormal basis {ξ1, . . . , ξm}.

The sequence {⟨ηn, ξ1⟩}n is inside the closed unit disk D ⊂ C; so it
admits a convergent subsequence {⟨ηnk , ξ1⟩}k. Now consider {⟨ηnk , ξ2⟩}k;
again, this sequence admits a convergent subsequence. Repeating the pro-
cedure with all ξj , we obtain a subsequence {ηnr} such that each of the
sequences {⟨ηnr , ξj⟩}r is convergent, j = 1, . . . ,m. Let cj = limr⟨ηnr , ξj⟩,
and define η =

∑
j cjξj . Now

∥η − ηnr∥2 =
m∑
j=1

|cj − ⟨ηnr , ξj⟩|2 −−−→
r→∞

0.

4.5. The Riesz Representation Theorem

(4.5.1) Let φ be a bounded functional on H. Fix an orthonormal
basis {ξj}. Given any ξ =

∑
j cjξj ∈ H, show that φ(ξ) =∑

j cjφ(ξj) and use this fact to get an alternative proof of the
Riesz Representation Theorem (4.5.4). Explain where the con-
tinuity of φ was used.
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Answer. Since φ is continuous,

φ
(∑

j

cjξj

)
= φ

(
lim
F

∑
j∈F

cjξj

)
= lim

F
φ
(∑
j∈F

cjξj

)
= lim

F

∑
j∈F

cjφ(ξj) =
∑
j

cjφ(ξj).

As for the Riesz Representation Theorem, it is clear that we need

η =
∑
j

φ(ξj) ξj .

The only thing to prove, then, is that such an element exists in H. For any
finite subset F ⊂ J ,∑

j∈F
|φ(ξj)|2 = φ

(∑
j∈F

φ(ξj) ξj
)

≤ ∥φ∥
(∑
j∈F

|φ(ξj)|2
)1/2

.

From this we get that ∑
j∈F

|φ(ξj)|2 ≤ ∥φ∥2.

As this can be done for any F , we conclude that {φ(ξj)}j∈J ∈ ℓ2(J), and
thus η =

∑
j φ(ξj) ξj ∈ H exists by Lemma 4.3.18. The continuity of φ was

used to evaluate φ on the series and evaluate term by term; we first use the
continuity to exchange φ with the limit, and then apply linearity.

We now offer a second way to prove the Riesz Representation Theorem.
Note that, for any net {aj}j∈J , we have

∥a∥2 = sup
{∣∣∣∑

j∈J
cjaj

∣∣∣ : c ∈ ℓ2(J), ∥c∥2 = 1
}
, (AB.4.1)

even if we allow for ∥a∥2 = ∞. Indeed, we have, by Cauchy–Schwarz (doing
it first for finite sums), ∣∣∣∑

j∈J
cjaj

∣∣∣ ≤ ∥c∥2 ∥a∥2 = ∥a∥2.

If ∥a∥2 < ∞, then take c = a/∥a∥2 to get equality in (AB.4.1). And if
∥a∥2 = ∞, for any finite F ⊂ J we can take c = a|F /∥a|F ∥2, so∑

j∈J
cjaj =

∑
j∈F

|aj |2/∥a|F ∥2 = ∥a|F ∥2.

So we get that the supremum is infinite by taking larger and larger sets F .
Going back to our first equality, for any c ∈ ℓ2(J) with ∥c∥2 = 1,∣∣∣∑
j

cjφ(ξj)
∣∣∣ =

∣∣∣φ(∑
j

cjξj

)∣∣∣ ≤ ∥φ∥
∥∥∥∑

j

cjξj

∥∥∥ = ∥φ∥ ∥c∥2 = ∥φ∥.

Thus {φ(ξj)}j ∈ ℓ2(J). Now let η =
∑
j φ(ξj)ξj ∈ h, and we get that

φ(ξ) = ⟨ξ, η⟩ for all ξ ∈ H.
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(4.5.2) The vector space of all bounded functionals on H is called its
dual, denoted by H∗. Show that

∥φ∥ = sup{|φ(ξ)| : ∥ξ∥ = 1}
defines a norm on H∗, and that if η ∈ H is the vector cor-
responding to φ via the Riesz Representation Theorem, then
∥φ∥ = ∥η∥.

Answer. If ∥φ∥ = 0, then |φ(ξ)| = 0 for all ξ, so φ = 0. We have
∥λφ∥ = sup{|λφ(ξ)| : ∥ξ∥ = 1} = sup{|λ| |φ(ξ)| : ∥ξ∥ = 1}

= |λ| sup{|φ(ξ)| : ∥ξ∥ = 1}

= |λ| ∥φ∥.
And

∥φ+ ψ∥ = sup{|φ(ξ) + ψ(ξ)| : ∥ξ∥ = 1}

≤ sup{|φ(ξ)| + |ψ(ξ)| : ∥ξ∥ = 1}

≤ sup{|φ(ξ)| : ∥ξ∥ = 1} + sup{|ψ(ξ)| : ∥ξ∥ = 1}

= ∥φ∥ + ∥ψ∥.
Since φ(ξ) = ⟨ξ, η⟩ for all ξ, we have

|φ(ξ)| = |⟨ξ, η⟩| ≤ ∥ξ∥ ∥η∥,
so ∥φ∥ ≤ ∥η∥. Also,

φ(η/∥η∥) = ⟨η, η⟩
∥η∥

= ∥η∥.

So ∥φ∥ = ∥η∥.

(4.5.3) Let φ : H → C be nonzero, linear, and bounded. Show that
dim(kerφ)⊥ = 1.

Answer. Since φ ̸= 0 we have kerφ ⊊ H, so (kerφ)⊥ ̸= {0}. Let η1 ∈
(kerφ)⊥ be nonzero, and let η = η1/φ(η1); then φ(η) = 1. Now, for any
ξ ∈ (kerφ)⊥, we have that ξ − φ(ξ)η ∈ kerφ; but since ξ, η ∈ (kerφ)⊥, we
also have ξ −φ(ξ)η ∈ (kerφ)⊥. Thus ξ −φ(ξ)η = 0; that is, ξ = φ(ξ)η ∈ Cη.
So (kerφ)⊥ = Cη, one-dimensional.
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(4.5.4) Let φ : H → C be linear. Prove that the following two state-
ments are equivalent:

(a) φ is bounded;
(b) kerφ is closed.

Use the ideas in your proof to show that if φ is unbounded,
then kerφ is dense in H.

Answer. If φ is bounded, then it is continuous. Thus kerφ = φ−1({0}) is
closed, being a continuous pre-image of a closed set.

Conversely, if kerφ is closed, if it is all of H then φ = 0; otherwise, we
can proceed as in the proof of the Riesz Representation Theorem. Namely,
we take a nonzero η1 ∈ (kerφ)⊥ (assuming that this is nonzero is where we
use that kerφ is closed) with φ(η1) = 1, and put η = η1/∥η1∥2. Then for any
ξ ∈ H, ξ−φ(ξ)η1 ∈ kerφ, so ⟨ξ−φ(ξ)η1, η1⟩ = 0, which implies φ(ξ) = ⟨ξ, η⟩.
Then

|φ(ξ)| = |⟨ξ, η⟩| ≤ ∥ξ∥ ∥η∥,
and φ is bounded.

If φ is unbounded, by the proof above we have that kerφ is not closed.
If kerφ is a proper subspace, we can still repeat the above argument with η1,
and we would have proven that φ is bounded. So kerφ = H.
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CHAPTER

Banach spaces

5.1. Normed spaces

(5.1.1) Prove that in a normed vector space, addition of vectors and
multiplication by a scalar are continuous.

Answer. Since we are dealing with metric spaces, sequences are enough for
continuity. Suppose that X is a normed space, α ∈ C, and that xn → x,
yn → y in X . Then

∥αx+ y − (αxn + yn)∥ = ∥(αx− αxn) + (y − yn)∥

≤ |α| ∥x− xn∥ + ∥y − yn∥ →c⃝ 2024 Mart́ın Argerami All Rights Reserved 0
Similarly, if αn → α, there exists c > 0 with |αn| < c for all n, and then

∥αnxn − αx∥ ≤ |αn| ∥vx − v∥ + |αn − α| ∥x∥ ≤ c ∥xn − x∥ + |αn − α| ∥x∥.

243
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(5.1.2) Let X be a normed space, x ∈ X , and {xn} a sequence such
that xn → x. Show that ∥xn∥ → ∥x∥.

Answer. We have, via the reverse triangle inequality,∣∣ ∥xn∥ − ∥x∥
∣∣ ≤ ∥xn − x∥.

Hence ∥xn∥ → ∥x∥.

(5.1.3) Show that equivalence of norms is an equivalence relation.

Answer. Let p, q, r be norms on X . We have p(x) ≤ p(x) ≤ p(x) for all
x ∈ X , so the relation is reflexive. If p ∼ q, there exists α, β > 0 with
αp(x) ≤ q(x) ≤ βp(x) for all x. Then 1

β q(x) ≤ p(x) ≤ 1
αq(x), so q ∼ p and

the relation is symmetric.
If p ∼ q and q ∼ r, there exists α, βγ, δ > 0 with

αp(x) ≤ q(x) ≤ βp(x), γq(x) ≤ r(x) ≤ δq(x).
Then

αγp(x) ≤ r(x) ≤ βδp(x),
so p ∼ r and the relation is transitive.

(5.1.4) Let X be a normed space and {xn} ⊂ X a Cauchy sequence.
Show that the sequence is bounded, that is there exists c > 0
such that ∥xn∥ ≤ c for all n.

Answer. By Exercise 1.8.27, there exists x ∈ X and r > 0 with ∥xn−x∥ < r
for all n. Then

∥xn∥ ≤ ∥xn − x∥ + ∥x∥ < r + ∥x∥.

(5.1.5) Consider the real Banach spaces X1 = (R2, ∥·∥1), X2 = (R2, ∥·
∥2), X3 = (R2, ∥ · ∥∞). Find and describe graphically the unit
ball of each space (the use of real spaces is only to allow the
possibility of drawing the unit balls).

Answer.
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For X1, the edges of the ball are the lines |x| + |y| = 1, so the unit ball
is the square with vertices (1, 1), (1,−1), (−1, 1), (−1,−1).

For X2, the unit ball is the usual closed disk of radius one, centered at
the origin.

For X3, the unit ball is the square with vertices (1, 1), (−1, 1), (−1,−1),
(1,−1).

−1 1

−1

1

x

y

−1 1

−1

1

x

y

−1 1

−1

1

x

y

(5.1.6) Show that the canonical basis is a Schauder basis for ℓp(N)
when 1 ≤ p < ∞.
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Answer. Let a ∈ ℓp(N) with p < ∞. Given ε > 0, there exists n0 such that∑
n>n0

|an|p < εp. Then for any finite set F1 ⊂ N \ {1, . . . , n0},∥∥∥ ∑
n∈F1

anen

∥∥∥
p

=
( ∑
n∈F1

|an|p
)1/p

≤
( m∑
n=n0+1

|an|p
)1/p

< ε.

So the sequence of partial sums of the series is Cauchy, and the series con-
verges. As for the uniqueness, if

∑
n

anen = 0, then
∑
n |an|p = 0, which

implies an = 0 for all n.

(5.1.7) Show that the canonical basis is not a Schauder basis for ℓ∞(N).

Answer. For a tail of a series,
∥∥∥∑n>m anen

∥∥∥
∞

= sup{|an| : n > m}. And
ℓ∞(N) contains elements that do not go to zero, like constant functions: if
an = 1 for all n, the series will not converge.

(5.1.8) Show that ℓ∞(N) has no Schauder basis.

Answer. Any space with a Schauder basis is separable, while ℓ∞(N) is not
separable.

(5.1.9) Show that the canonical basis is a Schauder basis for c0.

Answer. As in ℓ∞(N), we have
∥∥∥∑n>m anen

∥∥∥
∞

= sup{|an| : n > m}; but
now sequences converge to zero, so the tails of the series do too. As for the
uniqueness of the coefficients, if

∑
n anen = 0, then 0 = sup{|an| : n}, so

an = 0 for all n.

(5.1.10) Let X be a normed space and x, z ∈ X , with Sz the reflexion
of X on z. Show that

(a) S2
z = idX ;

(b) Sz is an isometry;
(c) Sz is affine;
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(d) z is the only fixed point of Sz;
(e) We have the equalities
∥z − Szx∥ = ∥z − x∥, ∥x− Szx∥ = 2∥x− z∥, x, z ∈ X .

Answer.

(a) For any x ∈ X ,
S2
zx− Sz(2z − x) = [2z − (2z − x)] − x.

(b) For x, y ∈ X ,
∥Szx− Szy∥ = ∥2z − x− (2z − y)∥ = ∥x− y∥.

(c) If x, y ∈ X and t ∈ [0, 1],
Sz(tx+ (1 − t)y) = 2z − (tx+ (1 − t)y) = t(2z − x) + (1 − t)(2z − y)

= tSzx+ (1 − t)Szy.

(d) If Szx = x, this is 2z − x = x, hence x = z.
(e) We have

∥z − Szx∥ = ∥z − (2z − x)∥ = ∥x− z∥,
and

∥x− Szx∥ = ∥x− (2z − x)∥ = 2∥x− z∥.

5.2. Finite-dimensional Banach spaces

(5.2.1) Show that a finite-dimensional normed space X is separable.

Answer. Let n = dim X . Using a basis for X we can construct a linear bijec-
tion Γ : X → Cn. We may consider on Cn the 2-norm, ∥c∥ =

(∑
k |ck|2

)1/2
,

which makes Cn a Hilbert space. As all norms are equivalent by Corol-
lary 5.2.3, X is linearly homeomorphic to ℓ2({1, . . . , n}). The latter is sepa-
rable by Exercise 4.4.2, and so X is separable.
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(5.2.2) By Theorem 5.2.2, the norms ∥·∥1, ∥·∥2, and ∥·∥∞ are equiva-
lent on Cn. Find specific constants that realize the inequalities.

Answer. From Cauchy–Schwarz,

∥x∥1 =
∑
k

|xk| ≤
(∑

k

|xk|2
)1/2(∑

k

12
)1/2

=
√
n ∥x∥2.

Conversely,
∥x∥2

1 =
(∑

k

|xk|
)2

≥
∑
k

|xk|2,

so
∥x∥2 ≤ ∥x∥1 ≤

√
n ∥x∥2.

Both inequalities are sharp, as seen by taking x = e1 for the first one, and
x =

∑
k ek for the second one.

We also have, directly, that
∥x∥∞ ≤ ∥x∥1 ≤ n∥x∥∞.

These again are sharp: take x = e1 for the first inequality and x =
∑
k ek for

the second one.
Finally,

∥x∥∞ ≤ ∥x∥2 ≤
√
n ∥x∥∞.

These can be seen to be sharp by taking the same choices as above.

(5.2.3) Show that ∥ · ∥1, defined in (5.2), is a norm.

Answer. By construction ∥x∥1 ≥ 0 since the absolute value is non-negative.
If ∥x∥1 = 0 then

∑
k |xk| = 0 gives us xk = 0 for all k, so x = 0. Given λ ∈ C,

we have ∥λx∥ =
∑
k |λxk| = |λ| ∥x∥1. Finally,

∥x+y∥1 =
∑
k

|xk+y+k| ≤
∑
k

|xk|+ |yk| =
∑
k

|xk|+
∑
k

|yk| = ∥x∥1 +∥y∥1.

(5.2.4) Let X be a normed vector space of dimension n. Prove that
that there is a bicontinuous isomorphism between X and Cn
(considered with the Euclidean norm).

Answer. Fix a basis {e1, . . . , en} for X . For x ∈ X we denote by x1, . . . , xn

the coefficients of x =
∑
k xkek. Then γ(x) =

(∑
k |xk|

)1/2
defines a norm
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on X . By Corollary 5.2.3 there exist α, β > 0 with
α∥x∥ ≤ γ(x) ≤ β∥x∥.

Let Γ : X → Cn be given by Γ(x) = (x1, . . . , xn). Then Γ is a linear bijective
from the fact that {e1, . . . , en} is a basis. And we have

∥Γ(x)∥ = γ(x) ≤ β∥x∥,
so Γ is continuous. And

∥Γ−1(x1, . . . , xn)∥ ≤ α−1γ(Γ−1(x1, . . . , xn)) = α−1
(∑

k

|xk|2
)1/2

.

So Γ is a bicontinuous isomorphism.

(5.2.5) Prove Corollary 5.2.4.

Answer. By Corollary 5.2.3 we may choose a norm that suits us. For instance
we can fix a basis f1, . . . , fn and choose∥∥∥ n∑

j=1
xjfj

∥∥∥ =
( n∑
j=1

|xj |2
)2
.

This norm trivially satisfies the Parallelogram Identity, and hence X becomes
a Hilbert space with this norm. Then the closed bounded sets are compact
by Theorem 4.4.8.

The same argument, but without mentioning Hilbert spaces, would look
as follows. Fix a basis f1, . . . , fn. By Corollary 5.2.3 we can consider the norm∥∥∥∑

j

cjfj

∥∥∥
1

=
∑
j

|cj |. (AB.5.1)

In this norm, any element of the unit ball will have coefficients in the unit
ball of C. Then, by the Heine–Borel Theorem, there is a subsequence such
that the first coordinate converges. From this subsequence we can then ex-
tract a subsequence where the second coordinate converges. After n steps we
will obtain a “coordinate wise” convergent subsequence; using the norm in
(AB.5.1) we see that the subsequence is norm-convergent. So the unit ball is
compact.

A third argument is as follows. Fix a basis f1, . . . , fn ∈ X and define
T : X → Cn by

T
( n∑
j=1

xjfj

)
= (x1, . . . , xn).

It is easy to check that T is a bijection. By Corollary 5.2.5, T and T−1 are
bounded. In particular both T and T−1 map compact sets to compact sets.
We can define a norm on X by ∥x∥ = ∥Tx∥2. Then B1(0)X = T−1B1(0)C,
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hence compact. Once we know that the unit ball in X is compact for some
norm, since all norms are equivalent (Theorem 5.2.2), we can use the com-
pactness in one norm to obtain compactness in a second norm by showing
that every bounded sequence admits a convergent sequence.

(5.2.6) Let X ,Y be finite-dimensional vector spaces, and T : X → Y
linear. Show that

dim kerT + dim ranT = dim X .
This equality is usually called the rank-nullity theorem.

Answer. Let n = dim X and let x1, . . . , xr be a basis of kerT . Complete
it to a basis x1, . . . , xn of X . Let X0 = span{xr+1, . . . , xn}. Then T |X0 is
injective, and ranT |X0 = ranT , so T |X0 is an isomorphism between X0 and
ranT . Then

dim kerT + dim ranT = dim kerT + dim X0 = r + (n− t) = n = dim X .

5.3. Direct Sums and Quotient spaces

(5.3.1) Let X be a vector space and M,N ⊂ X subspaces with X =
M +N . Show that the following statements are equivalent:

(a) each element x ∈ X can be written as x = y+z, with y ∈ M
and z ∈ N , in a unique way;

(b) M ∩N = {0}.

Answer. Suppose uniqueness first. If z ∈ M ∩ N , then z = z + 0 = 0 + z
(first term in M , second term in N) and hence z = 0. Conversely, suppose
that M ∩N = {0} and that y1 +z1 = y2 +z2, with y1, y2 ∈ M and z1, z2 ∈ N .
Then the element y1 − y2 = z2 − z1 is in M ∩ N = {0}, and so y2 = y1,
z2 = z1.
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(5.3.2) Let X ,Y be normed spaces. Show that the norms ∥ · ∥1, ∥ · ∥2,
and ∥ · ∥∞—as defined after Definition 5.3.1—are equivalent.

Answer. The estimate for norms in R2 will serve us here, since
∥(x, y)∥1 = ∥(∥x∥, ∥y∥)1, ∥(x, y)∥2 = ∥(∥x∥, ∥y∥)∥2,

and
∥(x, y)∥∞ = ∥(∥x∥, ∥y∥)∞.

That is, we have
∥(x, y)∥∞ ≤ ∥(x, y)∥2 ≤ ∥(x, y)∥1 ≤

√
2∥(x, y)∥2 ≤ 2∥(x, y)∥∞.

(5.3.3) Let X be a Banach space, and M ⊂ X a subspace. Show that
the following statements are equivalent:

(a) M is closed;
(b) if {xn} ⊂ M is Cauchy, x = limn xn exists and x ∈ M .

Answer. Suppose first that M is closed. Let {xn} ⊂ M be Cauchy. As X
is complete, the sequence is convergent; let x = limn xn. Being a limit of
element in M , the point x is in the closure of M ; but M is closed, so x ∈ M .

Conversely, suppose that M is not closed. Then X \ M is not open;
so there exists x ∈ X \ M that is a limit point for M ; that is, there exists
{xn} ⊂ M with xn → x and x ̸∈ M .

(5.3.4) Let X be a normed space (not necessarily complete), M ⊂ X a
subspace. Show that the following statements are equivalent:

(a) M is closed;
(b) if {xn} ⊂ M and xn → x, then x ∈ M .

Answer. Suppose first that M is closed. If {xn} ⊂ M and xn → x, then
x ∈ M = M .

Conversely, if M is not closed, thenX \ M is not open; so there exists
x ∈ X \ M that is a limit point for M ; that is, there exists {xn} ⊂ M with
xn → x and x ̸∈ M .
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(5.3.5) Let X be a Banach space and P ∈ B(X ) a projection. Show
that P has closed range.

Answer. Let {Pxn} be a Cauchy sequence. Since X is Banach, there exists
y ∈ X with Pxn → y. Then

Py = P (lim
n
Pxn) = lim

n
P 2xn = lim

n
Pxn = y.

So y = Py ∈ PX .

(5.3.6) Show that, given a family {Xj}j∈J of Banach spaces, each of(⊕
j∈J

Xj
)
c0
,
(⊕
j∈J

Xj
)
ℓ∞
,
(⊕
j∈J

Xj
)
ℓp
,

1 ≤ p < ∞, is a Banach space.

Answer. In each case the vector space operations are defined pointwise;
namely, (g + αh)(j) = g(j) + αh(j).

For the c0 and ℓ∞ direct sums the norm is the same,
∥g∥∞ = sup{∥g(j)∥ : j ∈ J}.

That this is a norm is basically the same proof as the case that the usual
infinity norm on ℓ∞(N) is a norm. Namely, ∥g+h∥∞ ≤ ∥g∥∞ + ∥h∥∞ by the
triangle inequality on each Xj and the fact that the supremum of a sum is at
most the sum of the suprema. That ∥αg∥ = |α| ∥g∥ follows from the corre-
sponding property on each Xj and that non-negative scalars can be exchanged
with the supremum. For the case p < ∞ we prove the triangle inequality by
mimicking the proof of Minkowski’s Inequality (Corollary 2.8.10).

So all that remains is to show that the spaces are complete. Let {gn} ⊂(⊕
j∈J

Xj
)
ℓ∞

be Cauchy. Fix ε > 0; then there exists n0 such that ∥gn −

gm∥∞ < ε whenever m,n ≥ n0. For any fixed j ∈ J we have ∥gn(j) −
gm(j)∥∞ ≤ ∥gm − gm∥∞ and so the sequence {gn(j)} ⊂ Xj is Cauchy. So
for each j there exists a limit g(j) = limn gn(j). Now we need to show that
∥g∥∞ < ∞ and that gn → g. We have, for n,m ≥ n0,

∥gn(j) − g(j)∥ ≤ ∥gn(j) − gm(j)∥ + ∥gm(j) − g(j)∥ < ε+ ∥gm(j) − g(j)∥.
As we are free to choose m and gm(j) → g(j), we get ∥gn(j) − g(j)∥ ≤ ε, and
this occurs for all j. Thus ∥gn − g∥∞ < ε, and this shows that gn → g, and
using n big enough

∥g∥∞ ≤ ∥g − gn∥∞ + ∥gn∥∞ < ∞.
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This establishes the completeness of
(⊕
j∈J

Xj
)
ℓ∞

. For the c0 sum all the

above applies, but now we have that limj gn(j) → 0 for all n and we want to
show that same for g. And this follows from

∥g(j)∥ ≤ ∥g(j) − gn(j)∥ + ∥gn(j)∥ ≤ ∥g − gn∥∞ + ∥gn(j)∥.
Then lim supj ∥g(j)∥ ≤ ∥g − gn∥∞; as we are free to choose n and gn → g,
we get lim supj ∥g(j)∥ = 0 and therefore the limit exists and limj ∥g(j)∥ = 0.
Thus g ∈

(⊕
j∈J

Xn
)
c0

.

And now the case p < ∞. Again we have a Cauchy sequence {gn} ⊂(⊕
j∈J

Xn
)
ℓp

. We still have the inequality ∥g(j)∥ ≤ ∥g∥p, so the existence of

the limit g is proven exactly as before. Now we have

∥gn − g∥p =
(∑

j

∥gn(j) − g(j)∥p
)1/p

.

Fix ε > 0. Since the sequence is Cauchy there exists n0 such that ∥gn −
gm∥p < ε whenever m,n ≥ n0. We will mimic the proof of Theorem 2.8.12.
Because {gn} is Cauchy, we inductively choose a subsequence {gnk} such that
∥gnk+1 − gnk∥ < 2−k for all k.

By Minkowsky’s Integral Inequality (2.47),(∑
j

( ∞∑
k=1

∥gnk+1(j) − gnk(j)∥
)p

≤
∞∑
k=1

(∑
j

∥gnk+1(j) − gnk(j)∥p
)1/p

=
N∑
k=1

∥gnk+1 − gnk∥p ≤
N∑
k=1

2−k < 1.

This implies that
∑
j

(
∥

∞∑
k=1

∥gnk+1(j) − gnk(j)∥ < ∞ for all j, and hence the

function

g(j) = gn1(j) +
∞∑
k=1

gnk+1(j) − gnk(j)

is defined for all j. We also have

∥g∥p ≤ ∥gn1∥p+
∥∥∥∥ ∞∑
k=1

gnk+1 −gnk
∥∥∥∥
p

≤ ∥gn1∥p+
∞∑
k=1

∥gnk+1 −gnk∥p < ∥gn1∥p+1,
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so g ∈
(⊕
j∈J

Xn
)
ℓp

. Since the definition of g telescopes,

∥g − gnh∥p =
∥∥∥∥ ∞∑
k=h

gnk+1 − gnk

∥∥∥∥
p

≤
∞∑
k=h

2−k = 2−k+1,

and so gnk → g. As this was a subsequence of a Cauchy sequence, gn → g;
thus the space

(⊕
j∈J

Xn
)
ℓp

is complete.

(5.3.7) Show that, in the particular case where Xn = X for all n, and⊕
n∈N

X denoting any of the three kind of sums in Exercise 5.3.6,

(a)
⊕
n∈N

X ≃ X ⊕
⊕
n∈N

X ;

(b)
⊕
n∈N

X ≃
⊕
n∈N

X ⊕
⊕
n∈N

X .

In all cases the isomorphisms are isometric.

Answer.

(a) Let Γ : X ⊕
⊕
n∈N

X →c⃝ 2024 Mart́ın Argerami All Rights Reserved

⊕
n∈N

X be given by

(Γ(x, g))(n) =
{
x, n = 1

g(n− 1), n > 1
Equivalently we may write (Γ(x, g))(n) = δ1,nx+ (1 − δ1,n) g(n− 1). This
is linear, for

(Γ(x+ αy, g + αh))(n) = δ1,n(x+ αy) + (1 − δ1,n) (g(n− 1) + αh(n− 1))

= δ1,nx+ (1 − δ1,n) g(n− 1)

+ αδ1,ny + (1 − δ1,n)h(n− 1).
For the infinity norm,

∥Γ(x, g)∥∞ = sup{∥Γ(x, g)(n)∥ : n} = ∥(x, g)∥∞.

And when p < ∞

∥Γ(x, g)∥pp =
∑
n

∥δ1,nx+ (1 − δ1,n) g(n− 1)∥ = ∥(x, g)∥p.
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In either case, Γ is isometric. And we finish by saying that Γ is surjective,
for given g ∈

⊕
n∈N

X , we have g = Γ(g(1), g′), where g′(n) = g(n− 1).

(b) The idea is now very similar, but we take Γ :
⊕
n∈N

X ⊕
⊕
n∈N

X →c⃝ 2024 Mart́ın Argerami All Rights Reserved

⊕
n∈N

X to

be

(Γ(g, h))(n) =
{
g(n), n odd

h(n), n even
The linearity, isometry, and surjectivity are proven in an analog way to
that of the previous case.

(5.3.8) In the setting of Exercise 2.3.27, show that(⊕
j

L2(K,µj)
)
ℓ2

≃ L2(X,Σ, µ),

Answer. Given f̃ = {fj}j with fj ∈ L2(K,µj) for all j, and such that∑
j ∥fj∥2 < ∞, let (V f̃) : X → C be given by (V f̃)(x × {j}) = fj(x). We

have that V is linear and

∥V f̃∥2
2 =

∫
X

|V f |2 dµ =
∑
j

∫
K

|V f(x× {j})|2 dµj(x)

=
∑
j

∫
K

|fj |2 dµ =
∑
j

∥fj∥2 = ∥f̃∥2
2,

so V is an isometry. Given f ∈ L2(X), let fj(x) = f(x × {j}). Then fj is
µj-measurable and if f̃ = {fj} we get V f̃ = f .

(5.3.9) If H is a Hilbert space and M ⊂ H is a closed subspace, show
that H/M has a natural Hilbert space structure that makes it
a Hilbert space, and that H/M can be identified with (i.e. is
naturally isomorphic to) M⊥.

Answer. Let P be the orthogonal projection onto M⊥. We have ξ + M =
Pξ+M : indeed, I−P is the orthogonal projection ontoM (Proposition 4.3.8),
so ξ − Pξ = (I − P )ξ ∈ M . We define

⟨ξ +M,η +M⟩ = ⟨Pξ, Pη⟩. (AB.5.2)
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This is well-defined since ξ1−ξ2 ∈ M implies Pξ1−Pξ2 = 0. Sesquilinearity is
straighforward. If ⟨ξ+m, ξ+M⟩ = 0, we get ∥Pξ∥ = 0, so ξ = (I−P )ξ ∈ M ,
so ξ +M = 0.

We can define the isomorphism π : H/M → M⊥ by π : ξ +M 7−→ Pξ.
Again, this is well-defined because if Pξ1 = Pξ2, then P (ξ1 − ξ2) = 0, so
ξ1 − ξ2 ∈ M ; this also shows that π is one-to-one. Linearity is clear. And for
any ξ ∈ M⊥, we have ξ = Pξ = π(ξ), so π is onto. Finally, π preserves the
inner product by (AB.5.2).

(5.3.10) Prove that when M ⊂ X is a closed subspace, the quotient
norm is a norm (Hint: think of it as a distance).

Answer. If ∥v+M∥ = 0, this means that inf{∥v+m∥ : m ∈ M} = 0. Thus
v ∈ M = M . For any nonzero λ, and using that M is a subspace,

∥λ(v +M)∥ = inf{∥λv +m∥ : m ∈ M}

= |λ| inf{∥v +m/λ∥ : m ∈ M} = |λ| ∥v +M∥.
For the triangle inequality, fix ε > 0. Then there exists m1,m2 ∈ M such
that ∥v +m1∥ < ∥v +M∥ + ε, ∥w +m2∥ < ∥w +M∥ + ε. Then

∥v + w +M∥ ≤ ∥v + w +m1 +m2∥ ≤ ∥v +m1∥ + ∥w +m2∥

≤ ∥v +M∥ + ∥w +M∥ + 2ε.
As we can do this for all ε > 0, we obtain ∥v+w+M∥ ≤ ∥v+M∥+∥w+M∥.

(5.3.11) Let X = C[0, 1] and M = {f ∈ X : f(1) = 0}. Show that
X/M = {c+M : c ∈ C} and ∥f +M∥ = |f(1)|.

Answer. We have that f ∼ g if and only if f(1) = g(1). Hence f + M =
f(1) + M for every f . That is, we can choose a constant function as the
representative for each class; which means that X/M = {c + M : c ∈ C}.
As for the norm, we only need to calculate the norm for a constant function,
since these are representatives. If g(1) = 0, then |c+ g(1)| = |c|, which shows
that ∥c+ g∥ ≥ |c| for all g ∈ M ; with g = 0, we get ∥c+M∥ = |c|.
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(5.3.12) Let X = C[0, 1]. Fix t1, . . . , tn ∈ [0, 1]. Let M = {f ∈ X :
f(tj) = 0, j = 1, . . . , n}. Then X/M ≃ Cn, and ∥f + M∥ =
max{|f(tj)| : j = 1, . . . , n}.

Answer. We have that f ∼ g if and only if f(tj) = g(tj) for all j. Hence
the map f + M 7−→ (f(t1), . . . , f(tn)) is well-defined X/M → Cn. It is
surjective, as we can construct a continuous function with n prescribed values
(we can make it piece-wise linear, for instance); it is injective by definition of
the equivalence relation. And it is linear, hence a vector space isomorphism.
Continuity is a given since we are dealing with finite-dimensional vector spaces
(Theorem 5.2.2). As for the norm, since g(tj) = 0 for all j and any g ∈ M ,
∥f + g∥ ≥ max{||f(t1)|, . . . , |f(tn)|}; and choosing g = 0 gives us the reverse
inequality.

(5.3.13) Let X = C[0, 1]. Let M =
{
f ∈ X :

∫ 1

0
f = 0

}
. Show that

X/M ≃ C and that ∥f +M∥ =
∣∣∣∣ ∫ 1

0
f

∣∣∣∣.
Answer. For any f we have f ∼ c if c =

∫ 1

0
f . So we have C as representa-

tives. That is, we can define ρ : X/M → C by

ρ(f +M) =
∫ 1

0
f.

If f + M = g + M this means that
∫ 1

0
(f − g) = 0, and so ρ is well-defined

and injective. The linearity follows from the linearity of the integral, and the
surjectivity from ρ(c+M) = c for all c ∈ C.

As for the norm, if c =
∫ 1

0
f then

∥f +M∥ = ∥c+M∥ = |c| ∥1 +M∥.
So we focus on showing that ∥1 +M∥ = 1. By definition,

∥1 +M∥ = inf
{

∥g∥∞ :
∫ 1

0
g = 1

}
.
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From
∫ 1

0
1 = 1 we get that ∥1+M∥ ≤ 1. On the other hand, if ∥g∥∞ < 1− δ

for δ > 0, then ∣∣∣ ∫ 1

0
g
∣∣∣ ≤

∫ 1

0
|g| ≤ 1 − δ.

This shows that if
∫ 1

0 g = 1, then ∥g∥∞ ≥ 1. Thus ∥1 + M∥ ≥ 1 and so
∥1 +M∥ = 1.

(5.3.14) Let X = ℓ∞(N) and M = c0. Show that the norm on X/M is
given by

∥a+ c0∥ = lim sup
n

|an|, a ∈ ℓ∞(N).

Answer. Let s = lim supn |an|. Fix ε > 0, and x ∈ c0. There exists n0 such
that |xn| < ε for all n ≥ n0. By definition of limsup there exists n ≥ n0 such
that |an| + ε > s. Then

s < |an| + ε ≤ |an + xn| + |xn| + ε ≤ ∥a+ x∥∞ + 2ε.
As x ∈ c0 as arbitrary, we get that s ≤ ∥a + c0∥ + 2ε; and ε was arbitrary
too, so s ≤ ∥a+ c0∥.

If we take x = −a 1{1,...,n0} ∈ c0, then
∥a+ x∥∞ = sup{|an| : n ≥ n0}.

It follows that ∥a+ c0∥ ≤ sup{|an| : n ≥ n0} for all n0. That is,
∥a+ c0∥ ≤ lim

n0→∞
{|an| : n ≥ n0} = s.

5.4. Locally Convex Spaces

(5.4.1) Let X be a topological vector space and M ⊂ X balanced.
Show that if c ∈ T then cM = M .
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Answer. The definition of balanced implies that cM ⊂ M and c−1M ⊂ M .
Then

M = c(c−1M) ⊂ cM,

and so cM = M .

(5.4.2) Let X be a topological space. Show that the following state-
ments are equivalent:

(a) singletons are closed;
(b) finite sets are closed;
(c) X is T1: namely, given distinct x, y ∈ X , there exists an

open set V such that x ∈ V , y ̸∈ V .

Answer. If singletons are closed, then {x1, . . . , xn} =
⋃n
j=1{xj} is a finite

union of closed, so closed. The converse is trivial.
Again assuming that singletons are closed, given x ̸= y, since {y} is

closed, V = X \ {y} is open, and x ∈ V , y ̸∈ V . So X is T1.
If X is T1, given x ∈ X, for each y ̸= x there exists Vy, open, with

y ∈ Vy and x ̸∈ Vy. Then V =
⋃
y ̸=x Vy is open, and it contains all points bar

x: that is V = X \ {x}. As V is open, its complement {x} is closed.

(5.4.3) Show that in a topological vector space, all open neighbour-
hoods around a point x are given by translates by x of neigh-
bourhoods of 0.

Answer. Fix x. The function f(y) = x + y is continuous by definition of
TVS. It’s inverse g(y) = −x+y is also continuous, so f is a homeomorphism.
Given any open set V with x ∈ V , the set W = f−1(V ) is open by continuity,
and 0 ∈ W , since f(0) = x. We have V = f(W ) = x+W .

(5.4.4) Show that any open neighbourhood of 0 in a topological vector
space is absorbing, and that any nonzero multiple of an open
set is open.

Answer. Fix V open with 0 ∈ V . By definition of topological vector space,
the map γ : C → X given by γ(t) = tx is continuous; as γ(0) = 0 ∈ V , there
exists an open disk W = Bδ(0) ⊂ C with 0 ∈ W and α(W ) ⊂ V . This means
that if |t| < δ then tx ∈ V . So V is absorbing.
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Let V open and fix c ∈ C \ {0}. Also by definition, the map α : X → X
given by α(x) = 1

c x is continuous. Then cV = α−1(V ) is open.

(5.4.5) Let X be a TVS and V,W ⊂ X with V open. Show that V +W
is open.

Answer. This was explicitly done in the text! For each v ∈ V , by Exer-
cise 5.4.3 the set v +W is open. Then

V +W =
⋃
v∈V

(v +W )

is open.

(5.4.6) Prove that, in a topological vector space, the interior and the
closure of a convex set are convex.

Answer. Let A ⊂ X be convex. Let A0 be the interior of A. If x, y ∈ A0 and
t ∈ (0, 1), choose open Vx, Vy ⊂ A with x ∈ Vx, y ∈ Vy. Then tx ∈ tVx, which
is open, and (1 − t)y ∈ (1 − t)Vy, which is also open. And tx + (1 − t)y ∈
tVx+(1−t)Vy, which is open by Exercise 5.4.5, and a subset of A by convexity.

As for the closure, if x, y ∈ A, there exist nets {xj} and {yj} with
xj → x, yj → y. Then, since addition and multiplication by scalars are
continuous,

tx+ (1 − t)y = lim
j
txj + (1 − t)yj ∈ A,

as txj + (1 − t)yj ∈ A by convexity.

(5.4.7) Prove that, in a topological vector space, the closure of a bal-
anced set is balanced; and if the interior contains 0, then the
interior is balanced.

Answer. Assume that A ⊂ X is balanced. If x ∈ A and c ∈ C with |c| ≤ 1,
there exists a net {xj} with xj → x. As A is balanced, cxj ∈ A for all j.
Then, by continuity of the product by scalars, cx = lim cxj ∈ A.

If 0 ∈ A and x ∈ A0, the interior of A, by Exercise 5.4.3 there exists
an open set V with 0 ∈ V and x + V ⊂ A. Using Lemma 5.4.4, there exists
V0 open and balanced with 0 ∈ V0 ⊂ V . Then, if 0 < |c| ≤ 1, cx + cV0 is an
open neighbourhood of cx, and cx+ cV0 = c(x+ V0) ⊂ cA ⊂ A, so cx ∈ A0.
When c = 0, we have that cx = 0 ∈ A0 by hypothesis. So A0 is balanced.
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Here is an example of a balanced set such that 0 is not in its interior.
Let X = C2 and

A = {(z1, z2) : |z1| ≤ |z2|}.
Then A is balanced, since multiplying each coordinate by a fixed c with |c| ≤ 1
will not alter the inequality. And

IntA = {(z1, z2) ∈ A : |z1| < |z2|}.
In particular, 0 = (0, 0) ̸ IntA.

(5.4.8) Give examples, in C2, with the usual topology, of open neigh-
bourhoods of 0 that are:

(a) balanced but not convex;
(b) convex but not balanced.

In each case, does a local basis at 0 for the topology exist where
all sets are like that? Are the same examples possible in C?

Answer.

(a) Let V0 = {(z, w) : |z| < 1, |w| < 1
2 }, V1 = {(z, w) : |z| < 1

2 , |w| < 1},
and V = V0 ∪ V1. This is what a real version of V would look like:

The set V is open (union of open), and balanced: both V0 and V1
already are balanced, since c with |c| ≤ 1 will make |cz| ≤ |z| and |cw| ≤
|w|. And it is not convex: for small ε > 0 the points ( 1

2 − ε, 1 − ε) and
(1−ε, 1

2 −ε) are in V , but 1
2 ( 1

2 −ε, 1−ε)+ 1
2 (1−ε, 1

2 −ε) = ( 3
4 −ε, 3

4 −ε)
is not in V .

Since “crosses” like the above one but on different sizes can be put
inside balls, and balls inside them, they induce the same topology as the
balls; so there is a basis for C2 given by sets as above.
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In C, an open balanced neighbourhood of 0 is an open disk or all of
C, so it is convex. Indeed, if V ⊂ C is open and balanced with 0 ∈ V , let
r = sup{|z| : z ∈ V }. If r = ∞, given any z ∈ C there exists v ∈ V with
|v| > |z|; then write v = aeit, z = beis. We have

z =
(
b

a

)
ei(s−t) v ∈ V.

When r < ∞, given z ∈ C with |z| < r we can find v ∈ V with |v| > |z|
and we can repeat the above argument, so V = Br(0).

(b) Let V = {z ∈ C : −1 < Re z < 1, − 1
2 < Im z < 1

2 } × {w ∈ C : |w| < 1}.
Then V is open, and it is convex:
t(z1, w1) + (1 − t)(z2, w2) = (tz1 + (1 − t)z2, tw1 + (1 − t)w2) ∈ V.

But it is not balanced: we have ( 3
4 ,

3
4 ) ∈ V , but i( 3

4 ,
3
4 ) = ( 3

4 i,
3
4 i) ̸∈ V .

The same argument with the balls shows that there is indeed a local
basis at 0 for the topology of C2 made of open sets which are convex but
not balanced.

In C, let V = {z ∈ C : 2(Re z)2 + (Im z)2 < 1}. Then V is an
open neighbourhood of 0, and it is convex (it’s an “ellipse”). But it is not
balanced: z = i/

√
2 ∈ V , but iz = −1/

√
2 ̸∈ V .

(5.4.9) Fill the details in Example 5.4.14, i.e. show that the topol-
ogy induced by the seminorms agrees with the topology of
pointwise-convergence.

Answer. Take the family of seminorms as in Example 5.4.14.
Suppose that fj → f pointwise. Given V (p1, . . . , pn, ε) where pk(g) =

|g(tk)|, for each k = 1, . . . , n we can choose jk such that, for j ≥ jk, we
have |fj(tk) − f(tk)| < ε. Let j0 = max{j1, . . . , jn}. Then, for j ≥ j0,
pk(fj − f) = |fj(tk) − f(tk)| < ε. So fj ∈ f + V (p1, . . . , pn, ε) for all j ≥ j0;
as the basic neighbourhood was arbitrary, we have shown that fj → f in the
topology determined by the seminorms.

Conversely, if fj → f on the seminorms, given t ∈ [0, 1] and ε > 0, there
exists j0 such that for all j ≥ j0 we have f+V (pt, ε); that is, |fj(t)−f(t)| < ε
for all j ≥ j0; so fj → f pointwise.

(5.4.10) Show that if H is an infinite-dimensional Hilbert space and
{ξj} is an orthonormal basis, then ξj

weak−−−→ 0.
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Answer. Fix η ∈ H. We have, since
∑
j |⟨η, ξj⟩|2 = ∥η∥2 < ∞, that ⟨η, ξj⟩ →

0. That is, ξj
weak−−−→ 0.

Note that this only works in infinite dimension, for otherwise the coef-
ficients need not converge to zero.

(5.4.11) Let V ⊂ X be an open, balanced, convex, set with 0 ∈ V . Let
ε > 0. Show that

{x : µV (x) < ε} = {x : µεV (x) < 1} = ε V.

Answer. The set εV is open by continuity of multiplication by scalars, and
it is trivial to check that it is convex. By Proposition 5.4.9,

εV = ε {x : µV (x) < 1} = {εx : µV (x) < 1}

= {x : µV
(1
ε
x
)
< 1} = {x : µV (x) < ε}.

(5.4.12) Let X be a TVS, M ⊂ X a convex, open, neighbourhood of 0.
Show that µM is continuous.

Answer. Since µM is a real seminorm,
|µM (x) − µM (y)| ≤ µM (x− y),

so it is enough to show that µM is continuous at 0. Fix ε > 0. By Exer-
cise 5.4.11, the set εM is open and εM = {x ∈ µM (x) < ε}. So we can take
εM as the neighbourhood of 0 that guarantees that |µM (x)| < ε if x ∈ εM .

(5.4.13) Let X be a vector space and P a family of seminorms that
separates points. Show that the sets

Vx(p1, . . . , pn, ε), x ∈ X , p1, . . . , pn ∈ P, ε > 0,
where
Vx(p1, . . . , pn, ε) = {x′ ∈ X : pk(x′ − x) < ε, k = 1, . . . , n}.

form a base for a topology.

Answer. The sets clearly cover X , as every x is allowed. So we need to
show that given x, y ∈ X , p1, . . . , pn, q1, . . . , qm ∈ P and ε > 0, δ > 0, if
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Vx(p1, . . . , pn, ε) ∩Vy(q1, . . . , qm, ε) ̸= ∅ there exist z ∈ X , r1, . . . , rk ∈ P and
γ > 0 such that

Vz(r1, . . . , rk, γ) ⊂ Vx(p1, . . . , pn, ε) ∩ Vy(q1, . . . , qm, ε
′).

This is achieved by taking z ∈ Vx(p1, . . . , pn, ε) ∩ Vy(q1, . . . , qm, ε),
r1, . . . , rk = p1, . . . , pn, q1, . . . , qm,

and
γ = min

k,j
{ε− pk(z − x), ε′ − qj(z − y)}.

Then for any w ∈ Vz(r1, . . . , rk, γ) we have
pk(w − z) ≤ pk(w − x) + pk(z − x) ≤ γ + pk(z − x) < ε,

and
qj(w − z) ≤ qj(w − y) + qj(z − y) ≤ γ + qj(z − y) < ε′.

(5.4.14) Let X ,Y be locally convex spaces. Show that (xj , yj) → (x, y)
on X ⊕T Y if and only if xj → x and yj → y.

Answer. Suppose that (xj , yj) → (x, y). By definition this means that
(p × q)

(
(xj , yj) − (x, y)

)
→ 0 for all seminorms p for X and q for Y, and by

definition of the product seminorms this is p(xj − x) + q(yj − y) → 0. As
p(xj − x) ≤ p(xj − x) + q(yj − y) for all j, we get that p(xj − x) → 0 and
similarly q(yj − y) → 0 for all seminorms. Hence xj → x and yj → y.

Conversely, if xj → x and yj → y then p(xj −x) → 0 and q(yj −y) → 0
for all seminorms. It follows that p(xj −x) + q(yj − y) → 0 for all seminorms
p× q, showing that (xj , yj) → (x, y).

(5.4.15) Show that the family S̃X from Proposition 5.4.21 is indeed a
family of seminorms that separates points.

Answer. Fix p ∈ SX . For α ∈ C nonzero,
p̃(αx+M) = inf{p(α(x+m/α) : m ∈ M} = |α| inf{p(x+m/α) : m ∈ M}

= |α| inf{p(x+m) : m ∈ M} = |α| p̃(x+M).
For the triangle inequality, let x, y ∈ X and fix ε > 0. Choose mx,my ∈ M
such that p(x+mx) < p̃(x+M) + ε, p(y +my) < p̃(x+M) + ε. Then
p̃(x+M + y +M) = inf{p(x+ y +m) : m ∈ M} ≤ p(x+ y +mx +my)

≤ p(x+mx) + p(y +my) ≤ p̃(x+M) + p̃(x+M) + 2ε.
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As this works for any ε > 0, the triangle inequality is established. It remains
to show that the family separates points. If x + M ̸= 0, this means that
x ̸∈ M . As M is closed, there exists a basic neighbourhood N = {z : pj(z) <
1, j = 1, . . . , r} of 0 such that M ∩ (x+N) = ∅. That is, m− x ̸∈ N for all
m ∈ M . Which means that p1(x+m) ≥ 1 for all m ∈ M , so p̃1(x+M) ≥ 1.

5.5. The Dual

(5.5.1) Let X be a normed space. Show that X ∗ is a normed vector
space.

Answer. Given φ,ψ ∈ X ∗ and λ ∈ C we can form linear combinations by
(φ+λψ)(x) = φ(x)+λψ(x), so X ∗ is naturally a vector space if we show that
this linear combination is continuous. But this follows from the continuity of
φ and ψ and the continuity of the vector space operations: if xn → x, then

(φ+ λψ)(xn) = φ(xn) + λψ(xn) →c⃝ 2024 Mart́ın Argerami All Rights Reserved φ(x) + λψ(x) = (φ(x) + λψ)(x).

(5.5.2) Let X be a TVS. Show that X ∗ is a vector space.

Answer. The same arguments as in Exercise 5.5.1 work.

(5.5.3) Let X be a finite-dimensional space. Show that X ∗ is finite-
dimensional and dim X ∗ = dim X .

Answer. Fix a basis x1, . . . , xn. For each x ∈ X there are unique numbers
λj(x) ∈ C with x =

∑
j λj(x)xj . The uniqueness makes each λj : X → C

linear, since
αx+ y =

∑
j

(αλj(x) + λj(y))xj .
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They are also continuous since dim X < ∞ (Corollary 5.2.5). Given any
ψ ∈ X ∗,

ψ(x) =
∑
j

λj(x)ψ(xj) =
(∑

j

ψj(xj)λj
)

(x), x ∈ X .

Thus X ∗ = span{λ1, . . . , λn}. Also, if
∑
j cjλj = 0, for a fixed xk we have

0 =
∑
j

cjλj(xk) = ck.

So c1 = · · · = cn = 0, and λ1, . . . , λn are linearly independent. Thus
dim X ∗ = dim X .

(5.5.4) Complete the proof of Proposition 5.5.2.

Answer. Assume first that dimX/K = 1. Choose x such that x+K ̸= K.
Then X/K = C(x + K). Define φ(y) = cy, where cy ∈ C is the scalar such
that y + K = cy x + K. The scalar is unique (because if ax + K = bx + K
then (a − b)x ∈ K, and so a − b = 0), so φ is well defined. If y, z ∈ X and
λ ∈ C, then (y + λ z) +K = (y +K) + λ (z +K) by definition of addition in
the quotient; so y + λz + K = cy x + λ cz x + K = (cy + λ cz)x + K. Thus
φ(y + λz) = φ(y) + λφ(z) by the uniqueness and thus φ is linear.

If φ(y) = 0, then y +K = K, so y ∈ K; thus kerφ ⊂ K. Conversely, if
y ∈ K then y +K = 0 +K so φ(y) = 0. Then K = kerφ.

Now assume that K = kerφ with φ ̸= 0. Fix x ∈ X \K with φ(x) = 1.
For any y ∈ X , y − φ(y)x ∈ kerφ = K. Thus

y +K = φ(y)x+K,

showing that X/K = C(x+K) and dimX/K = 1.

(5.5.5) Prove Proposition 5.5.4.

Answer. (i) =⇒ (ii): trivial.
(ii) =⇒ (iii): trivial, as we can take x = 0.
(iii) =⇒ (iv): assume that φ is continuous at x0. Then there exists

δ > 0 such that |φ(x) − φ(x0)| < 1 whenever ∥x − x0∥ < δ. Now let x ∈ X .
Then x′ = δx

2∥x∥ + x0 satisfies ∥x′ − x0∥ < δ. Then

|φ(x)| = 2∥x∥
δ

|φ(x′ − x0)| < 2∥x∥
δ
.
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(iv) =⇒ (i): Fix x0 ∈ X . Given ε > 0, let δ = ε
r . Then, if ∥x−x0∥ < δ,

we have
|φ(x) − φ(x0)| = |φ(x− x0)| ≤ r∥x− x0∥ < ε.

So φ is continuous at x0.

(5.5.6) Prove Proposition 5.5.6.

Answer. By definition,
∥φ∥ = inf{r : |φ(x)| ≤ r∥x∥ for all x ∈ X }.

Given ε > 0, there exists r as above with r < ∥φ∥ + ε. Then, for any x ∈ X ,
|φ(x)| ≤ r∥x∥ ≤ (∥φ∥ + ε)∥x∥.

As this holds for all ε > 0, we get |φ(x)| ≤ ∥φ∥ ∥x∥. So
∥φ∥ = min{r : |φ(x)| ≤ r∥x∥ for all x ∈ X }.

Now if r is an upper bound for {|φ(x)| : ∥x∥ = 1}, we have |φ(x/∥x∥)| ≤ r
for all nonzero x, so |φ(x)| ≤ r∥x∥ (which works also for x = 0). So, by (i),
sup{|φ(x)| : ∥x∥ = 1} ≥ ∥φ∥, since ∥φ∥ is below all upper bounds. And since
when ∥x∥ = 1 we have |φ(x)| ≤ ∥φ∥ ∥x∥ = ∥φ∥, we get ∥φ∥ itself is an upper
bound, so sup{|φ(x)| : ∥x∥ = 1} ≤ ∥φ∥, giving us the equality (ii). For (iii),
we simply note that y = x/∥x∥ has ∥y∥ = 1, and |φ(x)|/∥x∥ = |φ(x/∥x∥)|.

(5.5.7) Use Proposition 5.5.6 to show that (5.10) defines a norm on
the space of bounded functionals on X .

Answer. We need to show that the norm as in (5.5.6) is a norm.
If ∥φ∥ = 0, then |φ(x)| = 0 for all x, and so φ = 0.
For λ ∈ C,

∥λφ∥ = sup{|λφ(x)| : ∥x∥ = 1} = |λ| sup{|φ(x)| : ∥x∥ = 1}

= |λ| ∥φ∥.
And

∥φ+ ψ∥ = sup{|φ(x) + ψ(x)| : ∥x∥ = 1}

= sup{|φ(x)| + |ψ(x)| : ∥x∥ = 1}

≤ sup{|∥φ∥ + |ψ(x)| : ∥x∥ = 1}

= ∥φ∥ + sup{|ψ(x)| : ∥x∥ = 1} = ∥φ∥ + ∥ψ∥.
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(5.5.8) Let X be a topological vector space, and φ : X → C linear.
Suppose that there exists an open neighbourhood V of 0 and
c > 0 such that |φ(v)| ≤ c for all v ∈ V . Prove that φ is
continuous

Answer. Fix ε > 0, and let Vε = ε
c V . For any x ∈ Vε, we can write x = ε

c v,
with v ∈ V . Then

|φ(x)| = |φ(ε
c
v)| = ε

c
|φ(v)| ≤ ε

c
c = ε.

So φ is continuous at 0. If now xj → x, since addition and multiplication by
scalars are continuous we have that xj − x → 0. Then φ(xj − x) → 0, and so
φ(xj) → φ(x).

(5.5.9) Let X = {f ∈ C[0, 1] : f(0) = 0} with the supremum norm,
and φ(f) =

∫ 1
0 f . Show that ∥φ∥ = 1 but |φ(f)| < 1 for all

f ∈ X with ∥f∥ = 1.

Answer. If ∥f∥ ≤ 1, then ∫ 1

0
f ≤

∫ 1

0
1 = 1.

Now let

gn(t) =
{
nt, 0,≤ t ≤ 1

n

1, t ≥ 1
n

Then gn ∈ X , ∥gn∥ = 1 and∫ 1

0
gn = 1

2n + 1 − 1
n

= 1 − 1
2n.

This shows that ∥φ∥ > 1 − 1
2n for all n, so ∥φ∥ = 1.

If remains to see that |φ(f)| < 1 for all f ∈ X with ∥f∥ = 1. Given
such f , because f is continuous at 0 there exists δ > 0 such that |f(t)| < 1

2
when t < δ. Then

|φ(f)| =
∣∣∣∣ ∫ 1

0
f

∣∣∣∣ ≤
∣∣∣∣ ∫ δ

0
f

∣∣∣∣+
∫ 1

δ

1 ≤ δ

2 + 1 − δ = 1 − δ

2 < 1.

(5.5.10) Let X be a normed space and φ : X → C a linear functional.
Show the following statements are equivalent:
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(i) φ is unbounded;
(ii) there exists a sequence {yj} ⊂ X such that ∥yj∥ = 1,

φ(yj) > j for all j;
(iii) there exists a sequence {xj} ⊂ X such that xj → 0,

and φ(xj) = 1 for all j.

Answer. (i) =⇒ (ii): If φ is unbounded, then for each n ∈ N there exists
xn ∈ X with |φ(xn)| > n∥xn∥. Take λn ∈ T with λnφ(xn) = |φ(xn)|. If we
take yn = λnxn/∥xn∥, then ∥yn∥ = 1 and

φ(yn) = λnφ(xn)
∥xn∥

= |φ(xn)|
∥xn∥

> n.

(ii) =⇒ (iii): Take the sequence {yn} as in (ii) and define xn =
yn/φ(yn). Then ∥xn∥ = 1/φ(yn) < 1/n → 0, and φ(xn) = φ(yn)/φ(yn) = 1.

(iii) =⇒ (i): Given {xn} as in (iii), let zn = xn/∥xn∥. Then ∥zn∥ = 1
and |φ(zn)| = |φ(xn)|/∥xn∥ = 1/∥xn∥ → ∞, so φ is unbounded.

(5.5.11) Let X be a Banach space, X0 a dense subspace and φ : X0 → C
a bounded linear functional. Show that φ admits a unique
extension φ̃ ∈ X ∗.

Answer. Let x ∈ X . There exists a sequence {xn} ⊂ X0 with xn → x. Since
φ is bounded,

|φ(xn) − φ(xm)| = |φ(xn − xm)| ≤ ∥φ∥ ∥xn − xm∥,
so the sequence {φ(xn)} ⊂ C is Cauchy. Let φ̃(x) = limn φ(xn), this limit
exists since C is complete. This is well-defined: if x′

n → x, then
|φ(xn) − φ(x′

m)| = |φ(xn − x′
m)| →c⃝ 2024 Mart́ın Argerami All Rights Reserved 0

with m,n, so the limit is the same. Linearity of φ̃ is straightforward since it
is defined as a limit of linear maps. Finally,

|φ̃(x)| = lim
n

|φ(xn)| ≤ ∥φ∥ lim
n

∥xn∥ = ∥φ∥ ∥x∥

(using Exercise 5.1.2 for the last equality). Thus ∥φ̃∥ = ∥φ∥.
Uniqueness: if ψ ∈ X ∗ and ψ|X0 = φ, then for any x ∈ X there exists

{xn} ⊂ X0 with xn → x. Then, using that ψ is continuous,
ψ(x) = lim

n
ψ(xn) = lim

n
φ(xn) = φ̃(x).
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(5.5.12) Let V be an infinite-dimensional real/complex vector space and
consider maps φ1, . . . , φn : V → C linear. Improve on Propo-
sition 5.5.12 by showing that

dim
n⋂
j=1

kerφj = ∞.

Answer. Consider as in the proof of Proposition 5.5.12 the linear map Γ :
V → Cn given by Γ(x) = (φ1(x), . . . , φn(x))⊤. Let Y = Γ(V ), a subspace of
Cn. We have

V/ ker Γ ≃ Y.

This forces dim ker Γ = ∞. Indeed, if we had dim ker Γ < ∞, we can choose
a basis y1, . . . , ym of Y and a basis {z1, . . . , zs} of ker Γ. By the isomorphism
there is a basis {v1 + ker Γ, . . . , vr + ker Γ} of V/ ker Γ. So any v ∈ V can
be written as a linear combination of v1, . . . , vr, z1, . . . , zs and V would be
finite-dimensional.

So dim
⋂n
j=1 kerφj = dim ker Γ = ∞.

For a different argument, suppose that

dimV = ∞ and
n⋂
j=1

kerφj = span{z1, . . . , zr}

with z1, . . . , zr linearly independent. Extend {z1, . . . , zr} to a basis
{z1, . . . , zr} ∪ {w1, w2, . . .}

of V . If we let {ψ1, ψ2, . . .} be the dual basis of {w1, w2, . . .} we get an
infinite linearly independent linear functionals. As {z1, . . . , zr} ⊂ kerψj for
all j, from Lemma 5.5.10 we have ψj ⊂ span{φ1, . . . , φn}, a contradiction
since we have infinitely many linearly independent ψj .

5.6. Examples of Duals
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(5.6.1) Let q ∈ [1,∞), p ∈ R with 1
p + 1

q = 1, g : N → C. Put
Bp = {f ∈ ℓp(N) : ∥f∥p = 1}. Show that

max { |⟨f, g⟩| : f ∈ Bp} = max
{ ∞∑
k=1

|g(k)f(k)| : f ∈ Bp

}
,

where ∣∣∣ ∞∑
k=1

g(k)f(k)
∣∣∣.

Answer. Let us denote the left-hand-side by L and the right-hand-side by
R. The triangle inequality guarantees that L ≤ R.

Write g(k)f(k) = eiθk |f(k)g(k)|. Let f0 : N → C be given by f0(k) =
e−iθkf(k). Then ∥f0∥p = ∥f∥p = 1, and∣∣∣ ∞∑

k=1
g(k)f0(k)

∣∣∣ =
∣∣∣ ∞∑
k=1

e−iθkg(k)f(k)
∣∣∣ =

∞∑
k=1

|g(k)f(k)|.

Then R ≤ L, as any element in the right-hand set appears in the left-hand
set. Thus L = R.

(5.6.2) Consider the Banach space c0 (Example 5.1.9). Given x ∈
c0 show that for any f ∈ ℓ1(N) the map x 7→

∑
n xnfn is

a continuous linear functional. Use this to prove that there
is an isometric embedding of ℓ1(N) into c∗

0. Prove that this
embedding is surjective, i.e. c∗

0 = ℓ1(N).

Answer. Call the map γf . It is linear, since limits and sums are linear:

γf (x+ αy) =
∑
n

(xn + αyn)fn =
∑
n

xnfn + αynfn = γf (x) + αγf (y).

Since x ∈ c0, we have that |xn| ≤ ∥x∥∞ for all n. Then

|γf (x)| =

∣∣∣∣∣∑
n

xnfn

∣∣∣∣∣ ≤
∑
n

|xn| |fn| ≤ ∥x∥∞ ∥f∥1.

So γf ∈ c∗
0 and ∥γf∥ ≤ ∥f∥1. Now write fn = eiθn |fn| and let x be the

sequence with its first m entries consisting of xn = e−iθn , and the rest 0.
Then x ∈ c0, ∥x∥∞ = 1 and

|γf (x)| =
m∑
n=1

|fn|.
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We then get that ∥γf∥ ≥
∑m
n=1 |fn|; as we can do this for any m we get

that ∥γf∥ ≥ ∥f∥1. Thus ∥γf∥ = ∥f∥1. This shows that γ : f 7−→ γf is an
isometric embedding. It is also linear, since

γ(f + αg)(x) = γf+αg(x) =
∑
n

xn(fn + αgn) =
∑
n

xnfn + α
∑
n

xngn

= γf (x) + αγg(x) = [γ(f) + αγ(g)](x).
For surjectivity, let ϕ ∈ c∗

0. Given x ∈ c0, we have x =
∑
n xnen, where

en are the canonical elements, i.e. en(j) = δn,j . The series converges, since
xn → 0 and the norm is the supremum norm. Thus, as ϕ is continuous and
linear,

ϕ(x) =
∑
n

xnϕ(en).

So ϕ = γ(f), where fn = ϕ(en), if we are able to show that this f is in ℓ1(N).
For this, write ϕ(en) = eiθn |ϕ(en)|, and let x ∈ c0 be such that

xn =
{
e−iθn , n ≤ m

0, n > m

Then, using again that ϕ is continuous and linear,
m∑
n=1

|ϕ(en)| =
m∑
n=1

xnϕ(en) = ϕ

(
m∑
n=1

xnen

)
= ϕ(x) ≤ ∥ϕ∥ ∥x∥ = ∥ϕ∥.

As m is arbitrary, this shows that ∥f∥1 =
∑
n |ϕ(en)| < ∞. Thus γ is onto.

(5.6.3) Using the ideas in Exercise 5.6.2, show that the dual of c
(the Banach space of convergent sequences with the supremum
norm) is ℓ1(N).

Answer. We have that c = c0 + C1. The proof in Exercise 5.6.2 doesn’t
apply directly, because we used that x ∈ c0 to prove surjectivity—and that’s
essential in some way, since otherwise we would have a “proof” that ℓ∞(N)∗ =
ℓ1(N), which is false. The embedding part works fine—as it also does for
ℓ∞(N)—so we need to focus in surjectivity, i.e. showing that if φ ∈ c∗ then
there exists f ∈ ℓ1(N) with φ = ⟨·, f⟩. Using Exercise 5.6.2 we have that,
on c0, φ(x) = ⟨x, f⟩ where fn = φ(en). As c = c0 + C1, the value of φ
changes depending on what φ(1) is. The problem, in other words, is that
the function x 7−→ limn xn cannot possibly come from ℓ1(N) if we try to
reuse the embedding from Exercise 5.6.2. We can solve this the following
way: we reserve the first coordinate in ℓ1(N) for the value φ(1). So we define
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γ : ℓ1(N) → c∗ by

⟨γ(f), x+ λ1⟩ = λ f1 +
∞∑
n=1

xnfn+1.

Given φ ∈ c∗, we have by restriction that φ ∈ c∗
0. By Exercise 5.6.2 there

exists f ′ ∈ ℓ1(N) with φ = ⟨·, f ′⟩. Let

f = φ(1)e1 +
∞∑
n=2

f ′
n−1en ∈ ℓ1(N).

This f trivially satisfies γ(f) = φ, so γ is surjective. Finally we check that γ
is isometric. Note that, for x = x′ + λ1 ∈ c with x′ ∈ c0, we have ∥x∥∞ =
max{|λ|, ∥x′∥∞}. Then

|γ(f)(x)| ≤ |λ| f1 +
∞∑
n=1

|xn| |fn+1| ≤ ∥x∥∞ ∥f∥1.

So ∥γ(f)∥ ≤ ∥f∥1. Choosing an appropriate x as in Exercise 5.6.2 we get
that ∥x∥∞ = 1 and |γ(f)(x)| ≥

∑m
n=1 |fn|, and as we can do this for any m

it follows that ∥γ∥ ≥ ∥f∥1 and thus γ is isometric.

(5.6.4) Show that c and c0 are isomorphic as Banach spaces.

Answer. For x ∈ c, write lx = limn xn. Then define γ : c → c0 by
γ(x) = (lx, x1 − lx, x2 − lx, . . .).

As lx+y = lx + ly, it follows that γ is linear. Also, if γ(x) = 0, then lx = 0
and 0 = x1 − lx = x1, etc., so x = 0. Finally, given y ∈ c0,

y = γ(y1 + y2, y1 + y3, y1 + y4, . . .).
So γ is an linear isomorphism. And γ is bounded, as |lx| ≤ ∥x∥∞ and so

∥γ(x)∥ ≤ max{|lx|, sup{|xn − lx| : n ∈ N}} ≤ 2∥x∥.
Note that γ is not isometric. For instance if x = (2, 1, 1, . . .), then ∥γ(x)∥ = 1,
while ∥x∥ = 2. This failure of γ on being isometric is not a failure of the way
γ was chosen, but rather an intrinsic feature (see Exercise 5.6.5). The inverse
γ−1 is trivially seen to be bounded, again with ∥γ−1∥ = 2; or we can obtain
it from the Inverse Mapping Theorem.

(5.6.5) Show that there is no isometry—linear or not—between c and
c0 (Hint: consider that 1 is the middle point between 0 and 2).
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Answer. In c we have that ∥2 − 1∥ = ∥1 − 0∥ = 1; that is, the element 1 is at
distance 1 from both 0 and 2. More importantly, 1 is the only element with
that property. Indeed, suppose that ∥2 − z∥ = ∥z∥ = 1. The second equality
gives us that |zn| ≤ 1 for all n, while the first equality gives us |2 − zn| ≤ 1
for all n. Then 2 − |zn| ≤ |2 − zn| ≤ 1, so

2 ≤ 1 + |zn| ≤ 2.
Thus |zn| = |2 − zn| = 1. The second equality is

5 − 4Re zn = 1,
which in turn is Re zn = 1. Combined with |zn| = 1, we obtain zn = 1. As n
was arbitrary, z = 1.

Meanwhile, given x, y ∈ c0 with ∥y − x∥ = 2, there are uncountably
many z ∈ c0 with ∥x − z∥ = ∥y − z∥ = 1. Indeed, by translating everything
by y we may assume that y = 0. That is, ∥x∥ = 2, and we are looking
for z with ∥x − z∥ = ∥z∥ = 1. Since we are in c0, the norm is actually a
maximum. That is, there exists m with |xm| = 2 and |xn| ≤ 2 for all n. Since
limn xn = 0, there exists n0 such that |xn| < 1/2 for all n ≥ n0. We can
define z to have zn = xn/2 for all n ≤ n0, and zn = eirnxn/2 for n > n0;
with the exception of zm = 1. Then |xn − zn| ≤ 1 for all n, and |zm| = 1.
Thus ∥x− z∥ = 1, ∥z∥ = 1, and we are free to choose the rn0+1, rn0+2, . . . in
uncountably many ways.

(5.6.6) Let S be an arbitrary set. Show that ℓ1(S)∗ = ℓ∞(S), where
the duality is the same as the one in Exercise 5.6.2.

Answer. We have the natural embedding γ : ℓ∞(S) → ℓ1(S)∗ given by

γ(x)(y) =
∑
j

xjyj .

Then γ is linear, since for every y ∈ ℓ1(S)

γ(x+ αz)(y) =
∑
j

(xj + αzj)yj =
∑
j

xjyj + α
∑
j

zjyj = [γ(x) + αγ(z)](y).

Also,

|γ(x)(y)| ≤
∑
j

|xjyj | ≤ ∥x∥∞ ∥y∥1, x ∈ ℓ∞(S), y ∈ ℓ1(S).

Thus |γ(x)| ≤ ∥x∥∞. Given ε > 0 and k such that ∥x∥∞ − |xk| < ε, let
y ∈ ℓ1(N) be given by yk = λ, where λxk = |xk|, and yj = 0 if j ̸= k. Then
∥y∥1 = 1, and

γ(x)(y) = |xk| > ∥x∥∞ − ε.
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As we can do this for any ε > 0, we get that γ(x) = ∥x∥∞. So the embedding
is isometric. It remains to show that γ is surjective. Let φ ∈ ℓ1(S)∗. Write
y ∈ ℓ1(S) as y =

∑
j yjej . Then, since φ is linear and bounded,

φ(y) =
∑
j

yjφ(ej).

We have, since ∥ej∥1 = 1, that |φ(ej)| ≤ ∥φ∥ for all j. So x = {φ(ej)} ∈
ℓ∞(S), and φ = γ(x).

(5.6.7) Let p ∈ (1,∞) and g ∈ ℓq(N). Show that the map

φ : f 7→
∞∑
k=1

f(k)g(k) (5.1)

defines a bounded functional on ℓp(N) with norm ∥g∥q

Answer. Since φ is made up of pointwise evaluations, products by scalars,
sums, and limits, all of which are linear, φ is linear itself. Hölder’s inequality

|φ(f)| =
∣∣∣ ∞∑
k=1

f(k)g(k)
∣∣∣ ≤ ∥f∥p∥g∥q

guarantees that φ is well-defined, it is bounded, and ∥φ∥ ≤ ∥g∥q. Now let
f : N → C be given by

f(k) = θ(k) g(k)q−1,

where θ(k) = |g(k)|q/g(k)q when g(k) ̸= 0, and 0 otherwise. Then

∥f∥pp =
∑
k

|f(k)|p =
∑
k

|g(k)|(q−1)p =
∑
k

|g(k)|q < ∞,

so f ∈ ℓp(N). And

φ(f) =
∑
k

f(k)g(k) =
∑
k

θ(k)g(k)q−1g(k) =
∑
k

|g(k)|q

= ∥g∥qq = ∥f∥p ∥g∥q− q
p

q = ∥f∥p ∥g∥q,
so ∥φ∥ = ∥g∥q.

(5.6.8) Let φ ∈ ℓ∞(N)∗. Show that there exist φ1, φ∞ such that φ =
φ1 + φ∞, where φ1, φ∞ ∈ ℓ∞(N)∗, φ∞|c0 = 0, and φ1(x) =
⟨x, y⟩ for some y ∈ ℓ1(N) and all x ∈ ℓ∞(N).
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Answer. Let φ0 = φ|c0 . By Exercise 5.6.2 there exists y ∈ ℓ1(N) such
that φ0(x) = ⟨x, y⟩. Call φ1 the extension to all of ℓ∞(N) with the same
formula. Let φ∞ = φ− φ1. Then φ∞|c0 = 0 by construction, φ1 is bounded
by construction, and φ∞ is bounded because it is a linear combination of
bounded functionals.

(5.6.9) Let M be the σ-algebra of subsets of [0, 1] that are either finite
or countable, or alternatively have finite or countable comple-
ment. Let µ be the counting measure.

(a) Show that µ is not σ-finite.
(b) Show that g(x) = x is not measurable.
(c) Show that γ : f 7−→

∑
x xf(x) defines a bounded linear

functional on L1(µ).
(d) Show that γ is not of the form γ(f) =

∫
fh dµ for h ∈

L∞(µ).
(e) Conclude that L1(µ)∗ ̸= L∞(µ).

Answer.

(a) If µ(E) < ∞, then E is finite. And a countable union of finite sets is
countable, so not all of [0, 1]. Hence µ is not σ-finite.

(b) Take X = (0, 1/2), which is open. Then g−1(X) = X, which is not
measurable.

(c) We have ∣∣∣∣∣∑
x

xf(x)

∣∣∣∣∣ ≤
∑
x

x|f(x)| ≤
∑
x

|f(x)| = ∥f∥1.

So γ is bounded and ∥γ∥ ≤ 1. Linearity follows from the fact that the
series will be absolutely convergent because f ∈ L1.

(d) If it were, given t ∈ [0, 1] let f = 1{t}. Then

h(t) =
∑
x

f(x)h(x) =
∫
fh dµ = γ(f) =

∑
x

xf(x) = t.

So h(x) = x, but then it cannot be measurable.
(e) If they were equal, every γ would be of the form γ(f) =

∫
fh dµ, which

we showed above is impossible.
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(5.6.10) Let X = {0, 1}, and µ the measure given by µ({0}) = 1,
µ({1}) = ∞. Show that L1(X)∗ ̸= L∞(X).

Answer. Here L1(X) = {f : f(1) = 0}, so L1(X) is one-dimensional. On
the other hand, L∞(X) consists of all f : {0, 1} → C, so it is two-dimensional.

(5.6.11) We consider the measure space [0, 1] with the counting mea-
sure.

(a) Show that ℓ1[0, 1]∗ = ℓ∞[0, 1], though the measure is not
σ-finite.

(b) Let X = {a : [0, 1] → C : supp a is countable and a ∈
C0(supp a)}. This last condition is saying that a converges
to zero on its support. Consider the ∥ · ∥∞ norm on X .
Show that X is complete and that X ∗ = ℓ1[0, 1].

Answer.

(a) Given a ∈ ℓ1[0, 1] and b ∈ ℓ∞[0, 1], the duality ⟨b, a⟩ is well-defined and
bounded:

|⟨b, a⟩| =
∣∣∣∑

t

b(t)a(t)
∣∣∣ ≤ ∥b∥∞

∑
t

|a(t)| = ∥b∥ ∥a∥1.

So b induces a bounded linear functional. Given φ ∈ ℓ1[0, 1]∗, let b be
given by b(t) = φ(et), where {et}t denotes the canonical basis. Then
|b(t)| ≤ ∥φ∥ ∥et∥1 = ∥φ∥, so b ∈ ℓ∞[0, 1]. For any a ∈ ℓ1[0, 1], the series
⟨b, a⟩ is well-defined since a ∈ ℓ1[0, 1] and b is bounded. We have

⟨b, a⟩ =
∑
t

b(t)a(t) =
∑
t

a(t)φ(et) = φ
(∑

t

a(t)et
)

= φ(a),

where the exchange between sum and limit is justified by φ being contin-
uous.

(b) It is clear that X is a vector space, so we check for completeness. Let
{an} ⊂ X be Cauchy. Since |an(t) − am(t)| ≤ ∥an − am∥∞, we get
that for each t the number sequence is Cauchy, and so we can define
a(t) = limn an(t). We get that a is bounded, because {an} is bounded: if
c ≥ ∥an∥ for all n,

|a(t)| ≤ |a(t) − an(t)| + |an(t)| ≤ |a(t) − an(t)| + c.

As this works for all n and a(t) − an(t) → 0, we get that |a(t)| ≤ c for all
t. With the same idea we get that a is a norm limit: fix ε > 0 and choose
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n0 such that ∥an − am∥∞ < ε when n,m ≥ n0. Then
|a(t) − an(t)| ≤ |a(t) − am(t)| + |am(t) − an(t)|

≤ |a(t) − am(t)| + ∥am − an∥∞

≤ |a(t) − am(t)| + ε.

As the right-hand-side does not depend on n, we get that |a(t)−an(t)| ≤ ε.
This shows that ∥a−an∥∞ ≤ ε. It remains to show that supp a is countable
and that a ∈ C0(supp a). Fix δ > 0, and consider those t such that
|a(t)| ≥ δ. Choose n such that ∥a− an∥∞ < δ

2 . Then
|an(t)| = |an(t) − a(t) + a(t)| ≥ |a(t)| − |an(t) − a(t)|

≥ |a(t)| − ∥a− an∥∞

≥ δ − δ

2 = δ

2 .

By hypothesis |an(t)| ≥ δ
2 on a finite set, and so the set {|a| ≥ δ} is finite.

This shows that a ∈ C0(supp a), as the finite set we found acts as the
compact set outside of which a is small. So X is complete.

Now given b ∈ ℓ1[0, 1], we can define ⟨b, a⟩ =
∑
t b(t)a(t), and this

is well defined because a is bounded and b is summable. Conversely, if
φ ∈ X ∗, let b(t) = φ(et). Let F ⊂ [0, 1] be finite. Let βt ∈ T such that
βt b(t) a(t) = |b(t) a(t)|. Then∑
F

|b(t) a(t)| =
∑
F

b(t)βta(t) =
∑
t

φ(et)βta(t)

= φ
(∑

F

βta(t) et
)

≤ ∥φ∥
∥∥∥∑

F

βta(t) et
∥∥∥ = ∥φ∥ ∥a∥∞.

So the series
∑
t b(t)a(t) converges absolutely, and in particular it con-

verges unconditionally. Then, using the continuity of φ,∑
t

b(t)a(t) =
∑
t

φ(et)a(t) = φ
(∑

t

a(t)et
)

= φ(a).

(5.6.12) Recall from Exercise 2.3.26 that a measure µ is semifinite if
for every measurable E with µ(E) = ∞ there exists F ⊂ E
with 0 < µ(F ) < ∞. Show that for a measure space (X,A, µ)
the following statements are equivalent:

(a) µ is seminifite;
(b) the canonical embedding Γ : L∞(X) → L1(X)∗ is injective.
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When these conditions are satisfied, Γ is actually isometric.

Answer. Suppose first that µ is semifinite. Fix f ∈ L∞(X). We know
from Hölder’s inequality that ∥Γ(f)∥ ≤ ∥f∥∞. Given ε > 0, let E = {|f | ≥
∥f∥∞ − ε}. By definition of the infinity norm we have µ(E) > 0. Then either
µ(E) < ∞, and we put F = E, or by the semifiniteness there exists F ⊂ E,
measurable, with 0 < µ(F ) < ∞. Now we can define, if we write f = eiθ|f |,

g = 1
µ(F ) e

−iθf 1F .

Then g ∈ L1(X) with ∥g∥1 = 1, and

|Γ(f)g| =
∣∣∣ ∫
X

fg dµ
∣∣∣ = 1

µ(F )

∫
F

|f | dµ ≥ ∥f∥∞ − ε.

As ε was arbitrary, it follows that ∥Γ(f)∥ = ∥f∥∞ and so Γ is isometric.
Conversely, suppose that µ is not semifinite. This means that there

exists measurable E with µ(E) = ∞ and µ(F ) = 0 for every measurable
F ⊂ E. Let f = 1E ∈ L∞(X). Given g ∈ L1(X), let F = {g ̸= 0} ∩E. Then
µ(F ) = 0 and so

Γ(f)g =
∫
X

fg dµ =
∫
F

g dµ = 0.

So Γ(f) = 0 and therefore Γ is not injective.

(5.6.13) A measure µ is localizable if it is semifinite and, in addition,
given any collection E of measurable sets, it admits an essen-
tial supremum: that is a measurable H such that µ(E\H) =
0 for all E ∈ E (so E ⊂ H a.e.) and if H ′ satisfies the same
property then µ(H \ H ′) = 0 (that is, H is the smallest such
set up to nullsets). (This exercise is non-trivial, and it appears
as an exercise by necessity of space; if tackled, it should be
considered a project, and some guidance will likely be needed)

(a) Show that if µ is semifinite and the canonical map Γ :
L∞(X) → L1(X)∗ is surjective, then µ is localizable.

(b) (This part of the exercise is pure measure theory, but it is
needed for the rest; it allows us to patch measurable func-
tions (notably Radon-Nikodym derivatives) together as long
as they agree almost everywhere on the intersection of their
domains. It is not a trivial result so the reader might want
to skip it and just use it) Suppose that µ is localizable and
that {fj} is a family of measurable real-valued functions,
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each with domain Dj ∈ A and such that fj = fk a.e. on
Dj ∩Dk. For each q ∈ Q and each j, let

Ej,q = {x ∈ Dj : fj(x) ≥ q},
and let Eq be an essential supremum of {Ej,q : j}. Put

h′(x) = sup{q : q ∈ Q, x ∈ Eq},
allowing for sup∅ = −∞. Finally, let h(x) = h′(x) if
h′(x) ∈ R and zero otherwise. Show that h is measurable
and that h|Dj = fj a.e. for all j.

(c) Show that Γ is an isometric isomorphism if and only if µ is
localizable.

Answer.

(a) Fix a collection E of measurable sets. Let F be the family of finite unions
of elements of E , ordered by inclusion. Note that E \ G is a nullset for
every E ∈ E if and only if it is a nullset for every E ∈ F . We define
ψ : L1(µ) → C in the following way. Given f ∈ L1(µ) with f ≥ 0 a.e.,

ψ(f) = lim
E∈F

∫
E

f dµ.

The limits exists by monotonicity. Note also that ψ(f) ≤ ∥f∥1 so the
limit is always real. For arbitrary f we write f = f1 − f2 + i(f3 − f4) with
f1, f2, f3, f4 ≥ 0 and f1f2 = f3f4 = 0 a.e. (so the four functions are unique
up to a nullset) and we define ψ(f) = ψ(f1) − ψ(f2) + iψ(f3) − iψ(f4).
Linearity of ψ follows with the same idea as in page 130 of the Book. The
estimate |ψ(f)| ≤ ∥f∥1 is direct.

Since by hypothesis Γ is surjective, there exists g ∈ L∞(X) such that
Γ(g)f = ψ(f) for all f . Necessarily, ∥g∥∞ = 1; so we may assume without
loss of generality that |g| ≤ 1. The function g is necessarily real-valued and
non-negative on each E ∈ E , since by Exercise 2.5.22 we have that g|F is
non-negative for each F ⊂ E measurable and finite; by the semifiniteness
this means that g|E is non-negative.

Let H = {g > 0}, measurable since g is. For any F ∈ A with
µ(F ) < ∞ we have 1F ∈ L1(µ) and so∫

F

g dµ =
∫
X

1F g dµ = ψ(1F ) = lim
E∈F

∫
E

f dµ

= sup{µ(E ∩ F ) : E ∈ F}.
(AB.5.3)



5. EXAMPLES OF DUALS 281

Given E ∈ E , if µ(E \H) > 0 then by semifiniteness there exists measur-
able F ⊂ E \H with 0 < µ(F ) < ∞. Then

µ(F ) = µ(E ∩ F ) ≤
∫
F

g dµ ≤ 0,

a contradiction. Therefore µ(E\H) = 0. If now H ′ is another measurable
set satisfying µ(E \H ′) = 0 for all E ∈ E , suppose that µ(H \H ′) > 0. By
the semifiniteness there exists measurable F ⊂ H\H ′ with 0 < µ(F ) < ∞.
For every E ∈ E we have

µ(E ∩ F ) = µ
(
[(E \H ′) ∪ (E ∩H ′)] ∩ F ) = µ

(
(E ∩H ′) ∩ F )

≤ µ(H ′ ∩ F ) = 0.
Therefore, by (AB.5.3) ∫

F

g dµ = 0.

As g > 0 a.e. on F (because F ⊂ H, µ(F ) = 0. This is a contradiction,
that shows that µ(H \H ′) = 0. Hence µ is localizable.

(b) We first note that h′ is measurable, for (using Corollary 2.4.5)

{x : h′(x) > a} =
⋃

q∈Q, q>a
Eq ∈ A

whenever a ∈ R.
Given indices k, j and q ∈ Q,

Ej,q ∩
(
Dk \ Ek,q

)
⊂ {x ∈ Ej ∩ Ek, f(x) ̸= g(x)}

so it is a nullset. Then
(Eq ∩Dk) \ Ek,q = Eq ∩

(
Dk \ Ek,q

)
=
⋃
q∈Q

Ej,q ∩
(
Dk \ Ek,q

)
is also a nullset. We now form the union of the symmetric differences

Hk =
⋃
q∈Q

(
Ek,q \ (Dk ∩ Eq)

)
∪
(
(Dk ∩ Eq) \ Ek,q

)
,

which again is a nullset, since Ek,q ⊂ Dk and so Ek,q\(Dk∩Eq) = Ek,q\Eq.
We have that

when x ∈ Dk \Hk, x ∈ Eq ⇐⇒ x ∈ Ek,q. (AB.5.4)
Indeed, if x ∈ (Eq ∩ Dk) \ Hk, this means that x ̸∈ (Eq ∩ Dk) \ Ek,q,

so x ∈ Ek,q. Conversely, if x ∈ (Ek,q ∩ Dk) \ Hk, then x ∈ Dk ∩ Eq, so
x ∈ Eq. Looking at (AB.5.4), if x ∈ Dk \ Hk, then h′(x) ≥ q if and only
if fk(x) ≥ q. Doing this for every q ∈ Q, we have shown that h′ = fk a.e.
on Dk.
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Finally, we define

h(x) =
{
h′(x), h′(x) ∈ R

0, h′(x) ∈ {−∞,∞}
Then h is measurable because it is a modification of h′ over a measurable
set.

(c) It remains to show that if µ is localizable, then Γ is surjective. Fix ψ ∈
L1(X)∗ with ∥ψ∥ = 1. Let A0 = {F ∈ A : µ(F ) < ∞}. Given F ∈ A0
define νF : A → R by

νF (E) = ψ(1E∩F ).
We have νF (∅) = 0. If E1, E2 ∈ A are disjoint, then

νF (E1 ∪ E2) = ψ(1(E1∪E2)∩F ) = ψ(1E1∩F + 1E2∩F )

= ψ(1E1∩F ) + ψ(1E2∩F ) = νF (E1) + νF (E2).
Therefore νF is additive. Now let {Ek} ⊂ A be a countable pairwise
disjoint family. Then

µ
(⋃

k

(Ek ∩ F )
)

=
∑
k

µ(Ek ∩ F ).

Hence ∥∥∥∑
k>n

1Ek∩F

∥∥∥
1

=
∑
k>n

µ(Ek ∩ F ) −−−−→
n→∞

0.

Then, as ψ is continuous,

νF

(⋃
k

Ek

)
= ψ

(∑
k

1Ek∩F

)
=
∑
k

ψ(Ek ∩ F ) =
∑
k

νF (Ek).

Thus νF is a measure. Using again that ψ is bounded,
|νF (E)| = |ψ(1E∩F )| ≤ ∥1E∩F ∥1 = µ(E ∩ F ).

So νF ≪ µ. By Theorem 2.10.10 there exists a Radon–Nikodym derivative
hF ∈ L1(X) with

νF (E) =
∫
E

hF dµ, E ∈ A.

From Exercise 2.5.22 we have that hF is real-valued a.e. Moreover, if
G = {hF > 1} then∫

G

hF dµ = νF (G) ≤ µ(G ∩ F ) ≤ µ(G).

Thus µ(G) = 0. We can similarly see that µ({hF < −1}) = 0. So |hF | ≤ 1
a.e.
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Now let F1, F2 ∈ A0. We claim that hF1 = hF2 a.e. on F1 ∩ F2.
Indeed, given measurable E ⊂ F1 ∩ F2, since 1E∩F1 = 1E = 1E∩F2 ,∫

E

hF1 dµ = ψ(1E∩F1) = ψ(1E∩F2) =
∫
E

hF2 dµ.

So the function hF1 − hF2 has integral 0 on every measurable subset of
the finite measure space F1 ∩ F2. By Exercise 2.5.22, hF1 = hF2 a.e. on
F1 ∩ F2. By (b) there exists a measurable function h : X → C such that
h|F = hF for every F ∈ A0.

Given F ∈ A0,
{x ∈ F : |h(x)| > 1} ⊂ {|hF | > 1} ∪ {x ∈ F : h(x) ̸= hF (x)}.

The two sets on the right are nullsets, so the set on the left is also a nullset.
This forces {|h| > 1} to be a nullset; if it were not, by semifiniteness there
would exists F ∈ {|h| > 1} with 0 < µ(F ) < ∞, forcing {x ∈ F : |h| > 1}
to not be a nullset. Thus h ∈ L∞(X) and ∥h∥∞ ≤ 1. Now, for any
F ∈ A0,

Γ(h)1F =
∫
X

1F fh dµ =
∫
F

hF dµ = νF (F ) = ψ(1F ).

By linearity we get that Γ(h)f = ψ(f) for every simple f . As both Γ(h)
and ψ are continuous, it follows that Γ(h) = ψ by Proposition 2.8.17.
Finally, if ∥ψ∥ ≠ 1, we can scale and apply the proof to the scaled version.

(5.6.14) For 0 < p < 1, show that ∥f∥p =
(∑

j |f(j)|p
)1/p

is not a
norm.

Answer. Consider ∥e1 + e2∥p = 21/p and ∥e1∥p = ∥e2∥p = 1. Then, as
0 < p < 1,

∥e1 + e2∥p = 21/p > 2 = ∥e1∥p + ∥e2∥p.
So the triangle inequality fails and thus the p-norm is not a norm when p < 1.

(5.6.15) Show that if 0 < p < 1 and q satisfies 1
p + 1

q = 1, we have the
Reverse Hölder Inequality: given f ∈ ℓp(N), g ∈ ℓq(N),∑

k

|f(k)g(k)| ≥ ∥f∥p∥g∥q.
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Answer. If
∑
k |f(k)g(k)| = ∞, the inequality is trivial. Now assume—

by multiplying f by a suitable constant—that
∑
k |f(k)g(k)| = 1. Assume

also—now multiplying g by a suitable constant—that ∥g∥q = 1. Let h(k) =
f(k)g(k); note that h ∈ ℓ1(N), so hp ∈ ℓ1/p(N). Also, 1/|g|p = |g|−p ∈
ℓ1/(1−p)(N), since |g|−p/(1−p) = |g|q. We have, using the usual Hölder in-
equality for 1/p > 1,

∥f∥pp =
∑
k

|f(k)|p =
∑
k

|h(k)|
∣∣∣∣ 1
g(k)

∣∣∣∣p

≤

(∑
k

|h(k)|
)p(∑

k

|g(k)|q
)1/(1−p)

= 1.

So ∥f∥p ≥ 1, and this is exactly
∥f∥p∥g∥q ≥ ∥fg∥1.

(5.6.16) Prove that ψ : Lq(X) → Lp(X)∗, as defined in (5.17), is linear
and bounded, and ∥ψ(g)∥ ≤ ∥g∥q.

Answer. Linearity follows directly from linearity of integrals. We have

|ψ(g)f | ≤
∫
X

|g| |f | dµ ≤ ∥g∥q ∥f∥p.

This implies ∥ψ(g)∥ ≤ ∥g∥q.

(5.6.17) Fix p ∈ [1,∞). Let X = C[0, 1] seen as a normed space with
the p-norm. Show that the functional f 7−→ f(0) is unbounded.

Answer. Let fn(t) = (n− n2t)1/p, 1[0, 1
n ]. Then fn is continuous, and

∥fn∥pp =
∫ 1/n

0
(n− n2t) dt = 1

2 .

Meanwhile, fn(0) = n1/p becomes arbitrarily large for big enough n.
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(5.6.18) For a fixed 0 < p < 1, consider the vector space

ℓp(N) = {x : N→c⃝ 2024 Mart́ın Argerami All Rights Reserved C :
∑
j

|xj |p < ∞},

with dp(x, y) =
∑
j |xj − yj |p.

(a) Show that dp is a metric, so ℓp(N) is a TVS.
(b) Show that the dual of ℓp(N) is ℓ∞(N).

Answer.

(a) We have, for a, b ≥ 0 and p′ = 1/p > 1, ap′ +bp′ ≤ (a+b)p′ by the binomial
series. Thus a1/p + b1/p ≤ (a + b)1/p. Applying this to a = |1 − r|p,
b = |r − t|p,

|1 − t|p = |1 − r + r − t|p ≤ (|1 − r| + |r − t|)p = (a1/p + b1/p)p

≤ a+ b = |1 − r|p + |r − t|p.
Thus

dp(x, y) =
∑
j

|xj − yj |p ≤
∑
j

|xj − zj |p + |zj − yj |p = dp(x, z) + dp(z, y).

So dp satisfies the triangle inequality. As dp(x, y) = dp(y, x), it is a metric.
(b) We consider the usual duality. As p < 1, we have that

∑
j |xj |p < ∞

implies that
∑
j |xj | < ∞ for any x ∈ ℓp(N) (since |xj | < 1 eventually),

so x =
∑
j xjej , where {ej} is the canonical basis ej = δj . Moreover, if

dp(x, 0) < 1, then
∑
j |xj | ≤

∑
j |xj |p. Thus, for y ∈ ℓ∞(N) and x ∈ ℓp(N)

with dp(x, 0) < 1 (i.e., x ∈ B1(0)),

|⟨y, x⟩| =
∣∣∣∑
j

yjxj

∣∣∣ ≤
∑
j

|yjxj | ≤ ∥y∥∞
∑
j

|xj | ≤ ∥y∥∞ dp(x, 0).

It follows that y, as a linear functional, is continuous at 0, and thus con-
tinuous.

Let ϕ : ℓp(N) → C be a continuous linear functional. For x ∈ ℓp(N),

ϕ(x) =
∑
j

xjϕ(ej).

Suppose that {ϕ(ej)} is not bounded. Then, by choosing a subsequence
if necessary, we may assume that |ϕ(ejk)| ≥ 2k. Let z =

∑
k 2−kejk . We

have z ∈ ℓp(N), since
∑
k(2−k)p = (1 − 2−p)−1. And

ϕ(z) =
∑
k

2−k2k = ∞,

a contradiction. So y = {ϕ(ej)} ∈ ℓ∞(N) and ϕ(x) = ⟨y, x⟩.
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(5.6.19) (another example of a topological vector space with trivial dual)
Let X = B[0, 1], the bounded Borel functions modulo almost
everywhere equality. On this complex vector space, define

d(f, g) =
∫ 1

0

|f − g|
1 + |f − g|

.

(a) Show that d is a distance.
(b) Show that (X , d) is a topological vector space.
(c) Show that X ∗ = {0}.

Answer.

(a) It follows readily from the definition that d(f, g) = d(g, f) ≥ 0 for all
f, g ∈ X . And if d(f, g) = 0, then |f−g| = 0 a.e. since it is the numerator
of an almost everywhere zero function. So it remains to show the triangle
inequality. Consider the function p : [0,∞) → [0,∞) given by p(t) = t

1+t .
This function is differentiable, and

p′(t) =
(

1 − 1
1 + t

)′
= 1

(1 + t)2 > 0.

So p is increasing. Given f, g, h ∈ X , as |f − g| ≤ |f − h| + |h− g|,

d(f, g) =
∫ 1

0

|f − g|
1 + |f − g|

≤
∫ 1

0

|f − h| + |h− g|
1 + |f − h| + |h− g|

=
∫ 1

0

|f − h|
1 + |f − h| + |h− g|

+
∫ 1

0

|h− g|
1 + |f − h| + |h− g|

≤
∫ 1

0

|f − h|
1 + |f − h|

+
∫ 1

0

|h− g|
1 + |h− g|

= d(f, h) + d(h, g).

(b) We need to show that points are closed and that the vector space opera-
tions are continuous. That points are closed we get for free since X is a
metric space. And this follows from the fact that d is translation invariant.
Namely, using the translation invariance and the triangle inequality,
d(f1 + f2, g1 + g2) = d(f1 − g1, f2 − g2) ≤ d(f1 − g1, 0) + f(f2 − g2, 0),
and so addition is simultaneously continuous in both variables. And if
αn → α for scalars {αn} and α,

d(αnf, αf) = d((αn − α)f, 0) =
∫ 1

0

|(αn − α)f |
1 + |(αn − α)f |

≤ |αn − α| ∥f∥∞ −−−−→
n→∞

0.
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(c) Let V ⊂ X be nonempty, open, and convex. By translating if needed, we
assume that 0 ∈ V . So there exists δ > 0 such that Bδ(0) ⊂ V . Choose

n ∈ N such that n > 1
δ . Fix f ∈ X . The function s 7−→

∫ s

0

|f |
1 + |f |

is

continuous with range [0, d(f, 0)] (Exercise 2.5.8 or Exercise 2.10.5). Let
s0 = 0 and sk = 1

n , for k = 1, . . . , n. Let
gk = n f 1[sk−1,sk]

Then gk ∈ B[0, 1] and

d(gk, 0) =
∫ sk

sk−1

n|f |
1 + n|f |

≤ sk − sk−1 = 1
n
< δ.

That is, gk ∈ Bδ(0) ⊂ V . Then, as V is convex,

f =
n∑
k=1

1
n
gk ∈ V.

Thus V = X . Now if φ ∈ X ∗ the continuity and linearity of φ imply that
φ−1(BC

1 (0)) is nonempty, open, and convex. By the first part of the proof
above, φ−1(BC

1 (0)) = X . This means that |φ(x)| < 1 for all x ∈ X , which
by linearity can only happen if φ = 0.

5.7. The Hahn–Banach Theorem

(5.7.1) Write a complete proof of Corollary 5.7.6.

Answer. If we define q(x) = ∥φ∥ ∥x∥, then q is a seminorm and for all
x ∈ W we have |φ(x)| ≤ ∥φ∥ ∥x∥ = q(x), so Theorem 5.7.5 applies. We
get φ̃ : V → C, linear, with φ̃|W = φ and |φ̃(x)| ≤ q(x) for all x ∈ V .
Fix ε > 0. Choose x ∈ W with ∥x∥ = 1 and |φ(x)| ≥ ∥φ∥ − ε. Then
|φ̃(x)| = |φ(x)| ≥ ∥φ∥ − ε; as this can be done for all ε > 0, we obtain
∥φ̃∥ ≥ ∥φ∥. On the other hand, |φ̃(x)| ≤ q(x) = ∥φ∥ ∥x∥ for all x ∈ V , so
∥φ̃∥ ≤ ∥φ∥.
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(5.7.2) Let X be a locally convex space and Y ⊂ X a subspace with
dim Y < ∞. Show that Y is (topologically) complemented.

Answer. Let e1, . . . , en be a basis of Y. Define maps, for j = 1, . . . , n,
φj : Y → C by φj(

∑n
j=1 αjej) = αj . This is well-defined, since e1, . . . , en

form a basis. We also have that φj is linear, and continuous since dim Y < ∞
(Theorem 5.4.16). By Corollary 5.7.24 there exist ψ1, . . . , ψn ∈ X ∗ with
∥ψj∥ = ∥φj∥, and ψj |Y = φj .

Let P : X → X be given by

Px =
n∑
j=1

ψj(x) en.

This map is linear and bounded, since each ψj is. We also have Py ∈ Y for
all x ∈ X , and Py = y for all y ∈ Y. So P is a continuous projection onto Y.
By Proposition 5.4.19, the subspace Y is topologically complemented.

(5.7.3) Let X be a locally convex space and V ⊂ X a closed subspace.
Show that if m = dim X/V < ∞, then V is topologically com-
plemented with complement of dimension m. Give an example
to show that V need not be complemented if it is not closed.

Answer. Let y1+V, . . . , ym+V be a basis of X/V . Take φ1, . . . , φm ∈ (X/V )∗

to be the dual basis, i.e., φj(yk + V ) = δkj , and define ψ1, . . . , ψm ∈ X ∗ as
ψk = φk ◦ q, where q : X → X/V is the quotient map; the ψk are continuous
since q and φk are.

Let W = span{y1, . . . , ym} and P : X → X given by

Px =
m∑
k=1

ψk(x) yk.

Then P is a bounded projection onto W . The proof will be complete if we
show that V = (I−P )X . Note that we showed above that x+V = Px+V for
all x. If x = (I−P )x, then x+V = Px+V = V , so x ∈ V and (I−P )X ⊂ V .
And by definition of q, P |V = 0, so V ⊂ (I − P )X .

For an example when V is not closed, let X be any infinite-dimensional
Banach space and let φ : X → C be any unbounded linear functional. Then
V = kerφ is a subspace of X with dim X/V = 1, and V is dense so it cannot
be topologically complemented.
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(5.7.4) Show that ℓ∞(N)∗ ̸= ℓ1(N), by proving that the equality would
imply that ℓ∞(N)/c0 has trivial dual, in contradiction with
Corollary 5.7.7.

Answer. Suppose that every bounded functional on ℓ∞(N) comes from an
element of ℓ1(N). Denote by π : ℓ∞(N) → c0 the quotient map. Let φ ∈
(ℓ∞(N)/c0)∗. Then φ ◦ π ∈ ℓ∞(N)∗ (note that the quotient map is bounded
by definition of the quotient norm). By hypothesis there exists y ∈ ℓ1(N)
such that φ(π(x)) = ⟨x, y⟩ for all x ∈ ℓ∞(N). Since π|c0 = 0, we get that
⟨x, y⟩ = 0 for all x ∈ c0. This implies that y = 0, as ⟨ek, y⟩ = yk for each
k ∈ N. So φ = 0.

(5.7.5) Let X be a TVS and φ : X → C be linear. Show that if φ|V = 0
on some neighbourhood V of 0, then φ = 0.

Answer. Let x ∈ X . By continuity of the product by scalars, we have
1
n x → 0. As V is an open neighbourhood of 0, there exists n such that
1
nx ∈ V . Then 0 = φ( 1

nx) = 1
n φ(x), so φ(x) = 0.

(5.7.6) (This is part of the proof of Proposition 5.7.12) Show that if X
is a TVS and φ : X → C is linear and open, then Reφ : X → R
is real linear and open.

Answer. Let V ⊂ X be open. Then φ(V ) ⊂ C is open. If t ∈ Reφ(V ),
there exists s ∈ R with t + is ∈ φ(V ). From φ(V ) open we get that there
exists δ > 0 such that Bδ(t+ is) ⊂ φ(V ). Now if r ∈ R with |r− t| < δ, then
|r + is− (t+ is)| = |r − t| < δ, so r + is ∈ φ(V ) and then r ∈ Reφ(V ); thus
(t− δ, t+ δ) ⊂ Reφ(V ), showing that Reφ(V ) is open in R.

(5.7.7) (This is part of the proof of Proposition 5.7.12) Prove that if
X is a TVS and φ : X → C is a linear functional, then φ is an
open map if and only if for every neighbourhood Z of 0 ∈ X ,
φ(Z) contains 0 ∈ C as an interior point.

Answer. If φ is an open map, then φ(Z) is open, and so 0 is interior. Con-
versely, let V ⊂ X be open. Fix v ∈ V ; then −v+V is an open neighbourhood
of 0. By hypothesis, 0 is an interior point of φ(−v+V ) = −φ(v)+φ(V ). Thus
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φ(v) is an interior point of φ(V ); indeed, there exists δ > 0 such that |t| < δ
implies t ∈ −φ(v) + φ(V ), so φ(v) + t ∈ φ(V ) and hence Bδ(φ(v)) ∈ φ(V ).

(5.7.8) Prove that the set Z used at the beginning of the proof of
Theorem 5.7.13 is nonempty, open, and convex.

Answer. Since V is open, we have

Z0 =
⋃
w∈W

(V − w + z0),

a union of open sets, so open. And as both V,W are convex, if v1, v2 ∈ V ,
w1, w2 ∈ W and t ∈ [0, 1],

t(v1 − w1 + x0) + (1 − t)(v2 − w2 + x0)

= tv1 + (1 − t)v2 − [tw1 + (1 − t)w2] + x0 ∈ Z0,

so Z0 is convex. We also have that −Z0 is open an convex, and hence Z =
Z0 ∩ (−Z0) is open and convex.

Finally, Z ̸= ∅ since 0 ∈ Z.

(5.7.9) Is the condition “V open” necessary for Theorem 5.7.13?

Answer. Yes. The result can fail when neither V nor W is open, already in
R2. For instance, let X = R2 and

V = {(0, 0)} ∪ {(x, y) : x > 0}, W = {(0, 1)}.
Both V,W are convex, none is open. Let ψ be a real linear functional and
c ∈ R with ψ(x, y) < c ≤ ψ(0, 1) for all x > 0. Linear functionals in R2 are
of the form ψ(x, y) = ax+ by for some a, b ∈ R. So need

ax+ by < c ≤ b, x > 0, y ∈ R.
Taking first the limit as x ↘ 0, we have by ≤ c ≤ b for all y ∈ R. This can
only happen if b = c = 0. So now our inequality is ax < 0 for all x > 0. This
works with any a < 0. But we also have (0, 0) ∈ V , and this requires the
inequality 0 < 0, which is impossible.
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(5.7.10) Show that if X is a locally convex space and M ⊂ X is a
subspace, then the closure M of M is

M =
⋂

f∈KM

ker f,

where KM = {f ∈ X ∗ : M ⊂ ker f}.

Answer. Let f ∈ KM . Then M ⊂ ker f . As f is bounded, ker f is closed; so
M ⊂ ker f . As this works for all f ∈ KM , we have that M ⊂

⋂
f∈KM ker f .

Now let y ∈
⋂
f∈KM ker f \ M . If such y exists, by Hahn–Banach (Corol-

lary 5.7.19) there exists g ∈ X ∗ such that g|M = 0 and g(y) = 1. But this is
impossible since g ∈ KM , which requires y ∈ ker g. So no such y can exist,
showing that M =

⋂
f∈KM ker f .

(5.7.11) Use exercise (5.7.10) to show that if X is locally convex and
M ⊂ X is a subspace, then M is dense in X if and only {f ∈
X ∗ : f = 0 on M} = {0}.

Answer. Assume first that M is dense. Then by exercise (5.7.10) we get
that X =

⋂
f∈KM ker f . If f = 0 on M , then f = 0 on M by continuity.

Thus KM = {0}. Conversely, if KM = {0}, then by exercise (5.7.10) we have
M = ker 0 = X .

(5.7.12) In Remark 5.7.26 it is shown that the map f 7−→
∫ 1

0 f is not
continuous on X = Lp[0, 1], 0 < p < 1. Prove this explicitly
by finding a sequence {fn} ⊂ X such that dp(fn, 0) → 0 while∫ 1

0 |fn| ↗ ∞.

Answer. Let fn = 1√
logn

t−1 1[ 1
n ,1]. Then

dp(fn, 0) = 1
(logn)p/2

∫ 1

1/n
t−p dt = 1

(logn)p/2

( 1
1 − p

− 1
(1 − p)n1−p

)
−−−−→
n→∞

0.

Meanwhile, ∫ 1

0
fn = 1

(logn)1/2

∫ 1

1/n
t−1 dt = (logn)1/2 −−−−→

n→∞
∞.
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(5.7.13) Let X be a locally convex space, and x, y ∈ X . Show that if
Reφ(x) = Reφ(y) for all φ ∈ X ∗, then x = y.

Answer. Given φ ∈ X ∗, consider ψ = iφ ∈ X ∗. Then
Imφ(x) = −Re iψ(x) = −Re iψ(y) = Imφ(y).

Thus φ(x) = φ(y) for all φ ∈ X ∗. By Corollary 5.7.7,
∥x− y∥ = sup{|φ(x− y)| : φ ∈ X ∗, ∥φ∥ = 1} = 0,

so x = y.
Here is an alternative argument. If x ̸= y, we apply Theorem 5.7.18 to

the compact sets {x} and {y}, so there exists φ ∈ X ∗ with Reφ(x) < Reφ(y).
This contradicts our hypothesis, so it follows that x = y.

(5.7.14) Let Y be a balanced, convex, closed subset of a locally convex
space X , and let x ∈ X \ Y. Show that there exists φ ∈ X ∗

with φ(x) > 1 and |φ(y)| ≤ 1 for all y ∈ Y.

Answer. Apply Theorem 5.7.18 to the sets {x} and Y to obtain φ′ ∈ X ∗

and c, d ∈ R with
Reφ′(x) < c < d < Reφ′(y), y ∈ Y.

As Y is convex and balanced, y ∈ Y if and only if −y ∈ Y, so we also have
Reφ′(y) < d′ < c′ < Reφ′(−x), y ∈ Y,

where c′ = −c, d′ = −d. Also from Y being balanced and convex, we get
0 ∈ Y, so d′ > 0. Now let φ′(x) = |φ′(x)| eiθ be the polar form. Let
φ = (e−iθ/c′)φ′. Then

φ(x) = e−iθ

c′ φ′(x) = |φ′(x)|
c′ ≥ Reφ′(−x)

c′ > 1.

For any y ∈ Y, write φ′(y) = |φ′(y)|eiγ to get e−iγφ′(y) ≥ 0, and

|φ(y)| = |φ′(y)|
c′ = e−iγφ′(y)

c′ = φ(e−iγy)
c′ = Reφ′(e−iγ y)

c′ ≤ c′

c′ = 1.



6
CHAPTER

Huge consequences of Baire’s Category
Theorem

6.1. Bounded linear operators

(6.1.1) Prove the First Isomorphism Theorem for linear operators:
given vector spaces X ,Y and T : X → Y linear, then

X/ kerT ≃ ranT
canonically.

Answer. Define T̃ : X/ kerT → ranT by T̃ (x + kerT ) = Tx. This is well-
defined since T is zero on kerT . Linearity is straightforward, as is surjectivity:
given Tx ∈ ranT , Tx = T̃ (x+ kerT ). As for injectivity, if T̃ (x+ kerT ) = 0,
this means that Tx = 0 and so x ∈ kerT , which is the same as saying that
x+ kerT = 0.

(6.1.2) Prove Proposition 6.1.2.

293



294 CHAPTER 6

Answer. If T is continuous, it is continuous at 0. If T is continuous at 0 and
xj → x, then xj − x → 0, so Txj − Tx = T (xj − x) → 0, so T is continuous
at x. If T is continuous at x, with the same idea we can show that T is
continuous at 0; this means that for each ε > 0 there exists δ > 0 such that
∥x∥ < δ implies ∥Tx∥ < ε. Then for x ∈ X we get that ∥δx/2∥x∥∥ < δ, so
∥T (δx/(2∥x∥)∥ < ε; and this gives us

∥Tx∥ ≤ 2ε
δ

∥x∥.

(6.1.3) Let X ,Y be normed spaces, and T : X → Y be linear. Show
that the following statements are equivalent:

(a) T is unbounded;
(b) there exists a sequence {xn} ⊂ X such that ∥xn∥ = 1 and

∥Txn∥ > n for all n;
(c) there exists a sequence {xn} ⊂ X such that xn → 0 and

∥Txn∥ = 1 for all n.

Answer. If T is unbounded, then for each n there exists zn ∈ X with
∥Tzn∥
∥zn∥ > n. Then xn = zn

∥zn∥ satisfies ∥xn∥ = 1 and ∥Txn∥ > n for all n.
If now we assume that we have a sequence {xn} with ∥xn∥ = 1 and

∥Txn∥ > n for all n, let zn = xn
∥Txn∥ . Then ∥zn∥ = 1

∥Txn∥ < 1
n → 0, and

∥Tzn∥ = 1 by construction.
Finally, if {xn} ⊂ X such that xn → 0 and ∥Txn∥ = 1 for all n, then

∥Txn∥
∥xn∥ = 1

∥xn∥ → ∞ and T is unbounded.

(6.1.4) Prove that (6.1) defines a norm in B(X ,Y), and that
∥Tx∥ ≤ ∥T∥ ∥x∥, T ∈ B(X ,Y), x ∈ X .

Answer. For any r > ∥T∥ we necessarily have
∥Tx∥ ≤ r∥x∥

(otherwise, we would have some fixed nonzero x with ∥Tx∥ > r∥x∥, and for
any s < r we also have ∥Tx∥ > r∥x∥ > s∥x∥, implying that ∥T∥ ≥ r). As
this occurs for all r > ∥T∥, we get that ∥Tx∥ ≤ ∥T∥ ∥x∥.

To show that T is a norm, we have that ∥T∥ ≥ 0 by definition. If
∥T∥ = 0, Then ∥Tx∥ ≤ 0, and so Tx = 0 for all x, which is T = 0.
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Given λ ∈ C,
∥λT∥ = inf{r > 0 : ∥λTx∥ ≤ r∥x∥, x ∈ X }

= inf{r > 0 : ∥Tx∥ ≤ r

|λ|
∥x∥, x ∈ X }

= |λ| inf{ r

|λ|
> 0 : ∥Tx∥ ≤ r

|λ|
∥x∥, x ∈ X }

= |λ| inf{r > 0 : ∥Tx∥ ≤ r

|λ|
∥x∥, x ∈ X }

= |λ| ∥T∥.
For the triangle inequality,

∥(T + S)x∥ = ∥Tx+ Sx∥ ≤ ∥Tx∥ + ∥Sx∥

≤ ∥T∥ ∥x∥ + ∥S∥ ∥x∥ = (∥T∥ + ∥S∥) ∥x∥.
As this occurs for all x ∈ X , we have shown that ∥T + S∥ ≤ ∥T∥ + ∥S∥.

Alternatively, if we already have Proposition 6.1.4, we can use the equal-
ity

∥T∥ = sup{∥Tx∥ : ∥x∥ = 1}
for a much simpler proof. Then, as

∥(T + S)x∥ = ∥Tx+ Sx∥ ≤ ∥Tx∥ + ∥Sx∥
and the supremum is subadditive, we get that ∥T + S∥ ≤ ∥T∥ + ∥S∥. If
∥T∥ = 0, then ∥Tx∥ = 0 for all x, so T = 0. And, since ∥λTx∥ = |λ| ∥Tx∥,
we get that ∥λT∥ = |λ| ∥T∥.

(6.1.5) Prove Proposition 6.1.4.

Answer. Since ∥T∥ = inf{r : ∥Tx∥ ≤ r∥x∥, x ∈ X }, given ε > 0 there exists
r > 0 such that ∥T∥ > r − ε and ∥Tx∥ ≤ r∥x∥ for all x. Then, for each x,

∥Tx∥ ≤ (∥T∥ + ε)∥x∥ = ∥T∥ ∥x∥ + ε ∥x∥.
As this happens for all ε > 0, we get that ∥Tx∥ ≤ ∥T∥ ∥x∥. This shows that

∥T∥ = min{r : ∥Tx∥ ≤ r∥x∥, x ∈ X }.
When ∥x∥ = 1, by the above, ∥Tx∥ ≤ ∥T∥ ∥x∥ = ∥T∥. So ∥T∥ is an upper
bound. And if s = sup{∥Tx∥ : ∥x∥ = 1}, Then for any x we have∥∥∥∥ Tx∥x∥

∥∥∥∥ ≤ s,

which implies that ∥Tx∥ ≤ s∥x∥ for all s. Then s ≥ ∥T∥, and so s = ∥T∥.
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For the third equality we just note that
{∥Tx∥ : ∥x∥ = 1} = {∥Tx∥/∥x∥ : x ̸= 0}.

The inequality ∥Tx∥ ≤ ∥T∥ ∥x∥, that we already used above, follows directly
from ∥T∥ = min{r : ∥Tx∥ ≤ r∥x∥, x ∈ X }.

Finally, take x ∈ X , and then, using the above inequality twice,
∥TSx∥ ≤ ∥T∥ ∥Sx∥ ≤ ∥T∥ ∥S∥ ∥x∥.

As ∥TS∥ is the infimum of the constants that may appear in the above in-
equality, we get that ∥TS∥ ≤ ∥T∥ ∥S∥.

(6.1.6) Prove Proposition 6.1.5 (Hint: note that Proposition 5.5.8 is a
particular case).

Answer. Let {Tn} ⊂ B(X ,Y) be a Cauchy sequence. From the reverse
triangle inequality,

| ∥Tn∥ − ∥Tm∥ | ≤ ∥Tn − Tm∥,
which shows that the number sequence {∥Tn∥} is Cauchy, so convergent. In
particular, there exists c > 0 with ∥Tn∥ ≤ c for all n. For any fixed x ∈ X ,

∥Tnx− Tmx∥ = ∥(Tn − Tm)x∥ ≤ ∥Tn − Tm∥ ∥x∥,
so the sequence {Tnx} ⊂ Y is Cauchy. As Y is complete, the sequence is
convergent and we may define Tx = limn Tnx. Since the Tn and limits are
linear, it follows that T is a linear function. Also, if we fix x ∈ X and let
ε > 0, there exists n with ∥Tx− Tnx∥ < ε. Then

∥Tx∥ ≤ ∥Tx− Tnx∥ + ∥Tnx∥ ≤ ε+ ∥Tn∥ ∥x∥ ≤ ε+ c∥x∥.
As we can do this for every ε > 0, we get that ∥Tx∥ ≤ c∥x∥. As we can do
this for all x ∈ X , with the same c, we have shown that T is bounded.

Finally, we need to show that T is a (norm) limit of the Tn. Fix ε > 0.
There exists n0 such that ∥Tn − Tm∥ < ε if n,m ≥ n0. Then, if n,m ≥ n0,

∥Tx− Tnx∥ ≤ ∥Tx− Tmx∥ + ∥(Tm − Tn)x∥ ≤ ∥Tx− Tmx∥ + ε ∥x∥.
Taking the limit as m → ∞, we get

∥Tx− Tnx∥ ≤ ε ∥x∥
for all n ≥ n0.

(6.1.7) Let X ,Y be normed spaces. Show that if dim X = n, dim Y =
m, then B(X ,Y) can be identified with Mm,n(C).
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Answer. We note first that any linear map X → Y is bounded (Corol-
lary 5.2.5). The identification depends on the choice of bases on both X and
Y. Fix bases {e1, . . . , en} and {f1, . . . , fm} of X and Y respectively. Given
T ∈ B(X ,Y) there exist coefficients tkj , k = 1, . . . ,m, j = 1, . . . , n, such that

Tej =
m∑
k=1

tkjfk.

Given x ∈ X , we can write x =
∑
j xjej , and so

Tx =
n∑
j=1

m∑
k=1

tkjxjfk =
m∑
k=1

( n∑
j=1

tkjxj

)
fk. (AB.6.1)

Let γ : B(X ,Y) → Mm,n(C) be given by γ(T ) = [tkj ]. Because the repre-
sentation of a vector in a basis is unique, γ(T ) = γ(S) implies T = S, so γ
is injective; it also implies that is linear. Given [tkj ] ∈ Mm,n(C) we can use
(AB.6.1) to define T ∈ B(X ,Y) such that γ(T ) = [tkj ]; so γ is surjective.

(6.1.8) Let Y be an infinite-dimensional normed space. Show that the
space B(C,Y) is infinite-dimensional.

Answer. Any linear T : C → Y is determined by its value at 1. Given
n ∈ N, since Y is infinite-dimensional we can find y1, . . . , yn ∈ Y, linearly
independent. Define Tjλ = λyj . As Tj(αλ+ µ) = (αλ+ µ)yj = αTjλ+ Tjµ,
the operator Tj is linear for all j. Boundedness is automatic since C is finite-
dimensional. Now if

∑
j αjTj = 0, then

0 =
∑
j

αjTj1 =
∑
j

αjyj .

As y1, . . . , yn are linearly independent, we get that α1 = · · · = αn = 0. So
T1, . . . , Tn are linearly independent. This works for any n, dim B(C,Y) = ∞.

(6.1.9) Let X ,Y be a Banach spaces and T : X → Y linear and iso-
metric, that is ∥Tx∥ = ∥x∥ for all x ∈ X . Show that ranT is
closed.

Answer. Let {Txn} be Cauchy. As ∥xn − xm∥ = ∥T (xn − xm)∥ = ∥Txn −
Txm∥, the sequence {xn} is Cauchy in X . Let x = lim xn. As T is bounded,
limn Txn = Tx and so {Txn} converges.
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(6.1.10) Let X ,Y be normed spaces.

(a) Show that if φ ∈ X ∗, y0 ∈ Y, and T : x 7−→ φ(x)y0, then
∥T∥ = ∥φ∥ ∥y0∥.

(b) Show that if φ1, . . . , φn ∈ X ∗ and y1, . . . , yn ∈ Y, then
T : x 7−→

∑
j φj(x)yj is bounded.

(c) Show that if Y is Banach, φ1, φ2, . . . ∈ X ∗ and y1, y2, . . . ∈
Y with

∑
j ∥φj∥ ∥yj∥ < ∞, then T : x 7−→

∑
j φj(x)yj is

bounded.

Answer.

(a) If Tx = φ(x)y0, then
∥T∥ = sup{∥Tx∥ : ∥x∥ = 1} = sup{∥φ(x) y0∥ : ∥x∥ = 1}

= ∥y0∥ sup{|φ(x)| : ∥x∥ = 1} = ∥y0∥ ∥φ∥.
A slightly more convoluted approach:

∥Tx∥ ≤ ∥φ(x) y0∥ = |φ(x)| ∥y0∥ ≤ ∥φ∥ ∥y0∥ ∥x∥,
so ∥T∥ ≤ ∥φ∥ ∥y0∥. Fix ε > 0 and let x ∈ X such that ∥x∥ = 1 and
|φ(x)| ≥ (∥φ∥ − ε). Then

∥Tx∥ = |φ(x)| ∥y0∥ ≥ (∥φ∥ − ε) ∥y0∥.
As ε was arbitrary, ∥T∥ ≥ ∥φ∥ ∥y0∥.

(b) We prove (c), as it has (b) as a particular case. When

Tx =
∞∑
j=1

φj(x) yj

with
∑
j ∥φj∥ ∥yj∥ < ∞ (the series for T exists because of this last con-

dition and the fact that Y is Banach) we have, using that the norm is
continuous,

∥Tx∥ = lim
N

∥∥∥ N∑
j=1

φ(x) yj
∥∥∥ ≤ lim sup

N

N∑
j=1

∥φ∥ ∥yj∥ ∥x∥ =
( ∞∑
j=1

∥φ∥ ∥yj∥
)

∥x∥,

so T is bounded and ∥T∥ ≤
∑∞
j=1 ∥φ∥ ∥yj∥. The case with a finite sum is

a particular case of this, as we can take φj = 0 for j > n.
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(6.1.11) Let T : c00 → c00 be given by

T (x1, x2, · · · ) =
(
x1,

x2

2 ,
x3

3 , . . .
)
.

Show that T is bounded and bijective.

Answer. The proof of ∥T∥ = 1 and injectivity are exactly the same as for
Exercise 6.1.12. In fact, there is no need to even re-do the proof, as c00 ⊂ c0,
the restriction of an injective map is injective, and the canonical basis is in
c00.

Surjectivity: if x ∈ c00, then x = T (x1, 2x2, 3x3, . . .). The sequence
{nxn} is in c00 for all x ∈ c00 because of the finite support.

(6.1.12) Let T : c0 → c0 be given by

T (x1, x2, · · · ) =
(
x1,

x2

2 ,
x3

3 , . . .
)
.

Show that T is bounded (with ∥T∥ = 1) and injective, but not
surjective.

Answer. We have
∥Tx∥ = sup{|xk/k| : k} ≤ sup{|xk| : k} = ∥x∥.

So T is bounded and ∥T∥ ≤ 1. As Te1 = e1, this gives us ∥Te1∥ = 1 with
∥e1∥ = 1, so ∥T∥ = 1. It Tx = 0, then 1

n xn = 0 for all n, so xn = 0 and
x = 0; hence T is injective.

Consider b ∈ c0 where bn = 1/n. If b = Ta, then bn = an/n for all n,
so an = 1 for all n. But then a ̸∈ c0. So T is not surjective.

6.2. Invertibility in B(X )

(6.2.1) Show that if R is a ring with unit, and both a and ab are
invertible, then b is invertible. Using the algebra B(ℓ2(N)),
show that it is possible to have ab invertible with neither a nor
b invertible.
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Answer. Since ab is invertible, there exists c ∈ R with cab = abc = 1. As
both a and c are invertible, we get a−1c−1 = a−1(abc)c−1 = b. So b is a
product of invertible elements and thus invertible with inverse ca.

In B(ℓ2(N)) we may take the left and right unilateral shifts T and S
from above. Then TS = I even though neither S nor T are invertible.

(6.2.2) Let S ∈ B(X ) with ∥I − S∥ = 1. Decide (and justify) whether
such an S is always invertible, sometimes invertible and some-
times not, or never invertible.

Answer. The operator S can fail to be invertible; easiest example is S = 0.
But there are also examples where S is invertible. For a trivial example of
this situation, let S = 2I. Another example is γ = 1

2 + i
√

3
2 , and put S = γ I.

Then S is invertible with inverse γ−1 I, and ∥I − S∥ = |1 − γ| = 1. For a
slightly less trivial example let X = C2 with the 2-norm (that is, the usual
Euclidean norm) and let

S =
[
γ 0
0 γ

]
.

It is not hard to check that because S is diagonal its norm is |γ| = 1, and
∥I − S∥ = max{|1 − γ|, |1 − γ|} = 1.

(6.2.3) Let S ∈ B(X ) such that ∥I − S∥ = 1
2 . Decide (and justify)

whether such an S is always invertible, sometimes invertible
and sometimes not, or never invertible.

Answer. Here we can apply Lemma 6.2.1 to T = I −S and we get that S is
invertible with inverse

S−1 =
∞∑
k=0

(I − S)k.

(6.2.4) Let S ∈ B(X ) such that S2 = S. Decide (and justify) whether
such an S is always invertible, sometimes invertible and some-
times not, or never invertible.

Answer. There is the possibility that S = I, in which case it is invertible.
It could also be 0, in which case it would not be invertible. There are always
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many non-trivial idempotents on X if dim X > 1 (example: fix y ∈ X and
φ ∈ X ∗ with φ(y) = 1, and define Sx = φ(x)y). Any non-trivial idempotent
S cannot be invertible, and as I−S is also a non-trivial idempotent, it cannot
be invertible. To see this, note that kerS = ran(I − S). So if kerS is trivial,
then S = I.

6.3. Baire’s Theorem and its Corollaries

(6.3.1) Let X be a metric space. Show that A ⊂ X is nowhere dense
if and only if X \A is open and dense.

Answer. We always have X \ A open, so all that matters is whether it is
dense.

Suppose that X \ A is not dense. Then there exists x ∈ X and r > 0
such that Br(x)∩ (X \A) = ∅. Thus Br(x) ⊂ A and A is not nowhere dense.

Conversely, suppose that X \A is dense. For any x ∈ X and r > 0, we
have Br(x) ∩ (X \A) ̸= ∅. So it is not possible for Br(x) to be inside A; thus
the interior of A is empty, and A is nowhere dense.

(6.3.2) Prove that Baire’s Category Theorem 6.3.1 holds for locally
compact Hausdorff topological spaces (Hint: use the finite in-
tersection property instead of completeness).

Answer. Fix W ⊂ X open. Since V1 is dense, W ∩V1 ̸= ∅. As V1 is also open
W∩V1 is open. So its interior is nonempty: and with X being locally compact,
there exists a nonempty K1 ⊂ W ∩V1, with K1 compact. Now K1 ∩V2 is open
and nonempty, and we can repeat the process. Inductively: we now assume
that we have Kn with Kn compact and Kn ⊂ Kn−1, and Kn ⊂ Kn−1 ∩ Vn.
Reasoning as above we obtain an open set Kn+1 with Kn+1 compact and
Kn+1 ⊂ Kn. This way we obtain a family {Kn} of compact sets with the
finite intersection property, inside the compact set K1; thus ∩nKn ̸= ∅. Let
x ∈ ∩nKn. Then, for each n,

x ∈ Kn ⊂ Kn−1 ∩ Vn ⊂ Vn.
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So x ∈ Vn for all n, and then x ∈
⋂
n Vn. So W ∩

⋂
n Vn ̸= ∅. As W was any

open set, it follows that
⋂
n Vn is dense.

(6.3.3) Show that any Hamel basis of an infinite-dimensional Banach
space is uncountable (Hint: show that finite-dimensional sub-
spaces are nowhere dense).

Answer. If a subspace contains a ball, then it has to be the whole space.
Indeed, suppose that Br(y) ⊂ X0 ⊂ X , there x0 is a subspace. Let x ∈ X .
Then, as y ∈ X0,

x = 2∥x∥
r

[ ∈Br(y)︷ ︸︸ ︷(
r

2∥x∥
x+ y

)
−y
]

∈ X0

As finite-dimensional subspaces are closed, we have shown that the interior
of their closure is empty, so they are nowhere dense. If X has a countable
Hamel basis {xn}, we can write

X =
⋃
n

span{x1, . . . , xn},

contradicting Theorem 6.3.1.

(6.3.4) Show an example of an infinite-dimensional normed space that
is a countable union of nowhere dense subsets.

Answer. As per Exercise 6.3.3, any normed space with a countable Hamel
basis will do. For instance X = C[x], with the norm ∥p∥ = max{|p(t)| :
t ∈ [0, 1]}. In this case—and in the case of any other normed space with a
countable Hamel basis—we can write the nowhere dense sets explicitly, as in
Exercise 6.3.3. Namely, X =

⋃
n{p : deg p ≤ n}.

(6.3.5) Let H be a Hilbert space. Prove that T ∈ B(H) is surjective
if and only if it admits a right inverse S ∈ B(H). The same
assertion is not true for Banach spaces (Remark 6.2.5).

Answer. If TS = I, then x = TSx, so T is surjective. Conversely, if T is
surjective, consider the restriction T0 of T to (kerT )⊥. Then T0 is bijective,
so by the Inverse Mapping Theorem 6.3.6 there exists S : H → (kerT )⊥,
linear and bounded, with T0S = I. Then TS = T0S = I, so S is a right
inverse for T .
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(6.3.6) Let X be a Banach space. Show that T ∈ B(X ) admits a right
inverse if and only if T is surjective and kerT is complemented.

Answer. Let P : X → kerT be the orthogonal projection onto kerT . Let
M = (I − P )X . If x ∈ M and Tx = 0, then x ∈ M ∩ kerT = {0}, so T is
injective on M . Thus T : M → X is a bounded bijective operator. By the
Inverse Mapping Theorem there exists S : X → M , bounded, with TS = IX .

Conversely, if TS = IX and x ∈ X , then x = T (Sx), so T is surjective.
It remains to show that the existence of S guarantees that kerT is comple-
mented. From TS = I we see that S is injective. So given any x ∈ X there
exists a unique x1 ∈ SX such that Tx = Tx1. And obviously x− x1 ∈ kerT .
So x = (x− x1) + x1 ∈ kerT + SX . If x ∈ SX ∩ kerT , then x = Sy for some
y, and y = TSy = Tx = 0, so x = 0. Thus X = kerT + SX is a direct sum.
If Sxn → 0, then xn = TSxn → 0, so SX is closed. Finally, consider the
projection P : X → SX . Given x ∈ X , we have Px = x1, with x1 ∈ SX and
Tx = Tx1. Let y ∈ X with x1 = Sy. Then, using that S is bounded,

∥Px∥ = ∥x1∥ = ∥Sy∥ ≤ ∥S∥ ∥y∥ = ∥S∥ ∥TSy∥

= ∥S∥ ∥Tx1∥ = ∥S∥ ∥Tx∥ ≤ ∥S∥ ∥T∥ ∥x∥
and so P is bounded. This shows that SX is topologically complemented,
and thus so is kerT (since P is bounded, so is I − P ).

(6.3.7) Show that T−1 in Example 6.3.8 is unbounded.

Answer. For each n, T−1en = n en. Thus ∥en∥ = 1 and ∥T−1en∥ = n.

(6.3.8) Prove that the Closed Graph Theorem 6.3.12 implies the Open
Mapping Theorem 6.3.5.

Answer. Assume first that T is bijective and bounded, and that its graph
is closed. Since the flip is a homemorphism X × Y → Y × X , we get that
G(T−1) = {(Tx, x) : x ∈ X } is closed. By the Closed Graph Theorem, T−1

is bounded. Then, for any V open, TV = (T−1)−1(V ) is open by continuity
of T−1.
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Now if we assume that T is bounded but only surjective, the linear map
T̃ : X/ kerT → Y is bijective and bounded:

∥T̃ (x+ kerT )∥ = ∥Tx∥ = inf
z∈kerT

∥Tx+ Tz∥

≤ ∥T∥ inf
z∈kerT

∥x+ z∥ = ∥T∥ ∥x+ kerT∥.

By the above, T̃ is open. We also proved in Proposition 5.3.13 that the
canonical quotient map π : X → X/ kerT is open. Then T = T̃ ◦ π is open,
being a composition of open maps.

(6.3.9) Complete the proof of Theorem 6.3.12 by showing that for a
linear map T : X → Y with X ,Y Banach, the graph G(T ) is
closed if and only if for every sequence {xk} ⊂ X and y ∈ Y,
if xk → 0 and Txk → y then y = 0.

Answer. If G(T ) is closed, xk → 0, and Txk → y, then {(xk, Txk)} is Cauchy
in G(T ). As G(T ) is complete—closed subset of the complete space X ⊕ Y—
the limit of the sequence is in G(T ). So (0, y) ∈ G(T ), which implies y = 0 as
(0, 0) ∈ G(T ) and G(T ) is a graph.

Conversely, suppose that {(xk, Txk)} is a Cauchy sequence in X ⊕ Y.
As max{∥x∥, ∥y∥} ≤ ∥(x, y)∥, we have that both {xk} and {Txk} are Cauchy
in X and Y respectively. As both X and Y are complete, there exist x ∈ X ,
y ∈ Y with xk → x and Txk → y. Then xk − x → 0 and T (xk − x) →
y− Tx. The hypothesis then gives us that y− Tx = 0, that is y = Tx. Thus
(xk, Txk) → (x, Tx), showing that G(T ) is complete, and thus closed.

(6.3.10) Let X be a Banach space and X1, X2 ⊂ X closed subspaces
such that X = X1 ⊕ X2. Let T ∈ B(X ) such that TX1 ⊂ X1
and TX2 ⊂ X2. Show that T is invertible if and only if T |X1 ∈
B(X1) and T |X2 ⊂ B(X2) are invertible.

Answer. Suppose that T is invertible. Let P be the projection only X1.
We have, for x ∈ X1, TPx1 = Tx1 = PTx1. Similarly, TPx2 = PTx2 for
any x2 ∈ X2; it follows that TPx = TP (x1 + x2) = PT (x1 + x2) = PTx.
That is, PT = TP . Multiplying on the left and right by T−1 we get that
T−1P = PT−1. Then, if S = T−1|X1 ∈ B(X1), ST |X1 = TS|X1 = IX1 .
Similarly, T |X2 is invertible.

Conversely, suppose that there exist S1 ∈ B(X1) and S2 ∈ B(X2) such
that S1TX1 = T |X1S = IX1 and S2TX2 = T |X2S = IX2 . Let S = S1 ⊕ S2,
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that is S(x1 + x2) = S1x1 + S2x2. Then
ST (x1 + x2) = S1Tx1 + S2Tx2 = IX1x1 + IX2x2 = x1 + x2,

and similarly TS = IX . So T is invertible.

(6.3.11) Let X be a Banach space and T : X → X ∗ be a linear map.
Use the Closed Graph Theorem to show that if (Tx)y = (Ty)x
for all x, y ∈ X , then T is bounded.

Answer. Suppose that xn → x and Txn → ϕ. If we show that ϕ = Tx, then
the Closed Graph Theorem implies that T is bounded. For any y ∈ X ,

ϕ(y) = lim
n

(Txn)y = lim
n

(Ty)xn = (Ty)x = (Tx)y.

As y was arbitrary, we conclude that ϕ = Tx and hence T is bounded.

(6.3.12) Let X be a Banach space and T : X → X ∗ be a linear map. Use
the Uniform Boundedness Principle to show that if (Tx)y =
(Ty)x for all x, y ∈ X , then T is bounded.

Answer. Consider the family {Tx}∥x∥≤1 of bounded linear functionals. We
have

|(Tx)y| = |(Ty)x| ≤ ∥Ty∥ ∥x∥ = ∥Ty∥.
Hence sup{|(Tx)y| : ∥x∥ ≤ 1} < ∞ for each y. By the Uniform Boundedness
Principle, sup{∥Tx∥ : ∥x∥ ≤ 1} < ∞, and this number is ∥T∥.

(6.3.13) (Compare with Exercise 6.3.14) Show an example of a normed
space X and T ∈ B(X ) such that for every x ∈ X there exists
n ∈ N with Tnx = 0, but such that Tm ̸= 0 for all m ∈ N.

Answer. Let X = c00 and T the right-shift, that is
T (a1, a2, . . .) = (a2, a3, . . .).

Then Tna = 0 if an = an+1 = · · · = 0. But Tmem+1 = e1, so Tm ̸= 0 for all
m.

(6.3.14) (Compare with Exercise 6.3.13) Let X be a Banach space and
T ∈ B(X ). Assume that, for each x ∈ X , there exists n ∈ N
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such that Tnx = 0. Show that there exists m ∈ N such that
Tm = 0.

Answer. The hypothesis gives us that X =
⋃
n kerTn, a union of closed

subspaces (closed, because Tn is bounded and so kerTn = (Tn)−1({0}) is
closed). By Baire’s Category Theorem—as in Remark 6.3.3—there exists m
such that kerTm is not nowhere dense: so kerTm contains a ball. A subspace
that contains a ball is necessarily the whole space (see Exercise 6.3.3 for a
proof), so kerTm = X .



7
CHAPTER

Weak topologies

7.1. The weak topology

(7.1.1) Prove that if T1 ⊂ T2 are topologies on a set X , with T1 Haus-
dorff and T2 compact, then T1 = T2 (Hint: consider the identity
map (X , T2) → (X , T1)).

Answer. Let i : (X , T2) → (X , T1) be the identity map, i(x) = x. Given
V ∈ T1, we have i−1(V ) = V ∈ T2. So i is continuous. Now let K ⊂ X be
closed. Since T2 is compact, K is compact. The image of a compact set under
a continuous function is compact; so K = i(K) is compact in (X , T1). From
T1 Hausdorff, compact sets are closed. So i maps closed sets to closed sets.
Thus, if V ∈ T2, then X \ V is closed in (X , T2), and so X \ V = i(X \ V ) is
closed in (X , T1). So V ∈ T1, and we have shown that T2 ⊂ T1.

(7.1.2) Let X be a TVS. Show that the weak topology σ(X ,X ∗) is the
weakest topology such that every φ ∈ X ∗ is continuous.

307
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Answer. Let T be a topology on X such that φ is continuous for each φ ∈ X ∗.
By Proposition 7.1.4, every φ ∈ X ∗ is σ(X ,X ∗)-continuous; so given any open
V ⊂ C we have that φ−1(V ) ∈ T ; so σ(X ,X ∗) ⊂ T .

(7.1.3) Prove that
σ(X ,X ∗) = Top{φ−1(Br(λ)) : φ ∈ X ∗, r > 0, λ ∈ C}.

Answer. Since Br(λ) is open for all r > 0 and all λ ∈ C, φ−1(Br(λ)) ∈
σ(X ,X ∗). This shows that

σ(X ,X ∗) ⊃ Top{φ−1(Br(λ)) : φ ∈ X ∗, r > 0, λ ∈ C}.
Now given any V ⊂ C open, for each v ∈ V there exists rv > 0 with Brv (v) ⊂
V . Then

V =
⋃
v∈V

Brv (v).

Thus
φ−1(V ) = φ−1(

⋃
v∈V

Brv (v)) =
⋃
v∈V

φ−1(Brv (v))

∈ Top{φ−1(Br(λ)) : φ ∈ X ∗, r > 0, λ ∈ C}.
So

σ(X ,X ∗) ⊂ Top{φ−1(Br(λ)) : φ ∈ X ∗, r > 0, λ ∈ C}.

(7.1.4) Show that the sets N(φ1, . . . , φk; ε), indexed by a positive in-
teger k ∈ N and φ1, . . . , φk ∈ X ∗, ε > 0, form a local base for
σ(X ,X ∗) at 0.

Answer. Let V be a weak-open set with 0 ∈ V . By Lemma 7.1.3 there exist
ε > 0 and φ1, . . . , φk ∈ X ∗ with

⋂
j φ

−1
j (Bε(0)) ⊂ V . As

⋂
j φ

−1
j (Bε(0)) =

N(φ1, . . . , φk; ε), these latter sets are open and again by Lemma 7.1.3 we can
write V as a union of these sets.

(7.1.5) Show that the sets N(φ1, . . . , φk; ε), where φ1, . . . , φk ∈ X ∗ are
linearly independent and ε > 0, form a local base for σ(X ,X ∗)
at 0.
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Answer.
We will show that these neighbourhoods generate the same open sets

than the “non-linearly independent” neighbourhoods. If φ1, . . . , φn are lin-
early dependent, after reordering we may assume that φ1, . . . , φr are linearly
independent, and that φr+1, . . . , φn are linear combinations of those, say

φr+j =
r∑

k=1
cjkφk.

Then

|φr+j(x)| ≤
r∑

k=1
|cjk| |φk(x)| ≤

(
r∑

k=1
|cjk|

)
max{|φk(x)| : k = 1, . . . , r}.

If we put c = maxj{(
∑r
k=1 |cjk|) : j = 1, . . . , n− r}, then

N(φ1, . . . , φr; ε/c} ⊂ N(φ1, . . . , φn; ε} ⊂ N(φ1, . . . , φr; ε}.

(7.1.6) Let X be a normed space and {xn} a weakly convergent net
with xn

weak−−−→ x. Show that ∥x∥ ≤ lim infn ∥xn∥. Find an
example where the inequality is strict.

Answer. We have, by Corollary 5.7.7
∥x∥ = max{|φ(x)| : φ ∈ X ∗, ∥φ∥ ≤ 1}.

For any φ ∈ X ∗ with ∥φ∥ ≤ 1, since |φ(xj)| ≤ ∥xj∥, and choosing a subnet
{xjk} such that limk ∥xjk∥ = lim infj ∥xj∥,

|φ(x)| = lim
j

|φ(xj)| = lim
k

|φ(xjk)| ≤ lim
k

∥xjk∥ = lim inf
j

∥xj∥.

For an example, it was shown in Example 7.1.6 that an orthonormal basis on
an infinite-dimensional Hilbert space is a sequence {ξn} with ∥ξn∥ = 1 for all
n and ξn

weak−−−→ 0.

(7.1.7) Use Proposition 7.1.4 to show that if φ ∈ X ∗, c ∈ R, then
{x ∈ X : Reφ(x) ≥ c} is weakly closed.

Answer. Because X ∗ is complete (in this case, with the weak topology), it
is enough to show that if {xj} ⊂ {x ∈ X : Reφ(x) ≥ c} and xj → x weakly,
then x ∈ {x ∈ X : Reφ(x) ≥ c}. And this is trivial: since Reφ(xj) ≥ c for
all j, we have Reφ(x) = limj Reφ(xj) ≥ c.
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(7.1.8) Prove that the weak topology is a locally convex topology given
by the seminorms pφ(x) = |φ(x)|, φ ∈ X ∗.

Answer. Using Proposition 7.1.4,

xj
weak−−−→ x ⇐⇒ ∀φ ∈ X ∗, φ(xj) →c⃝ 2024 Mart́ın Argerami All Rights Reserved φ(x) ⇐⇒ ∀φ ∈ X ∗, pφ(xj − x) →c⃝ 2024 Mart́ın Argerami All Rights Reserved 0.

The only observation one needs is that φ(xj) → φ(x) ⇐⇒ φ(xj − x) → 0
by linearity.

(7.1.9) Prove Proposition 7.1.12.

Answer. Let K ⊂ X be weakly compact. For each φ ∈ X ∗, sup{|x̂(φ)| :
x ∈ K} < ∞, since φ is weakly continuous and a continuous function
maps compact sets to compact sets. But then, by the Uniform Bounded-
ness Principle (Theorem 6.3.16), applied to K̂ ⊂ B(X ∗,C) = X ∗∗, we get
that sup{∥x∥ : x ∈ K} = sup{∥x̂∥ : x ∈ K} < ∞.

(7.1.10) Prove Corollary 7.1.17.

Answer. The set K = conv{xn : n ∈ N} is convex, so by Theorem 7.1.16,
we have x ∈ K

σ(X ,X ∗) = K. This gives the existence of the net {x′
m}. When

X is metrizable, by taking a countable local base around x, we can extract a
convergent subsequence out of {x′

m}.

(7.1.11) Show that the unit ball of c0 is not weakly compact.

Answer. Consider the sequence

gn = (
n times︷ ︸︸ ︷
1, . . . , 1, 0, . . .).

If the unit ball of c0 is weakly compact, then {gn} has a cluster point z. That
would mean that for every y ∈ ℓ1(N), ⟨y, gn⟩ → ⟨y, z⟩. With y = ek, we get

z(k) = ⟨e,z⟩ = lim
n

⟨ek, gn⟩ = 1.

But then z = 1 ̸∈ c0.
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(7.1.12) Let X be a normed space and {xn} ⊂ X such that ∥xn∥ ≥ δ > 0
for all n, and such that xn

weak−−−→ 0. Show that xn/∥xn∥ weak−−−→ 0.

Answer. Given φ ∈ X ∗,∣∣∣φ( xn
∥xn∥

)∣∣∣ = 1
∥xn∥

|φ(xn)| ≤ 1
δ

|φ(xn)| →c⃝ 2024 Mart́ın Argerami All Rights Reserved 0.

(7.1.13) Show that the boundedness requirement in Lemma 7.1.18 can-
not be dispensed with. That is, find an example, for p ∈ (1,∞],
of a sequence {fn} ⊂ ℓp(N) such that ⟨fn, g⟩ → 0 for all g ∈ c00
and h ∈ ℓq(N) such that ⟨fn, h⟩ does not converge to 0.

Answer. Since p > 1, we have that 1 ≤ q < ∞. Let fn = n2en, n ∈ N. Then
fn ∈ ℓp(N) for all n, and ⟨fn, g⟩ → 0 for all g ∈ c00. Indeed, if g =

∑m
k=1 akek,

then ⟨fn, g⟩ = 0 for all n > m. Meanwhile, if we put h =
∑
k k

−3/(2q) ek then
h ∈ ℓq(N) while ⟨fn, h⟩ = n2−3/(2q) ≥ n1/2 → ∞.

(7.1.14) Show that the p > 1 requirement in Lemma 7.1.18 cannot
be dispensed with. That is, find an example, of a bounded
sequence {fn} ⊂ ℓ1(N) such that ⟨fn, g⟩ → 0 for all g ∈ c00
and h ∈ ℓ∞(N) such that ⟨fn, h⟩ does not converge to 0.

Answer. Let fn = en; then ⟨fn, g⟩ → 0 for all g ∈ c00 but ⟨fn, 1⟩ = 1 for all
n.

(7.1.15) Let X be a normed space, with X ∗ separable. Show that the
weak topology is metrizable on the unit ball BX

1 (0). (Hint: if
in need of inspiration, look at the proof of Corollary 7.2.20)

Answer. Let {φn} ⊂ BX ∗

1 (0) be a dense sequence. Define

d(x, y) =
∞∑
n=1

2−n|φn(x− y)|, x, y ∈ BX
1 (0).

The series converges, since |φn(x − y)| ≤ ∥φn∥ (∥x∥ + ∥y∥) ≤ 2. It is also
translation invariant, symmetric and satisfies the triangle inequality, so it is
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a translation invariant metric. If xj
weak−−−→ 0, fix ε > 0 and choose n0 such

that
∑
n>n0

2−n < ε/4. Choose also j0 such that |φn(xj)| < ε/2, if j > j0,
n = 1, . . . , n0. Then, for j > j0,

d(xj , 0) =
n0∑
n=1

2−n|φn(x− y)| +
∑
n>n0

2−n|φn(x− y)| <
n0∑
n=1

2−n ε

2 + 2 ε4 < ε.

It follows that d(xj , 0) → 0. Conversely, suppose that d(xj , 0) → 0. Fix
φ ∈ X ∗ and ε > 0; assume initially that ∥φ∥ ≤ 1. There exists n such that
∥φ− φn∥ < ε. Then
|φ(xj)| ≤ |φ(xj) −φn(xj)| + |φn(xj)| ≤ ∥φ−φn∥ + |φn(xj)| ≤ ε+ 2n d(φj , 0).
Thus

lim sup
j

|φ(xj)| ≤ ε.

As ε was arbitrary, we obtain the limj |φ(xj)| = 0. Now if φ is arbitrary, we
apply the above to φ/∥φ∥.

(7.1.16) Let X be a Banach space and K ⊂ X convex. Show that K is
weakly closed if and only if K ∩ Br(0) is weakly closed for all
r > 0.

Answer. Note that Br(0) is weakly closed by Theorem 7.1.16. So when K

is weakly closed, K ∩ Br(0) is weakly closed, being an intersection of closed
sets.

For the converse, let {xn} ⊂ K be a Cauchy sequence. Then xn → x ∈
X . As a norm-convergent sequence is bounded, there exists r > 0 such that
∥xn∥ < r for all n. Then {xn} ⊂ K ∩Br(0); this set, being weakly closed, it
is also normed closed, so x ∈ K ∩ Br(0). In particular x ∈ K, which shows
that K is norm closed. As K is convex, Theorem 7.1.16 gives us that K is
weakly closed.

(7.1.17) Let H be a separable Hilbert space and fix an orthonormal
basis {ξn}. Let S ⊂ H be

S = {ξm +mξn : n,m ∈ N}.

Let Sw−seq denote the weak sequential closure of S. Prove that

the inclusion S
w−seq ⊂ S

w−seqw−seq
is proper by showing that

0 ∈ S
w−seqw−seq

\ Sw−seq
.
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Answer. Let {ξmk + mkξnk} be a weakly convergent subsequence of S. By
Proposition 7.1.11, the sequence is bounded. Since ∥ξmk + mkξnk∥ = (1 +
m2
k)1/2 (or 1 + mk if mk = nk) we deduce that mk takes only finitely many

values r1, . . . , rp. As ξn
weak−−−→ 0, this implies that the only possible limit of

the sequence is some ξr. Thus
Sw−seq = S ∪ {ξn}n.

In particular, 0 ̸∈ S
w−seq. On the other hand, since ξn

weak−−−→ 0 as already

mentioned, 0 ∈ S
w−seqw−seq

.

(7.1.18) With S as in Exercise 7.1.17, show that 0 ∈ S
σ(H,H∗).

Answer. Let N be a basic neighbourhood of 0. We have N = {η ∈ H :
|⟨η, νj⟩| < 1, j = 1, . . . , s} for some ν1, . . . , νs ∈ H. Since {ξn} is orthonormal,
we can choose m such that |⟨ξm, νj⟩| < 1

2 , j = 1, . . . , s. And then we can
choose n such that |⟨ξn, νj⟩| < 1

2m , j = 1, . . . , s. Then |⟨ξm + mξn, νj⟩| <
1
2 + 1

2 = 1, and so ξm + mξn ∈ N . If we denote these numbers by mN , nN ,
we get a net {ξmN +mNξnN } in S that converges weakly to 0.

(7.1.19) Let p ∈ (1,∞]. Consider the sequence {gn} ⊂ Lp[0, 1] given by
gn(t) = sgn(sin(πnt)).

Show that {gn} converges weakly to 0, but {gn} does not con-
verge pointwise to 0.

Answer. The fact that gn ̸= 0 a.e. is simply the fact that the sine is nonzero
a.e. As for the weak convergence, given 0 < a < b < 1, the function gn will
have integral equal to zero on any interval

[ 2k−2
n , 2k

n

]
. So all that survives on

the integral are the integrals from a to the closest number 2k−2
n and from the

last 2j
n to b. This gives us ∣∣∣∣ ∫ b

a

gn(t) dt
∣∣∣∣ ≤ 2

n
.

In other words, ⟨gn, 1[a,b]⟩ → 0 for all a < b. This immediately extends to
linear combinations, so ⟨gn, f⟩ → 0 for all step functions f . As step functions
are uniformly dense in the continuous functions, and the continuous functions
are dense in Lq[0, 1], we know that the step functions are dense in Lq[0, 1].
Then, given ε > 0, for any f ∈ Lq[0, 1] there exists a step function f0 such
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that ∥f − f0∥q < ε. This implies that (note that ∥gn∥p ≤ 1 for all n)
lim sup

n
|⟨gn, f⟩| ≤ lim sup

n
|⟨gn, f0⟩| + lim sup

n
∥gn∥ ∥f0 − f∥q ≤ ε.

By the Limsup Routine, ⟨gn, f⟩ → 0.
The pointwise limit already fails at t = 1/2, for the sequence {gn(1/2)}

takes the values 0, 1,−1 infinitely often. Also, when t is irrational the se-
quence {sinnπt}n is dense in [−1, 1], and so the limit does not exist a.e.

(7.1.20) Generalize the idea in Remark 7.1.13 to construct an example
of a weakly-convergent unbounded net in ℓp(N) for p ∈ [1,∞).

Answer. We consider the set R = {n1/qen : n ∈ N}, where q is the
conjugate exponent to p and {en} is the canonical basis. Suppose that
0 ̸∈ R

σ(ℓp(N),ℓq(N)). Then there is a weak-open neighbourhood of 0
W = {f : |⟨gj , f⟩| < 1 : j = 1, . . . , N}

with W ∩ R
σ(ℓp(N),ℓq(N)) = ∅, where we are using Proposition 5.6.3. So for

each n ∈ N we can find an index jn ∈ {1, . . . , N} with
1 ≤ |⟨gjn , n1/qen⟩|.

Then
N∑
j=1

∥gj∥qq =
N∑
j=1

∞∑
n=1

|⟨gj , en⟩|q =
∞∑
n=1

N∑
j=1

|⟨gj , en⟩|q ≥
∞∑
n=1

1
n

= ∞.

It follows that 0 ∈ R
σ(ℓp(N),ℓq(N)).

7.2. The weak∗ topology

(7.2.1) Show that the natural embedding ι : X → X ∗∗ given by ι(x) =
x̂ is a linear isometry.

Answer. Linearity follows from
ι(αx+ y)(g) = g(αx+ y) = αg(x) + g(y) = αι(x)(g) + ι(y)(g), g ∈ X ∗.
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As this works for all g, we we ι(αx+ y) = αι(x) + ι(y).
Isometry: this was already done in (7.2). We have

∥x̂∥ = sup{|x̂(g)| : g ∈ X ∗, ∥g∥ = 1} = sup{|g(x)| : g ∈ X ∗, ∥g∥ = 1} = ∥x∥
by Corollary 5.7.7.

(7.2.2) Show that the sets N(x1, . . . , xk; ε), where x1, . . . , xk ∈ X are
linearly independent and ε > 0, form a base for σ(X ∗,X ).

Answer. We will show that these neighbourhoods generate the same open
sets than the “non-linearly independent” neighbourhoods. If x1, . . . , xn are
linearly dependent, after reordering and removing duplicates we may assume
that the first x1, . . . , xr are linearly independent, and that xr+1, . . . , xn are
linear combinations of those, say

xr+j =
n∑
k=1

cjkxk.

Then, for any φ ∈ X ∗,

|φ(xr+j)| ≤
r∑

k=1
|cjk| |φ(xk)| ≤

(
r∑

k=1
|cjk|

)
max{|φ(xk)| : k = 1, . . . , r}.

If we put c = max{(
∑r
k=1 |cjk|) : j = 1, . . . , n− r}, then

N(x1, . . . , xr; ε/c} ⊂ N(x1, . . . , xn; ε}.
As these “linearly independent” neighbourhoods are also part of the original
base, they generate the same topology.

(7.2.3) Prove Lemma 7.2.2.

Answer. Let φ,ψ ∈ X ∗ with φ ̸= ψ. By definition, this means that there
exists x ∈ X with φ(x) ̸= ψ(x). Let δ = |φ(x) − ψ(x)|/2. The the open sets

Vφ = x̂−1(Bδ(φ(x)), Vψ = x̂−1(Bδ(ψ(x)))
are disjoint, φ ∈ Vφ, ψ ∈ Vψ.

(7.2.4) Prove Proposition 7.2.3.
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Answer. Assume first that φj
weak∗

−−−−→ φ. Fix x ∈ X , and let ε > 0. Since
x̂−1(Bε(φ(x))) is a weak∗-open neighbourhood of φ, there exists j0 such that,
for any j > j0, φj ∈ x̂−1(Bε(φ(x))), which means exactly that |φj(x) −
φ(x)| < ε. So φj(x) → φ(x).

Conversely, if φj(x) → φ(x) for all x ∈ X , let V be a weak∗-open
neighbourhood of φ. Then there exists x0 ∈ X , ε > 0, c ∈ C, such that φ ∈
x̂−1

0 (Bε(c)) ⊂ V . Since φ(x0) ∈ Bε(c), there exists ε′ < ε with Bε′(φ(x0)) ⊂
Bε(c). So φ ∈ x̂−1

0 (Bε′(φ(x0)). Since φj(x0) → φ(x0), there exists j0 such
that, for all j > j0, |φj(x0) − φ(x0)| < ε′, which means that for j > j0 we
have φj ∈ x̂−1

0 (Bε′(φ(x0))) ⊂ V . As V was arbitrary, φj
weak∗

−−−−→ φ.

(7.2.5) Prove Proposition 7.2.6 (Hint: take a good look at the proof of
Proposition 7.1.11). Show also that the completeness of X is
crucial and cannot be dispensed with.

Answer. Let {φn} ⊂ X with φn
weak∗

−−−−→ φ. For any x ∈ X , we have by
definition that φn(x) → φ(x). The numeric sequence {φn(x)} is convergent,
and thus bounded. Then

sup{|φn(x)| : n ∈ N} < ∞
for all x ∈ X . By the Uniform Boundedness Principle (Theorem 6.3.16),
which applies since X is complete ,we get

sup{∥φn∥ : n ∈ N} < ∞.

For the case where X fails to be complete, consider X = c00. Then X ∗ =
ℓ1(N). For each n ∈ N, let φn = n δn, which can be seen as the element
n en ∈ ℓ1(N). Then ∥φn∥ = n, but limn φn(x) = 0 for all x ∈ c00 since x has
only finitely many nonzero entries.

(7.2.6) Let X be a normed space and {φn} a weak∗-convergent net in
X ∗ with φn

weak∗

−−−−→ φ. Show that ∥φ∥ ≤ lim infn ∥φn∥. Find
an example where the inequality is strict.

Answer. We have, by definition of the norm in X ∗,
∥φ∥ = sup{|φ(x)| : x ∈ X , ∥X ∥ ≤ 1}.

For any x ∈ X with ∥x∥ ≤ 1, since |φn(x)| ≤ ∥φn∥, and choosing a subnet
{φnk} such that limk ∥φnk∥ = lim infn ∥φn∥,

|φ(x)| = lim
n

|φn(x)| = lim
k

|φnk(x)| ≤ lim
k

∥φnk∥ = lim inf
n

∥φn∥.
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For an example, it was shown in Example 7.1.6 that an orthonomal basis on
an infinite-dimensional Hilbert space is a sequence {ξn} with ∥ξn∥ = 1 for all
n and ξn

weak−−−→ 0. As Hilbert spaces are reflexive, we also have ξn
weak∗

−−−−→ 0.

(7.2.7) Prove the assertions in Examples 7.2.7.

Answer. For the weak convergence ej
weak−−−→ 0, take x ∈ ℓ1(N). Then

⟨ej , x⟩ =
∑
k

ej(k)xk = xj →c⃝ 2024 Mart́ın Argerami All Rights Reserved 0,

since
∑
k |xk| < ∞.

Now when we consider ej ∈ ℓ1(N), the weak∗-topology is given by the
elements of c0. For x ∈ c0,

⟨ej , x⟩ =
∑
k

ej(k)xk = xj →c⃝ 2024 Mart́ın Argerami All Rights Reserved 0.

For weak convergence, we can now use any x ∈ ℓ∞(N). If we take x = 12N,
then

⟨ej , x⟩ =
{

1, j ∈ 2N

0, j ̸∈ 2N
so the limit doesn’t exist.

Consider, for each n ∈ N, the element yn = 1
n

∑n
j=1 ej ∈ K. For any

x ∈ c0,

⟨y, x⟩ = 1
n

n∑
j=1

⟨ej , x⟩ = 1
n

n∑
j=1

x(j).

Given ε > 0, there exists j0 such that |x(j)| < ε/2 for all j ≥ j0. Then

|⟨yn, x⟩| ≤ 1
n

n0∑
j=1

|x(j)| + 1
n

n∑
n0+1

|x(j)| ≤ 1
n

n0∑
j=1

|x(j)| + ε

2 .

It now follows that, for n big enough, |⟨yn, x⟩| < ε. So ⟨yn, x⟩ → 0. Thus
0 ∈ K

w∗

.
When we consider the weak topology, the dual is ℓ∞(N) and now we

can take x = 1. Now, for any y ∈ K, we have

0 = ⟨0, x⟩ < 1
2 < 1 = 1

n

n∑
j=1

⟨ej , x⟩.

The above says that the functional 1 strictly separates Kw and {0}. Thus
0 ̸∈ K

w.



318 CHAPTER 7

(7.2.8) Let X = ℓ1[0, 1], so that its dual is X ∗ = ℓ∞[0, 1] (see Exer-
cise 5.6.11), and put

M = {x ∈ X ∗ : suppx is countable}.
Show that M is closed in norm and in the weak topology, and
that it is dense in the weak∗-topology.

Answer. Since X ∗ with the norm topology is a metric space, we can deal with
sequences instead of nets. So let {xn} ⊂ M be a Cauchy sequence. As X ∗ is
complete, there exists x = lim xn ∈ X ∗. If Sn denotes the support of xn, put
S =

⋃
n Sn. Then, as x(k) = limn xn(k) for each k (from |x(k) − xn(k)| ≤

∥x−xn∥∞), we have that suppx ⊂ S, which is countable; thus x ∈ M . Then
M is closed in norm. AsM is convex (in fact, it is a subspace), its weak closure
agrees with its norm closure (Theorem 7.1.16), so Mσ(X ∗,X ∗∗) = M = M .

In the weak∗ topology, though, M is dense. To see this, fix z ∈ ℓ∞[0, 1].
A weak∗-neighbourhood of z is of the form

W = {y ∈ ℓ∞[0, 1] : |⟨(y − z), wj⟩| < 1, j = 1, . . . ,m}.
where w1, . . . , wm ∈ ℓ1[0, 1]. Let S =

⋃m
j=1 suppwj , and let x = z|S (that

is, x(k) = z(k) if k ∈ S, and 0 otherwise). Then x ∈ M and x ∈ W (the
latter, because ⟨(x− z), wj⟩ = 0 for all j). This shows that there exists a net
{xα} ⊂ M such that xα → z in the weak∗-topology.

(7.2.9) Let X be a finite-dimensional normed space. Show that X is
reflexive.

Answer. Since dim X < ∞, the closed unit ball is compact (Corollary 5.2.4).
Then the closed unit ball is weakly compact, and X is reflexive by Proposi-
tion 7.2.21.

(7.2.10) Complete the proof of Lemma 7.2.17 by showing that if (i) is
false, then α ̸∈ γ(BX

1 (0)).

Answer. The negation of (i) means that there exists ε > 0 such that for all
x ∈ BX

1 (0) there exists k ∈ {1, . . . , n} with |φk(x) − αk| ≥ ε. Let

d = dist
(
α, γ(BX

1 (0)
)

= dist
(
α, γ(BX

1 (0)
)
.
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Since d is an infimum, there exists x ∈ BX
1 (0) such that ∥α− γ(x)∥ ≤ d+ ε

2 .
By the above there exists k such that |φk(x) − αk| ≥ ε. Then

ε ≤ |φk(x) − αk∥ ≤ ∥γ(x) − α∥ ≤ d+ ε

2 ,

and we obtain that d ≥ ε
2 .

(7.2.11) By Goldstine’s Theorem the unit ball of c0 is weak∗-dense in
the unit ball of ℓ∞(N). Given f ∈ ℓ∞(N) with ∥f∥ ≤ 1, find a
net {gj} ⊂ c0 such that ∥gj∥ = 1 for all j, and gj → f in the
weak∗-topology.

Answer. Define gm = em+1 +
∑m
n=1 f(n) en. Then gm ∈ c0 (it is in c00,

actually). For any x ∈ ℓ1(N),

|⟨f − gm, x⟩| =
∣∣∣(f(m) − 1)x(m) +

∑
n>m+1

f(n)x(n)
∣∣∣ ≤ 2

∑
n>m

|x(n)| −−−−→
m→∞

0

since x ∈ ℓ1(N).

(7.2.12) Let X be a normed space, and φ : X ∗ → C a weak∗-continuous
linear map. Use the Closed Graph Theorem to show that φ is
bounded (This is not hard, though it is not the easiest way to
prove this).

Answer. Let {fn} ⊂ X ∗ such that fn → f and φ(fn) → c. By the weak∗-
continuity,

c = lim
n
φ(fn) = φ(f).

So the graph of φ is closed, and φ is bounded by the Closed Graph Theorem
(Theorem 6.3.12).

(7.2.13) Let X be a normed space and ψ ∈ X ∗∗ nonzero. Show that
there exists {xj} ⊂ X with x̂j

weak∗

−−−−→ ψ and ∥xj∥ = ∥ψ∥ for all
j.

Answer. Assume without loss of generality that ∥ψ∥ = 1. By Theorem 7.2.18
there exists {zj} ⊂ X with ∥zj∥ ≤ 1 and ẑj

weak∗

−−−−→ ψ. Fix ε > 0. By definition
of the norm, there exists g ∈ X ∗ such that ∥g∥ = 1 and ψ(g) ≥ 1 − ε. Since

1 ≥ ∥zj∥ ≥ g(zj) →c⃝ 2024 Mart́ın Argerami All Rights Reserved ψ(g) ≥ 1 − ε,
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there exists j(ε) such that ∥zj∥ ≥ 1 − ε for all j ≥ j(ε). That is, ∥zj∥ → 1.
Then xj = zj/∥zj∥ satisfies ∥xj∥ = 1 and for any g ∈ X ∗

x̂j(g) − ψ(g) = g(zj)
∥zj∥

− g(zj) + g(zj) − ψ(g) →c⃝ 2024 Mart́ın Argerami All Rights Reserved 0.

7.3. Polars and Prepolars

(7.3.1) Show that if X ⊂ X is a subspace, then
Xo = {φ ∈ X ∗ : φ(x) = 0 for all x ∈ X}.

Similarly, show that if Y ⊂ X ∗ is a subspace, then
Yo = {x ∈ X : φ(x) = 0 for all φ ∈ Y }.

Answer. Let φ ∈ Xo. Since X is a subspace, given any x ∈ X we have
nx ∈ X for all n ∈ N. Then

1 ≥ |φ(nx)| = n |φ(x)|.
As n is arbitrary, φ(x) = 0. The other inclusion is trivial.

Similarly, if x ∈ Yo, for any φ ∈ Y we have |φ(x)| ≤ 1. As Y is a
subspace, we get n|φ(x)| ≤ 1 for all n, and so φ(x) = 0.

(7.3.2) Show that[
BX

1 (0)
]o = B1(0)X ∗ ,

[
B1(0)X ∗]

o
= B1(0)X .

Answer. We have[
BX

1 (0)
]o = {φ ∈ X ∗ : |φ(x)| ≤ 1, ∥x∥ ≤ 1}

= {φ ∈ X ∗ : ∥φ∥ ≤ 1} = B1(0)X ∗ .

Similarly, [
B1(0)X ∗]

o
= {x ∈ X : |φ(x)| ≤ 1, ∥φ∥ ≤ 1}

= {x ∈ X : ∥x∥ ≤ 1} = B1(0)X .
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(7.3.3) Prove Proposition 7.3.2.

Answer.

(i) The inequality |φ(x)| ≤ 1 survives convex combinations, multiplica-
tion by scalars of absolute value at most 1, and pointwise limits on
x.

(ii) The inequality |φ(x)| ≤ 1 survives convex combinations, multiplica-
tion by scalars of absolute value at most 1, and pointwise limits on
φ.

(iii) If φ ∈ Xo
2 , then |φ(x)| ≤ 1 for all x ∈ X2; in particular, for all

x ∈ X1, so φ ∈ (X1)o.
(iv) If x ∈ (Y2)o, then |φ(x)| ≤ 1 for all φ ∈ Y2; in particular, for all

φ ∈ Y1. Thus x ∈ (Y1)o.

(v) Let x ∈
(⋃

j Yj

)
o
. If φ =

∑
k tkφk with each φk in some Yj and

tk ≥ 0 for all k,
∑
k tk = 1, then∣∣∣∑

k

φk(x)
∣∣∣ ≤

∑
k

tk|φk(x)| ≤
∑
k

tk = 1.

So x ∈
(

conv
⋃
j

Yj

)
o
. The reverse inclusion is automatic by (iv).

(vi) Let φ ∈
⋃
j X

o
j . Then φ ∈ Xo

j0
for some j0. If x ∈

⋂
j Xj , then

x ∈ Xj0 and so |φ(x)| ≤ 1.
For the reverse inclusion, let X = X ∗ = C. Take X1 = {0, 1},

X2 = {0, 2}. Then X1 ∩ X2 = {0}, so
(⋂

j Xj

)o
= X ∗ = C, while

Xo
1 = D, Xo

1 = 1
2 D.

(vii) Let φ ∈
⋂
j X

o
j . If x ∈

⋃
j Xj , then x ∈ Xj0 for some j0, and

so |φ(x)| ≤ 1 since φ ∈ Xo
j0

. Conversely, if φ ∈
(⋃

j Xj

)o
, then

|φ(x)| ≤ 1 for all x ∈ Xj , for all j. In particular φ ∈ Xo
j for all j.

(viii) The inequality |φ(x)| ≤ 1 is weakly continuous on x (and the weak
closure of the ball agrees with the norm closure by convexity) and
weak∗-continuous on φ.

(7.3.4) Prove Corollary 7.3.5.
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Answer. Since X,Y are subspaces, cbX = X, cbY = Y . If X is dense in
X , by Proposition 7.3.4 (Xo)o = X = X . This says that each functional in
Xo is zero on all of X , so Xo = {0}. Conversely, if Xo = {0} then again by
Proposition 7.3.4 X = (Xo)o = X .

If Y is weak∗-dense in X ∗, then by Proposition 7.3.4 x∗ = Yw∗

= (Yo)o.
This means that every f ∈ x∗ is zero on Yo, so Yo = {0} by Hahn–Banach
(Corollary 5.7.19). Conversely, if Yo = {0}, then by Proposition 7.3.4 Y w

∗

=
(Yo)o = {0}o = X ∗.

(7.3.5) Let X be a normed space, and K ⊂ X a subspace. Show that
Koo = JXK

w∗

, where JX is the usual embedding of X in X ∗∗.

Answer. We have thatKoo is weak∗-closed by Proposition 7.3.2, so JXK
w∗

⊂
Koo. Conversely, let Φ ∈ Koo \ JXK

w∗

be nonzero. By geometric Hahn–
Banach (Theorem 5.7.18) and Proposition 7.2.10, there exists φ ∈ X ∗ such
that Φ(φ) = 1 and φ|K = 0. But then φ ∈ Ko and Φ ̸∈ Koo, a contradiction.
Thus Koo = JXK

w∗

.

7.4. Spaces of Continuous Functions

(7.4.1) Show that C0(T ) is complete.

Answer. This is the usual argument that uniform convergence of continuous
functions is continuous, together with the vanishing at infinity part.

So let {fn} ⊂ C0(T ) be Cauchy. As {fn(t)} is Cauchy for every t ∈ T
and C is complete, from |fn(t) − fm(t)| ≤ ∥fn − fm∥∞ we deduce that the
pointwise limit f(t) = limn fn(t) exists. And the convergence is uniform: if
ε > 0 is given and ∥fn − fm∥ < ε when n,m are big enough,

|(f(t) − fm(t)| = lim
n

|fn(t) − fm(t)| ≤ lim sup
n

∥fn − fm∥ < ε.

Fix ε > 0 and s ∈ T . There exists n such that ∥f − fn∥ < ε/3. As fn is
continuous, there exists δ > 0 such that |fn(t) − fn(s)| < ε/3 if |t − s| < δ.
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In such case,
|f(t) −f(s)| ≤ |f(t) −fn(t)| + |fn(t) −fn(s)| + |fn(s) −f(t)| < ε

3 + ε

3 + ε

3 = ε.

So f is continuous. Similarly, there exists K ⊂ T compact with |fn| < ε/2
on T \K. Then, for t ∈ T \K,

|f(t)| ≤ |f(t) − fn(t)| + |fn(t)| < ε

3 + ε

2 < ε.

So f vanishes at infinity, which shows that f ∈ C0(T ) and, as a consequence,
that C0(T ) is complete.

(7.4.2) Show that if T is locally compact Hausdorff, then C0(T ) sep-
arates points: that is, given s, t ∈ T with s ̸= t, there exists
f ∈ C0(T ) with f(s) ̸= f(t).

Answer. As T is Hausdorff, there exists V open with s ∈ V , t ̸∈ V . Applying
Urysohn’s Lemma with K = {s} and V , there exists f ∈ Cc(T ) with f(s) = 1
and f(t) = 0.

(7.4.3) Show that if X,Y are topological vector spaces, the following
statements are equivalent:

(i) CR(X) and CR(Y ) are isomorphic as rings;
(ii) CR(X) and CR(Y ) are isomorphic as real algebras.

Answer. Only one implication needs to be proven. So suppose that Γ :
CR(X) → CR(Y ) is a ring isomorphism. For any n ∈ N we have Γ(nf) =
Γ(f + · · · + f) = nΓf . We also have, for n ∈ N, Γ((−n)f) + Γ(nf) = Γ0 =
0, so Γ((−n)f) = −Γ(nf) = (−n)Γf . For nonzero m ∈ Z, mΓ(f/m) =
Γ(mf/m) = Γf . Hence for any q ∈ Q, written as q = n/m,

Γ(qf) = Γ((m/n)f) = m

n
Γf = q Γf.

If f ≥ 0, we can write f = g2 with g =
√
f . Then Γf = Γ(g2) = (Γg)2 ≥ 0.

So Γ preserves order. Fix r ∈ R and sequences {pn}, {qn} ⊂ Q with pn ↗ r,
qn ↘ r. For any f ≥ 0 we have pnf ≤ rf ≤ qnf . Then

pnΓf = Γ(pnf) ≤ Γ(rf) ≤ Γ(qnf) = qnΓf.
Taking limit we get rΓf ≤ Γ(rf) ≤ rΓf and so Γ(rf) = rΓf . For arbitrary
f we can write f = f+ − f− and the additivity of Γ gives Γ(rf) = Γ(rf+) −
Γ(rf−) = rΓf ; so Γ is real linear.
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(7.4.4) Show that the function d defined on (7.22) is indeed a metric,
and that it induces the topology of T .

Answer. If d(t, s) = 0, then fn(t) = fn(s) for all n; using the density,
f(t) = f(s) for all f ∈ C(T ). Then by Urysohn’s Lemma (Theorem 2.6.5),
s = t. The triangle inequality follows directly:

d(t, s) =
∞∑
n=1

2−n |fn(t) − fn(s)|

≤
∞∑
n=1

2−n |fn(t) − fn(r)| + |fn(r) − fn(s)|

=
∞∑
n=1

2−n |fn(t) − fn(r)| +
∞∑
n=1

|fn(r) − fn(s)|

= d(t, r) + d(r, s).
There is no issue manipulating the series as they converge absolutely and
uniformly. That d(t, s) = d(s, t) follows from |fn(t) −fn(s)| = |fn(s) −fn(t)|.
So d is a distance.

If d(tj , t) → 0, then for each n we have fn(tj) → fn(t). Fix ε > 0; as
{fn} is dense in the unit ball, if f ∈ C(T ) and ∥f∥ ≤ 1 then there exists n
such that ∥f − fn∥ < ε. Then

|f(tj) − f(t)| ≤ ∥f(tj) − fn(tj)| + |fn(tj) − fn(t)| + |fn(t) − f(t)|

≤ 2∥f − fn∥ + |fn(tj) − fn(t)|.
Then lim supj |f(tj)−f(t)| ≤ 2ε. As ε was arbitrary, we get limj f(tj) = f(t).
This also works for arbitrary f ∈ C(T ) as we can scale it into the unit ball.
Then tj → t by Urysohn’s Lemma (Theorem 2.6.5).

Conversely, suppose that tj → t. Fix ε > 0 and choose n0 such that we
have

∑
n>n0

2−n < ε/4. Choose j0 such that, for j ≥ j0, |fn(tj)−fn(t)| < ε/2,
n = 1, . . . , n0. Then, when j ≥ j0,

d(tj , t) =
n0∑
n=1

2−n |fn(tj)−f(t)|+
∑
n>n0

2−n |fn(tj)−f(t)| ≤
n0∑
n=1

2−n ε
2 + ε

2 ≤ ε.

Thus d(tj , t) → 0.

(7.4.5) Prove that a compact metric space is separable.
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Answer. For each n, we have T ⊂
⋃
t∈T B1/n(t). By compactness, there exist

tn,1, . . . , tn,k(n) such that for each t ∈ T there exists j with |t − tn,j | < 1/n.
Then

⋃
n{tn,1, . . . , tn,k(n)} is countable and dense.

(7.4.6) Let {ks}s∈R ⊂ C0(R) be the family of functions ks(t) = st(1 +
s2t2)−1. Show that the algebra generated by {ks} dense in
C0(R).

Answer. We want to apply Stone–Weierstrass. The functions are real-valued,
so A is selfadjoint. They separate points, for if x ̸= y, we can assume without
loss of generality that x ̸= 0 (otherwise, switch roles) and consider k1(x) ̸= 0;
since ks(t) −−−→

s→∞
0 we may choose s so that ks(y) < |k1(x)|. So the algebra

A generated by the {ks} and 1 is selfadjoint, and it separates points; but
it does not vanish nowhere! Indeed, as ks(0) = 0 for all s, we have that
g(0) = 0 for all g ∈ A. Then if f(t) = 1

1+t2 , for instance, f ∈ C0(R) and
∥f − g∥∞ ≥ f(0) − g(0) = 1.

(7.4.7) Let S, T be locally compact Hausdorff spaces. Show that
C0(S × T ) ≃ span∥·∥ C0(S)C0(T ),

where the isomorphism consists of identifying each product fg
with the function (s, t) 7−→ f(s)g(t).

Answer. If we write α(f, g) for the function (s, t) 7−→ f(s)g(t) as above, let
A = span{α(f, g) : f ∈ C0(S), g ∈ C0(T )}.

It is clear that A is an algebra, for α(f1, g1)α(f2, g2) = α(f1f2, g1g2). Suppose
first that S, T are compact. Then S×T is compact. We have 1 = α(1, 1) ∈ A.
Also, A is selfadjoint for α(f, g)∗ = α(f∗, g∗). And, given (s1, t1), (s2, t2) ∈
S×T by Urysohn’s Lemma there exists f ∈ C0(S) with f(s1) = 1, f(s2) = 0.
Then α(f, 1) takes the value 1 at (s1, t1), and 0 at (s2, t2). Then Stone–
Weierstrass guarantees that A is dense in C(S × T ).

When at least one of S and T is not compact, given (s, t) ∈ S × T we
can still get f ∈ C0(S) and g ∈ C0(T ) with f(s) = g(1) = 1. Then α(f, g) is
nonzero at (s, t) and so A separates points.

(7.4.8) Show that c0 = C0(N).
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Answer. We know that c0 = {g : N → C : limn g(n) = 0}. The compact
sets in N are the finite sets, so g ∈ C0(N) if and only if limn g(n) = 0.

(7.4.9) Show that the bounded set R = {f ∈ C([0, 1] : 0 ≤ f ≤
1, f |[ 1

2 ,1] = 0} in C[0, 1] admits no supremum.

Answer. Let g be an upper bound for R. Then g ≥ 1 on [0, 1/2] and g ≥ 0
on [1/2, 1]. As g(1/2) ≥ 1 and g is continuous, there exists δ > 0 such that
g(t) ≥ 1

2 for all t ∈ ( 1
2 ,

1
2 + δ). Use Urysohn’s Lemma to construct h ∈ C[0, 1]

with 0 ≤ h ≤ 1
4 , h = 0 outside of ( 1

2 ,
1
2 + δ), and h(1/2 + δ/2) = 1/4. Then

g − h ≤ g, g − h ≥ 1 on [0, 1
2 ] and g − h ≥ 0 on [1/2, 1]. So g − h is an upper

bound for R and so g cannot be a least upper bound.

(7.4.10) Let T be an extremally disconnected topological space, and
U, V ⊂ T disjoint open subsets. Show that U ∩ V = ∅.

Answer. Because T is extremally disconnected, both U and V are open.
From Exercise 1.8.32 we get U ∩ V = ∅. And as U is open, we can apply
Exercise 1.8.32 again to get U ∩ V = ∅.

(7.4.11) Prove Lemma 7.4.29 by modifying the proof of Lemma 5.7.3
appropriately.

Answer. Since v0 and Z are linearly independent, Z +Rv0 = {cv0 + z : c ∈
R, z ∈ Z}. Fix z1, z2 ∈ Z; then

S(z1 + z2) ≤ q(z1 + z2) ≤ q(z1 + v0) + q(z2 − v0),
and we deduce that

S(z2) − q(z2 − v0) ≤ −S(z1) + q(z1 + v0) (AB.7.1)
This can be done for all z1, z2 ∈ Z, so by the order-completeness of C(T )

(via Proposition 7.4.27) we conclude that there exists d ∈ CR(T ) with
d = sup{S(z2) − q(v0 − z2) : z2 ∈ Z}.

By (AB.7.1) we also have
d ≤ inf{−S(z1) + q(v0 + z1) : z1 ∈ Z}.
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Now define the linear map S̃(cv0 + z) = cd + Sz. Then ran S̃ ⊂ CR(T ) and
S̃|Z = S. Fix c ∈ R \ {0}, z ∈ Z. Suppose first that c > 0. Then

S̃(cv0 + z) = cd+ Sz = c
(
d+ S

(
z

c

))
≤ c

(
−S
(
z

c

)
+ q
(
v0 + z

c

)
+ S

(
z

c

))
= q(cv0 + z).

Similarly, if c < 0,

S̃(cv0 + z) = cd+ Sz = (−c)
(

−d+ S
(
z

−c

))
≤ (−c)

(
−S
(
z

−c

)
+ q
(
z

−c
− v0

)
+ S

(
z

−c

))
= q(cv0 + z).

(7.4.12) Prove Proposition 7.4.30 by modifying the proof of Theorem 5.7.4
appropriately.

Answer. Let F be the family of all (W ′, S′), where W ′ is a subspace of V with
W ⊂ W ′, S′ : W ′ → CR(T ) extends S and S′(x) ≤ q(x) for all x ∈ W ′; the
family F is trivially nonempty as (W,S) ∈ F . In F , we consider the partial
order (W1, S1) ≤ (W2, S2) if W1 ⊂ W2 and S2|W1 = S1. Let {(Wj , Sj)} be a
chain in F ; put W ′ =

⋃
jWj , which being an increasing union of subspaces is

a subspace of V , and let S′ : W ′ → CR(T ) be given by S′x = Sjx if x ∈ Wj .
The compatibility given by the order guarantees that S′ is well-defined. It
is clear that (W ′, S′) ∈ F and it is an upper bound for the chain. Then, by
Zorn’s Lemma there exists a maximal element (Z, S̃) in F . If Z ⊊ V , we can
use Lemma 5.7.3 to contradict the maximality of (Z, S̃). So Z = V and S̃ is
the desired extension. The condition S̃ ≤ q comes for free since every element
in F satisfies it.

(7.4.13) Prove Theorem 7.4.31 by adapting the proof of Theorem 5.7.5
appropriately.

Answer. In the real-valued case, we use Proposition 7.4.30 to get S̃ : V →
CR(T ) with S̃|W = S and S̃(x) ≤ q(x) for all x ∈ V . Because q is a seminorm
and thus q(−x) = q(x), for any x ∈ V we have the inequality S̃(−x) ≤
q(−x) = q(x); this we may write as −q(x) ≤ S̃(x). Together with S̃(x) ≤
q(x), this gives us |S̃x(t)| ≤ q(x) for all t ∈ T and hence ∥S̃x∥∞ ≤ q(x).

Now consider the complex case. Let S1 be the real-valued, real-linear
map given by (S1x)(t) = Re (Sx)(t), t ∈ T . Then |(S1x)(t)| ≤ |(Sx)(t)| ≤
q(x) for all x ∈ W and t ∈ T , so we can apply the previous part of the proof to
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obtain S̃1 : V → CR(T ) with S̃1|W = ReS and |S̃1(x)| ≤ q(x) for all x ∈ W .
Using Lemma 5.7.1 (note that pointwise evaluation of a function is a linear
functional), define a new map (S̃x)(t) = (S̃1x)(t)−i (S̃1(ix))(t), t ∈ T . Then,
if x ∈ W , (S̃x)(t) = Re (Sx)(t) − iRe (S(ix))(t) = (Sx)(t). Now fix x ∈ V .
Let |(S̃x)(t)| eiθ = (S̃x)(t) be the polar form of the complex number (S̃x)(t).
Then |(S̃x)(t)| = e−iθ (̃Sx)(t) = (S̃(e−iθx))(t). Since (Re S̃(e−iθx))(t) ≤
q(eiθx) = q(x),

|(S̃x)(t)| = (S̃(e−iθx))(t) = (Re S̃(e−iθx))(t) ≤ q(x).

(7.4.14) Let T be a discrete topological space. Show that βT is ex-
tremally disconnected without using Proposition 7.4.34. To
show that an open set V ⊂ βT has open closure, consider the
function f = 1V ∩δ(T ) ∈ C(δ(T )).

Answer. Let V ⊂ βT be open and let f : T → C be f = 1δ−1(V ∩δ(T )) =
1V ∩δ(T ) ◦ δ. Then f is continuous since T is discrete and every function is
continuous. By the universal property (7.18) of the Stone–Čech compactifi-
cation there exists f̃ ∈ C(βT ) with f̃ ◦ δ = f . If v ∈ V , there exists a net
{vj} ⊂ V ∩ δ(T ) with vj → v. Then

f̃(v) = lim
j
f(δ−1(vj)) = 1V ∩δ(T )(vj) = 1.

By the continuity, f̃(v) = 1 for all v ∈ V . Conversely, if w ∈ βT \ V then
there exists a net {wj} ⊂ δ(T ) with wj ̸∈ V . Then

f̃(w) = lim
j
f(δ−1(wj)) = 1V ∩δ(T )(wj) = 0.

Thus f̃ = 1V , As f only takes the values 0 and 1 and f̃ is a limit of values of f ,
we also have that f̃ only takes the values 0 and 1. Then V = (f̃)−1(B1/2(1))
is open and βT is extremally disconnected.
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7.5. Convexity

(7.5.1) Show that ϕ : Y → R is convex if and only if

ϕ
( n∑
j=1

tjyj

)
≤

n∑
j=1

tj ϕ(yj) (7.1)

for all y1, . . . , yn and all t1, . . . , tn ∈ [0, 1] with
∑
j tj = 1.

Answer. The converse is just the case n = 2. So suppose that ϕ is convex,
y1, . . . , yn ∈ Y, t1, . . . , tn ∈ [0, 1], and

∑
j tj = 1. We may assume without

loss of generality that tj > 0 for all j. The proof goes by induction. The case
n = 2 is the hypothesis. So assume that (7.1) holds for n − 1. Then, with
c =

∑n−1
k=1 tk, the numbers t1/c, . . . , tn/c are convex coefficients and thus

ϕ
( n∑
j=1

tjyj

)
= ϕ

(
tnyn +

n−1∑
j=1

tjyj

)
= ϕ

(
(1 − c)yn + c

n−1∑
j=1

(tj/c)yj
)

≤ (1 − c)ϕ(yn) + c ϕ
( n−1∑
j=1

(tj/c)yj
)

≤ (1 − c)ϕ(yn) + c

n−1∑
j=1

(tj/c)ϕ(yj) =
n∑
j=1

tjϕ(yj).

An alternative proof can be obtained by defining
Cϕ = {(y, r) : ϕ(y) ≤ r}.

One then uses the convexity of ϕ to show that Cϕ is convex. Then one
considers the point (yj , ϕ(yj)) ∈ Cϕ, and by the convexity of Cϕ(∑

j

tjyj ,
∑
j

tjϕ(yj)
)

∈ Cϕ.

Which is precisely ϕ
(∑n

j=1 tjyj

)
≤
∑n
j=1 tj ϕ(yj).

(7.5.2) Show that if X locally is convex, then any extreme point of the
convex set K ⊂ X is a boundary point of K.
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Answer. It is enough to show that interior points are not extreme. Suppose
that x ∈ K is interior. Then there exists an open, convex, balanced, neigh-
bourhood of 0 such that x + V ⊂ K. Let y ∈ V . Then x ± y ∈ x + V ⊂ K,
and

x = 1
2 (x+ y) + 1

2 (x− y),
so x is not extreme.

(7.5.3) Let X be a real or complex vector space and Y ⊂ X . Show
that conv Y is the smallest convex subset of X that contains
Y .

Answer. Let Z ⊂ X be convex with Y ⊂ Z. The convexity of Z guarantees
that conv Y ⊂ Z. Then conv Y ⊂

⋂
{Z : convex, Y ⊂ Z}. As conv Y is

itself one of the Z, we get

conv Y =
⋂

{Z : convex, Y ⊂ Z}.

(7.5.4) Prove Proposition 7.5.8.

Answer. It is not obvious how to go directly from (ii) to (iii) without passing
through (i). So we take the less direct approach.

(i) =⇒ (ii) This is the definition of extreme point.
(ii) =⇒ (i) Suppose that x = ty′+(1−t)z′ with t ∈ (0, 1) and y′, z′ ∈ X .

Suppose, without loss of generality, that t > 1
2 . Let y = y′ and z = 2x − y′.

We have, by convexity,
z = 2x− y′ = (2t− 1)y′ + 2(1 − t)z′ ∈ K.

Note that the condition t > 1
2 guarantees that 2t− 1 and 2(1 − t) are convex

coefficients. By definition
x = 1

2 (y + z),
so by hypothesis that y = z = x. As y′ = y, we have

z′ = x− ty

(1 − t) = (1 − t)y
(1 − t) = y = x.

Thus x is extreme.
(i) =⇒ (iii) If y, z ∈ K \ {x} and t ∈ [0, 1], then ty + (1 − t)z ̸= x since

x is extreme; so ty + (1 − t)z ∈ K \ {x}.
(iii) =⇒ (i) Suppose that x is not extreme. The there exist t ∈ (0, 1)

and y, z ∈ K \ {x} with x = ty + (1 − t)z. Then K \ {x} is not convex.
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(7.5.5) Let C ⊂ Rn be convex, and w ∈ Rn \ C. Show that there
exists v ∈ Rn with ∥v∥ = 1 and α ∈ R such that ⟨w, v⟩ ≤ α
and ⟨z, v⟩ ≥ α for all z ∈ C. This can be done via Hahn–
Banach, but an elementary proof is desired.

Answer. The closure C of C is convex and the result follows if we prove it
for C. So we may assume without loss of generality that C is closed. Because
C is closed the distance between w and C is attained (proof: there should be
elements that are at almost the distance from w; take a closed ball centered
on w that contains these points, and by cutting C with this ball we may
assume that C is compact, and a sequence of points approaching the distance
will have a limit; or use Lemma 4.3.4).

Let c ∈ C with ∥w − c∥ = dist(w,C). Put v0 = w − c. For any z ∈ C
we have ∥w − z∥ ≤ ∥w − c∥. For any z ∈ C and t ∈ (0, 1) we have ∥w − c∥ ≤
∥w− (tc+ (1 − t)z)∥. Using that w− (tc+ (1 − t)z) = w− c+ (1 − t)(c− z),

∥w − c∥2 ≤ ∥w − c+ (1 − t)(c− z)∥2

= ∥w − c∥2 + (1 − t)2∥c− z∥2 + 2⟨w − c, (1 − t)(c− z)⟩.
This simplifies, as t < 1, to

⟨w − c, c− z⟩ ≥ −1
2 (1 − t)∥c− z∥2.

As t can be chosen arbitrarily close to 1, this gives ⟨w − c, c − z⟩ ≥ 0 for
all z ∈ C. This gives us ⟨v0, z⟩ ≤ ⟨v0, c⟩ for all z ∈ C. Put v = −v0 and
α = ⟨v, c⟩. Then ⟨v, z⟩ ≥ α and

⟨v, w⟩ = ⟨v, w − c⟩ + ⟨v, c⟩ = −∥w − c∥2 + α ≤ α.

Finally, we can replace v with v/∥v∥ and α with α/∥v∥.

(7.5.6) Let K ⊂ Rn be compact and convex. Show that K has an ex-
treme point. (Hint: choose to points that realize the diameter,
and show that they are extreme).

Answer. We use the Euclidean norm, so Rn is a real Hilbert space. Let D =
sup{∥x− y∥ : x, y ∈ K}. Since K is compact this has to be a maximum. So
there exist x, y ∈ K such that D = ∥x−y∥. Now suppose that x = 1

2 x1+ 1
2 x2.

Then ∥x1 − y∥ ≤ D = ∥x− y∥ and similarly ∥x2 − y∥ ≤ ∥x− y∥. Then, using
the Parallelogram Identity (4.2), that still works in a real inner product space,

2∥x− y∥2 ≥ ∥x1 − y∥2 + ∥x2 − y∥2 = 1
2 ∥x1 + x2 − 2y∥2 + 1

2 ∥x1 − x2∥2

= 2∥x− y∥2 + ∥x1 − x2∥2.
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It follows that ∥x1 − x2∥ = 0, so x1 = x2 and x is extreme.

(7.5.7) A hyperplane is a subset H ⊂ R of the form z + V , where
V ⊂ Rn is subspace of dimension n− 1. Show that H ⊂ Rn is
a hyperplane if and only if there exist α ∈ R and v ∈ Rn such
that H = {x ∈ Rn : ⟨x, v⟩ = α}.

Answer. Suppose that H = z + V . As dimV = n − 1, we have that
dimV ⊥ = 1. So V ⊥ = R v for some unit vector v. For any w ∈ H we have
w − z ∈ V , so ⟨w − z, v⟩ = 0. Let α = ⟨z, v⟩. Then ⟨w, v⟩ = α. And if
⟨w, v⟩ = α, then ⟨w − z, v⟩ = 0, which implies that w − z ∈ V .

Conversely, suppose that H = {x ∈ Rn : ⟨x, v⟩ = α}. Let V = {x ∈
Rn : ⟨x, v⟩ = 0. This is a subspace of dimension n − 1. Fix h0 ∈ H and
v0 ∈ V , and let z = h0 − v0. For any x ∈ H,

⟨x− z, v⟩ = ⟨x, v⟩ − ⟨h0, v⟩ + ⟨v0, v⟩ = α− α+ 0 = 0.
So x − z ∈ V , and so x ∈ z + V . And this also works the other way, if
x = z + w with w ∈ V , then ⟨x, v⟩ = α so x ∈ H. That is, H = z + V .

(7.5.8) Let C ⊂ Rn be convex. A supporting hyperplane for C is
a hyperplane H ⊂ Rn such that

(a) C is on one of the two half-spaces determined by H; namely,
there exists α ∈ R such that ⟨x, y⟩ ≥ α for all x ∈ C and
y ∈ H;

(b) H ∩ ∂C ̸= ∅.

Show that for each x ∈ ∂C, there exists a supporting hyper-
plane H for C such that x ∈ H.

Answer. If we provide H for C, it works for C as well. For each n ∈ N there
exists v ∈ B1(0) such that xn = x+ 1

n v ̸∈ C. Apply Exercise 7.5.5 to xn and
C; so there exists αn ∈ R and vn ∈ Rn such that

⟨xn, vn⟩ ≤ αn, ⟨z, vn⟩ ≥ αn, z ∈ C.

From ∥vn∥ = 1 we get αn ≤ ⟨x, vn⟩ ≤ ∥x∥. And

αn ≥ ⟨xn, vn⟩ ≥ −∥xn∥ ∥vn∥ ≥ (−∥x∥ − 1
n

) ≥ (−∥x∥ − 1).

If follows that {αn} is a bounded sequence, and so it admits a convergent
subsequence to an element α. Also, as ∥vn∥ = 1 for all n, the sequence {vn}
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admits a convergent subsequence to an element v. Then, as xn → x,
⟨x, v⟩ ≤ α, ⟨z, v⟩ ≥ α, z ∈ C.

Now let β = ⟨x, v⟩ and let H be the hyperplane H = {y ∈ Rn : ⟨y, v⟩ = β}.
Then x ∈ H and for any z ∈ C we have ⟨z, v⟩ ≥ α ≥ β.

(7.5.9) Let C ⊂ Rn be convex, x ∈ ∂C and H a supporting hyperplane
for C at x. Show that H is convex and that Ext(H ∩ C) ⊂
ExtC.

Answer. If H = {x : ⟨x, v⟩ = α} and h1, h2 ∈ H, t ∈ [0, 1],
⟨th1 + (1 − t)h2, v⟩ = t⟨h1, v⟩ + (1 − t)⟨h2, v⟩ = tα+ (1 − t)α = α,

andH is convex. ThenH∩C is convex. Let x ∈ Ext(H∩C). If x = ty+(1−t)z
with y, z ∈ C and t ∈ [0, 1], we have

α = ⟨x, v⟩ = t⟨y, v⟩ + (1 − t)⟨z, v⟩ ≥ tα+ (1 − t)α = α.

This forces ⟨y, v⟩ = ⟨z, v⟩ = α, and so y, z ∈ H ∩C. But then y = z = x, and
x ∈ ExtC.

(7.5.10) In Example (7.5.1), show that K is convex and establish ExtK.

Answer. The proof depends on how one defines what a regular polygon is.
So we will stay with an intuitive argument. The convexity is clear, as any
points joined by a segment will have the segment inside the closure of the
polygon.

Regarding extreme points, for any x ∈ intK, any line through it will
touch the boundary at two points: then x is a convex combination of those
two points, and thus not extreme.

Any point in the middle of an edge in the boundary is a convex combi-
nation of the corresponding two vertices, so not extreme.

Any line through a vertex either goes into K, or along an edge, or
doesn’t touch K other than at the vertex. In all three cases the vertex cannot
be in between two points of K. So vertices are extreme.

(7.5.11) In Example (7.5.2), show that K is convex and establish ExtK.
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Answer. For the convexity, suppose that t ∈ (0, 1) and v2 +w2 ≤ 1, u2 +z2 ≤
1. With x = (v, w), y = (u, z), we have ∥x∥ ≤ 1, ∥y∥ ≤ 1. Then

∥tx+ (1 − t)y∥ ≤ t∥x∥ + (1 − t)∥y∥ ≤ t+ 1 − t = 1,
so tx+ (1 − t)y is in the unit disk.

For the extreme points, if ∥x∥ < 1, then x = t x′ + (1 − t) 0, where
t = ∥x∥ and x′ = x/t. So only the circle can have extreme points. And if
∥x∥ = 1 and x = ty + (1 − t)z with ∥y∥ ≤ 1, ∥z∥ ≤ 1, then

1 = ∥x∥ ≤ t∥y∥ + (1 − t)∥z∥ ≤ 1,
which forces ∥y∥ = 1 and ∥z∥ = 1. Now we have

1 = ∥ty + (1 − t)z∥2 = t2 ∥y∥2 + (1 − t)2 ∥z∥2 + 2t(1 − t) ⟨y, z⟩

≤ t2 + (1 − t)2 + 2t(1 − t) = (t+ 1 − t)2 = 1.
In particular we get ⟨y, z⟩ = ∥y∥ ∥z∥. By Theorem 4.2.2, there exists c ∈ R
with y = cz. Then |c| = 1. And x = ty + (1 − t)cy forces c = 1 as above.
Then y = z = x and x is extreme.

(7.5.12) In Example (7.5.3), show that K is closed, convex and establish
ExtK.

Answer. K is closed, since its complement is {(x, y) : y < 0}. Given such
(x, y), the ball B−y/2(x, y) is entirely contained in {(x, y) : y < 0}, which is
then open.

Convexity: if y ≥ 0 and w ≥ 0, then ty + (1 − t)w ≥ 0 for all t ∈ [0, 1].
So t(x, y) + (1 − t)(v, w) = (tx+ (1 − t)v, ty + (1 − t)w) ∈ K.

Extreme points: given any (x, y) ∈ K we have
(x, y) = 1

2 (x− 1, y) + 1
2 (x+ 1, y),

so (x, y) is not extreme.

(7.5.13) In Example (7.5.4), show that K is convex and establish ExtK.

Answer. Convexity: if y > 0 and w > 0, then ty + (1 − t)w > 0 for all
t ∈ [0, 1]. So t(x, y) + (1 − t)(v, w) = (tx + (1 − t)v, ty + (1 − t)w) ∈ K. If
y > 0, then

t(x, y) + (1 − t)(x1, 0) = (tx+ (1 − t)x1, ty).
For t = 0, we get (x1, 0) ∈ K. For t > 0, the second coordinate is ty > 0, so
t(x, y) + (1 − t)(x1, 0) ∈ K.
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Extreme points: given any (x, y) ∈ K with y > 0 we have
(x, y) = 1

2 (x− 1, y) + 1
2 (x+ 1, y),

so (x, y) is not extreme. Suppose that (x1, 0) = t(x, y)+(1− t)(v, w) for some
t ∈ (0, 1]; if y > 0 and w > 0, we get the impossible equality ty+(1−t)w = 0.
So y = w = 0. We also have x1 = tx1 + (1 − t)v, so (1 − t)x1 = (1 − t)v and
v = x1. Thus (x1, 0) is extreme.

(7.5.14) Show that, in the complex plane ExtD = T.

Answer. This is of course the same as Exercise 7.5.11, but we include here
an argument using the language of complex numbers.

Write λ = reiθ. If r < 1, let δ = 1−r
2 . Then

λ = 1
2 (r + δ)eiθ + 1

2 (r − δ)eiθ

so λ is not extreme.
When r = 1, if eiθ = α+ β with |α| ≤ 1 and |β| ≤ 1, then

1 = |eiθ| ≤ 1
2 |α| + 1

2 |β| ≤ 1,
so |α| = |β| = 1. We would have eiθ = 1

2 e
iη + 1

2 e
iν , which we may write as

1 = 1
2 e

i(η−θ) + 1
2 e

i(ν−θ).

The real part of this equality is 1 = 1
2 cos(η − θ) + 1

2 cos(ν − θ). As both
cosines are at most 1, we obtain 1 = cos(η − θ) = cos(ν − θ), which gives
η = θ + 2kπ, ν = θ + 2jπ, and thus α = β = λ.

(7.5.15) In Example (7.5.9), show that K is convex and establish ExtK.

Answer. Any unit ball with respect to a norm will be convex: if ∥f∥, ∥g∥ ≤ 1,
then

∥tf + (1 − t)g∥ ≤ t∥f∥ + (1 − t)∥g∥ = 1 + 1 − t = 1.
As for the extreme points, if f ∈ C0(R) and ∥f∥ ≤ 1. Given ε = 1

2 , there
exists n such that |f(x)| < 1

2 for all |x| ≥ n. Let g ∈ C0(R) be continuous,
with supp g ⊂ [n, n + 1] and ∥g∥ = 1

2 . Then |f ± g| ≤ 1, and so f =
1
2 (f + g) + 1

2 (f − g) with f ± g ∈ C0(R), and so f is not extreme.

(7.5.16) In Example (7.5.10), show that K is convex and establish
ExtK.
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Answer. Suppose first that δt = 1
2 µ1 + 1

2 µ2 (it is enough to use t = 1
2

by Proposition 7.5.8). Because δ is nonnegative, we immediately see that
Imµj = 0, j = 1, 2; and by the Hahn Decomposition (Theorem 2.10.13) we
conclude that µ1, µ2 are positive. Recall from Theorem 2.9.2 that µ1 and
µ2 are regular. Let C ⊂ T be closed, with t ̸∈ C. By Urysohn’s Lemma
(Theorem 2.6.5) there exists g ∈ C(T ) with g(t) = 0 and g|C = 1. Then

0 = g(t) = δtg = 1
2 µ1(C) + 1

2 µ2(C).

So µ1(C) = µ2(C) = 0. As by regularity we can write T \{t} as an increasing
union of compactsKn with t ̸∈ Cn, it follows that µ1 = µ2 = δt. If we consider
instead λδt, the above argument carries the same. So λδt : |λ| = 1} ⊂ ExtK.

Conversely, suppose that supp |µ| contains at least two points t1 and
t2. By definition of support there exist open sets V1, V2 with |µ|(V1) > 0,
|µ|(V2) > 0. Let t = |µ|(V1) ∈ (0, 1). Define measures

η1 = t−1 µ|V1 , η2 = (1 − t)−1 µ|V2 .

Then ∥ηj∥ = |ηj |(T ) ≤ 1, j = 1, 2, and
µ = t η1 + (1 − t) η2

and µ is not extreme.

(7.5.17) Prove Proposition 7.5.6.

Answer. A simple observation is that if ∥x∥ ≤ 1, ∥y∥ ≤ 1, and ∥tx + (1 −
t)y∥ = 1 for some t ∈ (0, 1), then ∥x∥ = ∥y∥ = 1. This follows from

1 = ∥tx+ (1 − t)y∥ ≤ t∥x∥ + (1 − t)∥y∥ ≤ t+ 1 − t = 1.
Then t(1 − ∥x∥) + (1 − t)(1 − ∥y∥) = 0, and as this is sum of nonnegative
terms, they both have to be zero and hence ∥x∥ = ∥y∥ = 1.

One can show that (i) (in the form “∥(u+ v)/2∥ = 1 for ∥u∥ = ∥v∥ = 1
implies u = v”) is equivalent to

∥x∥ = ∥y∥ = 1, ∥tx+ (1 − t)y∥ = 1 =⇒ x = y (AB.7.2)
(proof at the end).

(i) =⇒ (ii): if we have ∥x+ y∥ = ∥x∥ + ∥y∥, we can rewrite this as∥∥∥ ∥x∥
∥x∥ + ∥y∥

x

∥x∥
+ ∥y∥

∥x∥ + ∥y∥
y

∥y∥

∥∥∥ = 1.

Now (AB.7.2) applies and we get that x/∥x∥ = y/∥y∥.
(ii) =⇒ (iii): let ϕ ∈ X∗ and x, y ∈ X with ϕ(x) = ∥x∥, ϕ(y) = ∥y∥.

By scaling x and y if needed, we may assume that ∥ϕ∥ = 1. Then
∥x∥ + ∥y∥ = ϕ(x) + ϕ(y) = ϕ(x+ y) ≤ ∥x+ y∥.
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This gives us equality in the triangle inequality, and so by (ii) we have that
y = λx with λ > 0. Then

λ ∥y∥ = λϕ(y) = ϕ(λy) = ϕ(x) = ∥x∥.
As ∥x∥ = ∥y∥ = 1, we get λ = 1 and so y = x.

(iii) =⇒ (i): Suppose that u, v are unit vectors with ∥u+v
2 ∥ = 1. Use

Hahn–Banach to construct ϕ ∈ X∗ with ∥ϕ∥ = 1 and ϕ(u + v) = ∥u + v∥.
Then

2 = ϕ(u+ v) = ϕ(u) + ϕ(v) ≤ ∥ϕ∥ ∥u∥ + ∥ϕ∥ ∥v∥ = 2.
As in the observation at the beginning, this forces ϕ(u) = ϕ(v) = 1. Hence
ϕ(u) = ∥u∥, ϕ(v) = ∥v∥, and then by (iii) we have u = v.

We finish by proving (AB.7.2). This is first done by induction, where
the base case is (i), for t = k/2n. The inductive hypothesis is, for fixed n and
k = 1, . . . , 2n,

∥x∥ = ∥y∥ = 1,
∥∥ k

2n x+
(
1 − k

2n
)
y
∥∥ = 1 =⇒ x = y. (AB.7.3)

If we now assume (AB.7.3) and we have ∥x∥ = ∥y∥ = 1 and k ∈ {1, . . . , 2n+1},∥∥ k
2n+1 x+

(
1 − k

2n+1

)
y
∥∥ = 1,

we assume without loss of generality that k ≤ 2n (otherwise we switch the
roles of x and y). We can write

1 =
∥∥ k

2n+1 x+
(
1 − k

2n+1

)
y
∥∥ =

∥∥ k
2n
(x+ y

2
)

+
(
1 − k

2n
)
y
∥∥.

In principle we only know that
∥∥x+y

2
∥∥ ≤ 1, but the observation at the be-

ginning gives us that
∥∥x+y

2
∥∥ = 1. Then the inductive hypothesis (2) gives

us
x+ y

2 = y, which is x = y.

After having all dyadic t, one can get to arbitrary t ∈ [0, 1] by continuity of
the norm.

(7.5.18) Show that ∥ · ∥p is strictly convex for 1 < p < ∞, while ∥ · ∥1
and ∥ · ∥∞ are not strictly convex.

Answer. For 1 < p < ∞, if x, y ∈ ℓp(N) and ∥x + y∥p = ∥x∥p + ∥y∥p,
we have equality in Minkowski’s Inequality (2.45). Looking at the proof of
Corollary 2.8.10, this means that the inequalities in the proof are equalities.
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In particular we get

∥x+ y∥pp =
∑
k

|xk + yk| |xk + yk|p−1

=
∑
k

|xk| |xk + yk|p−1 +
∑
k

|yk| |xk + yk|p−1

= ∥x∥p
(∑

k

|xk + yk|q(p−1)
)1/p

+ ∥y∥p
(∑

k

|xk + yk|q(p−1)
)1/p

.

The second equality forces |xk + yk| = |xk| + |yk| for all k, and so yk = λkxk
for λk ≥ 0. The equality in the third and last equality is equality in H lder’s
inequality for the pairs of functions x, |x+y|p−1 and y, |x+y|p−1. But equality
in H lder implies, looking at the proof of Theorem 2.8.8, pointwise equality
on Young’s inequality for the normalized versions of the functions. As the
logarithm is strictly convex, we get

|xk|
∥x∥p

= |xk + yk|p−1

∥|x+ y|p−1∥q
= |yk|

∥y∥p
.

Then
λk|xk| = |yk| = ∥y∥p

∥x∥p
|xk|, k ∈ N,

so λk = ∥y∥p
∥x∥p for all k. That is, y = λx for a certain λ > 0. Then ∥ · ∥p is

strictly convex by Proposition 7.5.6.
For ∥·∥1, we have ∥e1∥1 = ∥e2∥1 = 1, and ∥e1 +e2∥1 = 2, so not strictly

convex.
For ∥ · ∥∞, ∥e1∥∞ = ∥e1 + e2∥∞ = 1 and ∥e1 + (e1 + e2)∥∞ = 2, so not

strictly convex.

(7.5.19) Let X ,Y be normed spaces and V ∈ B(X ,Y) an isometry.

(a) Show that if V is surjective, then V maps the set ExtBX
1 (0)

onto ExtBY
1 (0).

(b) Show that if V is not surjective, the above may fail, i.e.
construct an example of a linear isometry that maps an
extreme point to a non-extreme point.

(c) (This one may be a little harder because we want the same
domain and codomain; but examples exist that are not con-
voluted) Find a Banach space X with ExtBX

1 (0) ̸= ∅,
an isometry V ∈ B(X ), and e ∈ ExtBX

1 (0) such that
V e ̸∈ ExtBX

1 (0).
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Answer.

(a) Suppose that V is surjective, and x ∈ BX
1 (0) is extreme. If V x = 1

2 y
′+ 1

2 z
′

with ∥y′∥ ≤ 1, ∥z′∥ ≤ 1, by the surjectivity there exist y, z ∈ X with
y′ = V y, z′ = V z. Because V is isometric, y, z ∈ BX

1 (0). Then

V x = 1
2 V y + 1

2 V z = V
(1

2 y + 1
2 z
)
.

By the injectivity of V , we get that x = 1
2 y + 1

2 z. As x is extreme,
y = z = x, and hence y′ = V y = V x, z′ = V z = V x.

If y ∈ BY
1 (0) is extreme, let x = V −1y. If x = 1

2 y + 1
2 z for y, z ∈ X ,

then y = 1
2 V y+ 1

2 V z, and V y, V z ∈ BY
1 (0). As y is extreme, V y = V z =

y = V x. Then the injectivity of V gives us z = y = x, and so x is extreme.
So V is surjective from the extreme points to the extreme points.

(b) Let X be any Banach space such that ExtBX
1 (0) ̸= ∅. Let V : X → X ⊕c0

be given by V x = x⊕ 0, where on x⊕ c0 we consider the norm ∥x⊕ y∥ =
max{∥x∥, ∥y∥}. If e ∈ ExtBX

1 (0), then V e = e ⊕ 0 is not extreme, since
e⊕ 0 = 1

2 (e⊕ 1) + 1
2 (e⊕ (−1)) and ∥e⊕ 1∥ = ∥e⊕ (−1)∥ = 1.

(c) Let X = ℓ∞(N). Let V ∈ B(X ) be the linear map induced by V ek = e2k

on the canonical basis. Then V is an isometry. Consider 1 ∈ BX
1 0; then

1 ∈ ExtBX
1 (0) and V 1 =

∑
k e2k is not extreme, since V 1 = 1

2 (e1 +V 1)+
1
2 (−e1 + V 1), and ∥e1 + V 1∥ = ∥ − e1 + V 1∥ = 1.

(7.5.20) Prove Exercise 5.6.5 using convexity ideas. That is, show that c
and c0 are not isometrically isomorphic as Banach spaces (Hint:
show that the unit ball of c0 has no extreme points, while the
unit ball of c does, and prove that extreme points are preserved
by an isometric isomorphism)

Answer. Suppose that γ : c → c0 is an isometric isomorphism. Let us show
that γ preserves extreme points in the unit ball. If x ∈ c is extreme in the
unit ball of c and γ(x) = tz+ (1 − t)w, with z, w ∈ c0, ∥z∥ ≤ 1, ∥w∥ ≤ 1, and
t ∈ [0, 1], then since γ is onto there are z0, w0 ∈ c with γ(z0) = z, γ(w0) = w,
and we have γ(x) = γ(tz0 +(1− t)w0). As γ is isometric, ∥w0∥ ≤ 1, ∥z0∥ ≤ 1.
From x being extreme we get then that z0 = w0, and thus z = w, making
γ(x) extreme.

The claim now is that x ∈ c is extreme in the unit ball if and only if
|xn| = 1 for all n. Indeed, if |xn| = 1 for all n, and x = tz+ (1 − t)w with t, w
in the unit ball, then for each n we have xn = tzn + (1 − t)wn, which forces
zn = wn since xn is extreme in the unit disk; so z = w = x and x is extreme.
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Conversely, if |xm| < 1 for some m, let δ = (1 − |xm|)/2 and let z be equal to
x with the exception of zm = xn + δ, and w equal to x with the exception of
wm = xn − δ. Then x = (z + w)/2, and x is not extreme.

In c0, for any x there exists m (many, actually), with |xm| < 1. Now
we can repeat the argument from above to show that x cannot be extreme.

(7.5.21) Is convexity of Kj used in the proof of Lemma 7.5.14? Where?

Answer. Yes, it is used. The last line in the proof uses that conv(
⋃m
r=1 Kr) =

α(T × K1 × · · · × Km). And that is where convexity is used. An element
of conv(

⋃m
r=1 Kr) a priori not necessarily of the form

∑
j tjxj with xj ∈ Kj ;

it actually is, but that’s because the Kj are convex. Indeed, an element
of conv(

⋃m
r=1 Kr) is a convex combination of elements of the Kj , but there

might be more than one elements per set; that is, we have something of the
form

x =
( v1∑
j=1

t1,jx1,j

)
+ · · · +

( vm∑
j=1

tm,jxm,j

)
,

where t1,1 . . . , tm,vm ≥ 0 with
∑
r,1 tr,1 = 1. But, since each Kj is convex, if

we define sr =
∑vr
j=1 tr,j , then s1, . . . , sm are convex coefficients and

x = s1

( v1∑
j=1

t1,j
s1
x1,j

)
+ · · · +

( vm∑
j=1

tm,j
sm

xm,j

)
,

and the elements in brackets belong to K1, . . . ,Km respectively, so s is of the
desired form.

(7.5.22) Let X be a TVS, K ⊂ X , and x1, x2, . . . ∈ K. Show that
∞∑
k=1

2−kxk ∈ convK.

Answer. Since
m∑
k=1

2−k = 1 − 2−m, we have that

2−mx1 +
m∑
k=1

2−kxk ∈ convK,

and it converges to
∞∑
k=1

2−kxk.
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(7.5.23) Prove Lemma 7.5.14 in a straightforward way, that is without
using the fact that a continuous image of compact is compact.

Answer. Consider a net {xj}j , with xj ∈ conv(
⋃m
r=1 Kr). Using that the

sets K1, . . . ,Km are convex, we may write

xj =
m∑
r=1

tjrxjr, where tjr ∈ [0, 1],
m∑
r=1

tjr = 1, and xjr ∈ Kj .

If y ∈ conv
⋃m
r=1 Kr we may write y =

∑m
r=1

∑mr
ℓ=1 srℓ yrℓ, with srℓ ≥ 0,

yrℓ ∈ Kr, and
∑m
r=1

∑mr
ℓ=1 srℓ = 1. Then, letting sr =

∑mr
ℓ=1 srℓ ∈ [0, 1] (and

omitting those terms where sr = 0),

y =
m∑
r=1

sr

(
mr∑
ℓ=1

srℓ
sr
yrℓ

)
,

where
∑mr
ℓ=1

srℓ
sr

= 1, so
∑mr
ℓ=1

srℓ
sr
yrℓ ∈ Kr by convexity; and

m∑
r=1

sr =
m∑
r=1

mr∑
ℓ=1

srℓ = 1.

Going back to xj =
∑m
r=1 tjrxjr, by compactness of [0, 1] and K1, . . . ,Km,

we may successively choose convergent subnets {tjkr}k ⊂ [0, 1] and {xjkr}k ∈
Kj , r = 1, . . . ,m. Let tr = limk tjkr, xr = limk xjkr, r = 1, . . . ,m. Then∑m
r=1 tr = limk

∑m
r=1 tjkr = 1, and

m∑
r=1

trxr = lim
k

m∑
r=1

tjkrxjkr = lim
k
xjk .

So the net converges and conv(
⋃m
r=1 Kr) is compact.

(7.5.24) For Hilbert spaces, we proved in Lemma 4.3.4 that given a
closed convex set K and x ̸∈ K, the distance between x and K
is achieved, and it is achieved at a unique point. The same is
not true for an arbitrary Banach space. Let X = C[0, 1], with
the supremum norm, and let

K =
{
g ∈ C[0, 2] :

∫ 1

0
g −

∫ 2

1
g = 1

}
Show that K is closed and convex, that dist(0,K) = 1

2 , and
that ∥g∥ > 1

2 for all g ∈ K.
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Answer. We have that K is closed and convex, since it is the preimage of a
point by a bounded linear functional. Clearly 0 ̸∈ K. For g ∈ K, we have

1 =
∫ 1

0
g −

∫ 2

1
g ≤

∫ 2

0
|g| ≤ 2∥g∥∞. (AB.7.4)

So ∥g∥∞ ≥ 1
2 for all g ∈ K.

Now suppose that ∥g∥∞ = 1
2 . Then both inequalities above are equali-

ties. From the last inequality now turned equality,

0 =
∫ 2

0
∥g∥∞ − |g|.

As the integrand is non-negative, |g| = ∥g∥∞ = 1
2 . The first inequality in

(AB.7.4), now turned equality, is now∫ 1

0

(1
2 − g

)
+
∫ 2

1

(1
2 + g

)
= 0.

Looking at the real parts,∫ 1

0

(1
2 − Re g

)
+
∫ 2

1

(1
2 + Re g

)
= 0.

As − 1
2 ≤ Re g ≤ 1

2 both integrands are non-negative, which forces Re g = 1
2

on [0, 1] and Re g = −1/2 on [1, 2]. But g is continuous and so is Re g, making
this is impossible. Thus ∥g∥∞ > 1

2 for all g ∈ K.
It remains to show that the distance from 0 to K is actually 1/2, that

is, that we can find g ∈ K with ∥g∥∞ as close to 1
2 as desired. The above

reasoning showed that the distance would be achieved by a function that is
1/2 on [0, 1], and −1/2 on [1, 2]; of course this would not be continuous, which
is the point. But we can get as close to 1/2 as follows. Let

gn(x) =


1
2 + 1

n + 1
n−1

(
x− 1 + 1

n

)
, 0 ≤ x ≤ 1 − 1

n

− 1
2 − n+1

2

(
x− 1 − 1

n

)
, 1 − 1

n ≤ x ≤ 1 + 1
n

− 1
2 , 1 + 1

n ≤ x ≤ 2
This gn was constructed as consisting of three segments: namely the lines
joining

(0, 1
2), (1 − 1

n
,

1
2 + 1

n
), (1 + 1

n
,−1

2), (2,−1
2).

Then ∥g∥∞ = 1
2 + c ≃ 1

2 + 1
n .
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7.6. The Cantor Space

(7.6.1) Show that η, as in the proof of Proposition 7.6.4, is a continuous
bijection.

Answer. If η({gm}) = η({hm}) this means that gk(r) = hk(r) for all k, r.
This says that gk = hk for all k, and so {gm} = {hm}. So η is injective. Given
h ∈ 2N define, for each k, gk : N → {0, 1} by gk(r) = h(r). Then η({gm}) = h
and so η is surjective.

For continuity, if {pℓ} ⊂ (2N)N and pℓ −−−→
ℓ→∞

0, this means that

pℓ(n)(m) −−−→
ℓ→∞

0 for all n,m.

Then
η(pℓ)(nk,r) = pℓ(k)(r) −−−→

ℓ→∞
0

for all k, r, so η(pℓ) → 0. Hence η is continuous.

(7.6.2) Let X,Y be topological spaces and α : X → Y a homeomor-
phism. Define αN : XN → Y N by αN({xn}) = {α(xn)}. Show
that αN is a homeomorphism.

Answer. We define (α−1)N : Y N → XN by (α−1)N({yn}) = (α−1(xn)}. Then
αN ◦ (α−1)N = idY N and (α−1)N ◦ αN = idXN , so αN is bijective.

If a net {pj} ⊂ XN converges to p ∈ XN, then pj(n) → p(n) for all n.
Then

αN(pj)(n) = α(pj)(n) −−→
j

0

by the continuity of α. An analog computation shows that (α−1)N is contin-
uous, so αN is bicontinuous.

(7.6.3) In the proof of Proposition 7.6.2, it is claimed that using ν :
T → DN and the homeomorphic embedding of D into [0, 1]2
one gets a continuous injective ν̃ : T → [0, 1]N, homeomorphic
onto its image. Write the details to justify these assertions.
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Answer. Let η : D → [0, 1]2 be given by

η(a+ ib) =
(
a+ 1

2 ,
b+ 1

2

)
.

This map is linear, so it is continuous by Corollary 5.2.5 (alternative, show
that convergence is D is equivalent to convergence of the real and imagi-
nary parts). As η is injective and continuous with compact domain, it is a
homeomorphism onto its image by Exercise 1.8.38. So, using Exercise 7.6.2,
ηN ◦ ν : T →

(
[0, 1]2

)N is a homeomorphism onto its image.
Let ρ :

(
[0, 1]2

)N → [0, 1]N be given by ρ({(sn, tn)} = (s1, t1, s2, t2, . . .).
Since we consider pointwise convergence in both spaces, ρ is a continuous in-
jection, and by the compactness of

(
[0, 1]2

)N (by Tychonoff, Theorem 1.8.24)
we get from Exercise 1.8.38 that ρ is a homeomorphism onto its image. Then

ν̃ = ρ ◦ η ◦ ν : T →c⃝ 2024 Mart́ın Argerami All Rights Reserved [0, 1]N

is a continuous homeomorphism onto its image.
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CHAPTER

Fourier Series and Hilbert Function Spaces

8.1. Fourier Series

(8.1.1) Let f(t) = t, t ∈ [−π, π]. Show that

Sf,n(t) =
n∑
k=1

(−1)k+1 sin kt
k

.

Answer. As f is odd, f̂(0) = 0. For k ̸= 0,

f̂(k) = 1
2π

∫ π

−π
t e−ikt dt = 1

2π
t e−ikt

−ik

∣∣∣∣π
−π

= 2π(−1)k

−2πik = (−1)k+1

ik
.

To form Sf,n, if we put together the terms with k and −k we get (note that
(−1)k = (−1)−k)

(−1)k+1e−ikt

i(−k) + (−1)k+1eikt

ik
= (−1)k+1

ik
(eikt − e−ikt)

= (−1)k+1

ik
2i sin kt = 2(−1)k+1

k
sin kt.

345
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Thus

Sf,n(t) =
n∑
k=1

(−1)k+1 sin kt
k

.

(8.1.2) Let f(t) = t2, t ∈ [−π, π]. Show that

Sf,n(t) = π2

3 +
n∑
k=1

4(−1)k cos kt
k2 .

Answer. We have
f̂(0) = 1

dirpi

∫ π

−π
t2 dt = π2

3 .

For k ̸= 0,

f̂(k) = 1
2π

∫ π

−π
t2 e−ikt dt = − 1

2π
2t e−ikt

−ik

∣∣∣∣π
−π

= 2(−1)k

k2 .

To form Sf,n, if we put together the terms with k and −k we get
2(−1)ke−ikt

k2) + 2(−1)keikt

k2 = 4(−1)k

k2 cos kt.

Thus

Sf,n(t) = π2

3 +
n∑
k=1

4(−1)k cos kt
k2 .

(8.1.3) Let f(t) = et, t ∈ [−π, π]. Show that

Sf,n(t) = sinh π
2π +

n∑
k=1

2(−1)k sinh π
(

cos kt− k sin kt
)

π(1 + k2) .

Answer. We have
f̂(0) = 1

2π

∫ π

−π
et dt = sinh π

2π .

For k ̸= 0,

f̂(k) = 1
2π

∫ π

−π
et e−ikt dt = 1

2π

∫ π

−π
e(1−ik)t dt = e(1−in)t

2π(1 − ik)

∣∣∣∣π
−π

= (−1)k(eπ − e−π)
2π(1 − ik) = (−1)k sinh π

π(1 − ik) = (−1)k sinh π (1 + ik)
π(1 + k2) .
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To form Sf,n, if we put together the terms with k and −k we get

f̂(−k)e−ikt + f̂(k)eikt = (−1)k sinh π (1 − ik)e−ikt

π(1 + k2) + (−1)k sinh π (1 + ik)eikt

π(1 + k2)

= (−1)k sinh π
π(1 + k2)

(
(1 − ik)e−ikt + (1 + ik)eikt

)
= (−1)k sinh π

π(1 + k2)
(
2 cos kt− 2k sin kt

)
.

Thus

Sf,n(t) = sinh π
2π +

n∑
k=1

2(−1)k sinh π
(

cos kt− k sin kt
)

π(1 + k2) .

(8.1.4) Let f : [−π, π] → C be given by f(t) = sgn(t). Show that

Sf (t) = 4
π

∞∑
k=1

sin(2k − 1)t
2k − 1 .

If available, use graphing software to display Sf,n(t) for n = 5,
n = 50, and n = 500.

Answer. We have

f̂(k) = 1
2π

∫ π

−π
sgn(t) e−ikt dt = − 1

2π

∫ 0

−π
e−ikt dt+ 1

2π

∫ π

0
e−ikt dt

= − e−ikt

−2πik

∣∣∣∣0
−π

+ e−ikt

−2πik

∣∣∣∣π
0

= 1
2πik

(
1 − (−1)k − (−1)k + 1

)
= 1
πik

(
1 − (−1)k

)
=
{

2
πik , k odd

0, k even
Then, as only the odd coefficients are nonzero,

Sf (t) =
∞∑
k=1

f̂(2k − 1)ei(2k−1)t + f̂(−2k + 1)e−i(2k−1)t

=
∞∑
k=1

2
πi(2k − 1)

[
ei(2k−1)t − e−i(2k−1)t]

=
∞∑
k=1

2
πi(2k − 1)2i sin(2k − 1)t = 4

π

∞∑
k=1

sin(2k − 1)t
2k − 1 .

Now, the pictures.
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Sf,n(t) when f(t) = sgn(t),
n = 5

Sf,n(t) when f(t) = sgn(t),
n = 50

Sf,n(t) when f(t) = sgn(t), n = 500

Another picture, showing Sf,500(t) more globally:
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Sf,n(t) when f(t) = sgn(t), n = 500

(8.1.5) Mimicking Example 8.1.7, show that
∞∑
k=1

1
k4 = π4

90 .

Answer. We use f(t) = t2. We have, for k ̸= 0,

f̂(k) = 1
2π

∫ π

−π
t2 e−ikt dt = 1

−2πik t
2e−ikt

∣∣∣∣π
−π

+ 1
2πik

∫ π

−π
2te−ikt dt

= − 1
2πik t

2e−ikt
∣∣∣∣π
−π

− 1
πk2 te

−ikt
∣∣∣∣π
−π

− 1
πk2

∫ π

−π
e−ikt dt

= − 1
πk2 te

−ikt
∣∣∣∣π
−π

= 2(−1)k+2

k2 .

Also
f̂(0) = 1

2π

∫ π

−π
t2 dt = π3

3
and

∥f∥2
2 =

∫ π

−π
t4 dt = 2π5

5 .

Now (8.3) gives us (putting together the terms corresponding to k and −k,
as they are equal),

2π5

5 = 2π
(
π4

9 +
∞∑
k=1

4
k4

)
.
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Solving for the series we get
∞∑
k=1

1
k4 = π4

90 .

(8.1.6) Let m,n ∈ N. Show that, as functions,
cosm t sinn t ∈ span{a cos kt+ b sin kt : a, b ∈ R, k ∈ N}.

Answer. By Lemma 8.1.2 we have that cosm t sinn t ∈ span{a cos kt +
b sin kt : a, b ∈ C, k ∈ N}. Now if

cosm t sinn t =
ℓ∑

k=0
ak cos kt+ bk sin kt,

as the left-hand-side is real, we may replace ak and bk with their reals parts
and the equality still holds.

(8.1.7) Let

f(t) =
{
π−t

2 , 0 ≤ t ≤ π

−π+t
2 , −π ≤ t < 0

Use f and Corollary 8.1.13 to show that there exists c > 0 such

that
∣∣∣ n∑
k=1

sin kx
k

∣∣∣ ≤ c for all n and all x.

Answer. If we show that the series is the Fourier series of a function of
bounded variation, the result follows from Corollary 8.1.13. The function f
is of bounded variation, as it is piecewise continuous on a compact set.

The Fourier coefficients are f̂(0) = 0 and for n ̸= 0

f̂(k) = − 1
2π

∫ 0

−π

π + t

2 e−ikt dt+ 1
2π

∫ π

0

π − t

2 e−ikt dt

= − 1
4π

∫ π

−π
t e−ikt dt− 1

4

∫ 0

−π
e−ikt dt+ 1

4

∫ π

0
e−ikt dt

= − 1
4π

te−ikt

−ik

∣∣∣∣π
−π

− 1
4
e−ikt

−ik

∣∣∣∣0
−π

+ 1
4
e−ikt

−ik

∣∣∣∣π
0

= (−1)k

2ik + 1
4ik − (−1)k

4ik − (−1)k

4ik + 1
4ik = 1

2ik .
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When we write the Fourier series, the corresponding positive and negative
terms match like

eikt

2ik + e−ikt

2i(−k) = 1
k

eikt − e−ikt

2i = sin kt
k

.

Hence, as f̂(0) = 0,
n∑
k=1

sin kt
k

= Sf,n(t).

(8.1.8) Show that limn ∥Dn∥1 = ∞.

Answer. We have, since sin t < t for t ≥ 0,

∥Dn∥1 ≥
∫ π

0
|Dn(t)| dt =

∫ π

0

∣∣∣∣ sin (n+ 1
2
)
t

2 sin t
2

∣∣∣∣ dt
≥
∫ π

0

∣∣∣∣ sin (n+ 1
2
)
t

t

∣∣∣∣ dt =
∫ (n+ 1

2

)
π

0

| sin t|
t

dt

≥
∫ nπ

0

| sin t|
t

dt ≥
n−1∑
k=0

∫ kπ+ 3π
4

kπ+π
4

| sin t|
t

dt

≥ 1√
2

n−1∑
k=0

∫ kπ+ 3π
4

kπ+π
4

1
t
dt ≥ 1√

2

n−1∑
k=0

1
kπ + 3π

4
−−−−→
n→∞

∞.

(8.1.9) Let f ∈ L1[−π, π] such that f is even. Show that Sf (t) is of
the form

Sf (t) =
∞∑
k=0

ak cos kt,

where

a0 = 1
2π

∫ π

−π
f(t) dt, ak = 1

π

∫ π

−π
f(t) cos kt dt, k ≥ 1.

Answer. Using that f is even and the substitution t → −t,

f̂(−k) = 1
2π

∫ π

−π
f(t) e−i(−k)t dt = 1

2π

∫ π

−π
f(−t) e−ikt dt = f̂(k).

Then
f̂(k)eikt + f̂(−k)e−ikt = f̂(k)

(
eikt + e−ikt) = 2f̂(k) cos kt.
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Thus

Sf (t) = f̂(0) +
∞∑
k=1

f̂(k)eikt + f̂(−k)e−ikt =
∞∑
k=1

2f̂(k) cos kt.

Since f̂(k) = f̂(−k),

f̂(k) = f̂(k) + f̂(−k)
2 = 1

4π

∫ π

−π
f(t)

(
eikt + e−ikt) dt = 1

2π

∫ π

−π
f(t) cos kt dt.

Thus
ak = 2f̂(k) = 1

π

∫ π

−π
f(t) cos kt dt.

(8.1.10) Let f ∈ L1[−π, π] such that f is odd. Show that Sf (t) is of
the form

Sf (t) =
∞∑
k=1

bk sin kt,

where
bk = 1

π

∫ π

−π
f(t) sin kt dt, k ≥ 1.

Answer. Using that f is odd and the substitution t → −t,

f̂(−k) = 1
2π

∫ π

−π
f(t) e−i(−k)t dt = − 1

2π

∫ π

−π
f(−t) e−ikt dt = −f̂(k).

Then
f̂(k)eikt + f̂(−k)e−ikt = f̂(k)

(
eikt − e−ikt) = 2if̂(k) sin kt.

Thus

Sf (t) =
∞∑
k=1

f̂(k)eikt + f̂(−k)e−ikt =
∞∑
k=1

2if̂(k) sin kt.

Since f̂(k) = −f̂(−k),

f̂(k) = f̂(k) − f̂(−k)
2 = 1

4π

∫ π

−π
f(t)

(
e−ikt−eikt

)
dt = −i 1

2π

∫ π

−π
f(t) sin kt dt.

Thus
ak = 2if̂(k) = 1

π

∫ π

−π
f(t) sin kt dt.
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(8.1.11) Given f, g ∈ L1[−π, π], consider the convolution

(f ∗ g)(t) =
∫ π

−π
f(x) g(t− x) dx,

where f, g are considered extended periodically to [−2π, 2π].
Show that f̂ ∗ g(n) = 2π f̂(n) ĝ(n).

Answer. Below, Fubini (Theorem 2.7.12) applies because f, g ∈ L1[−π, π].
We have

f̂ ∗ g(n) = 1
2π

∫ π

−π
(f ∗ g)(t) e−int dt

= 1
2π

∫ π

−π

∫ π

−π
f(x) g(t− x) dx e−inx e−in(t−x) dt

= 1
2π

∫ π

−π
f(x) e−inx dx

∫ π

−π
g(t− x) e−in(t−x) dt

= 1
2π

∫ π

−π
f(x) e−inx dx

∫ π

−π
g(t) e−int dt

= f̂(n) 2π ĝ(n).

(8.1.12) Use the following steps to show that the function

f(t) =
∞∑
k=1

1
k2 sin

[(
2k

3
+ 1
) |t|

2

]
, t ∈ [0, π]

is in C[−π, π] and {Sf,n(0)} diverges.

(a) Show that f is continuous.

(b) Use Exercise 8.1.9 to write Sf (t) =
∞∑
k=1

ak cos kt, where

ak = 2
π

∞∑
j=1

1
j2 λk,2j3−1 ,

and
λk,h =

∫ π

0
sin
[
(2h+ 1) t2

]
cos kt dt.
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(c) Show that
h∑
k=0

λk,h ≥ 1
2 log h and

n∑
k=0

λk,h ≥ 0 for all n, h.

(d) Conclude that there exists a sequence {nj} such that
Sf,nj (0) →c⃝ 2024 Mart́ın Argerami All Rights Reserved ∞,

by showing that

Sf,2j3 −1(0) ≥ j3 − 1
2j2 log 2.

Answer.

(a) The series for f converges uniformly by comparison with
∑
k

1
k2 . The ex-

tension to [−π, π] satisfies the same bound, and the extension is continuous
at 0 since f(0) = 0.

(b) We have, using either Dominated Convergence or Fubini,

ak = 2
π

∫ π

0

∞∑
j=1

1
j2 sin

[(
2j

3
+ 1
) t

2

]
cos kt dt

= 2
π

∞∑
j=1

1
j2

∫ π

0
sin
[(

2 2j
3−1 + 1

) t
2

]
cos kt dt

= 2
π

∞∑
j=1

1
j2 λk,2j3−1 .

(c) We have

λk,h =
∫ π

0
sin
[
(2h+ 1) t2

]
cos kt dt

= 1
2

∫ π

0

[
sin
(2h+ 1

2 + k
)
t+ sin

(2h+ 1
2 − k

)
t

]
dt

= 1
2h+ 2k + 1 + 1

2h− 2k + 1 = 2h+ 1
(2h+ 1)2 − 4k2 .
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When k ≤ h this gives us λk,h ≥ 0 and hence
∑n
k=0 λk,h ≥ 0 if n ≤ h.

When n ≥ h,

2
n∑
k=0

λk,h =
n∑
k=0

1
2h+ 2k + 1 +

n∑
k=0

1
2h− 2k + 1

=
n+h∑
k=h

1
2k + 1 +

h∑
k=n−h

1
2k + 1

= 1
2h+ 1 +

n+h∑
k=n−h

1
2k + 1 ≥ 0.

This last estimate also allows us to do

2
h∑
k=0

λk,h = 1
2h+ 1 +

2h∑
k=0

1
2k + 1 ≥

2h∑
k=0

∫ 2k+3

2k+1

1
t
dt

=
∫ 4h+3

1

1
t
dt = log(4h+ 3) ≥ log h.

(d) Now we have

Sf,2j3−1(0) =
2j

3−1∑
k=0

ak = 2
π

2j
3−1∑
k=0

∞∑
h=1

1
h2 λk,2h3−1 ≥ 2

π

1
j2

2j
3−1∑
k=0

λk,2j3−1

≥ 2
π

1
j2 log(2j

3−1) = 2
π

j3 − 1
j2 log 2 −−−→

j→∞
∞.

8.2. The Fourier Transform

(8.2.1) Let f ∈ L1(Rn) and c ∈ R. Show that the Fourier transform
is linear, and that if g(x) = f(cx), then ĝ(ξ) = 1

|c|n f̂
(
ξ
c

)
.

Answer. The linearity follows directly from the linearity of the integral.
We have, with the change of variables cx 7−→ x,

ĝ(ξ) =
∫
Rn
f(cx) e−2πi⟨ξ,x⟩ dx = 1

|c|n
f̂
(
ξ

c

)
.
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(8.2.2) Let f ∈ L1(R) and such that g : x 7−→ xf(x) is also in L1.
Show that f̂ is differentiable and (f̂)′(ξ) = −2πiĝ(ξ).

Answer. The two conditions on f allow us to apply Dominated Convergence
and differentiate under the integral symbol (properly, instead of taking limits
as h → 0 we need to work for sequences {hn}, but the result works for all
sequences and hence allows us to take the limit as h → 0). So

(f̂)′(ξ) = −2πi
∫
R
xf(x) e−2πiξx dx = −2πiĝ(ξ).

(8.2.3) Let f ∈ L1(R) differentiable with f ′ ∈ L1(R). Show that
f̂ ′(ξ) = 2πiξ f̂(ξ).

Answer. Integrating by parts,

f̂ ′(ξ) =
∫
R
f ′(x) e−2πiξx dx = 2πiξ

∫
R
f(x) e−2πiξx dx = 2πiξ f̂(ξ).

(8.2.4) Let f, g ∈ L1(Rn). Show that

f̂ ∗ g(ξ) = f̂(ξ) ĝ(ξ).
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Answer. The fact that both f, g are in L1(Rn) allows us to use Fubini’s
Theorem. Then

f̂ ∗ g(ξ) =
∫
Rn

(f ∗ g)(x) e−2πi⟨ξ,x⟩ dx =
∫
Rn

∫
Rn
f(x− y) g(y) e−2πi⟨ξ,x⟩ dy dx

=
∫
Rn

∫
Rn
f(x− y) g(y) e−2πi⟨ξ,x⟩ dx dy

=
∫
Rn

∫
Rn
f(x− y) e−2πi⟨ξ,x⟩ dx g(y) dy

=
∫
Rn

∫
Rn
f(x) e−2πi⟨ξ,x+y⟩ dx g(y) dy

=
∫
Rn

∫
Rn
f(x) e−2πi⟨ξ,x⟩ dx g(y) e−2πi⟨ξ,y⟩ dy

=
∫
Rn
f̂(ξ) g(y) e−2πi⟨ξ,y⟩ dy

= f̂(ξ) ĝ(ξ).

8.3. Hilbert Function Spaces

(8.3.1) Show that if a ∈ ℓ2(N) then f =
∑
n anz

n is analytic on D.

Answer. For each z ∈ D the series converges, for∣∣∣ ∞∑
n=m

anz
n
∣∣∣ ≤

( ∞∑
n−k

|an|2
)1/2( ∞∑

k=m
|z|2n

)1/2
≤ ∥a∥2

√
|z|m

1 − |z|2
.

The estimate shows that the convergence is uniform in any proper subdisk of
D. This guarantees that we can differentiate term by term, and hence f is
analytic.
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(8.3.2) Show that if f, g ∈ Ba(D) and f =
∑
n anz

n, g =
∑
n bnz

n,
then

⟨f, g⟩B =
∞∑
n=0

anbn
n+ 1 .

Answer. Since |z| < 1 for all z, the uniform convergence allows us to write

⟨f, g⟩ =
∑
n,m

anbm
1
π

∫
D
znzm dz.

Assume without loss of generality that n ≥ m. When n > m, znzm =
zn−m |z|m and so if z = reit then znzm = rn+m ei(n−m)t. Hence

1
π

∫
D
znzm dz = 1

π

∫ 2π

0

∫ 1

0
rn+m+1 ei(n−m)t dr dt = 0,

since the integral of the exponential is zero. When n = m we get
1
π

∫
D

|z|2n dz = 1
π

∫ 2π

0

∫ 1

0
r2n+1 dr dt = 1

n+ 1 .

(8.3.3) Show that the Bergman space is a Hilbert function space (that
is, complete and point evaluations are bounded), and that the
set {zn}∞

n=0 is orthogonal and total.

Answer.
We have

⟨zn, zm⟩B = 1
π

∫
D
znzm dm(z)

= 1
π

∫ 2π

0

∫ 1

0
rn+m+1 eit(n−m) dr dt = 2

n+m+ 1 δn,m.

If ⟨f, zn⟩B = 0 for all n, then f = 0, and so {zn} is orthogonal and total.
Given z ∈ D and f ∈ L2

a(D), for any r ∈ (0, 1) Cauchy’s Formula gives
us

|f(z)| = 1
2π

∣∣∣ ∫
rT

f(w)
w − z

dw
∣∣∣ = 1

2π

∣∣∣ ∫ 2π

0

f(reit ieit

reit
dt
∣∣∣ (8.1)

≤ 1
2π

∫ 2π

0
|f(reit)| dt ≤

√
2π
(∫ 2π

0
|f(reit)|2 dt

)1/2
(8.2)

(8.3)
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Squaring both sides, multiplying by r, and integrating from 0 to 1, we get

|f(z)|2 ≤ 4π
∫
D

|f |2 = 4π∥f∥B .

So z 7−→ f(z) is bounded for each z ∈ D.
It remains to check that L2

a(D) is complete. If {fn} is a Cauchy sequence
in L2

a(D), then by the above estimate
|fn(z) − fm(z)| ≤ 4π ∥fn − fm∥B .

So the sequence is uniformly Cauchy, which guarantees that the limit exists
and it is analytic and in L2(D). The only non-obvious part of the last sentence
is that the limit f is square integrable. We have

|f(z) − fm(z)| = lim
n

|fn(z) − fm(z)| ≤ lim sup
n

∥fn − fm∥B .

Choosing m sufficiently big, we can make the left-hand-side as small as we
want. Now we can do, using Fatou’s Lemma,

∥f − fm∥2
B = 1

π

∫
D

|f(z) − fm(z)|2 dm = 1
π

∫
D

lim inf
n

|f(z)n − fm(z)|2 dm

≤ lim inf
n

∥fn − f −m∥2

and this goes to zero with m.

(8.3.4) Let p ∈ [1,∞], and consider the corresponding Hardy space
Hp(D), that is the space of analytic functions f(z) =

∑
n anz

n

on the disk, such that a ∈ ℓp(N). Show that ∥f∥ = lim
r→1

∥fr∥p
is a norm, and that Hp(D) is complete with that norm.

Answer. By assumption limr→1 ∥fr∥p exists.
We do p < ∞ first. Suppose that ∥f∥ = 0. This means that∫ π

−π
|f(reit)|p dt = 0

for all r ∈ (0, 1). Let z ∈ D. Choose any r with |z| < r < 1. By Cauchy’s
Integral Formula,

|f(z)| =
∣∣∣ 1
2πi

∮
rT

f(w)
w − z

dw
∣∣∣ = 1

2π

∣∣∣∫ π

−π

f(eit)
reit − z

dt
∣∣∣

≤ 1
2π (r − |z|)

∫ π

−π
|f(reit)| dt

≤ (2π)1/q

2π (r − |z|) ∥fr∥p −−−→
r→1

0
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So f = 0. When p = ∞, if ∥f∥ = 0, this means that ∥fr∥∞ = 0 for all
r ∈ (0, 1). Then

|f(reit)| ≤ ∥fr∥∞.

By the maximum modulus principle, |f(z)| ≤ ∥fr∥∞ as long as r > |z|.
Taking the limit as r → 1, we get that |f(z)| = 0, so f = 0.

We have ∥λf∥ = limr→1 ∥λfr∥ = |λ| ∥f∥. And
∥f + g∥ = lim

r→1
∥fr + gr∥p ≤ lim

r→1
∥fr∥p + lim

r→1
∥gr∥p = ∥f∥ + ∥g∥.

It remains to show that Hp is complete. Suppose that {fn} ⊂ Hp is
Cauchy. The same estimates we used above show that there is c > 0 such
that |f(z)| ≤ c∥fr∥p as long as r > |z|. In that situation,

|fn(z) − fm(z)| ≤ c ∥(fn − fm)r∥p,
and so {fn(z)} is uniformly Cauchy in rD and thus convergent to an analytic
function f . As we can do this for any r < 1, we get that f ∈ A(D). And
because the convergence is uniform in rD for any r, we have that ∥fr∥p =
limn ∥(fn)r∥p. From | ∥fn∥ − ∥fm∥ | ≤ ∥fn − fm∥, we get that the number
sequence {∥fn∥} is Cauchy, and thus convergent, say ∥fn∥ → c′. Fix ε > 0.
Choose n such that ∥fr − (fn)r∥p < ε and | ∥fn∥ − c′| < ε. Then

| ∥fr∥p − c′ | ≤ | ∥fr∥p − ∥(fn)r∥p | + | ∥(fn)r∥p − ∥fn∥ | + | ∥fn∥ − c′|

≤ 2ε+ | ∥(fn)r∥p − ∥fn∥ |.
It follows that

lim sup
r→1

| ∥fr∥p − c′ | ≤ 2ε,

for any ε > 0, showing that limr→1 ∥fr∥p = c′, and f ∈ Hp.

(8.3.5) Show that D(D) is a Hilbert function space, and find its repro-
ducing kernel and its feature map.

Answer. Let us first determine the inner product. Given f(z) =
∑
n anz

n

and g(z) =
∑
n bnz

n,

⟨f, g⟩ = a0b0 +
∞∑

n,m=1
anbm

1
π

∫
D
zn−1 zm−1 dz = a0b0 +

∞∑
n=1

anbn
n
.

We have f ′(z) =
∑∞
n=1 nanz

n−1, so

f(z) =
∑
n

anz
n = f(0) +

∞∑
n=1

nanz
n−1

n
= ⟨f, kz⟩,
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where

kz(w) = 1 +
∞∑
n=1

zn−1wn

n
= 1 − 1

z
log(1 − zw).

(8.3.6) Let H be a Hilbert Function Space over X with reproducing
kernel k, and H0 ⊂ H a closed subspace. Show that H0 is a
Hilbert Function Space over X and that its reproducing kernel
if given by k0(x, y) = ⟨P (kx), P (ky)⟩, where P is the orthogonal
projection onto H0.

Answer. The elements of H0 are in H, so points evaluations are bounded.
Given x ∈ X, the Riesz Representation Theorem guarantees that there exists
k′
x ∈ H0 such that g(x) = ⟨g, k′

x⟩ for all g ∈ H0. We also have, that f(x) =
⟨f, kx⟩ for all f ∈ H. As Pg = g for all g ∈ H0

⟨g, k′
x⟩ = g(x) = (Pg)(x) = ⟨Pg, kx⟩ = ⟨g, Pkx⟩.

This occurs for all g ∈ H0, hence k′
x = Pkx. And then

k0(x, y) = ⟨k′
x, k

′
y⟩ = ⟨Pkx, Pky⟩.





9
CHAPTER

Bounded operators on a Banach space

9.1. Linear operators and continuity

(9.1.1) Show that if T, S ∈ B(X ) and both TS and ST are invertible,
then both T and S are invertible. Find an example where TS
is invertible, but neither T nor S are.

Answer. Such an example is discussed at the beginning of Section 6.2.
Namely, let X = ℓ2(N), and

Tx = (x2, x3, . . . , ), Sx = (0, x1, x2, . . .).
Since ∥Tx∥ ≤ ∥x∥ and ∥Sx∥ = ∥x∥ for all x, we have T, S ∈ B(X ). Also,
TS = I, but ST ̸= I (T is not injective!). So neither T nor S are invertible,
even though T admits a right inverse and S a left inverse.

(9.1.2) Show that if dim X < ∞, then any linear T : X → X is
bounded.

363
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Answer. Because dim X < ∞, all norms are equivalent (Theorem 5.2.2).
Consider the norm p(x) = ∥x∥ + ∥Tx∥. Then there exists c > 0 with ∥x∥ +
∥Tx∥ ≤ c∥x∥. Thus ∥Tx∥ ≤ (c− 1)∥x∥.

(9.1.3) Show that if dim ranT < ∞, it is not necessarily true that T
is bounded.

Answer. Using the ideas at the end of Section 4.5, we may construct an
unbounded linear functional f : X → C. Then Tx = f(x)x0 is a rank-one
operator that is not bounded.

(9.1.4) Let X be a normed space and A ∈ B(X ) invertible. Show that

∥A∥ ∥A−1∥ = sup
{∥Ax∥

∥Ay∥
: x, y ∈ X , ∥x∥ = ∥y∥

}
.

Answer. For any x, y with ∥x∥ = ∥y∥ we have, with z = Ay,
∥Ax∥
∥Ay∥

= ∥Ax∥
∥x∥

∥y∥
∥Ay∥

= ∥Ax∥
∥x∥

∥A−1z∥
∥z∥

≤ ∥A∥ ∥A−1∥.

Now fix ε > 0. Then there exists x, z such that
∥Ax∥
∥x∥

> ∥A∥ − ε
∥A−1z∥

∥z∥
> ∥A−1∥ − ε.

By rescaling z if needed, we may assume that ∥A−1z∥ = ∥x∥. With y = A−1z,
∥Ax∥
∥Ay∥

= ∥Ax∥
∥x∥

∥A−1z∥
∥z∥

> (∥A∥ − ε)(∥A−1∥ − ε).

As ∥x∥ = ∥y∥ and this can be done for each ε > 0, this shows that

∥A∥ ∥A−1∥ = sup
{∥Ax∥

∥Ay∥
: ∥x∥ = ∥y∥

}
.

(9.1.5) Let X ,Y be normed spaces and T : X → Y linear, injective,
and such that T

(
BX

1 (0)
)

= BY
1 (0). Show that T is isometric.

Answer. If x ∈ X with ∥x∥ ≤ 1, then Tx ∈ BY
1 (0), so ∥Tx∥ ≤ 1. This shows

that T is bounded and ∥T∥ ≤ 1. Fix x ∈ X with ∥x∥ = 1. If ∥Tx∥ < 1,
let c = 1/∥Tx∥ (note that Tx ̸= 0 by the injectivity of T ). Then c > 1 and
∥T (cx)∥ = 1. But ∥cx∥ = c > 1, so cx ̸∈ BX

1 (0); and by hypothesis there
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exists x′ ∈ BX
1 (0) with Tx′ = T (cx), contradicting the injectivity. It follows

that ∥Tx∥ = 1. Now for arbitrary nonzero x,

∥Tx∥ = ∥x∥
∥∥∥T( x

∥x∥

)∥∥∥ = ∥x∥.

(9.1.6) (this exercise does not require sophisticated ideas but it is far
from trivial; we include it here because it is where it corresponds
topic-wise, but it likely requires more experience with operators)

Let X be a Banach space and T ∈ B(X ). We define
numbers

a(T ) = min{k ∈ N : kerT k = kerT k+1}
and

d(T ) = min{k ∈ N : ranT k = ranT k+1}.

(a) Show that if both a(T ) and d(T ) are finite, then they are
equal.

(b) If n = a(T ) = d(T ), show that ranTn is closed and that
H = ranTn ⊕ kerTn.

Answer. Let m = a(T ), n = d(T ). We always have the inclusions
kerT ⊂ kerT 2 ⊂ kerT 3 ⊂ · · · ⊂ kerTm

and
ranT ⊃ ranT 2 ⊃ ranT 3 ⊃ · · · ⊃ ranTn.

(a) Note that kerT p = kerTm for all p ≥ m. Indeed, if x ∈ kerTm+2 \
kerTm+1, then Tm+2x = 0, while Tm+1x ̸= 0. Then Ax ∈ kerTm+1 \
kerTm, a contradiction. Similarly, ranT p = ranTn for all p ≥ n; indeed,
if y ∈ ranTn+1then y = Tn+1z; and Tnz ∈ ranTn = ranTn+1 so Tnz =
Tn+1w for some w and then y = Tn+2w ∈ ranTn+2.

Suppose that m > n. Then
ranTn = ranTn+1 and kerTm = kerTm+1.

Let x ∈ kerTm. We have Tmx ∈ ranTm = ranTm+1, so there exists
w with Tmx = Tm+1w. We have 0 = Tm+1x = Tm+2w. Thus w ∈
kerTm+2 = kerTm, which means that Tm−1x = Tmw = 0. This shows
that kerTm ⊂ kerTm−1 and hence they are equal, a contradiction. We
have shown then that m ≤ n.

Now suppose that m < n. Let x ∈ ranTm \ ranTm+1. Let w ∈ X
such that x = Tmw. We have Tm+1y − Tmw ̸= 0 for all y ∈ X ; that
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is, Ty − w ̸∈ kerTm for all y ∈ X . As kerTm = kerTn, we get that
0 ̸= Tn(Ty − w) = Tn+1y − Tnw. But Tnw ∈ ranTn = ranTn+1, a
contradiction. Thus m = n.

(b) We note first that ranTn ∩ kerTn = {0}. If x = Tnw and Tnx = 0, then
T 2nw = 0. As kerT 2n = kerTn we get that 0 = Tnw = x.

Fix x ∈ X . Since ranTn = ranT 2n there exists z ∈ X with Tnx =
T 2nz. Let w = x−Tnz. Then Tnw = Tnx−T 2nz = 0 and so w ∈ kerTn.
So x = Tnz + w with Tnz ∈ ranTn and w ∈ kerTn. Thus

X = ranTn ⊕ kerTn.
Now we get that ranTn is closed by Proposition 6.3.10.

(9.1.7) Show that (9.2) does indeed correspond to the operator-block
matrix form of ST .

Answer. We have

(TS)kj = PkTSPj =
( n∑
h=1

PkTPh

)( n∑
ℓ=1

PℓSPj

)

=
n∑
h=1

PkTPhSPj =
n∑
h=1

TkhShj .

(9.1.8) Prove Proposition 9.1.3.

Answer. If TX1 ⊂ X1, then T21 = P2TP1 = 0. Conversely, if T21 = 0, then
TP1x = T11P1x+ T21P1x = T11P1x ⊂ X1.
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9.2. Banach Algebras and the Spectrum

(9.2.1) Prove that for every a ∈ A, the resolvent ρ(a) is open.

Answer. By definition of spectrum, if A is not unital we need to work on the
unitization of A. So we assume without loss of generality that A is unital. Let
λ ∈ ρ(a). Then a−λI ∈ GL(A). For any µ ∈ C with |µ−λ| < ∥(a−λI)−1∥−1,

∥a− λI − (a− µI)∥ = |µ− λ| < ∥(a− λI)−1∥−1.

By Proposition 9.2.2, a − µI ∈ GL(A), so µ ∈ ρ(a). This shows that every
λ ∈ ρ(a) is interior, so ρ(a) is open.

(9.2.2) If A = Mn(C), and a ∈ Mn(C), show that the spectrum σ(a)
consists of the eigenvalues of a.

Answer. For a − λI to be non-invertible, an equivalent condition is that
there exists nonzero v ∈ Cn with (A− λI)v = 0; that is, Av = λv. So λ is an
eigenvalue precisely when A− λI is not invertible.

(9.2.3) Let a ∈ ℓ∞(N). Show that σ(a) = {a(n) : n ∈ N}.

Answer. If λ = a(m), then (a− λ)b has zero as its mth coordinate, so a− λ
cannot be invertible. Thus {a(n) : n ∈ N} ⊂ σ(a), and as σ(a) is closed,
{a(n) : n ∈ N} ⊂ σ(a). Conversely, if λ ̸∈ {a(n) : n ∈ N}, then there exists
δ > 0 with |a(n) − λ| > δ for all n. Then 1/|a(n) − λ| < 1/δ for all n, which
shows that b(n) = 1/(a(n) − λ) gives b ∈ ℓ∞(N), and so a − λ is invertible.

(9.2.4) Let f ∈ L∞(X,Σ, µ). Show that σ(f) = ess ran f .

Answer. We can write the essential range E of f as
E = {z ∈ C : µ({x : |f(x) − z| < ε}) > 0 for all ε > 0}.
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Suppose first that λ ̸∈ E. Then there exists ε > 0 such that |f(x) − λ| ≥ ε
a.e. Thus g = 1

f−λ ∈ L∞(x), as |g| ≤ 1
ε a.e. It follows that f − λ has inverse

g, and so λ ̸∈ σ(Mf ).
Conversely, suppose that λ ∈ E. Then µ({|f − λ| < 1/n}) > 0 for all

n ∈ N. Let hn = 1{|f−λ|<1/n}. We have hn ∈ L∞(X), ∥hn∥ = 1 for all n,
and ∥(f − λ)hn∥ ≤ 1/n → 0. This shows that f − λ is not invertible: if we
had g ∈ L∞(X) with g(f − λ) = 1, then

1 = ∥hn∥ = ∥g(f − λ)hn∥ ≤ ∥g∥ ∥(f − λ)hn∥ ≤ ∥g∥
n

for all n ∈ N, a contradiction. Thus λ ∈ σ(f).

(9.2.5) If T is compact Hausdorff and A = C(T ), show that for any
f ∈ A we have

σ(f) = f(T ).

Answer. Note that f(T ) is compact. If λ ̸∈ σ(f), then there exists g ∈ C(T )
with g(f − λ) = 1. For any t ∈ T ,

|f(t) − λ| = 1
|g(t)| ≥ 1∥g∥.

So λ ̸∈ f(T ).
Conversely, suppose that λ ∈ f(T ). So there exists t ∈ T with λ = f(t).

If f − λ had an inverse g, we would have
1 = g(t)(f(t) − λ) = 0,

a contradiction.

(9.2.6) Let T be a locally compact Hausdorff space, and A = C0(T ).
Show that the unitization Ã of A is C(T∞), the continuous
functions on the one-point compactification of T .

Answer. By the uniqueness of the minimal unitization (Proposition 9.2.21)
it is enough to show that C(T̃ ) satisfies that there exists an isometric mono-
morphism π : C0(T ) → C(T̃ ) such that π(C0(T )) is a maximal ideal.

Let π : C0(T ) → C(T̃ ) be given by π(f)(t) = f(t) for t ∈ T and
π(f)(∞) = 0. The fact that f ∈ C0(T ) makes π(f) continuous on C(T̃ ).
Because π is given by pointwise evaluation, it is a homomorphism. And
∥π(f)∥ = max{0, {|f(t)| : t ∈ T}} = max{|f(t)| : t ∈ T} = ∥f∥, so π is
isometric. Since π(f) = {g ∈ C(T̃ ) : g(∞) = 0}, π(C0(T )) is an ideal. And
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for any g ∈ C(T̃ ) we have g − g(∞)1 ∈ π(C0(T )), so g ∈ g(∞)1 + π(C0(T ));
hence the codimension of π(C0(T )) is 1.

(9.2.7) If T is locally compact Hausdorff and f ∈ C0(T ), show that
σ(f) = f(T ) = {0} ∪ f(T ).

Do this is two ways: directly, and by using characters.

Answer. Fix ε > 0. There exists K ⊂ T , compact, such that |f | < ε on T \K.
As f(K) is compact, we have that f(T ) = f(K)∪f(T \K) ⊂ f(K)∪Bε(0) ⊂
f(T ) ∪Bε(0). Then

f(T ) ⊂
⋂
ε>0

f(T ) ∪Bε(0) = f(T ) ∪
⋂
ε>0

Bε(0) = f(T ) ∪ {0}.

We also have 0 ∈ f(T ), so f(T ) = f(T ) ∪ {0}.
Now for the spectrum. By definition of the spectrum we need to work

on the unitization of C0(T ), which is C(T∞) by Exercise 9.2.6. So we consider
f ∈ C(T∞) with f(∞) = 0.

Using characters: by Proposition 7.4.7 and Proposition 9.2.24 we have
σ(f) = {f(t) : t ∈ T} ∪ {0} = f(T ) ∪ {0} = f(T ).

Directly: Exercise 9.2.5 gives us
σ(f) = f(T∞) = f(∞) ∪ f(T ) = {0} ∪ f(T ).

This also gives the equality {0} ∪ f(T ) = f(T ).

(9.2.8) Let R be a unital ring, and a1, . . . , am ∈ R. Show that if
akaj = ajak for all j, k then a1 · · · am is invertible if and only
if each aj is invertible.

Answer. Suppose that a1 · · · am is invertible. Because we can commute the
elements, it is enough to show that a1 is invertible. Let b be an inverse to
a1 . . . am. So ba1 . . . am = 1, which we may rewrite as (ba2 . . . am)a1 = 1, so
a1 has a left inverse. Also a1 . . . amb = 1, which shows that a1 has a right
inverse. Then a1 is invertible, as the existence of a left inverse c and a right
inverse d guarantee that they are equal and thus an inverse to a1: if ca1 = 1,
a1d = 1, then

c = c1 = ca1d = 1d = d.

For the converse, if a1, . . . , am are all invertible, then a−1
m · · · a−1

1 is an inverse
for a1 · · · am.
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(9.2.9) Prove Proposition 9.2.2.

Answer. Assume first that a = 1. As ∥1 − b∥ < 1, the series
∑∞
k=0(1 − b)k

converges: indeed, the tails satisfy∥∥∥ n∑
k=m

(1 − b)k]
∥∥∥ ≤

n∑
k=m

∥1 − b∥k < 1 − ∥1 − b∥m

1 − ∥1 − b∥
.

Then, with c =
∑∞
k=0(1 − b)k,

c(1 − b) = (1 − b)c =
∞∑
k=1

(1 − b)k = c− 1,

showing that cb = bc = 1, and so b is invertible with b−1 = c.
For arbitrary a now,

∥1 − a−1b∥ = ∥a−1(a− b)∥ ≤ ∥a−1∥ ∥a− b∥ < 1.
By the above, a−1b is invertible, so b = a(a−1b) is invertible.

(9.2.10) Complete the proof of Proposition 9.2.23 by showing that if
J ⊂ A is maximal and τ(a) is the unique scalar such that
a+ J = τ(a)IA + J , then τ is a character.

Answer. From a+ b+ J = τ(a+ b)IA + J and a+ b+ J = a+ J + b+ J =
(τ(a) + τ(b))IA + J , the uniqueness gives τ(a+ b) = τ(a) + τ(b). Similarly,

τ(ab)IA + J = ab+ J = (a+ J)(b+ J)

= (τ(a)IA + J)(τ(b)IA + J) = τ(a)τ(b)IA + J,

and then the uniqueness gives τ(ab) = τ(a)τ(b).

(9.2.11) Use Lemma 9.2.20 and Proposition 7.4.13 to give an alternative
proof of Proposition 7.4.6.

Answer. Let φ : C(T ) → C be a character. We know from Lemma 9.2.20
that kerφ is maximal. In particular, it is closed. By Proposition 7.4.13 there
exists a closed T0 ⊂ T such that kerφ = {f : f |T0 = 0}. Because kerφ is
maximal, necessarily T0 is a singleton, for otherwise we can remove a point a
get a larger ideal. Thus T0 = {t0} for some t0 ∈ T . As f − φ(f) ∈ kerφ, we
get that f = φ(f) + h, where h ∈ kerφ. This means that h(t0) = 0, and so
f(t0) = φ(f) + h(t0) = φ(f).
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(9.2.12) Consider the Banach algebra A = ℓ∞(N) and K ⊂ C compact.
Show that there exists a ∈ A with σ(a) = K.

Answer. Let Q = {qn} be dense in K (use Exercise 7.4.5, or the fact that
C is separable and metric together with Proposition 1.8.5). Let a ∈ A be
an = qn. By Exercise 9.2.3,

σ(a) = Q = K.

(9.2.13) Show that Σ(Mn(C)) = ∅.

Answer. Let τ : Mn(C) → C be linear and multiplicative. Consider the
canonical matrix units {Ekj}. We have, for k ̸= j,

τ(Ekj) = τ(EkkEkjEjj) = τ(EjjEkkEkj) = τ(0) = 0.
And

τ(Ekk) = τ(EkjEjk) = τ(Ekj)τ(Ejk) = τ(0)τ(0) = 0.
So the only linear and multiplicative map Mn(C) → C is the zero map.

(9.2.14) Let A,B be unital Banach algebras and π : A → B a unital
homomorphism. Show that, for any a ∈ A, σ(π(a)) ⊂ σ(a).

Answer. Let λ ∈ C \ σ(a); then there exists b ∈ A with b(a − λIA) = IA.
Thus

π(b)(π(a) − λIA) = π(b(a− λIA)) = IA,

so λ ∈ C \ σ(π(a)). Thus C \ σ(a) ⊂ C \ σ(π(a)).

(9.2.15) Consider the Banach algebra A = Mn(C). Fix ε > 0 and define

An =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

 , Bn =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
ε 0 0 · · · 0

 .
Show that σ(An) = {0}, σ(Bn) = {ω : ωn = ε}, and ∥An −
Bn∥ = ε.



372 CHAPTER 9

Answer. The matrix An is upper triangular, so det(An − λIn) = (−1)nλn
and hence σ(An) = {0}. For Bn, calculating det(Bn − λIn) along the first
column we get

detBn = (−1)nλn − (−1)nε.
Thus the characteristic polynomial of Bn is λn−ε, and so σ(B) = {ω : ωn =
ε}. As for the norm, An −Bn = εEn1, and so ∥An −Bn∥ = ε ∥En1∥ = ε.

An alternative way to find the spectrum of Bn is to look at the eigen-
vectors. If Bnx = λx, this gives the equalities

x2 = λx1, x3 = λx2, · · · xn = λxn−1, εx1 = λxn.

We cannot have λ = 0, for it would force xk = 0 for all k. Similarly, we cannot
have x1 = 0, for it would propagate to xk = 0 for all k. So we may assume
without loss of generality that x1 = 1, and then xk = λk−1 and λn = ε.

(9.2.16) Let ε > 0. Use Exercise 9.2.15 to construct operators

A,B ∈ B
( ∞⊕
n=2

Cn
)

such that
∥A−B∥ = ε, σ(A) = {0}, spr(B) > 1 − ε.

Answer.
Fix m ∈ N such that 1 − ε1/m < ε. We construct, acting on the Hilbert

space H =
⊕∞

n=1 Cn, the operators

A =
m⊕
n=2

An, B =
m⊕
n=2

Bn.

Then
∥A−B∥ = sup

n
∥An −Bn∥ = ε,

σ(A) =
⋃
n

σ(An) = {0},

and
σ(B) =

⋃
n

σ(Bn) =
⋃
n

{w : wn = ε, n = 1, . . . ,m}.

In particular ε1/n ∈ σ(B) for all n, which implies spr(B) > 1 − ε.
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9.3. The Riesz Functional Calculus

(9.3.1) Let X be a vector space, T : X → X linear and λ ∈ C, x ∈
X such that Tx = λx. If (zI − T ) is invertible, show that
(zI − T )−1x = (z − λ)−1x.

Answer. Note that zI−T invertible implies that z ̸= λ; for ker(λI−T ) ̸= {0}.
We have (zI − T )x = zx − Tx = zx − λx = (z − λ)x. Applying (zI − T )−1

to both sides and multiplying both sides by (z − λ)−1 we get
(zI − T )−1x = (z − λ)−1x.

(9.3.2) Let A be a Banach algebra and a ∈ A. One can define the
exponential exp(a) by functional calculus,

exp(a) = 1
2πi

∫
γ

ez (zI − a)−1 dz

for some curve γ that contains σ(a). One can also define the
exponential via the usual series

ea =
∞∑
k=0

ak

k! .

Show that the series makes sense in A, and that exp(a) = ea.

Answer. We have ∥∥∥∥ m∑
k=n

ak

k!

∥∥∥∥ ≤
m∑
k=n

∥ak∥
k! ≤

m∑
k=n

∥a∥k

k! .

This last sum is a tail for the series of the usual exponential, so the partial
sums for ea are Cauchy in A. As A is complete, the limit ea exists.
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Let pn(z) =
∑n
k=0

zk

k! . On any bounded set pn(z) → ez uniformly. As
the functional calculus is a continuous homomorphism,

exp(a) = 1
2πi

∫
γ

lim
n→∞

pn(z) (zI − a)−1 dz = lim
n→∞

1
2πi

∫
γ

pn(z) (zI − a)−1 dz

= lim
n→∞

pn(a) = ea.

(9.3.3) Let A be a Banach algebra and a, b ∈ A.

(a) Show that if a, b commute (that is, ab = ba) then ea+b =
eaeb.

(b) Show an example where ea+b ̸= eaeb.

Answer.

(a) When ab = ba, the proof of ea+b = eaeb runs exactly like the numerical
case (Exercise 1.5.6).

(b) Let A = M2(C), and

a =
[
1 0
0 0

]
, b =

[
0 1
0 0

]
.

From a2 = a,

ea = I2 +
∞∑
k=1

a

k! = I2 + (e− 1)a =
[
e 0
0 1

]
.

Similarly (a+ b)2 = a+ b, so

ea+b = I2 +
∞∑
k=1

a+ b

k! = I2 + (e− 1)(a+ b) =
[
e e− 1
0 1

]
.

And b2 = 0, so

eb = I2 + b =
[
1 1
0 0

]
.

Thus
ea+b =

[
e e− 1
0 1

]
̸=
[
e e
0 0

]
= eaeb.

(9.3.4) Prove Theorem 9.3.5.
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Answer. By construction, pT (λ) = 0 for all λ ∈ σ(T ). Then, for a simple
curve γ that surrounds σ(T ),

pT (T ) = 1
2πi

∫
γ

pT (z) (zIA − T )−1 dz = 0

by Proposition 9.3.6, since pT agrees with 0 on σ(T ).

(9.3.5) Let X be a Banach space, S, T ∈ B(X ), and f ∈ H(T ). Show
that if ST = TS, then Sf(T ) = f(T )S.

Answer. From (zI−T )S = S(zI−T ), by multiplying both left and right with
(zI−T )−1 we get that S(zI−T )−1 = (zI−T )−1S. Then, since multiplication
by an operator is continuous, we have

Sf(T ) = 1
2πi

∫
γ

f(z)S(zI − T )−1 dz

= 1
2πi

∫
γ

f(z) (zI − T )−1S dz = f(T )S.

Another way to prove the assertion is to note that as f(z) = limn pn(z)
uniformly for polynomials pn, we have that f(T ) = limn pn(T ), and then

Sf(T ) = lim
n
Spn(T ) = lim

n
pn(T )S = f(T )S,

where the commutation Spn(T ) = pn(T )S is straightforward from commuting
S with T repeatedly.

(9.3.6) Let T =

1 0 3
2 1 2
0 0 2

. Find matrices A and B such that A4 =

T 3, and T = eB . Are they unique? (This exercise is not really
related to Riesz Functional Calculus)

Answer. The characteristic polynomial is pT (λ) = (λ− 1)2(λ− 2). We have
that, seeing it in block form,

T =
[
X y
0 2

]
.

If we put

V =
[
I z
0 1

]
, W =

[
I w
0 1

]



376 CHAPTER 9

then VW =
[
I z + w
0 1

]
. So

V TV −1 =
[
X y + (2 −X)z
0 2

]
We want y + (2 −X)z = 0. As (2 −X)−1 =

[
1 0
2 1

]
, we get that z =

[
−3
−8

]
.

We have
V TV −1 =

[
X 0
0 2

]
.

This allows us to answer the question by answering the questions for X and
for 2, by assuming—before conjugating back with V −1 and V—that

A =
[
A1 0
0 a2

]
, B =

[
B1 0
0 b2

]
,

so
A4 =

[
A4

1 0
0 a4

2

]
, eB =

[
eB1 0
0 eb2

]
,

We need a2 to be a fourth root of 8, and b2 = log 2. The characteristic
polynomial of X is pX(λ) = (λ − 1)2. So if eB1 = X, this means that for
each eigenvalue µ1, µ2 of B1 we have by the Spectral Mapping Theorem that
eµj = 1. So both eigenvalues of B1 have to be zero. This means (thinking
of the Jordan form) that B1 = SE12S

−1 for some invertible matrix S. Then
X = eB1 = SeE12S−1. And since E2

12 = 0,
X = eB1 = SeE12S−1 = S(I + E12)S−1 = I + SE12S

−1 = I +B1.

So we need B1 = X − I = 2E21. That is,

B1 =
[
0 0
2 0

]
.

This means that the only possibility for B0 such that eB0 = V TV −1 is

B0 =

0 0 0
2 0 0
0 0 log 2


and so the only possibility for B such that eB = T is

B = V −1B0V =

1 0 3
0 1 8
0 0 1

0 0 0
2 0 0
0 0 log 2

1 0 −3
2 1 −8
0 0 1


=

0 0 3 log 2
2 0 8 log 2 − 6
0 0 log 2

 .
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For the equation A4
1 = X3 if A2

1 =
[
a b
c d

]
then the equality (A2

1)2 = X3

is [
a2 + bc b(a+ d)
c(a+ d) d2 + bc

]
=
[
1 0
6 1

]
.

From c(a+ d) = 6 we know that a+ d ̸= 0; then b(a+ d) = 0 implies b = 0.
Thus a2 = d2 = 1, and as a + d ̸= 0, a = d = ±1. Then c = ±3, depending
on the sign of a. So we get two possibilities for A2

1, namely

A2
1 = ±

[
1 0
3 1

]
.

Repeating the argument for the square root of this we get

A1 = ±
[

1 0
3/2 1

]
.

Then A0 such that A4
0 = (V TV −1)3 = V T 3V −1 is

A0 =

 a 0 0
3a/2 a 0

0 0 21/4ω

 , a ∈ {−, 1, 1}, ω ∈ {1,−1, i,−i}.

And then

A = V −1A0V =

1 0 3
0 1 8
0 0 1

 a 0 0
3a/2 a 0

0 0 21/4ω

1 0 −3
0 1 −8
0 0 1


=

 1 0 21/4 × 3ω − 3a
3a/2 a −27a/2 + 233/4ω

0 0 21/4ω

 ,
for a ∈ {−, 1, 1} and ω ∈ {1,−1, i,−i}. So there are eight possibilities for A.

(9.3.7) Let X be a Banach space and T ∈ B(X ) such that σ(T ) is not
connected.

(a) Show that σ(T ) = K1 ∪K2, with K1,K2 compact and dis-
joint.

(b) Show that there exist closed subspaces X1,X2 ⊂ X such
that X = X1 ⊕ X2 and SX1 ⊂ X1 and SX2 ⊂ X2 for all
S ∈ B(X ) such that ST = TS.

(c) Denote T1 = T |X1 ∈ B(X1) and T2 = T |X2 ∈ B(X2). Show
that σ(T1) = K1 and σ(T2) = K2.
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(d) Prove that there exists S : X → X1 ⊕ X2, invertible, with
T = S−1(T1 ⊕ T2)S.

Answer.

(a) By assumption there exist disjoint open sets V,W ⊂ C such that σ(T ) =
(V ∩ σ(T )) ∪ (W ∩ σ(T )) with both components nonempty. Let K1 =
V ∩ σ(T ), K2 = W ∩ σ(T ). Let {Vj} be an open cover for K1. Then W
and the {Vj} form an open cover for σ(T ). So there exist j1, . . . , jm such
that K1 ⊂ Vj1 ∪ · · · ∪ Vjm ; it follows that K1 is compact. Similarly, K2 is
compact.

(b) The function 1V is holomorphic on the open set V ∪W . As both compo-
nents are nonempty, 1V takes both values 0 and 1 on σ(a). Then 1V (T )
is a projection with σ(1V (T )) = 1V (σ(T )) = {0, 1}, so it is proper. Simi-
larly, 1W (T ) is a proper projection. As 1V (T ) + 1W (T ) = 1 on V ∪W , we
have that 1V (T )+1W (T ) = IX (this is contained in (ii) in Theorem 9.3.2).
Now let X1 = 1V (T )X , X2 = 1W (T )X and we have X1 + X2 = X , for any
x ∈ X can be written as x = 1V (T )x+ 1W (T )x. The sum is direct, for if
x ∈ X1 ∩ X2, then

x = 1V (T )1W (T )x = (1V 1W )(T )x = (0)(T )x = 0.
We have that X1 is closed, for if {xn} ⊂ X1 is Cauchy, then xn → x for
some x ∈ X since X is Banach; and since 1V (T ) ∈ B(X ) is bounded,
1V (T )x = limn 1V (T )xn = limn xn = x and hence x ∈ X1. Similarly, X2
is closed. From Proposition 6.3.9 we get that this sum is topological. If
ST = TS, then S1V (T ) = 1V (T )S by Exercise 9.3.5. For any x ∈ X1,

Sx = S1V (T )x = 1V (T )Sx ∈ X1.

So SX1 ⊂ X1. Similarly, SX2 ⊂ X2.
(c) Let w ∈ C \ K1. Them the function g(z) = w − z is nowhere zero on

K1, and by compactness there exists c > 0 with |g(z)| ≥ c on K1. Then
g(z) ̸= 0 on an open set that contains K1, which guarantees that 1/g ∈
H(T1). Then (1/g)(T ) ∈ B(X1) is the inverse of g(T ) = wI − T and
so w ̸∈ σ(T1). Conversely, suppose that w ∈ K1. As w ̸∈ K2, the
operator wIX2 − T |X2 is invertible by the argument we just did. If we
had that wIX1 − T |X1 is invertible, then wI − T would be invertible by
Exercise 6.3.10, a contradiction. Thus w ∈ σ(T1). An analog argument
shows that σ(T2) = K2.

(d) Let S : X → X1 ⊕T X2 be given by Sx = (1V (T )x, 1W (T )x). The operator
S is bounded, for

∥Sx∥ = ∥1V (T )x∥ + ∥1W (T )x∥ ≤ (∥1V (T )∥ + ∥1W (T )∥) ∥x∥.
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It is injective, for Sx = 0 implies that 1V (T )x = 1W (T )x = 0, and then
x = 1V (T )x + 1W (T )x = 0. And it is surjective, for if x1 ∈ X1 and
x2 ∈ X2, then (x1, x2) = S(x1 + x2). By Theorem 6.3.6, S is invertible.
We have

STx = (1V (T )Tx, 1W (T )Tx) = (T1V (T )x, T1W (T )x)

= (T11V (T )x, T21W (T )x) = (T1 ⊕ T2)Sx.

Thus ST = (T1 ⊕ T2)S. As S is invertible, T = S−1(T1 ⊕ T2)S.

(9.3.8) Let A be the Banach algebra C(X) for compact Hausdorff X.
Let f ∈ A and g ∈ H(f). Show that g(f) = g ◦ f .

Answer. Since g is holomorphic, it is a uniform limit of polynomials. As
the holomorphic functional calculus is continuous, it is enough to show that
p(f) = p ◦ f for any p ∈ C[z]. And by linearity on both sides it is enough to
assume that p(z) = zk for some k. Now (p ◦ f)(x) = f(x)k = p(f)(x). Thus
p ◦ f = p(f) = Γ(p).

(9.3.9) Prove Proposition 9.3.8.

Answer. The matrices Tj are exactly what comes out of applying an r-fold
version of Exercise 9.3.7. The direct sum T1 ⊕ · · · ⊕ Tr can be seen as blocks
in the diagonal of T . We can form S = S1 ⊕ · · · ⊕ Sr.

For each j, Nj = Tj − λjInj has spectrum {0}. This means that the
characteristic polynomial is pnj (z) = znj . Then N

nj
j = pNj (Nj) = 0 by

Cayley–Hamilton (Theorem 9.3.5).
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9.4. Adjoints

(9.4.1) Let X ,Y be Banach spaces and T ∈ B(X ,Y). Show that if T
is bounded below, then ranT is closed.

Answer. Let {yn} be a Cauchy sequence in ranT , with Yn → y (this y exists
since Y is Banach). For each n there exists xn ∈ X with yn = Txn. Since

∥xn − xm∥ ≤ c∥Txn − Txm∥ = c∥yn − ym∥
and the sequence {yn} is Cauchy, it follows that the sequence {xn} is Cauchy.
As X is Banach, there exists x ∈ X with xn → x. Since T is bounded,
Tx = limTxn = lim yn = y.

(9.4.2) Let T ∈ B(X ). Show that the map T 7−→ T ∗ is linear and
anti-multiplicative.

Answer. We have, for g ∈ Y∗ and x ∈ X ,
[(T + αS)∗g](x) = g((T + αS)x) = g(Tx) + αg(Sx) = ((T ∗ + αS∗)g)(x).

As this holds for all x and all g, we get (T + αS)∗ = T ∗ + αS∗.
If T ∈ B(X ,Y) and S ∈ B(Y,Z), then for g ∈ Z∗

[(ST )∗g](x) = g(STx) = (S∗g)(Tx) = (T ∗S∗g)(x).
So (ST )∗ = T ∗S∗.

(9.4.3) Given T ∈ B(X ,Y), show that its adjoint T ∗ is bounded, and
that ∥T ∗∥ = ∥T∥.

Answer. Given g ∈ y∗, we have
∥T ∗g∥ = sup{|T ∗g(x)| : x ∈ X , ∥x∥ = 1}

= sup{|g(Tx)| : x ∈ X , ∥x∥ = 1}

≤ ∥T∥ ∥g∥,
so T ∗ is bounded and ∥T ∗∥ ≤ ∥T .
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Given x ∈ X , we have (using Corollary 5.7.7)
∥Tx∥ = max{|g(Tx)| : g ∈ Y∗, ∥g∥ = 1}

= max{|T ∗g(x)| : g ∈ Y∗, ∥g∥ = 1}

≤ ∥T ∗∥ ∥x∥,
so ∥T∥ ≤ ∥T ∗∥.

(9.4.4) Let T ∈ B(X ,Y) be an isometric isomorphism. Show that T ∗

is an isometric isomorphism.

Answer. The isomorphism part follows directly from Corollary 9.4.9. Also,
for g ∈ Y∗,
∥T ∗g∥ = sup{|T ∗g(x)| : x ∈ X , ∥x∥ = 1} = sup{|g(Tx)| : x ∈ X , ∥x∥ = 1}

= sup{|g(y)| : y ∈ Y, ∥y∥ = 1} = ∥g∥
and T ∗ is isometric.

(9.4.5) Let X ,Y be normed spaces and T ∈ B(X ,Y). Show that
∥T ∗∗x̂∥ = ∥Tx∥, x ∈ X .

Answer. Using just definitions,
∥T ∗∗x̂∥ = sup{|(T ∗∗x̂)g| : g ∈ Y∗, ∥g∥ = 1}

= sup{|x̂(T ∗g)| : g ∈ Y∗, ∥g∥ = 1}

= sup{|(T ∗g)x| : g ∈ Y∗, ∥g∥ = 1}

= sup{|(g(Tx)| : g ∈ Y∗, ∥g∥ = 1}

= ∥Tx∥.

(9.4.6) Let T ∈ B(X ,Y). Show that if X is reflexive, then T ∗∗ = T .

Answer. Since X is reflexive, any element of X ∗∗ is of the form x̂, with
x ∈ X . Then

(T ∗∗x̂)g = x̂(T ∗g) = T ∗g(x) = g(Tx) = T̂ x g.

Thus T ∗∗ = T .
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(9.4.7) Use Proposition 9.4.2 to give an alternative proof of Proposi-
tion 7.2.10.

Answer. If Γ ∈ (X ∗, σ(X ∗,X )), this means that Γ : X ∗ → C is σ(X ∗,X )-
continuous. By Proposition 9.4.2, there exists S : C∗ → X such that Γ = S∗.
We have C∗ = C. Let x = S1. Then

Γ(ψ)λ = S∗(ψ)λ = ψ(λx) = ψ(x)λ, ψ ∈ X ∗, λ ∈ C,
and so Γ = x̂.

(9.4.8) In the context of the proof of Proposition 9.4.10, show that
∥gx,y∥ = ∥x∥ ∥y∥.

Answer. We have
|gx,y(T )| = |(Tx)y| ≤ ∥Tx∥ ∥y∥ ≤ ∥T∥ ∥x∥ ∥y∥,

so ∥gx,y∥ ≤ ∥x∥ ∥y∥. Conversely, fix ε > 0 and choose f ∈ Y∗ with ∥f∥ = 1
such that ∥y∥ ≤ |f(y)| + ε; and let T be the rank-one operator that maps x
to f ∈ Y∗. Then ∥T∥ = ∥x∥ and

|gx,y(T )| = |(Tx)y| = |f(y)| ≥ ∥y∥ − ε.

(9.4.9) Prove (v) and (vi) in Proposition 9.4.6 without using polars
nor prepolars.

Answer. (v) Suppose first that T is injective. If ranT ∗ is not weak∗-dense,
take g ∈ X ∗ \ ranT ∗; by Proposition 7.2.10 and Corollary 5.7.19, there exists
x0 ∈ Y such that x̂0(g) = 1 and x̂0(T ∗f) = 0 for all f ∈ Y∗. Then

0 = x̂0(T ∗f) = T ∗f(y) = f(Tx)
for all f ∈ Y∗. By Corollary 5.7.7 we obtain Tx0 = 0, and then x0 = 0 by
injectivity; a contradiction. So ranT ∗ is weak∗-dense in X ∗.

Conversely, if ranT ∗ is weak∗-dense in X ∗ and Tx = 0, then for any
f ∈ X ∗ we have f = limT ∗gj for some net {gj} ⊂ Y∗ and the limit in the
weak∗-topology. Then

f(x) = limT ∗gj(x) = lim gj(Tx) = 0.
As f was arbitrary, we conclude by Corollary 5.7.7 that x = 0, and T is
injective.
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(vi) Assume that T ∗ is injective. If ranT is not dense, there exists
y ∈ Y \ ranT . By Hahn–Banach (Corollary 5.7.19) there exists g ∈ Y∗ with
g(y) = 1 and g(Tx) = 0 for all x ∈ X . But then 0 = g(Tx) = T ∗g(x) for all
x, so T ∗g = 0. As T ∗ is injective, g = 0, a contradiction. So ranT is dense.

Conversely, if ranT is dense in Y and T ∗g = 0, then g(Tx) = 0 for all
x; as ranT is dense, g(y) = 0 for all y ∈ Y, so g = 0 and T ∗ is injective.

(9.4.10) The following is a “counterexample” to Proposition 9.4.2. Find
the mistake.

Take Y = c00 ⊂ X = ℓ1(N); so we consider the 1-norm
on Y. Because Y is dense in ℓ1(N), we have X ∗ = Y∗ =
ℓ∞(N).

Define S : Y∗ → X ∗, that is S : ℓ∞(N) → ℓ∞(N),
by

Sw =
(∑

n

w(n)
n2 , 0, 0, . . .

)
.

If wj → 0 weak∗, this means that
∑
n wj(n)x(n) → 0 for

all x ∈ X . In particular
∑
n
wj(n)
n2 → 0, and it follows

S is weak∗-weak∗ continuous. If we had S = T ∗, with
T ∈ B(X ,Y) this would mean that, for each w ∈ ℓ∞(N)
and x ∈ X ,

(Sw)x = w(Tx).
This translates to∑

n

w(n)x(1)
n2 =

∑
n

w(n) (Tx)(n).

As this should work for all w ∈ ℓ∞, it follows that we
need

Tx =
(
x(1)
n2

)
n

.

But then Tx ̸∈ Y for any nonzero x, and so T ̸∈
B(X ,Y).

Answer. Inspired by Remark 7.2.8.
The problem lies in the assertion that S is weak∗-continuous. It is not.

The sequence { 1
n2 } is not in Y! For k ∈ N, let wk ∈ ℓ∞(N) be given by

wk =
∑
j≥k kek. Then wk → 0 weak∗, since any sequence in Y is eventually
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zero, but ∑
n

wk(n)
n2 =

∑
n≥k

k

n2 ≥ k

∫ ∞

k

1
x2 dx = 1.

So Swk does not converge weak∗ to zero.

(9.4.11) Let X ,Y,Z be Banach spaces, S : Y → Z linear, and T ∈
B(X ,Y). Use Lemma 9.4.5 to show that if ST ∈ B(X ,Z) then
S is bounded.

Answer. Suppose that yn → 0 and Syn → z. Using that T is surjective,
choose xn ∈ X such that Txn = yn, n ∈ N. Applying Lemma 9.4.5 to T and
{xn}, we get

0 ≤ ∥xn∥ ≤ m∥Txn∥ = m ∥yn∥.
As yn → 0, this shows that xn → 0. Knowing this,

z = lim
n
Syn = lim

n
STxn = 0,

the last equality by the continuity of ST . Now the Closed Graph Theorem
implies that S is bounded.

(9.4.12) We use notation from Section 9.3. Let X be a Banach space,
T ∈ B(X ), and f ∈ H(T ). Show that f(T ∗) = f(T )∗.

Answer. Since the Riesz functional calculus is continuous and f is a uniform
limit of polynomials, it is enough to show that equality for polynomials. As
polynomials are linear combination of monomials and taking adjoint is linear,
it is enough to show the equality for a monomial. When f(z) = zn, we have
for any φ ∈ X ∗ and any x ∈ X

(f(T ∗)φ)x = ((T ∗)nφ)x = ((T ∗)n−1φ)(Tx) = · · · = φ(Tnx) = (f(T )∗φ)x.
Thus f(T ∗) = f(T )∗.
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9.5. The Spectrum of a Linear Operator

(9.5.1) Let T ∈ B(X ), α, β ∈ C. Show that σ(αT + βI) = ασ(T ) + β.

Answer. If α = 0, both sides of the equality are β; so we assume α ̸= 0. As
αT + βI − (αλ+ β)I = α(T − λI),

T − λI is invertible if and only if αT + βI = (αλ + β)I is invertible. So
σ(αT + β) = ασ(T ) + β.

(9.5.2) Let X be a Banach space with dimension (finite or infinite)
at least 2. Given a, b ∈ X linearly independent, let X0 =
span{a, b}. Show that

(i) there exists φ ∈ X ∗ with φ(αa+ βb) = β;
(ii) there exists a bounded surjective projection P : X →

X0;
(iii) the linear operator T : X → X given by Tx = φ(Px)a

is bounded;
(iv) σ(T ) = {0};
(v) there exists T ∈ B(X ) with ∥T∥ = 1 and spr(T ) = 0.

Answer.

(i) Define a linear functional φ : X0 → C by φ0(αa+βb) = β. Since X0
is finite-dimensional, φ0 is bounded. By Hahn–Banach, there exists
φ : X → C, bounded, with φ|X0 = φ0.

(ii) Similarly, there is a bounded linear functional ψ ∈ X ∗ such that
ψ(αa + βb) = α. Now define P : X → X by Px = ψ(x)a + φ(x)b.
Then P is a bounded operator and P |X0 = idX0 .

(iii) This is just the estimate
∥φ(Px)a∥ ≤ |φ(Px)| ∥a∥ ≤ ∥φ∥ ∥P∥ ∥a∥ ∥x∥.
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(iv) Let X1 = kerP . It is a closed subspace, since P is bounded. For
any x ∈ X , we have

x = Px+ (x− Px),
so X = X0 +X1. If x ∈ X0 +X1, then x = Px, and 0 = Px = P 2x =
Px = x, so X0 ∩ X1 = {0}.

(v) We have ∥Tx∥ = |φ(Px) ∥a∥ ≤ ∥φ∥ ∥P∥ ∥a∥ ∥x∥, so T is bounded.
(vi) Suppose that λ ∈ C \ {0}. We proved that x = αa + βb + c, with

c ∈ kerP . Then
(T − λI)x = Tx− λx = (β − λα)a− λβb− λc.

The map
S(ra+ sb+ c′) = − 1

λ (r + s
λ ) a− 1

λs b− 1
λ c

′

is easily seen to be an algebraic inverse for T − λI. Since T − λI
is bounded, by the Inverse Mapping Theorem 6.3.6, the linear map
S is bounded and T − λI is invertible. So σ(T ) ⊂ {0}; as it is
nonempty, σ(T ) = {0}.

A more direct argument can be done with more knowledge about
compact operators. Since T is compact, by Theorem 9.6.13 every
nonzero element of the spectrum is an eigenvalue. Actually, since T
is finite-rank, it is not hard to see it even without Theorem 9.6.13.
So if λ ∈ σ(T ) \ {0}, we have φ(Px)a = λx for some nonzero x. In
particular x = αa for some α ∈ C. Then the equality becomes

λαa = φ(Px)a = αφ(a)a = 0.
Thus α = 0 and x = 0, showing that λ cannot be an eigenvalue.
Thus σ(T ) = {0}.

(vii) With the operator T from above, the operator T ′ = T/∥T∥ satisfies
∥T ′∥ = 1 and spr(T ′) = 0

(9.5.3) Let X be a normed space and T ∈ B(X ). Show that if there
exists nonzero p ∈ C[x] such that p(T ) = 0 then T admits an
eigenvalue.

Answer. We may assume that T ̸= 0, for if T = 0 then 0 is an eigenvalue
for T .

Let q ∈ C with least degree such that q(T ) = 0 (the existence of q is
guaranteed by the existence of p). Then all roots of q are eigenvalues for
T . Indeed, given λ with q(λ) = 0, we may write q(t) = (t − λ)r(t) with
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deg r < deg q. The minimality of q guarantees that r(T ) ̸= 0. We may write
q(T ) = 0 as r(T )T = λr(T ). As r(T ) ̸= 0, choose v such that w = r(T )v ̸= 0.
Then Tw = λw.

(9.5.4) Let X be a normed space and T ∈ B(X ). Suppose that p ∈ C[x]
satisfies p(T ) = 0. Show that there exists a root of p that is an
eigenvalue for T . Are all roots of p eigenvalues of T? Provide
roof/counterexample.

Answer. Exercise 9.5.3 shows that some root of p is an eigenvalue of T ,
because the minimality of q guarantees that q divides p. Indeed, by the
division algorithm we have p(t) = q(t)s(t) + r(t), where deg r < deg q. Since
q(T ) = p(T ) = 0 we get that r(T ) = 0, and then the minimality of q forces
r = 0. Then q divides p and so the root of q that was found in Exercise 9.5.3
is also a root of p.

It is possible for p to have roots that are not eigenvalues of T . For a
trivial example, let T = IX . Then the polynomial p(t) = (t−2)(t−1) satisfies
p(T ) = 0, but 2 is not an eigenvalue for T .

(9.5.5) Let X be an infinite-dimensional normed space. Show that
there exists T ∈ B(X ) such that p(T ) ̸= 0 for all p ∈ C[x].

Answer. By Exercise 9.5.3, if p(T ) = 0 for some polynomial then T has an
eigenvalue. Thus if T has no eigenvalues, it cannot be zero under any polyno-
mial. We saw in the text that the unilateral shift S has no eigenvalues; then
p(S) ̸= 0 for all p ∈ C[x]. Another common example is T ∈ B(C[0, 1]) given
by (Tf)(t) = tf(t); again this operator has no eigenvalues (Example 9.5.7).

(9.5.6) Let X be a normed space and T ∈ B(X ). Suppose that p(T ) ̸=
0 for all p ∈ C[x]. Does this imply that T has no eigenvalues?

Answer. No. Consider the unilateral shift S as above, say acting on ℓ1(N),
and form T = 1 ⊕ S, acting on C ⊕ ℓ1(N). Then p(T ) = p(1) ⊕ p(S), so it is
nonzero for all p. But 1 is an eigenvalue for T .
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(9.5.7) Let X be a Banach space and X1,X2 ⊂ X subspaces with X =
X1 ⊕ X2. Let T ∈ B(X ) such that TX1 ⊂ X1 and TX2 ⊂ X2.
Show that

σ(T ) = σ(T |X1) ∪ σ(T |X2).

Answer. It is enough to show that T is invertible if and only if T1 = T |X1

and T2 = T |X2 are invertible. Suppose that T is invertible; then there exists
S ∈ B(X ) with ST = TS = IX . As TX1 + TX2 = X and TXj ⊂ Xj for
j = 1, 2, it follows from T invertible that TX1 = X1 and TX2 = X2. Applying
S we obtain X1 = SX1 and X2 = SX2. Then S|X1 is an inverse for T1 and
S|X2 is an inverse for T2.

Conversely, if S1, S2 are inverses for T1 and T2, respectively, then S1⊕S2
is an inverse for T .

(9.5.8) Write the details of Example 9.5.6.

Answer. When p < ∞,

∥Mbx∥pp =
∞∑
j=1

|b(n)x(n)|p ≤ ∥b∥p∞
∞∑
j=1

|x(n)|p = ∥b∥p∞ ∥x∥pp.

So ∥Mb∥ ≤ ∥b∥∞. Given ε > 0 there exists n such that |b(n)| > ∥b∥∞ − ε.
Then

∥b∥∞ − ε < |b(n)| = |(Mben)(n)| ≤ ∥Mben∥p ≤ ∥Mb∥.
As this can be done for all ε > 0, we get ∥Mb∥ = ∥b∥∞. A similar idea works
when p = ∞.

Now we work on the spectrum. Since Mben = b(n)en, {b(n) : n} ⊂
σp(Mb). If dist(λ, {b(n) : n}) ≥ δ > 0, then we can from a ∈ ℓ∞(N) where

a(n) = 1
b(n) − λ

.

Let A be the multiplication operator induced by a. Then

[A(Mb − λI)x](n) = 1
b(n) − λ

(b(n) − λ)x(n) = x(n).

Thus A(Mb − λI) = I. Similarly, (Mb − λI)A = I, showing that λ ̸∈ σ(Mb).
Thus σ(Mb) ⊂ {b(n) : n}, and then σ(Mb) = {b(n) : n} since it is closed
and it contains b(n) for all n. Suppose that λ ∈ σp(Mb). Then there exists
nonzero x ∈ ℓp(N) with Mbx = λx. At the level of entries this looks like

b(n)x(n) = λx(n).
For any n such that x(n) ̸= 0, we have λ = b(n), showing that σp(Mb) ⊂
{b(n) : n}, giving us σp(Mb) = {b(n) : n}.
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When λ ∈ σ(T ) \ {{b(n) : n}, we have that ker(Mb − λI) = {0}.
By being in the closure of {b(n) : n}, there exists a subsequence {bnk} with
bnk −→

k
λ. For each k we have ∥enk∥ = 1, and

∥MbT − λI)enk∥ = |bnk − λ| −−−−→
k→∞

0.

Thus Mb−λI is not bounded below, showing that λ ∈ σap(Mb) (so λap(Mb) =
σ(Mb), as it also contains the eigenvalues), and also that ran(Mb −λI) is not
closed. For any x =

∑n
j=1 cjej ∈ c00, we have

x =
n∑
j=1

cjej = (Mb − λ)
( n∑
j=1

cj
b(n) − λ

ej

)
.

Then c00 ∈ ran(Mb−λI) and ran(Mb−λI) is dense, implying that λ ∈ σc(Mb).

(9.5.9) Show that σp(T ), σr(T ), and σc(T ) are mutually disjoint.

Answer. By definition, σp(T ) ∩ σr(T ) = σp(T ) ∩ σc(T ) = ∅. And σr(T ) ∩
σc(T ) = ∅, since in one case T − λI is required to have dense range and in
the other it is require not to have it.

(9.5.10) Prove the relations (9.15), (9.16), and (9.17).

Answer. If λ ∈ σp(T ), then there exists nonzero x ∈ ker(T − λI). Nor-
malizing, and since the kernel is a subspace, we may assume that ∥x∥ = 1.
Now take xn = x for all n, and the definition of λ in the approximate point
spectrum is satisfied.

Now suppose that λ ∈ σc(T ). By definition, λ ̸∈ σp(T ). If λ ̸∈ σap(T ),
it means that T −λI is bounded below: there exists c > 0 with ∥(T −λI)x∥ ≥
c∥x∥. Then T − λI has closed range by Exercise 9.4.1; with dense and closed
range then T would be surjective, a contradiction. So λ ∈ σap(T ). By
definition, λ ̸∈ σr(T ), so σc(T ) ⊂ σap(T ) \ (σr(T ) ∪ σp(T )).

Conversely, if λ ∈ σap(T ) \ (σr(T ) ∪ σp(T )), then T − λI is injective
(because λ ̸∈ σp(T )), it has dense range (because λ ̸∈ σr(T )), and it is not
bounded below (because λ ∈ σap(T )). So T − λI cannot be surjective (as it
would be invertible and thus bounded below). So T −λI has dense range but
it is not surjective, and λ ∈ σc(T ).

We have σp(T ) ∩ (σr(T ) ∪ σc(T )) = ∅ by Exercise 9.5.9. And also
σr(T ) ∩ σc(T ) = ∅ by definition, since either the range is dense or it is not.



390 CHAPTER 9

Given any λ ∈ σ(T ), either λ ∈ σp(T ), or T − λI is injective. In the latter
case, as T − λI is not invertible, it cannot be surjective; so either the range
of T − λI is not dense, giving λ ∈ σr(T ), or T − λI is dense but not closed,
giving λ ∈ σc(T ). Thus

σ(T ) = σp(T ) ∪ σr(T ) ∪ σc(T ).
Also, given λ ∈ σ(T ), either T −λI is bounded below or not. If it is not

bounded below, then λ ∈ σap(T ); if it is bounded below, its range is closed
and so it cannot be dense and λ ∈ σr(T ).

(9.5.11) Prove the relation (9.18).

Answer. If T − λI is not invertible and it is not bounded below, then λ ∈
σap(T ). If it is bounded below, then it is injective and its range is closed.
As such, it cannot be dense: if it were, T − λI : X → ran(T − λI) would be
bijective with a bounded inverse and so it would be invertible, a contradiction.
So, we have shown that if σ(T ) \ σap(T ) ⊂ σr(T ), so σ(T ) = σap(T ) ∪ σr(T ).

(9.5.12) Construct an example where σap(T ) ∩ σr(T ) ̸= ∅.

Answer. Take T ∈ B(X ⊕ X ) to be T = S ⊕ 0, where S is chosen so that
there exists λ ∈ σap(S) \ σp(S)—for instance, S could be the unilateral shift.
Then T −λI = (S−λI) ⊕ 0 is not bounded below, and its range is not dense.
Thus λ ∈ σap(T ) ∩ σr(T ).

(9.5.13) In the context of Example 9.5.9 calculate explicitly S(T − λI)
and (T − λI)S for λ ̸∈ [0, 1].
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Answer. Fix f ∈ C[0, 1]. We have

[S(T − λI)f ](x) = xf(x)
x− λ

+ 1
x− λ

∫ x

0
f(s) ds− 1

(x− λ)2

∫ x

0
sf(s) ds

− 1
(x− λ)2

∫ x

0

∫ t

0
f(s) ds dt]

− λf(x)
x− λ

+ λ

(x− λ)2

∫ x

0
f(t) dt

= xf(x)
x− λ

+ 1
x− λ

∫ x

0
f(s) ds− 1

(x− λ)2

∫ x

0
sf(s) ds

− 1
(x− λ)2

∫ x

0

∫ x

s

f(s) dt ds

− λf(x)
x− λ

+ λ

(x− λ)2

∫ x

0
f(t) dt

= f(x) + 1
(x− λ)2

[ ∫ x

0
xf(s) ds− sf(s) ds− (x− s)f(s) ds

]
= f(x).

Hence S(T − λI) = I. Similarly, denoting C = [(T − λI)Sf ](x)

C = (T − λI)
[
f(x)
x− λ

− 1
(x− λ)2

∫ x

0
f(s) ds

]
= f(x) − 1

x− λ

∫ x

0
f(t) dt+

∫ x

0

f(t)
t− λ

dt

−
∫ x

0

1
(s− λ)2

∫ s

0
f(t) dt ds

= f(x) − 1
x− λ

∫ x

0
f(t) dt+

∫ x

0

f(t)
t− λ

dt−
∫ x

0
f(t)

∫ x

t

1
(s− λ)2 ds dt

= f(x) − 1
x− λ

∫ x

0
f(t) dt+

∫ x

0

f(t)
t− λ

dt−
∫ x

0
f(t)

[
1

t− λ
− 1
x− λ

]
dt

= f(x).
Thus (T − λI)S = I.

(9.5.14) With T the left unilateral shift as in Example 9.5.10, show that
dim ker(T − λI) = 1

for all λ ∈ D.
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Answer. Suppose that Tx = λx. In coordinates, this is
(x2, x3, x4, . . .) = (λx1, λx2, λx3, . . .).

If λ = 0, this gives x2 = x3 = · · · = 0, so kerT = Ce1. When λ ̸= 0,
we get x2 = λx1, x3 = λx2 = λ2x1, and in general xk+1 = λkx1. Hence
x ∈ ker(T − λI) if and only if

x = x1(λ, λ2, λ3, . . .).
The condition |λ| < 1 guarantees that x ∈ ℓp(N). And we have ker(T −λI) =
C(λ, λ2, . . .).

(9.5.15) Let X = L2(−∞,∞) and let T ∈ B(X ) the translation opera-
tor

(Tf)(x) = f(x+ 1).
Find the norm and the parts of the spectrum of T .

Answer. From

∥Tf∥2
2 =

∫ ∞

−∞
|f(x+ 1)|2 dx =

∫ ∞

−∞
|f(x)|2 dx = ∥f∥2

2

we get that ∥T∥ = 1. More than that, T is an isometry. As T is invertible
(with (T−1f)(x) = f(x − 1)) we have that σ(T ) ⊂ T by Proposition 9.5.15.
Let us try to find eigenvalues. If λ ∈ T and Tf = λf , then we have f(x+1) =
λf(x) a.e. This forces f(x+k) = λkf(x) for all k ∈ Z, and if we write λ = eiθ,

∥f∥2
2 = lim

m→∞

∫ m

−m
|f |2 =

m−1∑
k=−m

∫ k+1

k

|f |2 =
m−1∑
k=−m

∫ 1

0
|f(x+ k)|2 dx

=
m−1∑
k=−m

λ2k
∫ 1

0
|f(x)|2 dx = 2 cos 2mθ

eiθ − 1

∫ 1

0
|f(x)|2 dx,

so
∥f∥2

2 = lim
m→∞

∫ m

−m
|f |2 = lim

m→∞

2 cos 2mθ
eiθ − 1

does not exist (the computation is different if θ = 0, that is λ = 1, but in that
case the integral is simply unbounded). So σp(T ) = ∅. Let us now adapt the
trick from Example 9.5.12. Fix µ ∈ T. Let Vµ ∈ B(X ) be the operator

Vµf =
∑
n∈Z

µn f 1[n,n+1).
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As |µ| = 1 we get that V is a bijective isometry, i.e. a unitary. And we have

(V ∗TV )f(x) = V ∗T
∑
n∈Z

µn f(x) 1[n,n+1)(x)

= V ∗
∑
n∈Z

µn f(x+ 1) 1[n,n+1)(x+ 1)

= V ∗
∑
n∈Z

µ f(x+ 1) 1[n−1,n)(x)

= V ∗
∑
n∈Z

µn+1 f(x+ 1) 1[n,n+1)(x)

= µ(Tf)(x).
This gives us that σ(T ) = σ(V ∗TV ) = µσ(T ). So σ(T ) is invariant for
rotations, and hence σ(T ) = T. As every point is a boundary point, σac(T ) =
T. Since T is a unitary then T−1 = T ∗. For any λ ∈ T,

ran(T − λI) = ker(T − λI)⊥ = {0}⊥ = X .
So T − λI has dense range. In summary,

σ(T ) = T
σp(T ) = ∅
σap(T ) = T
σr(T ) = ∅
σc(T ) = T

(9.5.16) Let X = L2(0,∞) and let T ∈ B(X ) the translation operator
(Tf)(x) = f(x+ 1).

Find the norm and the parts of the spectrum of T .

Answer. We can use several ideas from the answer to (9.5.15). From

∥Tf∥2
2 =

∫ ∞

0
|f(x+ 1)|2 dx =

∫ ∞

1
|f(x)|2 dx ≤ ∥f∥2

2

we get that ∥T∥ ≤ 1; if we take any f ∈ L2(0,∞) and supported on [1,∞),
then ∥Tf∥2 = ∥f∥2, and so ∥T∥ = 1. As for the spectrum, initially we know
that σ(T ) ⊂ D. If we look for eigenvalues, if λ ∈ D and

f =
∞∑
k=0

λk 1[k,k+1)
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then for x ≥ 0

Tf(x) =
∞∑
k=0

λk 1[k,k+1)(x+ 1) =
∞∑
k=1

λk 1[k−1,k)(x)

=
∞∑
k=0

λk+1 1[k,k+1)(x) = λf(x).

So λ ∈ σp(T ). Then D ⊂ σ(T ) ⊂ D and hence σ(T ) = D. As every boundary
point is an approximate eigenvalue (Proposition 9.5.5), we have σap(T ) = D.

If λ ∈ T and Tf = λf , then we have f(x+ 1) = λf(x) a.e. This forces
f(x+ k) = λkf(x) for all k ∈ N, and if we write λ = eiθ,

∥f∥2
2 = lim

m→∞

∫ m

0
|f |2 =

m−1∑
k=0

∫ k+1

k

|f |2 =
m−1∑
k=0

∫ 1

0
|f(x+ k)|2 dx

=
m−1∑
k=0

λ2k
∫ 1

0
|f(x)|2 dx = 2 cos 2mθ

eiθ − 1

∫ 1

0
|f(x)|2 dx,

so
∥f∥2

2 = lim
m→∞

∫ m

0
|f |2 = lim

m→∞

2 cos 2mθ
eiθ − 1

does not exist (the computation is different if θ = 0, that is λ = 1, but in
that case the integral is simply unbounded). So σp(T ) = D. For any λ ∈ T,

ran(T − λI) = ker(T − λI)⊥ = {0}⊥ = X .
So T − λI has dense range. In summary,

σ(T ) = D
σp(T ) = D
σap(T ) = D
σr(T ) = ∅
σc(T ) = T

(9.5.17) Let p ∈ (1,∞) and T ∈ B(Lp[0, 1]) be the Hardy operator as
in Example 9.5.22. Show that ∥T∥ = q and find σ(T ), σp(T ),
σr(T ), σc(T ), and σap(T ). (This exercise is mostly computa-
tional, but nailing the right ideas and performing all the com-
putations will possibly not be a trivial task; so this exercise and
Exercise 9.5.18 should be seen more as a minor project rather
than a couple of exercises)
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Answer. It was proven in Example 9.5.22 that ∥T∥ ≤ q. We will see below
that spr(T ) = q, and thus ∥T∥ = q, since q = spr(T ) ≤ ∥T∥ ≤ q.

Let us look for eigenvalues first. If Tf = 0, then f = 0 a.e. by
Exercise 2.5.6 (or Exercise 2.11.2); so T is injective. Since T is injective, any
eigenvalue will have to be nonzero. So suppose that λ ∈ C\{0} and Tf = λf
for some nonzero f . We can write, when 0 < y < x,

|f(x) − f(y)| =
∣∣∣∣ 1
λx

∫ x

0
f − 1

λy

∫ y

0
f

∣∣∣∣
≤ 1

|λx|

∫ x

y

|f | + 1
|λ|

∣∣∣∣ 1x − 1
y

∣∣∣∣ ∫ y

0
|f |

≤ 1
|λ|

(
(x− y)1/q + x− y

xy
.

)
∥f∥p

This shows that f is continuous for all x > 0. Going back to λf = Tf , now
the integral is differentiable by the Fundamental Theorem of Calculus, and
hence f is differentiable for all x > 0. We can now differentiate

λxf(x) =
∫ x

0
f,

to get
λf(x) + λxf ′(x) = f(x),

which we can rewrite as
(1 − λ)f(x) − λxf ′(x) = 0.

This is a first-order linear differential equation, with solution f(x) = x1/λ−1

(and multiples of it, of course). For λ to be an eigenvalue of T we need this
f to be in Lp[0, 1]. And for this we need Re p(1/λ− 1) > −1. Equivalently,

Re 1
λ
> 1 − 1

p
= 1
q
. (AB.9.1)

Writing λ = a+ ib, then the inequality becomes
a

a2 + b2 >
1
q
.

This in turn is a2 + b2 < qa, of (a − q
2 )2 + b2 < q2

4 . In terms of λ, this is
|λ− q

2 | < q
2 , or λ ∈ Bq/2(q/2). That is,

σp(T ) = Bq/2(q/2).
This shows that T is not compact, for its set of eigenvalues is uncountable
(see Theorem 9.6.13). Now let us try to find (T − λI)−1. Necessarily, λ ̸∈
Bq/2(q/2), which is equivalent to Re 1

λ <
1
q , which we also write as Re − 1

λ +
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1 > 1
p > 0. Suppose that g = (T − λI)f ; we want to express f in terms of g.

Assume initially that f and g are differentiable. We have

g(x) = −λf(x) + 1
x

∫ x

0
f,

which we may write as

xg(x) = −λx f(x) +
∫ x

0
f.

Differentiating,
(xg(x))′ = (1 − λ)f(x) − λx f ′(x).

Using the integrating factor x−1/λ,
x−1/λ(xg(x))′ = (1 − λ)x−1/λf(x) − λx−1/λ+1 f ′(x) = [−λx−1/λ+1f(x)]′.

Integrating (and using that −Re 1/λ + 1 > −1/q + 1 = 1/p > 0 to evaluate
the right-hand-side at x = 0)∫ x

0
t−1/λ[tg(t)]′ dt = −λx−1/λ+1 f(x).

Solving for f and integrating by parts,

f(x) = − 1
λ
x1/λ−1

[
t−1/λ+1g(t)

∣∣∣∣x
0

+ 1
λ

∫ x

0
t−1/λg(t) dt

]
= − 1

λ
x1/λ−1

[
x−1/λ+1g(x) + 1

λ

∫ x

0
t−1/λg(t) dt

]
= − 1

λ
g(x) − 1

λ2 x
1/λ−1

∫ x

0
t−1/λg(t) dt.

This last expression does not require g to be differentiable, and Re (−1/λ) >
−1/q together with g ∈ Lp[0, 1] guarantee—via Hölder—that the integral
exists. It is also in Lp[0, 1], for the first term is, and the second terms satisfies
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the following (we use Minkowski’s Integral inequality (2.47)):(∫ 1

0

∣∣∣∣x1/λ−1
∫ x

0
t−1/λg(t) dt

∣∣∣∣pdx)1/p
=
(∫ 1

0

∣∣∣∣ ∫ x

0
x1/λ−1t−1/λg(t) dt

∣∣∣∣pdx)1/p

=
(∫ 1

0

∣∣∣∣ ∫ 1

0
v−1/λg(vx) dv

∣∣∣∣pdx)1/p

≤
∫ 1

0

(∫ 1

0
v−Re p/λ|g(vx)|pdx

)1/p
dv

=
∫ 1

0
v−Re 1/λ

(∫ 1

0
|g(vx)|pdx

)1/p
dv

=
∫ 1

0
v−Re 1/λ

(∫ v

0
v−1 |g(t)|p dt

)1/p
dv

≤
∫ 1

0
v−1/p−Re 1/λ

(∫ 1

0
|g(t)|p dt

)1/p
dv

= ∥g∥p
∫ 1

0
v−1/p−Re 1/λ dv

= 1
1
q − Re 1

λ

∥g∥p

Note that, since Re 1
λ <

1
q ,

−1
p

− Re 1
λ
> −1

p
− 1
q

= −1,

which justifies the evaluation of the integral.
We claim that, for λ ̸∈ Bq/2(q/2),

(T − λI)−1g(x) = − 1
λ
g(x) − 1

λ2 x
1/λ−1

∫ x

0
t−1/λg(t) dt (AB.9.2)

We have just shown that this is a bounded operator on Lp[0, 1]. Let us apply
T − λI to it. If h denotes the expression in (AB.9.2), with Fubini’s use to be
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justified below,

(−λI + T )h = g(x) + 1
λ
x1/λ−1

∫ x

0
t−1/λg(t) dt− 1

λx

∫ x

0
g

− 1
λ2x

∫ x

0
s1/λ−1

∫ s

0
t−1/λg(t) dt ds

= g(x) + 1
λ
x1/λ−1

∫ x

0
t−1/λg(t) dt− 1

λx

∫ x

0
g

− 1
λ2x

∫ x

0

∫ x

t

s1/λ−1t−1/λg(t) ds dt

= g(x) + 1
λ
x1/λ−1

∫ x

0
t−1/λg(t) dt− 1

λx

∫ x

0
g

− 1
λx

∫ x

0
(x1/λ − t1/λ)t−1/λg(t) dt

= g(x).
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Also, if g = (T − λI)f ,

[(T − λI)−1g](x) = − 1
λ

[(T − λI)f ](x) − 1
λ2 x

1/λ−1
∫ x

0
t−1/λ[(T − λI)f ](t) dt

= − 1
λ
x−1

∫ x

0
f(t) dt+ f(x)

− 1
λ2 x

1/λ−1
∫ x

0
t−1/λ−1

∫ t

0
f(s) ds dt

+ 1
λ
x1/λ−1

∫ x

0
t−1/λf(t) dt

= − 1
λ
x−1

∫ x

0
f(t) dt+ f(x)

− 1
λ2 x

1/λ−1
∫ x

0

∫ x

s

t−1/λ−1f(s) dt ds

+ 1
λ
x1/λ−1

∫ x

0
t−1/λf(t) dt

= − 1
λ
x−1

∫ x

0
f(t) dt+ f(x)

+ 1
λ
x1/λ−1

∫ x

0
(x−1/λ−1 − s−1/λ−1)f(s) ds

+ 1
λ
x1/λ−1

∫ x

0
t−1/λf(t) dt

= f(x).

So (AB.9.2) is indeed an expression for (T − λI)−1.
We have thus shown that Bq/2(q/2) = σp(T ) ⊂ σ(T ) ⊂ Bq/2(q/2), and

hence σ(T ) = Bq/2(q/2).
The justification for two uses of Fubini above (as in Theorem 2.7.16)

comes from∫ x

0

∫ s

0
|s1/λ−1| |t−1/λ| |g(t)| dt ds =

∫ x

0

∫ s

0
sRe 1/λ−1 t−Re 1/λ |g(t)| dt ds

≤ ∥g∥p
∫ x

0
sRe 1/λ−1

(∫ s

0
t−Re q/λ dt

)1/q
ds

≤ ∥g∥p
(1 − Re q/λ)1/q

∫ x

0
sRe 1/λ−1 s1/q−Re 1/λ ds

= q ∥g∥p
(1 − Re q/λ)1/q x

1/q < ∞,
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and∫ x

0

∫ t

0
|t−1/λ−1| |f(s)| ds dt =

∫ x

0
t−Re 1/λ−1

∫ t

0
|f(s)| ds dt

≤
∫ x

0
t−Re 1/λ−1 t1/q

(∫ t

0
|f(s)|p ds

)1/p
dt

≤ ∥g∥p
∫ 1

0
t−Re 1/λ−1+1/q dt = ∥g∥p

1
q − Re 1

λ

.

When λ ∈ ∂Bq/2(q/2), we know that T−λI is injective since λ ̸∈ σp(T ).
For any n ∈ {0} ∪ N we have T (xn) = 1

n+1 x
n. So, as long as λ ̸= 1

n+1 —
which cannot happen when λ ∈ ∂Bq/2(q/2), as the only real values are 0
and q > 1—the operator T − λI maps C[x] onto itself. In particular, it has
dense range, since C[x] is uniformly dense in C[0, 1] by Stone–Weierstrass
(Theorem 7.4.20) and C[0, 1] is dense in Lp[0, 1] by Proposition 2.8.18. Thus

σ(T ) = Bq/2(q/2), σp(T ) = Bq/2(q/2),
σc(T ) = ∂Bq/2(q/2), σr(T ) = ∅.

Also, σap(T ) = Bq/2(q/2) since every point is either in the point spectrum or
in the boundary (Proposition 9.5.5).

(9.5.18) Let p ∈ (1,∞) and S ∈ B(Lp[0,∞)) be the Hardy operator as
in Example 9.5.22. Show that ∥S∥ = q and find σ(S), σp(S),
and σap(S). (See the disclaimer in Exercise 9.5.17)

Answer. As usual, we write q = p
p−1 . First thing is to check that Sf ∈

Lp[0,∞) for any f ∈ Lp[0,∞), and that S is bounded. We have, using
substitution first and Minkowski’s Integral inequality second,

∥Sf∥p =
(∫ ∞

0

∣∣∣∣ 1x
∫ x

0
f(t) dt

∣∣∣∣p dx)1/p
=
(∫ ∞

0

∣∣∣∣ ∫ 1

0
f(sx) ds

∣∣∣∣p dx)1/p

≤
∫ 1

0

(∫ ∞

0
|f(sx)|p dx

)1/p
ds =

∫ 1

0

(
1
s

∫ ∞

0
|f(t)|p dt

)1/p
ds

= ∥f∥p
∫ 1

0
s−1/p ds = p

p− 1 ∥f∥p = q ∥f∥p.

We will see below that spr(S) = q, and thus ∥S∥ = q.
The computation for the eigenvalues is exactly the same as in the case of

Lp[0, 1] (Exercise 9.5.17). So any eigenvector will be a multiple f(x) = x1/λ−1.
But no power of x can be integrable on [0,∞), and hence σp(S) = ∅.
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Now let us try to find (S−λI)−1. Suppose that g = (S−λI)f ; we want
to express f in terms of g. Assume initially that f and g are differentiable.
We can repeat the argument from the case Lp[0, 1], and so

x−1/λ(xg(x))′ = [−λx−1/λ+1f(x)]′. (AB.9.3)
Consider first the case where Re 1

λ < 1
q (that is, λ is outside of the disk

Bq/2(q/2)). In this case we have t−1/λ integrable at 0, since −Re 1/λ + 1 >
1/p > 0, and hence∫ x

0
t−1/λ[tg(t)]′ dt = −λx−1/λ+1 f(x).

Solving for f and integrating by parts,

f(x) = − 1
λ
x1/λ−1

[
t−1/λ+1g(t)

∣∣∣∣x
0

+ 1
λ

∫ x

0
t−1/λg(t) dt

]
= − 1

λ
x1/λ−1

[
x−1/λ+1g(x) + 1

λ

∫ x

0
t−1/λg(t) dt

]
= − 1

λ
g(x) − 1

λ2 x
1/λ−1

∫ x

0
t−1/λg(t) dt.

This last expression does not require g to be differentiable. It is also in
Lp[0,∞), for the first term is by definition, and the second term satisfies (we
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use Minkowski’s Integral inequality (2.47))(∫ ∞

0

∣∣∣∣x1/λ−1
∫ x

0
t−1/λg(t) dt

∣∣∣∣pdx)1/p
=
(∫ ∞

0

∣∣∣∣ ∫ x

0
x1/λ−1t−1/λg(t)dt

∣∣∣∣pdx)1/p

=
(∫ ∞

0

∣∣∣∣ ∫ 1

0
v−1/λg(vx) dv

∣∣∣∣pdx)1/p

≤
∫ 1

0

(∫ ∞

0
v−Re p/λ|g(vx)|pdx

)1/p
dv

=
∫ 1

0
v−Re 1/λ

(∫ ∞

0
|g(vx)|pdx

)1/p
dv

=
∫ 1

0
v−Re 1/λ

(∫ ∞

0
v−1 |g(t)|p dt

)1/p
dv

=
∫ 1

0
v−1/p−Re 1/λ

(∫ ∞

0
|g(t)|p dt

)1/p
dv

= ∥g∥p
∫ 1

0
v−1/p−Re 1/λ dv

= 1
1
q − Re 1

λ

∥g∥p

The condition Re 1
λ <

1
q guarantees that we can evaluate the integral at the

end. So we claim that, for λ ̸∈ Bq/2(q/2),

(S − λI)−1g(x) = − 1
λ
g(x) − 1

λ2 x
1/λ−1

∫ x

0
t−1/λg(t) dt (AB.9.4)

We have just shown that this is a bounded operator on Lp[0,∞). The
computation that (S − λI)(S − λI)−1 = (S − λI)−1(S − λI) = I is exactly
the same as was done in Exercise 9.5.17, so we omit it.

So far, this shows that σ(S) ⊂ Bq/2(q/2). For λ ∈ Bq/2(q/2), we
now have Re 1

λ >
1
q , which makes the antiderivative of the right-hand-side of

(AB.9.3) vanish at ∞. This suggests integrating between x and ∞. So we
get

(S − λI)−1g(x) = − 1
λ
g(x) + 1

λ2 x
1/λ−1

∫ ∞

x

t−1/λg(t) dt (AB.9.5)

Let us apply S − λI to it. If h denotes the expression in (AB.9.5), with
Fubini’s use and that h ∈ Lp[0,∞) to be justified afterwards (note also that
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the region where we apply Fubini requires us to split it in two integrals),

(−λI + S)h = g(x) − 1
λ
x1/λ−1

∫ ∞

x

t−1/λg(t) dt− 1
λx

∫ x

0
g

+ 1
λ2x

∫ x

0
s1/λ−1

∫ ∞

s

t−1/λg(t) dt ds

= g(x) − 1
λ
x1/λ−1

∫ x

0
t−1/λg(t) dt− 1

λx

∫ x

0
g

+ 1
λ2x

∫ x

0

∫ t

0
s1/λ−1t−1/λg(t) ds dt

+ 1
λ2x

∫ ∞

x

∫ x

0
s1/λ−1t−1/λg(t) ds dt

= g(x) − 1
λ
x1/λ−1

∫ ∞

x

t−1/λg(t) dt− 1
λx

∫ x

0
g + 1

λx

∫ x

0
g(t) dt

+ 1
λx

∫ ∞

x

x1/λt−1/λg(t) ds dt

= g(x).
Similarly, if g = (S − λI)f ,

(S − λI)−1g = − 1
λ

[(T − λI)f ](x) + 1
λ2 x

1/λ−1
∫ ∞

x

t−1/λ[(T − λI)f ](t) dt

= f(x) − 1
λx

∫ x

0
f(t) dt+ 1

λ2 x
1/λ−1

∫ ∞

x

t−1/λ−1
∫ t

0
f(s) ds dt

− 1
λ
x1/λ−1

∫ ∞

x

t−1/λf(t) dt

= f(x) − 1
λx

∫ x

0
f(t) dt+ 1

λ2 x
1/λ−1

∫ x

0

∫ ∞

x

t−1/λ−1f(s) dt ds

+ 1
λ2 x

1/λ−1
∫ ∞

x

∫ ∞

s

t−1/λ−1f(s) dt ds

− 1
λ
x1/λ−1

∫ ∞

x

t−1/λf(t) dt

= f(x) − 1
λx

∫ x

0
f(t) dt+ 1

λ
x1/λ−1

∫ x

0
x−1/λf(s) ds

+ 1
λ
x1/λ−1

∫ ∞

x

s−1/λf(s) ds− 1
λ
x1/λ−1

∫ ∞

x

t−1/λf(t) dt

= f(x).
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This means that σ(S) ⊂ ∂Bq/2(q/2).
We need to justify Fubini’s last use, and that h ∈ Lp[0,∞). As we are

only concerned with the second term in (AB.9.5) we have, using the same
substitutions as before and Minkowski’s Integral Inequality,(∫ ∞

0

∣∣∣∣ ∫ ∞

x

x1/λ−1t−1/λ g(t) dt
∣∣∣∣pdx)1/p

=
(∫ ∞

0

∣∣∣∣ ∫ ∞

1
v−1/λ g(vx)dv

∣∣∣∣pdx)1/p

≤
∫ ∞

1

(∫ ∞

0
v−Re p/λ |g(vx)|p dx

)1/p
dv

=
∫ ∞

1
v−Re 1

λ

(∫ ∞

0
|g(vx)|p dx

)1/p
dv

=
∫ ∞

1
v−1/p−Re 1

λ

(∫ ∞

0
|g(t)|p dt

)1/p
dv

= ∥g∥p
∫ ∞

1
v−1/p−Re 1/λ dv

= ∥g∥p
Re 1

λ − 1
q

< ∞,

so h ∈ Lp[0,∞).
As for Fubini (used both times as in Theorem 2.7.16),∫ x

0

∫ ∞

s

|s1/λ−1t−1/λg(t)| dt ds

=
∫ x

0
sRe 1/λ−1

∫ ∞

s

t−Re 1/λ |g(t)| dt ds

≤
∫ x

0
sRe 1

λ−1
(∫ ∞

s

t−Re q/λ dt

)1/q(∫ ∞

s

|g(t)|p dt
)1/p

ds

≤ ∥g∥p
∫ x

0
sRe 1

λ−1
(
s1−Re q/λ

Re q
λ − 1

)1/q
ds

= ∥g∥p(
Re q

λ − 1
)1/q

∫ x

0
s−1/p ds = q∥g∥p x1/q(

Re q
λ − 1

)1/q < ∞
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and ∫ ∞

x

∫ t

0
|t−1/λ−1f(s)| ds dt =

∫ ∞

x

t−Re 1/λ−1
∫ t

0
|f(s)| ds dt

≤
∫ ∞

x

t−Re 1/λ−1 t1/q ∥f∥p

= ∥f∥p
∫ ∞

x

t−Re 1/λ−1/p dt

= ∥f∥p x1/q−Re 1/λ

Re 1
λ − 1

q

< ∞.

Finally, let us show that σ(S) = ∂Bq/2(q/2). Fix λ ∈ Bq/2(q/2); that
is, Re 1

λ >
1
q . Let g = t−1 1[1,∞) ∈ Lp[0,∞). We have∫ ∞

0

∣∣∣∣ ∫ ∞

x

x1/λ−1t−1/λg(t) dt
∣∣∣∣p dx =

∫ ∞

0

∣∣∣∣ ∫ ∞

max{x,1}
x1/λ−1t−1−1/λ dt

∣∣∣∣p dx
=
∫ ∞

0
xRe p/λ−p

∣∣∣∣ ∫ ∞

max{x,1}
t−1−1/λ dt

∣∣∣∣p dx
=
∫ ∞

0
xRe p/λ−p

∣∣∣∣λmax{x, 1}−1/λ
∣∣∣∣p dx

≥ |λ|p
∫ 1

0
xRe p/λ−p dx = |λ|p

p(Re 1
λ − 1 + 1

p )

= |λ|p

p(Re 1
λ − 1

q )
.

Hence, if we express (AB.9.5) as (S − λI)g = −λ−1g + λ−2h, where we just
estimated the p-norm of h,

∥(S − λI)−1∥ ≥ ∥g∥−1
p ∥(S − λI)−1g∥p = ∥g∥−1

p ∥ − λ−1g + λ−2h∥p

≥ ∥g∥−1
p

(
|λ|−2∥h∥p − |λ|−1 ∥g∥p

)
≥ ∥g∥−1

p

(
|λ|−1

p1/p
(
Re 1

λ − 1
q

)1/p − |λ−1| ∥g∥p
)

(AB.9.6)
Now consider λ ∈ ∂Bq/2(q/2); that is, Re 1/λ = 1/q or λ = 0. Choose a

sequence {λn} ⊂ Bq/2(q/2) with λn → λ. If we assume that (S − λI)−1 is
bounded we have, using Lemma 9.2.11,

∥(S − λn)−1 − (S − λI)−1∥ = ∥(S − (λ+ (λn − λ))I − (S − λI)−1∥

≤ |λn − λ| ∥(S − λI)−1∥2

1 − |λn − λ| ∥(S − λI)−1∥
−−−−→
n→∞

0.
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If follows that {∥(S − λnI)−1∥} is uniformly bounded for n big enough,
contradicting (AB.9.6). So S − λI is not invertible and λ ∈ σ(S). Thus
σ(S) = ∂Bq/2(q/2). We have found that

σ(S) = ∂Bq/2(q/2), σp(S) = ∅, σap(S) = ∂Bq/2(q/2),
the last equality due to Proposition 9.5.5.

(9.5.19) Let X be a Banach space and T ∈ B(X ), surjective. Let Y =
kerT . Show that T̃ : X/Y → X given by T̃ (x + Y) = Tx is
linear, bijective, and bounded.

Answer. Linearity is automatic since T is linear: for
T̃ (αx+ y + Y) = T (αx+ y) = αTx+ Ty = αT̃ (x+ Y) + T̃ (y + Y).

If T̃ (x + Y) = 0, this is Tx = 0 and so x ∈ kerT = Y, so x + Y = 0. Also,
since T is surjective, for any y ∈ X there exists x ∈ X with y = Tx, and so
y = Tx = T̃ (x+ Y), and T̃ is surjective.

It remains to show that T̃ is bounded. Suppose that xn + Y → x+ Y.
Fix ε > 0. Then there exists n0 such that ∥xn − x + Y∥ < ε

2 when n ≥
n0. By definition of the quotient norm for each n there exists yn ∈ Y with
∥xn − x+ yn∥ < ε. Then for each n ≥ n0

∥Txn − Tx∥ = ∥T (xn − x+ yn)∥ ≤ ∥T∥ ∥xn − x+ yn∥ < ∥T∥ ε.
Thus Txn → Tx and T̃ is continuous.

(9.5.20) Let X be a compact Hausdorff space and ψ : X → X contin-
uous. Let T : C(X) → C(X) be given by Tf = f ◦ ψ. Show
that

(a) T is injective if and only if ψ is surjective;
(b) T is surjective if and only if ψ is injective.

Answer. Suppose that ψ is not surjective. Because ψ is continuous and X
is compact, ψ(X) is compact. So X \ ψ(X) is a nonempty open set. Choose
a continuous function f with f = 0 on ψ(X) and f ̸= 0 on X \ ψ(X); then
Tf = 0 and T is not injective. Conversely, if ψ is surjective and Tf = 0, this
is f ◦ ψ = 0 and so f = 0, making T injective.

If ψ is not injective, there exist t0, t1 such that ψ(t0) = ψ(t1). If
f ∈ C(X) is such that f(t0) ̸= f(t1) (which exists by Urysohn’s Lemma), then
f ̸= Tg for any g; thus T is not surjective. Conversely, if ψ is injective, then
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ψ is a homeomorphism X → ψ(X) (Exercise 1.8.38). By Tietze’s Extension
Theorem (2.6.9) there exists η : X → X with η ◦ ψ(x) = x for all x ∈ X.
Given f ∈ C(X), let g = f ◦ η ∈ C(X). Then Tg = f , and thus T is
surjective.

(9.5.21) With the notation of Example 9.5.20, show that

fλ(t) =
∞∑
k=0

λk Rkg0 =
∞∑
k=0

λk
(

2k+1t− 1 − 2λ
1 − λ

)
1[2−k−1,2−k](t).

Answer. Using that
(Rkg0)(t) = (2k+1t− 1) 1(2−k−1,2−k] + 1(2−k,1](t),

we have

fλ(t) =
∞∑
k=0

λkRkg0(t) = (2t− 1) 1[1/2,1](t)

+
∞∑
k=1

λk (2k+1t− 1) 1(2−k−1,2−k](t) + 1(2−k,1](t)

=
∞∑
k=0

λk (2k+1t− 1) 1(2−k−1,2−k] +
∞∑
j=1

λj 1(2−j ,1](t)

=
∞∑
k=0

λk (2k+1t− 1) 1(2−k−1,2−k](t) +
∞∑
j=1

λj
j−1∑
k=0

1(2−k−1,2−k](t)

=
∞∑
k=0

λk (2k+1t− 1) 1(2−k−1,2−k](t) +
∞∑
k=0

1(2−k−1,2−k](t)
∞∑

j=k+1
λj

=
∞∑
k=0

λk (2k+1t− 1) 1(2−k−1,2−k](t) +
∞∑
k=0

1(2−k−1,2−k](t)
λk+1

1 − λ

=
∞∑
k=0

λk
(

2k+1t− 1 + λ

1 − λ

)
1(2−k−1,2−k](t)

=
∞∑
k=0

λk
(

2k+1t− 1 − 2λ
1 − λ

)
1(2−k−1,2−k](t)
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9.6. Compact Operators

(9.6.1) Let X ,Y be Banach spaces with at least one of them equal
to ℓ1(N), and let T ∈ B(X ,Y). Show that T is completely
continuous.

Answer. Suppose first that X = ℓ1(N). Let {xn} ⊂ X with xn
weak−−−→ 0. By

Proposition 7.1.22, xn → 0; as T is bounded, Txn → 0. So T is completely
continuous.

When Y = ℓ1(N), let {xn} ⊂ X with xn
weak−−−→ 0. As T is bounded,

Txn
weak−−−→ 0 (because φ ◦ T ∈ X ∗ for all φ ∈ Y∗). By Proposition 7.1.22,

Txn → 0, and T is completely continuous.

(9.6.2) Let (X,A, µ) be a measure space with finite measure, 1 < p <
∞, and 1/p+1/q = 1. If k : X×X → C is an A⊡A-measurable
function such that

sup
{∫

X

|k(x, y)|q dµ(y) : x ∈ X

}
< ∞,

show that

(Kf)(x) =
∫
X

k(x, y)f(y) dµ(y)

defines a compact operator on Lp(µ). (Hint: use complete
continuity and reflexivity)

Answer. Let
c = sup

{∫
X

|k(x, y)|q dµ(y) : x ∈ X

}
.

Suppose that fn → 0 weakly. This means that for every g ∈ Lq,∫
X

fng dµ→c⃝ 2024 Mart́ın Argerami All Rights Reserved 0.

In particular, for each x ∫
X

k(x, y) fn(y) dµ(y) →c⃝ 2024 Mart́ın Argerami All Rights Reserved 0
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Since a weakly convergent sequence is bounded, there exists b > 0 with
∥fn∥p < b for all n. By Hölder’s Inequality,∣∣∣∣ ∫

X

k(x, y) fn(y) dµ(y)
∣∣∣∣ ≤

(∫
X

|k(x, y)|q dµ(y)
)1/q

∥fn∥p < bc1/q.

Because we are in a finite-measure space, a bounded function is integrable.
Then, using Dominated Convergence,

∥Kfn∥pp =
∫
X

∣∣∣∣ ∫
X

k(x, y) fn(y) dµ(y)
∣∣∣∣p dµ(x) →c⃝ 2024 Mart́ın Argerami All Rights Reserved 0. (9.1)

so K is completely continuous, and as Lp is reflexive, K is compact by Propo-
sition 9.6.5.

(9.6.3) Consider the multiplication operator Mb as in Example 9.5.6.
Show that Mb is compact if and only if b ∈ c0.

Answer. Suppose first that b ∈ c0. For each m ∈ N let bm be the truncation
of b to its first m coordinates. Fix ε > 0 and choose k such that |b(j)| < ε
for all j ≥ k. Then Mbm is finite-rank and

[(Mb −Mbm)x](n) =
{
b(n)x(n), n ≥ k

0, otherwise
It follows that ∥(Mb − mbm)x∥ ≤ ε∥x∥ for all x, and so ∥Mb − Mbm∥ ≤ ε.
This shows that Mb is a limit of finite-rank operators, and hence compact by
Proposition 9.6.2.

Conversely, suppose that b ̸∈ c0. Then there exists δ > 0 and a subse-
quence {bnk} such that |bnk | ≥ δ for all k. For each k, enk = T

(
1
bnk

enk

)
. As

∥ 1
bnk

| enk | ≤ δ−1, the sequence {ekn} is in Mb(Bδ−1(0)). As ∥enk − enj∥ = 1
for all k ̸= j, the sequence does not admit a convergence subsequence and
hence Mb is not compact.

(9.6.4) Let T : ℓ2(N) → ℓ2(N) be the linear operator induced by
Ten = 1

n+1 en+1, n ∈ N.

(a) Show that T is bounded on c00, so that it extends to all of
ℓ2(N) and is bounded.

(b) Show that T is compact.
(c) Show that T is quasinilpotent.
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Answer.

(a) If x =
∑m
n=1 xnen, then

∥Tx∥2 =
m∑
n=1

|xn|2

(n+ 1)2 ≤ ∥x∥2.

So ∥T∥ ≤ 1 and, since c00 is dense in ℓ2(N), T ∈ B(ℓ2(N)) by Proposi-
tion 6.1.9.

(b) For m ∈ N, define

Tmx =
m∑
n=1

xn
n+ 1 .

Then Tm is finite-rank for all m, and

∥(T − Tm)x∥2 =
∥∥∥ ∞∑
n=m+1

xn
n+ 1 en+1

∥∥∥2
=

∞∑
n=m+1

|xn|2

(n+ 1)2

≤ ∥x∥2
∞∑

n=m+1

1
(n+ 1)2 ,

so

∥T − Tm∥ ≤
∞∑

n=m+1

1
(n+ 1)2 .

Therefore T is a limit of finite-rank operators, and thus compact.
(c) Since T is compact, any nonzero element of its spectrum has to be an

eigenvalue. If Tx = λx, this means that x1 = 0 and
xn
n+ 1 = λxn+1.

Inductively, this forces xn = 0 for all n. So λ is not an eigenvalue. Thus
σ(T ) = {0}. As T is injective, 0 is not an eigenvalue either.

(9.6.5) Show that F(X ,Y) and K(X ,Y) are subspaces of B(X ,Y).

Answer. Since a scalar multiple of a set is scalar if and only if the set
is compact, it is clear that for nonzero α, αT is compact if and only if T is
compact. Now suppose that S, T ∈ K(X ,Y). Since (S + T )B1(0) ⊂ SB1(0)+
TB1(0) and a closed subset of a compact is compact, all we need to do is show
that a sum of compact sets is compact. So suppose that K1,K2 are compact.
We can proceed in two ways here. One is to notice that K1+K2 = g(K1×K2),
where g is the continuous function g(x, y) = x + y and K1 × K2 is compact
(easily, checked, or we can use Tychonoff for overkill); see Exercise 1.8.37
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for the fact that a continuous image of compact is compact. Another way
is to use Proposition 1.8.19. If {xj} is a bounded net in B1(0)X then there
exists a subnet {xj′} such that {Sxj′} is convergent. Now we can use the
compactness of T to obtain one further subnet {xj′′} such that {Txj′′} is
convergent. Then (S + T )xj′′} is convergent and S + T is compact.

As for finite rank, a sum of finite-dimensional spaces is finite-dimensio-
nal, so a sum of finite-rank operators is finite-rank. And scalar multiples do
not change the rank.

(9.6.6) Show that if R ∈ B(Z,X ) and T ∈ K(X ,Y), then TR ∈
K(Z,Y). And if S ∈ B(Y,Z) then ST ∈ K(X ,Z). Show
also that analog results hold with T ∈ F(X ,Y).

Answer. Consider first the case T ∈ F(X ,Y). As ranTR ⊂ ranT , we get
that TR ∈ F(Z,Y). And since dim ranT < ∞ and linear dependence is
preserved by a linear operator, ST ∈ F(X ,Z).

If T is compact, using that R is bounded we have RB1(0) ⊂ B∥R∥(0).
Then

TRB1(0) ⊂ TB∥R∥(0) = ∥R∥TB1(0).
The set on the right is compact since T is compact, and then the set on the
left is a closed subset of a compact set, so compact. Thus TR is compact. As
for ST ,

ST
(
B1(0)

)
⊂ STB1(0).

As S is continuous, it maps compact sets to compact sets (Exercise 1.8.37)
so the set on the right is compact. The set on the left is thus a closed subset
of a compact set, thus compact; so ST is compact.

(9.6.7) Let X be a normed space and J a (not necessarily closed)
nonzero ideal. Show that F(X ) ⊂ J .

Answer. Let T ∈ J be nonzero. This means that there exists x ∈ X
such that Tx ̸= 0. Let R ∈ F(X ) be rank-one. Necessarily R is of the
form Rz = φ(z)w, for some φ ∈ X ∗ and w ∈ X . Use Hahn–Banach (as in
Corollary 5.7.6) to obtain ψ ∈ X ∗ with φ(Tx) = 1. Let S ∈ B(X ) be the
operator Sz = φ(z)x, and V the operator V z = ψ(z)w. Then

V TSz = φ(z)V Tx = φ(z)ψ(Tx)w = φ(z)w = Rz

for all z ∈ X . And so R = V TS ∈ J , showing that F(X ) ⊂ J .
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(9.6.8) Let T ∈ B(X ). Show that if ranT is finite-dimensional, then
T is of the form (9.32).

Answer. Let x1, . . . , xn be a basis of ranT . Given x ∈ X , we have Tx =∑n
j=1 cj(x)xj , where the coefficients cj(x) are uniquely determined by the

linear independence. Since
n∑
j=1

cj(αx+ y)xj = T (αx+ y) = αTx+ Ty =
n∑
j=1

(αcj(x) + cj(y))xj ,

we get again from the linear independence that cj(αx+ y) = αcj(x) + cj(y),
so each cj is linear. We also have that cj is bounded, because cj = πj ◦ T ,
where πj is the map πj(

∑n
j=1 rjxj) = rj ; this map is bounded because it is a

linear map on a finite-dimensional space (Exercise 9.1.2).

(9.6.9) Let X ,Y be infinite-dimensional Banach spaces, T ∈ K(X ,Y).
Show that T is not bounded below on any infinite-dimensional
subspace X0 ⊂ X .

Answer. Suppose that ∥Tx∥ ≥ c∥x∥ for all x ∈ X0 and some c > 0. By
Theorem 5.2.9 the unit ball BX0

1 (0) is not compact, so there exists δ > 0 and
a sequence {xn} ⊂ X with ∥xn∥ = 1 and ∥xn − xm∥ ≥ δ for all n,m. Then

∥Txn − Txm∥ ≥ c∥xn − xm∥ ≥ cδ > 0
for all n,m, showing that {Txn} is not Cauchy. Hence T is not compact.

(9.6.10) Let V ∈ B(L2[0, 1]) be the Volterra operator defined above,

(V f)(x) =
∫ x

0
f.

As mentioned, knowing that V is compact and has no eigen-
values, it follows immediately that σ(V ) = {0}. Prove this fact
explicitly by calculating (T − λI)−1 for any λ ̸= 0.

Answer. We want to solve the equation g = (T − λI)f in terms of f . We
will initially assume that g is differentiable. Differentiating the equality we
get that differential equation

g′ = f − λf ′.
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We can rewrite this as
g(x)′ = −λ

(
− 1
λ
f(x) + f ′(x)

)
= −λex/λ

(
e−x/λ f(x)

)′

Hence
f(x) = ex/λ

(
c− 1

λ

∫ x

0
e−t/λg′(t) dt

)
for some scalar c. Evaluating at x = 0 we get c = f(0). From g = (T − λI)f
we have g(0) = −λf(0). Integrating by parts,

f(x) = ex/λ
(

− 1
λ
g(0) − 1

λ

∫ x

0
e−t/λg′(t) dt

)
= ex/λ

(
− 1
λ
g(0) − 1

λ
e−t/λg(t)

∣∣∣∣x
0

− 1
λ2

∫ x

0
e−t/λg(t) dt

)
= ex/λ

(
− 1
λ
g(0) − 1

λ
e−x/λg(x) + 1

λ
g(0) − 1

λ2

∫ x

0
e−t/λg(t) dt

)
= − 1

λ
g(x) − ex/λ

λ2

∫ x

0
e−t/λg(t) dt.

That is,

[(T − λI)−1f ](x) = − 1
λ
f(x) − ex/λ

λ2

∫ x

0
e−t/λf(t) dt.

The expression works for any g, differentiable or not. It is bounded, for if
Re 1/λ ̸= 0

∥(T − λI)−1f∥2
2 = 1

|λ|2

∫ 1

0
|g(x)|2 dx+ 1

|λ|2

∫ 1

0

∣∣∣∣ex/λ ∫ x

0
e−t/λg(t) dt

∣∣∣∣2 dx
≤ 1

|λ|2
∥g∥2

2 + 1
|λ|2

∥g∥2
2

∫ 1

0
|e2x/λ|

∫ x

0
|e−2t/λ| dt dx

= 1
|λ|2

∥g∥2
2 + 1

|λ|2
∥g∥2

2

∫ 1

0
e2xRe 1/λ

∫ x

0
e−2tRe 1/λ dt dx

= 1
|λ|2

∥g∥2
2 − 1

2Re 1
λ |λ|2

∥g∥2
2

∫ 1

0
e2xRe 1/λ (e−2xRe 1/λ − 1) dx

= 1
|λ|2

∥g∥2
2 − 1

2Re 1
λ |λ|2

∥g∥2
2

(
1 − 1

2Re 1
λ

(
e2Re 1/λ − 1

))
≤
(

1
|λ|2

+ 1
2|Re 1

λ | |λ|2
+ e2|Re 1/λ| + 1

4|(Re 1
λ |)2 |λ|2

)
∥g∥2

2.

And when Re 1/λ = 0, the exponentials all have absolute value one, and we
get

∥g∥2
2 ≤ 2

|λ|2
∥g∥2

2.
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So (T − λI)−1 is bounded. Finally, although it follows from the derivation, a
straightforward computation shows that (T − λI)−1)(T − λI)f = f .

(9.6.11) Let X = ℓ2(N) and {λn} ⊂ C with λn → 0. Show that there
exists T ∈ K(X ) with σ(T ) = {λn}.

Answer. Let

T

( ∞∑
k=1

αkek

)
=

∞∑
k=1

λnαnen.

Because the sequence {λn} is convergent, it is bounded; there exists c > 0
with |λn| ≤ c for all n. Then, for x =

∑∞
k=1 αkek,

∥Tx∥2 =
∥∥∥∥ ∞∑
k=1

λnαnen

∥∥∥∥2
=

∞∑
k=1

|λn|2 |αn|2 ≤ c2 ∥x∥2.

So T is bounded. If Tn is the finite-rank operator

Tn

( n∑
k=1

αkek

)
=

n∑
k=1

λnαnen,

then

∥(T − Tn)x∥2 =
n∑
k=1

|λn|2 |αk|2 ≤ sup{|λk|2 : k ≥ n} ∥x∥2.

Thus ∥T − Tn∥ ≤ sup{|λk| : k ≥ n} which shows that T = limn Tn. By
Proposition 9.6.2, T is compact. We have

Ten = λnen,

so {λn} ⊂ σ(T ). If λ ̸= 0 and λ ̸∈ {λn}, there exists δ > 0 with |λ− λn| ≥ δ
for all n. Let S be the operator

S

( ∞∑
k=1

αkek

)
=

∞∑
k=1

1
λn − λ

αnen.

Then S is bounded with ∥S∥ = sup{|λn − λ|−1 : n} ≤ δ−1. And

S(T − λI)x = S(T − λI)
( ∞∑
k=1

αkek

)
=

∞∑
k=1

1
λn − λ

(λn − λ)αnen = x.

Similarly, (T − λI)S = I, and so λ ̸∈ σ(T ). So σ(T ) = {λn}.

(9.6.12) Let X be a normed space and E ∈ B(X ) an idempotent. Show
that E has finite-rank if and only if it is compact.
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Answer. If E is finite-rank, then E is compact by Proposition 9.6.2. Con-
versely, if E is not finite-rank, use Riesz’s Lemma (5.2.8 as in the proof of
Theorem 5.2.9 to produce a sequence {Exn} ∈ EX with ∥Exn∥ = 1 and
∥Exn −Exm∥ ≥ 1/2 for all n,m. Let zn = Exn, n ∈ N. Then {zn} ⊂ BX

1 (0)
and ∥Ezn − Ezm∥ = ∥Exn − Exm∥ ≥ 1/2 so the sequence does not admit a
convergence subsequence. Hence E is not compact.

(9.6.13) Let X be a normed space and X0 ⊂ X a nonzero finite-dimen-
sional proper subspace. Show that there are uncountably many
idempotents E ∈ B(X ) with X0 = EX .

Answer. The answer does not depend on X being infinite-dimensional; it
works for any proper subspace of any normed space. Fix a basis {e1, . . . , en} of
X0. Use the argument Exercise 5.7.2 to construct α1, . . . , αn ∈ X ∗ such that
αk(ej) = δkj ek. Since X0 is proper, there exists a unit vector y ∈ X \X0. For
each t ∈ [0, 2π), define β(cy) = eitc, β(ek) = 0 for k = 1, . . . , n, and extend
to β ∈ X ∗ by Hahn–Banach. Now let Et be the idempotent

Et(x) =
n∑
k=1

(αk(x) + β(x)) ek.

Then Et ∈ B(X ), EtX = X0, E2
t = Et. And for s ̸= t we have Ety = eity ̸=

eisy = Esy, so Et ̸= Es.

(9.6.14) Let X be a Banach space and E ∈ B(X ) an idempotent. Show
that ranE and ran(I − E) are closed.

Answer. Let {Exn} be Cauchy. Then there exists x ∈ X such that Exn → x.
As E is bounded, Exn = E(Exn) → Ex. Hence ranE is closed. And I − E
is also an idempotent, so its range is closed.

(9.6.15) Let E ∈ B(X ) be a finite-rank idempotent. Show that E∗ is a
finite-rank idempotent and that dim ranE = dim ranE∗ = n.

Answer. For g ∈ X ∗ and x ∈ X , we have
(E∗E∗g)x = (E∗g)(Ex) = g(E2x) = g(Ex) = (E∗g)x.

As this holds for all x ∈ X and all g ∈ X ∗, we have the equality (E∗)2 = E∗.
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If dimE = n, fixing a basis {e1, . . . , en} of ranE we have

Ex =
n∑
k=1

αk(x)ek

for certain coefficients α1(x), . . . , αn(x). The linear independence of the basis
(or, equivalently, the uniqueness of the representation of an element of ranE
in the basis) gives us that each αk is linear. Let βk ∈ X ∗ such that βk(ej) =
δkj ek (as in the proof of Exercise 5.7.2, one defines these functionals on ranE
and extends by Hahn–Banach). Then

|αk(x)| = |βk(Ex)| ≤ ∥βk∥ ∥E∥ ∥x∥,
so αk ∈ X ∗ for all k. Now

(E∗g)x = g(Ex) =
n∑
k=1

αk(x)g(ek),

for all g ∈ X ∗ and all x ∈ X . Thus

E∗g =
n∑
k=1

g(ek)αk.

So ranE∗ ⊂ span{α1, . . . , αn}. We also have
E∗βk = αk,

showing that ranE∗ = span{α1, . . . , αn}. So dim ranE∗ = n.
Conversely, suppose that dim ranE∗ < ∞. By the above, dim ranE∗∗ =

dim ranE∗. By Proposition 9.4.6 and Exercise 7.3.5,

ranE∗∗ = (kerE∗)o = (ranE)oo = JX ranEw
∗

Since the closure of JX ranE is finite-dimensional, then JX ranE is finite-
dimensional. Then

ranE∗∗ = JX ranE.
As JX is an isomorphism, dim ranE = dim ranE∗∗ = dim ranE∗.

(9.6.16) Let X be a vector space and P,Q : X → X be idempotents.
Show that if kerP = kerQ and ranQ ⊂ ranP , then P = Q.

Answer. From ranQ ⊂ ranP we have that for any x there exists z such
that Qx = Pz. Then (I − P )Qx = (I − P )Pz = 0. So Q = PQ. Since
(I − Q)x ∈ kerQ = kerP , we get that P (I − Q)x = 0. Then P = PQ. It
follows that Q = PQ = P .
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9.7. Fredholm Operators

(9.7.1) In the proof of Corollary 9.7.8, show that T11 : X1 → Y1 is a
bounded linear bijection.

Answer. Since T11 is a restriction, ∥T11∥ ≤ ∥T∥. Suppose that x ∈ X1 and
T11x = 0; this is Tx = 0, so x ∈ kerT = X2. As X1 ∩ X2 = {0} we get that
x = 0 and T11 is injective. Given y ∈ Y1 = ranT , there exists x = x1 + x2
with Tx = y. Then y = Tx1, with x1 ∈ X1. So T11 is linear, bijective, and
bounded.

(9.7.2) In the proof of Corollary 9.7.8, show that ranQ = kerT .

Answer. We have, for x ∈ kerR,

TQx =
[
T11 T12
T21 T22

] [
−T−1

11 T12x
x

]
=
[

−T12x+ T12x
−T21T

−1
11 T12x+ T22x

] [
0
Rx

]
= 0.

So Q(kerR) ⊂ kerT . Given x ∈ kerT , by (9.36) we have that x2 ∈ kerR.
And by (9.35) we have that x1 = −T−1

11 T12x2. Then

Qx2 =
[
−T−1

11 T12x2
x2

]
=
[
x1
x2

]
= x.

(9.7.3) Let X be a Banach space, T ∈ B(X ) Fredholm, R ∈ B(X )
invertible. Show that RT and TR are Fredholm.

Answer. We have kerRT = kerT , kerTR = R−1 kerT , ranRT = R(ranT ),
ranTR = ranT .

Another way is to notice that by Proposition 9.7.7 there exists S such
that I − ST and I − TS are compact. Then I − (SR−1)RT = I − ST , is
compact, as is I −RT (SR−1) = R(I − ST )R−1. Similarly, I − TR(R−1S) =
I − TS is compact, as is I −R−1STR = R−1(I − ST )R.
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(9.7.4) Let T ∈ B(X ,Y) and Z ∈ B(Y,Z) be Fredholm. Show that
ZT is Fredholm.

Answer. By Proposition 9.7.7 there exist S ∈ B(Y,X ) and R ∈ B(Z,Y) and
compact operators K1,K2,K3,K4 such that
ST = IX +K1, TS = IY +K2, RZ = IY +K3, ZR = IZ +K4.

Then
(SR)ZT = S(RZ)T = S(IY +K3)T = ST + SK3T = IX + (K1 + SK3T ),

so SR is a left-inverse for ZT modulo the compacts. Similarly,
ZT (SR) = Z(TS)R = Z(IY +K2)R = ZR+ ZK2R = IZ + (K4 + ZK2R).
Then Proposition 9.7.7 guarantees that ZT is Fredholm.

(9.7.5) Let X be a Banach space, and X0,X1 subspaces with X0 ∩X1 =
∅ and X = X0 +X1 (that is, X is the direct sum of X0 and X1).
Let T ∈ B(X ) such that TX0 ⊂ X0, TX1 ⊂ X1. Let T0 = T |X0 ,
T1 = T |X1 . Show that T is Fredholm if and only if T0 and T1
are Fredholm, and that

IndT = IndT0 + IndT1.

Answer. We have kerT = kerT0 + kerT1. Indeed, if x ∈ kerT , we have
x = x0 + x1 for unique x0 ∈ X0, x1 ∈ X1. Then 0 = Tx = T0x0 + T1x1. As
T0x0 ∈ X0, T1x1 ∈ X1, the uniqueness of the decomposition (coming from
X0 ∩ X1 = {0}) gives us that Tx0 = Tx1 = 0; that is kerT ⊂ kerT0 + kerT1.
Conversely, if x0 kerT0, x1 ∈ kerT1, then T (x0 +x1) = T0x0 +T1x1 = 0+0 =
0, and so kerT0 + kerT1 ⊂ kerT .

We also have ranT = ranT0 +ranT1, with ranT0 ∩ranT1 = ∅. Indeed,
Tx = T0x0 + T1x1.

Also,
X/(ranT ) ≃ X/ ranT0 ⊕ X/ ranT1.

For this, consider the map γ : X/(ranT ) → X/ ranT0 ⊕ X/ ranT1 given by
γ(x+ ranT ) =

(
x0 + ranT0, x1 + ranT1

)
.

This is well-defined: if x− y ∈ ranT , then x0 −x0 ∈ ranT0, x1 − y1 ∈ ranT1.
It is linear. It is injective: if x0 ∈ ranT0, x1 ∈ ranT1, then x0 + x1 ∈ ranT .
And it is surjective: (x0 + ranT0, x1 + ranT1) = γ(x0 + x1 + ranT ).

In summary, we have proven that
dim kerT = dim kerT0 + dim kerT1,
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and
dim X/ ranT = dim X0/ ranT0 + dim X1/ ranT1.

It follows that T is Fredholm if and only if both T0 and T1 are Fredholm, and
IndT = IndT0 + IndT1.

(9.7.6) Let X be a Banach space and T ∈ B(X ) Fredholm. Show that
the following statements are equivalent:

(a) there exist S,K ∈ B(X ), with S invertible and K compact,
such that T = S +K;

(b) IndT = 0.

Answer.
Suppose first that T = S + K, with S invertible and K compact, by

Corollary 9.7.14 we have IndT = Ind(S +K) = IndS = 0, since kerS = {0}
and cokerS = {0}.

Conversely, suppose that IndT = 0, then dim kerT = dim cokerT .
By Corollary 9.7.8 we have decompositions X = X1 ⊕ X2 = Y1 ⊕ Y2, with
T |X1 : X1 → Y1 invertible and dim X2 = dim Y2. Let V : X2 → Y2 be a linear
bijection, and form S : X → X by

Sx =
{
Tx, x ∈ X1

V x, x ∈ X2

Then S is a linear bijection, and it is bounded because T and V are. By the
Inverse Function Theorem (6.3.6), S is invertible. Let K = T − S. Then

K =
[
T11 T12
T21 T22

]
−
[
T11 0
0 V

]
=
[

0 T12
T21 T22 − V

]
,

is compact, as it is finite-rank.
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9.8. Schauder Bases and Basic Sequences

(9.8.1) Let X be a Banach space and E = {en} a Schauder basis.
Show that Pn is linear and bounded.

Answer. By the unique representation property of E, if

x =
∑
k

ckek, y =
∑
k

dkek

and λ ∈ C, then
λx+ y =

∑
k

(λck + dk)ek.

Then

Pn(λx+ y) =
n∑
k=1

(λck + dk)ek = λ

n∑
k=1

ckek +
n∑
k=1

dkek = λPnx+ Pny.

As Pn is finite-rank, it is bounded (Proposition 9.6.2).

(9.8.2) Let X be a Banach space and E = {en} a Schauder basis.
Show that bE < ∞.

Answer. Fix x ∈ X . Then Pnx → x. This implies that ∥Px∥ → ∥x∥, so
the sequence {∥Pnx∥} is bounded. By the Uniform Boundedness Principle,
sup{∥Pn∥ : n} < ∞.

(9.8.3) In the proof of Proposition 9.8.2, show that ∥·∥b is a seminorm.

Answer. ∥x∥b ≥ 0 by definition. Given λ ∈ C,
∥λx∥b = sup{∥Pnλx∥ : n} = |λ| {∥Pnx∥ : n} = |λ| ∥x∥b.

If x, y ∈ X we have ∥Pn(x + y)∥ ≤ ∥Px∥ + ∥Pny∥ by the linearity of Pn and
the triangle inequality. As the supremum is subadditive, we get ∥x + y∥b ≤
∥x∥b + ∥y∥b.
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(9.8.4) Let X be a Banach space and E = {en} a Schauder basis.
Show that E is also a Schauder basis for the Banach space
(X , ∥ · ∥b∥).

Answer. Since ∥ · ∥b is equivalent to ∥ · ∥ by Proposition 9.8.2, we get that
(X , ∥ · ∥b) is a Banach space and that the series

∑
k ckek converges in ∥ · ∥b

precisely when it converges in ∥ · ∥. So the same coefficients will represent x
in terms of E both in ∥ · ∥ and ∥ · ∥b, and the uniqueness is preserved. So E
is a Schauder basis for (X , ∥ · ∥b).

(9.8.5) Fix t1 = 0, t2 = 1, and t3 < · · · < tn ∈ (0, 1). Let Dn ⊂ C[0, 1]
be set of piecewise linear functions with nodes at each tj . Show
that Dn is a subspace and that dimDn = n.

Answer. It is enough to find a basis of n elements. Fix f ∈ Dn. Let g1 = 1.
Then f − b1g1 ∈ Dn and (f1 − b1g1)(0) = 0 if we take b1 = f(t1). Let g2 be
the piecewise linear function with g2(t1) = 0, g2(t2) = 1. Then if b2 = f(t2)
we get f − b1g1 − b2g2 ∈ Dn and f − b1g1 − b2g2 ∈ Dn is 0 at t1 and at t2.
Continuing like that, each time one more point is brought to zero. So after n
steps.

f =
n∑
k=1

f(tk)gk.

(9.8.6) Let X be a Banach space and {en} a sequence of nonzero el-
ements satisfying (9.39). Show that {en} is linearly indepen-
dent.

Answer. Suppose that
∑n
j=1 ajej = 0. By (9.39) we have

|a1| ∥e1∥ = ∥a1e1∥ ≤ c
∥∥∥ n∑
j=1

ajej

∥∥∥ = 0.

So a1 = 0. Repeating the argument we obtain successively that aj = 0 for all
j. So {en} is linearly independent.
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(9.8.7) Let X ,Y be Banach spaces, X0 ⊂ X , Y0 ⊂ Y (not neces-
sarily closed) subspaces, and T : X0 → Y0 a bounded linear
invertible operator. Show that there exists a unique extension
T̃ : X0 → Y0 that is still invertible. In other words, a bounded
isomorphism of subspaces extends to an isomorphism of their
closures.

Answer. The existence of the extension comes from Proposition 6.1.9. All
we need to check is that this extension is invertible if T is. So fix x ∈ X0.
Then there exists a sequence {xn} ⊂ X0 with xn → x. We have, since the
extensions are bounded,

(T̃ )−1T̃ x = lim
n

(T̃ )−1T̃ xn = lim
n

(T̃ )−1Txn = lim
n
T−1Txn = lim

n
xn = x.

So (T̃ )−1T̃ = idX0 , and similarly we get that T̃ (T̃ )−1 = idY0 .

(9.8.8) Show that any subsequence of a basic sequence is a basic se-
quence.

Answer. It is enough to show that a subsequence of a Schauder basis is a
basic sequence. Let {en} be a Schauder basis for the Banach space X , and
let {enk} be a subsequence. Put X0 = span∥·∥ {enk : k}. If {Pn} are the
basis projections for {en}, let Qk = Pnk |X0 ∈ B(X0); this requires checking
that Qk acts on X0, which should be clear since

Qk

( ℓ∑
j=1

cjenj

)
= Pnk

( ℓ∑
j=1

cjenj

)
=

ℓ∑
j=1

cjPnkenj

∈ span{en1 , . . . , enℓ} ∈ X0,

since Pnk(enj ) is either 0 or enj . Being a subsequence of a sequence of basis
projections, {Qk} satisfies (ii) in Lemma 9.8.3. And since

QkX0 = span{en1 , . . . , enk},
we also have dimQkX0 = k. So by Lemma 9.8.3 {Qk} are basis projections for
the Schauder basis {enk}k of X0. This means that {enk} is a basic sequence.

(9.8.9) In the proof of (i) =⇒ (ii) in Proposition 9.8.9, show that S is
bijective.
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Answer. The equivalence of E and F guarantees that if
∑
j ajej converges, so

does
∑
j ajfj . Together with the uniqueness of the coefficients, this guaran-

tees that S is well-defined. The uniqueness of the coefficients also guarantees
allows us to similarly define T :

∑
j ajfj 7−→

∑
j ajej , which is an inverse for

S. Hence S is bijective.

(9.8.10) Show that

(a) c0 ≃ c0 ⊕∞ c0, where ∥(x, y)∥∞ = max{∥x∥∞, ∥y∥∞};
(b) ℓp(N) ≃ ℓp(N) ⊕p ℓ

p(N), 1 ≤ p ≤ ∞, where

∥(x, y)∥p = (∥x∥pp + ∥y∥pp)1/p.

In both cases the isomorphism can be made isometric.

Answer. Consider γ : c0 → c0 ⊕ c0 given by
γ(x1, x2, . . .) = (x1, x3, . . .) ⊕ (x2, x4, . . .).

Linearity is easy to check. For the isometry, recall that the sup norm on c0
is actually a maximum.
∥γ(x)∥ = max

{
max{|x2k−1| : k}, max{|x2k| : k}

}
= max{|xk| : k} = ∥x∥.

We can use the same γ in the ℓp(N) case. Now we can do

∥γ(x1, x2, . . .)∥ =
( ∞∑
k=1

|x2k−1|p +
∞∑
k=1

|x2k|p
)1/p

=
( ∞∑
k=1

|xk|p
)1/p

= ∥x∥.

(9.8.11) Show that

(a) c0 ≃
(⊕
n∈N

c0

)
c0

, where
∥∥∥⊕

n

xn

∥∥∥
∞

= max{∥xn∥∞ : n};

(b) ℓp(N) ≃
⊕

ℓp(N), 1 ≤ p ≤ ∞, where∥∥∥⊕
n

xn

∥∥∥
p

=
( ∞∑
n=1

∥xn∥pp
)1/p

.

In both cases the isomorphism can be made isometric. The only
difficulty of this exercise compared to Exercise 9.8.10 is having
to deal with sequences of sequences and not getting swamped by
the notation. If needed, it might help to use x(k) for the kth

entry of x.
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Answer.

(a) Let N =
⋃
n Ln be a partition of N into countably many infinite sets, and

for each n let αn : N → Ln be a bijection. Let γ : c0 →
⊕

n∈N c0 be given
by

γ(x) =
⊕
n

x ◦ αn.

Linearity of γ is automatic, since it occurs component wise. For the isom-
etry,

∥γ(x)∥ = sup{∥x ◦ αn∥ : n ∈ N} = sup
n

sup
k

|x(αn(k))|

= sup{|x(k)| : k} = ∥x∥.
For the surjectivity, if z : N → c0 satisfies ∥z(n)∥∞ → 0, let x be given by

x(k) = z(n)(α−1
n (k)), where k ∈ Ln.

Then, noting that γ(x)(n)(h) = x(αn(h)),
γ(x)(n)(h) = x(αn(h)) = z(n)(α−1

n (αn(h))) = z(n)(h),
and so γ(x) = z and γ is surjective. The fact that ∥z(n)∥∞ → 0 is used
to guarantee that x ∈ c0.

(b) We can use the same γ. Now

∥γ(x)∥p =
(∑

n

∥x ◦ αn∥pp
)1/p

=
(∑

n

∑
k

|x(αn(k)|p
)1/p

= ∥x∥p.

(9.8.12) Corollary 9.8.13 is a result due to Mazur, but the proof of-
fered is not the original one. Here we will outline the original
argument.

(a) Given a normed space X and V ⊂ X a finite-dimensional
subspace, and given ε ∈ (0, 1), show that there exists x ∈ X
with ∥x∥ = 1 and such that

∥z∥ ≤ (1 + ε)∥z + λx∥, z ∈ V, λ ∈ C. (9.2)
(Hint: find an ε/2-net for ∂BV1 (0), bounded linear func-
tionals that are 1 at each point of the net, and take x in the
intersection of the kernels)

(b) Given ε > 0, show that there exists δ > 0 such that
∞∏
k=1

(1 + δ 2−k) ≤ 1 + ε.
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(c) Use Proposition 9.8.6 to prove Corollary 9.8.13, by using
(a) inductively.

Answer.

(a) Since ∂BV1 (0) is compact (by Corollary 5.2.4), there exist v1, . . . , vr such
that ∂BV1 (0) ⊂

⋃
j Bε/2(vj). By Corollary 5.7.7, there exist φ1, . . . , φr ∈

X ∗ with φj(vj) = 1, j = 1, . . . , r. By Proposition 5.5.12, there exists
x ∈

⋂
j kerφj with ∥x∥ = 1.

Since 0 < ε < 1 we have ε− ε2 > 0. Then 2 + 2ε− ε− ε2 > 2, which
is (2 − ε)(1 + ε) > 2, and it can be written 1 − ε/2 > 1(1 + ε).

Now, given z ∈ V with ∥z∥ = 1, there exists j with ∥z − vj∥ < ε/2.
Then

∥z + λx∥ ≥ ∥vj + λx∥ − ∥z − vj∥ ≥ |φj(vj + λx) − ε

2

= 1 − ε

2 >
1

1 + ε
,

yielding (9.2) for ∥z∥ = 1. For z = 0 there is nothing to prove, and for
arbitrary z ∈ V we have, applying (9.2) to z/∥z∥ and λ/∥z∥,

1 < (1 + ε)
∥∥∥ z

∥z∥
+ λ

∥z∥
x
∥∥∥

and the general form of (9.2) follows.
(b) Taking logarithm,

log
n∏
k=1

(1 + δ 2−k) =
n∑
k=1

log(1 + δ 2−k) ≤
n∑
k=1

δ 2−k ≤ δ.

So, for any n,
n∏
k=1

(1 + δ 2−k) ≤ eδ.

Now choose δ > 0 and small enough so that eδ ≤ 1 + ε.
(c) Choose δ > 0 such that

∏n
k=1(1+δ 2−k) ≤ 1+ε. Fix x1 ∈ X with ∥x1∥ = 1.

Apply (9.2) to V = span{x1} to obtain x2 ∈ X with ∥x2∥ = 1 and ∥z∥ ≤
(1 + δ2−1) ∥z + λx2∥ for all z ∈ span{x1}. Inductively, given x1, . . . , xn
unit vectors with ∥z∥ ≤ (1 + δ 2−k)∥z + λxk∥ for z ∈ span{x1, . . . , xk−1},
we get xn+1 ∈ X with ∥xn+1∥ = 1 and ∥z∥ ≤ (1 + δ 2−n−1)∥z + λxn+1∥
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for all z ∈ span{x1, . . . , xn}. Now, for any c ∈ CN and n ≤ m,∥∥∥∥ n∑
k=1

ckxk

∥∥∥∥ ≤ (1 + δ 2−n)
∥∥∥∥ n+1∑
k=1

ckxk

∥∥∥∥
≤ · · · ≤

m∏
k=n

(1 + δ 2−k)
∥∥∥∥ m∑
k=1

ckxk

∥∥∥∥
≤ (1 + ε)

∥∥∥∥ m∑
k=1

ckxk

∥∥∥∥.
By Proposition 9.8.6 we get that E = {xn} is a basic sequence and the
estimate gives bE ≤ 1 + ε.

(9.8.13) Let X ,Y be Banach spaces, X0 ⊂ X a subspace with dim X0 =
∞, and T ∈ SS(X ,Y). Show that there exists a normalized
basic sequence X = {xn} ⊂ X0 with bX < 2 and such that
∥Txn∥ < 2−n for all n.

Answer. In the proof of Exercise 9.8.12, the elements xn of the basic sequence
come out of

⋂n
j=1 kerφj . From Exercise 5.5.12 we know that said intersection

is always infinite-dimensional. As T is strictly singular, it is not bounded
below on

⋂n
j=1 kerφj and so we can choose xn with ∥xn∥ = 1 and ∥Txn∥ ≤

2−n.

(9.8.14) Let X ,Y be Banach spaces and T ∈ B(X ,Y). Show that T ∈
SS(X ,Y) if and only if for every infinite-dimensional subspace
X0 ⊂ X there exists an infinite-dimensional subspace X1 ⊂ X0
with T |X1 compact.

Answer. Suppose first that T ∈ SS(X ,Y). Fix an infinite-dimensional
subspace X0 ⊂ X . By Exercise 9.8.13 there exists a normalized basic sequence
{xn} ⊂ X0 with ∥Txn∥ ≤ 2−n for all n. Let X1 = span∥·∥ {xn : n}; then
{xn} is a Schauder basis for it. If {Pn} are the basis projections for {xn}, let
Tn = TPn. Then Tn is finite-rank, so compact. Given x =

∑∞
j=1 cjxj with

∥x∥ = 1, by Proposition 9.8.2
|cj | = |e∗

j (x)| ≤ 2bX < 4,
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and then

∥(T − Tn)x∥ =
∥∥∥∥ ∞∑
j=n+1

cjTxj

∥∥∥∥ ≤
∞∑

j=n+1
|cj | ∥Txj∥ ≤

∞∑
j=n+1

2−j+2 = 2−n+2.

So ∥T − Tn∥ → 0 and T |X1 is compact.
Conversely, suppose that T is not strictly singular. Then there exists

an infinite-dimensional subspace X0 ⊂ X with T bounded below on X0. This
makes T bounded below on any infinite-dimensional subspace of X0, and
hence it cannot be compact there.

(9.8.15) Let X ,Y be Banach spaces. Show that

(a) SS(X ,Y) is a norm-closed subspace;
(b) if T ∈ SS(X ,Y) and S ∈ B(Y,Z), R ∈ B(Z,X ), then

ST ∈ SS(X ,Z) and TR ∈ SS(Z,X );
(c) K(X ,Y) ⊂ SS(X ,Y).

Answer.

(a) Given nonzero λ ∈ C and T ∈ SS(X ,Y), it is clear that T is bounded
below on a subspace if and only if λT is, so λT ∈ SS(X ,Y). And the
operator 0 is strictly singular, so λ = 0 works too. If S, T ∈ SS(X ,Y)
and X0 ⊂ X is an infinite-dimensional subspace, by Exercise 9.8.14 there
exists an infinite-dimensional subspace X1 ⊂ X0 such that T |X1 is compact.
Applying again Exercise 9.8.14 but now to S and X1, there exists an
infinite-dimensional subspace X2 ⊂ X1 such that S|X2 is compact. Then
(T + S)|X2 is compact, and so by Exercise 9.8.14 we get that T + S ∈
SS(X ,Y).

It remains to show that SS(X ,Y) is closed. Suppose that {Tn} ⊂
SS(X ,Y) is Cauchy. By B(X ,Y) being a Banach space there exists T =
limTn. We want to show that T ∈ SS(X ,Y). By passing to a subsequence
we may assume that ∥T −Tn∥ < 2−n−1. Fix X0 ⊂ X , infinite-dimensional
subspace. For each n, as Tn is strictly singular there exists xn ∈ X0 with
∥xn∥ = 1 and ∥Tnxn∥ < 2−n−1. Then

∥Txn∥ ≤ ∥(T − Tn)xn∥ + ∥Txn∥ ≤ 2−n−1 + 2−n−1 = 2−n.

So T is not bounded below in X0. As this can be done for any X0, T ∈
SS(X ,Y), and thus SS(X ,Y) is closed.

(b) If T ∈ SS(X ,Y) and S ∈ B(Y,Z), fix an infinite-dimensional subspace
X0 ⊂ X . Then there exists {xn} ⊂ X0 with ∥xn∥ = 1 for all n and
Txn → 0, since it is not bounded below. Then STxn → 0, so ST ∈
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SS(X ,Y). Suppose that TR ̸∈ SS(Z,X ); so there exists an infinite-
dimensional subspace Z0 ⊂ Z and c > 0 such that ∥TRz∥ ≥ c∥z∥ for all
z ∈ Z0. So R is injective on Z0 and dimRSZ0 = ∞. We have

∥T (Rzx)∥ ≥ c∥z∥ ≥ c

∥R∥
∥Rz∥,

so T is bounded below on RZ0, a contradiction. Hence TR ∈ SS(Z,X ).
(c) That K(X ,Y) ⊂ SS(X ,Y) is Exercise 9.6.9.

(9.8.16) Show that B(c0) has a unique non-trivial (closed, double-sided)
ideal.

Answer. Let J ⊂ B(c0) be an ideal, and let T ∈ J \ SS(c0). By definition,
this means that there exists an infinite-dimensional subspace X0 ⊂ c0 such
that T |X0 is bounded below. By Proposition 9.8.21 there exists an infinite-
dimensional subspace X1 ⊂ X0 that is isomorphic to c0. As T |X1 is bounded
below, ranT |X1 is closed (Exercise 9.4.1) and so T |X1 is invertible onto its
range by the Inverse Mapping Theorem (6.3.6). Then ranT |X1 ≃ X1 ≃
c0, and so ranT |X1 is complemented by Corollary 9.8.34. Let P ∈ B(c0)
be a bounded projection onto ranT |X1 and S ∈ B(c0) be given by Sx =
(T |X1)−1Px. Let R : c0 → X1 be an isomorphism, so R ∈ B(c0). And let
R′ ∈ B(c0) be given by R′x = R−1Qx, where Q ∈ B(c0) is a projection onto
X1. Then R′STR ∈ J . But, as Rx ∈ X1,

R′STRx = R′(T |X1)−1TRx = R′Rx = R−1Rx = x = Ic0x,

so Ic0 ∈ J and then J = B(c0).
We have thus shown that any closed proper ideal of B(c0) satisfies

J ⊂ SS(c0). As J necessarily contains the finite-rank operators, we get
from Propositions 9.8.5 and 9.8.30 and Exercise 9.6.7 that

K(c0) = F(c0) ⊂ J ⊂ SS(c0) = K(c0).
Hence J = SS(c0) = K(c0) = F(c0) is the unique non-trivial closed ideal in
B(c0).

(9.8.17) Show that if
∑
k xk and

∑
k yk converge unconditionally, then

so does
∑
k(axk + yk) for a ∈ C.

Answer. Let ε > 0, and let x, y be the limits of the series respectively By
hypothesis there exist finite sets F0, G0, such that for any finite sets F ⊃ F0,
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G ⊃ G0, ∥∥∥x−
∑
k∈F

xk

∥∥∥ < ε

2|a|

∥∥∥y −
∑
k∈G

xk

∥∥∥ < ε

2 .

Then, if H ⊃ F0 ∪G0,∥∥∥ax+ y −
∑
k∈F0

(axk + yk)
∥∥∥ ≤ |a|

∥∥∥x−
∑
k∈h

xk

∥∥∥+
∥∥∥y −

∑
k∈F0

yk

∥∥∥ < |a|
2|a|

+ ε

2 = ε.

(9.8.18) Let X be a Banach space, and {xk} ⊂ X . Show that if
∑
k

xk

converges absolutely, then it converges unconditionally.

Answer. Fix ε > 0. Then there exists n0 such that
∑
k>n0

∥xk∥ < ε. Let

F0 = {1, . . . , n0}. For any F1 ⊂ N \ F0,∥∥∥ ∑
k∈F1

xk

∥∥∥ ≤
∑
k∈F1

∥xk∥ ≤
∑
k>n0

∥xk∥ < ε.

So the series converges unconditionally.

(9.8.19) Let X be a finite-dimensional Banach space, and {xk} ⊂ X .
Show that if

∑
k

xk converges unconditionally, then it converges

absolutely.

Answer. Consider first the case where X = R. Let G = {k : xk ≥ 0}. Then∑
k

x+
k =

∑
k∈G

xk

converges by (v) in Proposition 9.8.27. Similarly,
∑
k

x−
k converges. Then

∑
k

|xk| =
∑
k

x+
k + x−

k

converges. When X = C, we have |Rexk| ≤ |xk|; then
∑
k Rexk converges

unconditionally, and similarly for
∑
k Im xk. Then∑

k

xk =
∑
k

Rexk + i
∑
k

Im xk

converges unconditionally. Finally, consider the case where X is an arbitrary
finite-dimensional Banach space. By Theorem 5.2.2 we may choose a norm
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that suits us. Let e1, . . . , en be a basis for X , and consider the norm∥∥∥ n∑
j=1

ajej

∥∥∥ =
n∑
j=1

|aj |.

Let us write

xk =
n∑
j=1

ak,jej , x =
n∑
j=1

ajej .

Using the definition of unconditional convergence, we will then have∣∣∣ah −
∑
k∈F

ak,h

∣∣∣ ≤
n∑
j=1

∣∣∣aj −
∑
k∈F

ak,h

∣∣∣ =
∥∥∥ n∑
j=1

ajej −
∑
k∈F

ak,jej

∥∥∥
=
∥∥∥x−

∑
k∈F

xk

∥∥∥ < ε.

Thus the series
∑
k ak,j is unconditionally convergent for each j. By the

previous part, it is absolutely convergent. Thus
∑
k

|ak,j | < ∞ and then

∑
k

∥xk∥ =
∑
k

n∑
j=1

|ak,j | =
n∑
j=1

∑
k

|ak,j | < ∞.

(9.8.20) Let p ∈ (1,∞). Find a series in ℓp(N) that converges uncondi-
tionally but not absolutely.

Answer. Consider the sequence {zn}, where zn =
n∑
k=1

1
k3/2 ek. Then the

sequence converges to
z =

∑
k

1
k
ek,

since
∥z − zn∥pp =

∑
k>n

1
kp

−−−−→
n→∞

0.

But the series does not converge absolutely, for∑
k

∥∥∥1
k
ek

∥∥∥
p

=
∑
k

1
k

= ∞.
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9.9. A Brief Excursion into Injectivity

(9.9.1) Let X be a Banach space and Y ⊂ X a closed subspace that is
not complemented. Let Z = (X ⊕1X )/K, where K = {(y,−y) :
y ∈ Y}. Show that X ⊕ 0 and 0 ⊕ X are complemented in Z
but their intersection is not.

Answer. Let P : Z → X ⊕ 0 be given by P ((a, b) + K) = (a + b, 0) + K.
To see that P is well-defined, we have that (a + y) + (b − y) = a + b. The
linearity is automatic. And

∥P ((a, b) + K)∥ = ∥(a+ b, 0) + K∥ = inf{∥(a+ b+ y,−y)∥ : y ∈ K}

= inf{∥a+ b+ y∥ + ∥y∥ : y ∈ K} = ∥a+ b∥

≤ inf{∥a+ y∥ + ∥b− y∥ : y ∈ K} = ∥(a, b) + K∥.
So P is a norm-one projection. Then X ⊕ 0 = PZ is complemented and a
similar argument shows that 0 ⊕ X is also complemented.

Let us look at (X ⊕0)∩(0⊕X ) in Z. These would be the classes (a, b)+K
such that there exist x1, x2 ∈ X with (a, b) + K = (x1, 0) + K = (0, x2) + K.
That is, b = x1 − a ∈ Y, a = x2 − b ∈ Y. This can be rephrased as a, b ∈ Y.
In other words,

(X ⊕ 0) ∩ (0 ⊕ X ) = Y ⊕ 0 = 0 ⊕ Y.
Suppose that Q : Z → Y ⊕ 0 is a bounded projection. Fix x ∈ X and let
(a, b) + K = Q((x, 0) + K). As (a, b) + K ∈ Y ⊕ 0, we have a + b ∈ Y.
If we consider two elements of the form (a, 0) + K = (a′, 0) + K, we have
(a − a′, 0) ∈ K, which implies that a − a′ = 0. So there is a unique Rx ∈ Y
with Q((x, 0) + K) = (Rx, 0) + K. The uniqueness gives us R2 = R and,
together with the linearity of Q, it forces R to be linear. Also, by the triangle
inequality

∥(Rx, 0) + K∥ = inf{∥Rx+ y∥ + ∥y∥ : y ∈ Y} = ∥Rx∥.
So

∥Rx∥ = ∥(Rx, 0) + K∥ = ∥Q((x, 0) + k)∥

≤ ∥Q∥ ∥(x, 0) + K∥ = ∥Q∥ inf{∥x+ y∥ + ∥y∥ : y ∈ Y}

= ∥Q∥ ∥x∥
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and R is bounded. This would make Y complemented in X , a contradiction.
Thus (X ⊕ 0) ∩ (0 ⊕ X ) is not complemented in Z.

(9.9.2) Let X be a Banach space, (j,J ) an injective envelope for X ,
and K a Banach space with g : J → K an isometric isomor-
phism. Show that (g ◦ j,K) is an injective envelope for X .

Answer. Let ψ : K → K a contractive linear map with ψ ◦g ◦ j = g ◦ j. Then
g−1 ◦ ψ ◦ g : J → J is a contractive linear map with

(g−1 ◦ ψ ◦ g) ◦ j = g−1 ◦ (ψ ◦ g ◦ j) = g−1 ◦ g ◦ j = j.

As (j,J ) is an injective envelope for X , we get that g−1 ◦ ψ ◦ g = idI(X ).
Then ψ = g ◦ g−1 = idK and hence (g ◦ j,K) is an injective envelope for X .

(9.9.3) Show that i, as in the proof of Theorem 9.9.16, is a linear
isometry.

Answer. We have X = ℓ∞(N), Y = L∞[0, 1], with i : X → Y given by

i(x) =
∞∑
n=1

xn 1[ 1
2n+1 ,

1
2n
].

Given x, y ∈ X ,
i(x+ y) 1[ 1

2n+1 ,
1

2n
] = (xn + yn) 1[ 1

2n+1 ,
1

2n
]

= i(x) 1[ 1
2n+1 ,

1
2n
] + i(y) 1[ 1

2n+1 ,
1

2n
].

This works for all n, so i(x+y) = i(x)+ i(y). Multiplication by scalars works

similarly. For t ∈
[ 1

2n+1 ,
1

2n

]
, we have i(x)(t) = xn. Thus ∥i(x)∥∞ ≤ ∥x∥∞.

Given ε > 0, there exists n with |xn| ≥ ∥x∥∞ − ε. Then, with t ∈
[ 1

2n+1 ,
1

2n
]
,

∥x∥∞ − ε ≤ |xn| = i(x)(t) ≤ ∥i(x)∥∞.

As this can be done for all ε > 0, we obtain that ∥i(x)∥∞ = ∥x∥∞ for all
x ∈ X .
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CHAPTER

Bounded operators on a Hilbert space: Part
I

10.1. Adjoints

(10.1.1) Prove the uniqueness of the adjoint of T ∈ B(H).

Answer. Suppose that R,S are adjoints for T . This means that
⟨ξ,Rη⟩ = ⟨Tξ, η⟩ = ⟨ξ, Sη⟩, ξ, η ∈ H.

So ⟨Rη − Sη, ξ⟩ = 0 for all ξ ∈ H. Then Rη = Sη by Lemma 10.1.1. And
this occurs for all η ∈ H, so R = S.

(10.1.2) Let H = C2. Let {ξ1, ξ2} be the canonical basis, and T the
operator induced Tξ1 = 0, Tξ2 = ξ1.

(a) Find them matrix form of T and T ∗ with respect to the
canonical basis. Confirm that T ∗ is the conjugate transpose.

433
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(b) Find the matrix form of T and T ∗ with respect to the basis
η1 = ξ1, η2 = ξ1 + ξ2. Is the matrix of T ∗ the conjugate
transpose of the matrix of T? Why?

Answer.

(a) When we represent an operator as a matrix with respect to a basis, the
columns are the coefficients of the images of each element of the basis. Let
us first find T ∗. We have Tξ1 = 0, Tξ2 = X1, so

⟨T ∗(αξ1 + βξ2), γξ1 + δξ2⟩ = ⟨αξ1 + βξ2, T (γξ1 + δξ2)⟩ = ⟨αξ1 + βξ2, δξ1⟩

αδ = ⟨αξ2, γξ1 + δξ2⟩,
so T ∗ξ1 = ξ2, T ∗ξ2 = 0. Hence

T =
[
0 1
0 0

]
, T ∗ =

[
0 0
1 0

]
.

(b) We now have Tη1 = Tξ1 = 0, and Tη2 = T (ξ1 +ξ2) = ξ2 = −η1 +η2. Also,
T ∗η1 = T ∗ξ1 = ξ2 = −η1 + η2, and T ∗η2 = T ∗(ξ1 + ξ2) = ξ2 = −η1 + η2.
Therefore

T =
[
0 −1
0 1

]
, T ∗ =

[
−1 −1
1 1

]
.

The matrix for T ∗ is not the conjugate transpose of the matrix of T ,
because we are dealing with a basis that is not orthonormal.

(10.1.3) Let H a Hilbert space and H0 ⊂ H a dense subspace. Let
B : H0 × H0 → C be a bounded sesquilinear form. Show that
B admits a unique extension to a bounded sesquilinear form
B̃ : H × H → C, with ∥B̃∥ = ∥B∥.

Answer. Let ξ, η ∈ H and {ξn}, {ηn} ⊂ H0 sequences with ξn → ξ and
ηn → η. Let c > 0 with ∥ξn∥ ≤ c and ∥ηn∥ ≤ c for all n. We have
|B(ξn, ηn) −B(ξm, ηm)| ≤ |B(ξn, ηn) −B(ξn, ηm)| + |B(ξn, ηm) −B(ξm, ηm)|

= |(B(ξn, ηn − ηm)| + |B(ξn − ξm, ηm)|

≤ ∥B∥ ∥ξn∥ ∥ηn − ηm∥ + ∥B∥ ∥ηm∥ ∥ξn − ξm∥

≤ c ∥B∥
(
∥ηn − ηm∥ + ∥ξn − ξm∥

)
.

It follows that the sequence of numbers {B(ξn, ηn)} is Cauchy, so its limit
exists and we denote this limit by B̃(ξ, η). This is well-defined, in the sense
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that if ξ′
n → ξ and η′

n → η, then the same estimate as above gives us
|B(ξn, ηn) −B(ξ′

n, η
′
n)| ≤ c ∥B∥

(
∥ηn − η′

n∥ + ∥ξn − ξ′
n∥
)

and so the limit does not depend on the sequences and only on ξ and η. The
sesquilinearity of B̃ is now automatic, for we have

B̃(ξ + λν, η) = lim
n
B(ξn + λνn, ηn) = lim

n
B(ξn, ηn) + λ lim

n
B(νn, ηn)

= B(ξ, η) + λB(ν, η).
And a similar computation for the conjugate linearity on the second factor.
The fact that B̃ extends B is a consequence of the independence of the limit,
for given ξ and or η in H0 we can choose the respective constant sequences
for them. Finally,

|B̃(ξ, η)| = lim
n

|B(ξn, ηn)| ≤ lim sup
n

∥B∥ ∥ξn∥ ∥ηn∥ = ∥B∥ ∥ξ∥ ∥η∥.

As B̃ extends B, this shows that ∥B̃∥ = ∥B∥.

(10.1.4) Let T ∈ B(H), where dim H < ∞. Show that if T ∗T = I if
and only if TT ∗ = I.

Answer. Since T ∗T = I, T is injective. Indeed, if Tξ = 0, then ξ =
T ∗Tξ = 0. So T maps an orthonormal basis to a basis, which means that
dim ranT = dim H. Thus T is surjective. As T is invertible, from T ∗T = I we
get T−1 = T ∗TT−1 = T ∗. So T ∗ = T−1 and in particular TT ∗ = TT−1 = I.

The argument for TT ∗ = I is the same, since this can be seen as
Y ∗Y = I, where Y = T ∗. And T ∗ is invertible if and only if T is.

(10.1.5) Let H,K be Hilbert spaces of the same dimension, and {ξj}j∈J
and {ηj}j∈J be orthonormal bases for H and K respectively.
Show that the assignment U : ξj 7−→ fj induces a unique
bounded linear operator U ∈ B(H,K) and that U is a unitary.

Answer. Since U has to be linear we have, for each finite F ⊂ J ,

U
(∑
j∈F

cj ξj

)
=
∑
j∈F

cj ηj .

Then ∥∥∥U(∑
j∈F

cj ξj

)∥∥∥ =
∑
j∈F

|cj |2 =
∥∥∥∑
j∈F

cj ηj

∥∥∥.
So U is isometric on the dense subspace span{ej : j ∈ J} and so it extends
uniquely to U ∈ B(H,K) by Proposition 6.1.9. The extension will also be
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isometric by continuity. Finally, given
∑
j cjfj ∈ K, we have∑

j

cjfj = U
(∑

j

cjej

)
,

so U is surjective. That is, U is a unitary.

(10.1.6) Let K ⊂ H be a closed subspace and i : K → H the inclusion.
Show that i∗ is the orthogonal projection onto K.

Answer. Since i : K → H, we have i∗ : H → K. Let ξ ∈ K⊥. Then for any
η ∈ K

⟨i∗ξ, η⟩ = ⟨ξ, i(η)⟩ = ⟨ξ, η⟩ = 0.
So i∗ = 0 on K⊥. If ξ ∈ K and η ∈ K,

⟨i∗ξ, η⟩ = ⟨ξ, η⟩.
So ⟨ξ − i∗ξ, η⟩ = 0 for all η ∈ K, which shows that ξ − i∗ξ ∈ K⊥. So
ξ − i∗ξ ∈ K ∩K⊥ = {0}, showing that i∗ξ = ξ for all ξ ∈ K.

(10.1.7) Let H be a Hilbert space and ξ, η ∈ H with ∥ξ∥ = ∥η∥. Show
that there exists a unitary U ∈ B(H) such that Uξ = η.

Answer. Let {ξj} be an orthonormal basis such that ξj0 = ξ for some j0
(for instance, complete ξ to an orthonormal basis by choosing an orthonormal
basis of {ξ}⊥) and let {ηj} another orthonormal basis with ηj0 = η. Then
the unitary induced by Uξj = ηj has Uξ = η.

(10.1.8) Let H be a Hilbert space, and consider the direct sum H ⊕
H. But instead of considering the natural Hilbert space norm
∥(ξ, η)∥ = (∥ξ∥2 + ∥η∥2)1/2, we consider the norm ∥(ξ, η)∥1 =
∥ξ∥ + ∥η∥. Since these two norms are equivalent, H ⊕1 H
(with ∥ · ∥1) is a Banach space. Show that there exist ele-
ments (ξ, η), (ξ′, η′) ∈ H ⊕1 H with ∥(ξ, η)∥ = ∥(ξ′, η′)∥ but
such that no linear isometry maps (ξ, η) 7−→ (ξ′, η′) (compare
with Exercise 7.5.19).

Answer. We will first characterize the linear isometries on H ⊕1 H. Let V
be such an isometry. Being a linear operator on H ⊕ H, we can think of V
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as a 2 × 2 matrix of operators. That is,

V =
[
A B
C D

]
,

with A,B,C,D ∈ B(H). That is,
V (ξ, η) = (Aξ +Bη,Cξ +Dη), ξ, η ∈ H.

Note that since ∥(ξ, η)∥2 ≤ ∥(ξ, η)∥1 ≤
√

2 ∥(ξ, η)∥2, the bounded operators
on H ⊕ H are the same regardless of the norm.

Since V is an isometry, we have
∥ξ∥ + ∥η∥ = V (ξ, η) = ∥(Aξ +Bη,Cξ +Dη)∥ = ∥Aξ +Bη∥ + ∥Cξ +Dη∥.

Taking η = 0,
∥ξ∥ = ∥Aξ∥ + ∥Cξ∥, ξ ∈ H. (AB.10.1)

Taking ξ = 0,
∥η∥ = ∥Bη∥ + ∥Dη∥, η ∈ H. (AB.10.2)

Taking η = λξ with ∥ξ∥ = 1, and |λ| = 1,
2 = ∥(A+ λB)ξ∥ + ∥(C + λD)ξ∥, ξ ∈ H. (AB.10.3)

Combining (AB.10.1), (AB.10.2), and (AB.10.3) for ξ ∈ H with ∥ξ∥ = 1 we
have
∥Aξ∥ + ∥Bξ∥ + ∥Cξ∥ + ∥Dξ∥ ≤ 2 = ∥(A+λB)ξ∥ + ∥(C +λD)ξ∥. (AB.10.4)
This implies equality in both triangle inequalities, so for any ξ ∈ H and

|λ| = 1
∥Aξ∥ + ∥Bξ∥ = ∥(A+ λB)ξ∥, ∥Cξ∥ + ∥Dξ∥ = ∥(C + λD)ξ∥. (AB.10.5)
We now work with A,B since the computations for C,D are entirely analo-

gous. Squaring, expanding, and cancelling square norms in (AB.10.5),
Reλ⟨Bξ,Aξ⟩ = ∥Bξ∥ ∥Aξ∥, ξ ∈ H, |λ| = 1. (AB.10.6)

By using λ = 1,−1, i,−i we get that
∥Bξ∥ ∥Aξ∥ = 0, ξ ∈ H. (AB.10.7)

and analogously
∥Cξ∥ ∥Dξ∥ = 0, ξ ∈ H. (AB.10.8)

When Aξ = 0, we get from (AB.10.1) that ∥Cξ∥ = ∥ξ∥; then (AB.10.8)
implies that Dξ = 0. Similarly, when Bξ = 0 we get that ∥Dξ∥ = ∥ξ∥ and
then Cξ = 0. So either

∥Aξ∥ = ∥Dξ∥ = 0, ∥Cξ∥ = ∥Bξ∥ = ∥ξ∥, (AB.10.9)
or

∥Aξ∥ = ∥Dξ∥ = ∥ξ∥, ∥Cξ∥ = ∥Bξ∥ = 0. (AB.10.10)
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Suppose that (AB.10.9) occurs for a certain ξ and (AB.10.10) for η, both
nonzero. For ξ + η, we have

∥A(ξ + η)∥ = ∥Aη∥ = ∥η∥, ∥B(ξ + η)∥ = ∥Bξ∥ = ∥ξ∥,
so ξ+η satisfies neither (AB.10.9) nor (AB.10.10). This proves that V satisfies
either (AB.10.9) or (AB.10.10) for all ξ. In other words, the possibilities for
V are

V =
[
A 0
0 D

]
, or V =

[
0 B
C 0

]
with A,B,C,D ∈ B(H) isometries.

Now it is easy to find the counterexample. Fix ξ ∈ H with ∥ξ∥ = 1 and
consider the elements (ξ, 0) and (ξ/2, ξ/2). With V of the first form we need
to have

(ξ/2, ξ/2) = V (ξ, 0) = (Aξ, 0),
and this forces ξ = 0. With V of the second form the problem is the same:

(ξ/2, ξ/2) = V (ξ, 0) = (0, Cξ)
and we get ξ = 0. So no linear isometry (surjective or not) can map (ξ, 0) to
(ξ/2, ξ/2).

10.2. Numerical Range and Numerical Radius

(10.2.1) Let T ∈ B(H). Show that W (T ∗) = {λ : λ ∈ W (T )}, and
ω(T ) = ω(T ∗).

Answer. We have ⟨T ∗ξ, ξ⟩ = ⟨Tξ, ξ⟩, which gives us the first equality. As
the two sets W (T ) and W (T ∗) contains the conjugates of the other set,

ω(T ∗) = sup{|λ| : λ ∈ W (T ∗)} = sup{|λ| : λ ∈ W (T )} = ω(T ).

(10.2.2) Let H be a Hilbert space and T ∈ B(H). Show that ω(T )
defines a norm on B(H), equivalent to the operator norm; con-
cretely,

ω(T ) ≤ ∥T∥ ≤ 2ω(T ).
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The second inequality requires Proposition 10.3.3 and a basic
knowledge of selfadjoint operators.

Answer. We have ω(T ) ≥ 0 for all T by definition. If ω(T ) = 0, then
⟨Tξ, ξ⟩ = 0 for all ξ ∈ H, and then T = 0 by Lemma 10.1.1.

We have
ω(λT ) = sup{|⟨λTξ, ξ⟩ : ξ ∈ H, ∥ξ∥ = 1} = |λ|ω(T ).

And, since |⟨(T1 + T2)ξ, ξ⟩| ≤ |⟨T1ξ, ξ⟩| + |⟨T2ξ, ξ⟩|,
ω(T1 + T2) ≤ ω(T1) + ω(T2).

As for the inequalities, from |⟨Tξ, ξ⟩| ≤ ∥T∥ ∥ξ∥2 we get ω(T ) ≤ ∥T∥. And,
since ReT is selfadjoint,

∥ReT∥ = sup{|⟨ReT ξ, ξ⟩| : ∥ξ∥ = 1} = ω(ReT ).
Similarly, ∥ImT∥ = ω(ImT ). Then

∥T∥ = ∥ReT + iImT∥ ≤ ∥Re t∥ + ∥ImT∥ = ω(ReT ) + ω(ImT )

≤ ∥ReT∥ + ∥ImT∥ ≤ 2∥T∥.

(10.2.3) Let B ∈ B(H) such that ∥IH + iB∥ ≤ 1. Show that B = 0.

Answer. Let ξ ∈ H with ∥ξ∥ = 1. Then
|1 + i⟨Bξ, ξ⟩| = |⟨(IH + iB)ξ, ξ⟩| ≤ ∥IH + iB∥ ≤ 1.

Hence ⟨Bξ, ξ⟩ = 0. As ξ was arbitrary (after scaling), polarization gives us
that B = 0.

10.3. Selfadjoint Operators

(10.3.1) Let T ∈ B(H) and α, β ∈ C. Show that W (αT + βI) =
αW (T ) + β.
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Answer. If ∥ξ∥ = 1,
⟨(αT + βI)ξ, ξ⟩ = α⟨Tξ, ξ⟩ + β.

(10.3.2) Let T ∈ B(H) and λ ∈ C. Show that T is normal if and only
if T − λI is normal.

Answer. Suppose that T is normal. Then
(T − λI)∗(T − λI) = (T ∗ − λI)(T − λI) = T ∗T + |λ|2 I − 2ReλT ∗

= TT ∗ + |λ|2 I − 2ReλT ∗ = (T − λI)(T ∗ − λI)

= (T − λI)(T ∗ − λI).
So T − λI is normal. Conversely, if we know that T − λI is normal, then by
the above T = (T − λI) − (−λ)I is normal.

(10.3.3) Prove Proposition 10.1.8.

Answer. For any ξ, η ∈ H,
⟨(T + αS)∗ξ, η⟩ = ⟨ξ, (T + αS)η⟩ = ⟨ξ, Tη⟩ + α⟨ξ, Sη⟩

= ⟨T ∗ξ, η⟩ + ⟨αS∗ξ, η⟩ = ⟨(T ∗ + αS∗)ξ, η⟩,
so (T + αS)∗ = T ∗ + αS∗. Also,

⟨(T ∗)∗ξ, η⟩ = ⟨ξ, T ∗η⟩ = ⟨Tξ, η⟩,
so (T ∗)∗ = T . For TS,

⟨(TS)∗ξ, η⟩ = ⟨ξ, TSη⟩ = ⟨S∗T ∗ξ, η⟩,
showing that (TS)∗ = S∗T ∗. If ST ∗ = T ∗S = I, taking adjoints we get
TS∗ = S∗T = I, so T is invertible; and similarly T invertible implies T ∗

invertible. The same computation shows that (T ∗)−1 = S = (T−1)∗. And
from this we get that T − λI is invertible if and only if T ∗ − λI is invertible.

(10.3.4) Let T ∈ B(H) be normal, ξ ∈ H and H1 ⊂ H be the subspace
H1 = {p(T, T ∗)ξ : p ∈ C[x, y]}.

Show that H⊥
1 is invariant for both T and T ∗.
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Answer. Fix η ∈ H⊥
1 . Then

⟨Tη, p(T, T ∗)ξ⟩ = ⟨η, T ∗p(T, T ∗)ξ⟩ = 0.
So Tη ∈ H⊥

1 . The argument for T ∗ is entirely similar.

(10.3.5) Recall that an operator T ∈ B(H) is said to be bounded
below if there exists k > 0 with ∥Tξ∥ ≥ k∥ξ∥ for every ξ ∈ H.
Show that the following statements are equivalent:

(a) T is bounded below;
(b) T admits a left inverse;
(c) T is injective and has closed range.

(Hint: use the Inverse Mapping Theorem).

Answer. (a) =⇒ (c) If Tx = 0, then ∥x∥ ≤ 1
k ∥Tx∥ = 0, so T is injective. If

{Tn} is Cauchy, then
∥xn − xm∥ ≤ 1

k ∥Txn − xm∥,
so {xn} is Cauchy. So there exists x = limn xn. As T is bounded, Tx =
limn Txn. So the range of T is closed. 7 (c) =⇒ (b) T is bounded and bijective
onto its range. By the Inverse Mapping Theorem there exists S : ranT → H
such that ST = I.

(b) =⇒ (a) If S ∈ B(H) and ST = I, then ∥x∥ = ∥STx∥ ≤ ∥S∥ ∥Tx∥,
so T is bounded below.

(10.3.6) Let T be a diagonal operator. Find T ∗ and show that T is
normal.

Answer. We have Tξj = αjξj for a certain orthonormal basis {ξj}. Then
⟨T ∗ξj , ξk⟩ = ⟨ξj , T ξk⟩ = ⟨ξj , αjξk⟩ = αj⟨ξj , ξk⟩ = ⟨αjξj , ξk⟩.

As this can be done for all j, k, T ∗ is the multiplication operator by {αj}.
And then

⟨T ∗Tξj , ξk⟩ = |αj |2⟨ξj , ξk⟩ = ⟨TT ∗ξj , ξk⟩.

(10.3.7) Show that a diagonal operator T is selfadjoint if and only if all
its diagonal entries are real.
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Answer. If T = T ∗, from Exercise 10.3.6 we conclude that αj = αj for all j,
so αj ∈ R for all j. Conversely, if αj = αj for all j then T ∗ = T .

(10.3.8) Let T as in (10.3). Show that T is injective, selfadjoint, with
σ(T ) = [0, 1] and σp(T ) = ∅.

Answer. This was done in Example 9.5.8. With g(t) = t, we have that
σ(T ) = g([0, 1]) = [0, 1] and σp(T ) = ∅ since g is not constant on any set of
positive measure.

(10.3.9) Let H be a Hilbert space and ξ, η ∈ H.

(a) Show that it is possible to choose ξ, η in such a way that no
selfadjoint T satisfies Tξ = η, even if both are nonzero.

(b) Show that there exists T normal with Tξ = η.

Answer.

(a) An easy case where a selfadjoint T might not exist is to take ξ = 0 and
η ̸= 0. Even with both nonzero we can take η = iξ, and then i would be
an eigenvalue for T , so it cannot be selfadjoint.

(b) Let ξ1 = ξ/∥ξ∥ and α = ⟨η, ξ1⟩, β = ∥η − αξ1∥. Then ξ2 = (η − αξ1)/β is
a unit vector orthogonal to ξ1, and η = αξ1 + βξ2.

We want Tξ = η, so we must have

Tξ1 = 1
∥ξ∥

Tξ = 1
∥ξ∥

(αξ1 + βξ2).

This means that, as a 2 × 2 matrix with respect to the orthonormal basis
{ξ1, ξ2} of span{ξ, η}, the first column of T is α/∥ξ∥, β/∥ξ∥. This suggests
we define

Tξ2 = β

∥ξ∥
ξ1 + α

∥ξ∥
ξ2.

This way we have T = α
∥ξ∥I2 + S, where S is the operator Sξ1 = β

∥ξ∥ξ2,

Sξ2 = β
∥ξ∥ξ1. So

S = 1
∥ξ∥

[
0 β

β 0

]
is selfadjoint. So we have written T as a sum of a normal and a selfadjoint,
so T is normal.
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10.4. Positive operators

(10.4.1) Show that if T : H → H is linear and ⟨Tξ, ξ⟩ ≥ 0 for all ξ ∈ H,
then T is bounded.

Answer. By the usual identification between H and H∗, our operator T
satisfies the hypotheses in Proposition 6.3.15. So T is bounded.

Alternatively, we can repeat the argument from Proposition 6.3.15 in
the current context. Suppose that xn → x and Txn → y. If we show that
y = Tx, then the Closed Graph Theorem guarantees that T is bounded.

Given z ∈ X ,
0 ≤ ⟨T (xn − z), xn − z⟩ = ⟨Txn, xn⟩ + ⟨Tz, z⟩ − ⟨Txn, z⟩ − ⟨Tz, xn⟩.

Taking limit over n, and noting that convergent sequences are bounded (so
we can take limits on both arguments of the inner product at once),

0 ≤ ⟨y, x⟩ + ⟨Tz, z⟩ − ⟨y, z⟩ − ⟨Tz, x⟩ = ⟨y, x− z⟩ − ⟨Tz, x− z⟩.
So ⟨Tz, x− z⟩ ≤ ⟨y, x− z⟩. Note that z was arbitrary; if we write w = x− z,
then ⟨T (x− w), w⟩ ≤ ⟨y, w⟩, which we write as

⟨Tx− y, w⟩ ≤ ⟨Tw,w⟩, w ∈ X .
In particular, ⟨Tx − y, w⟩ ∈ R. Given any w ∈ X , the inequality also works
for ±w/n, which gives us

±n⟨Tx− y, w⟩ ≤ ⟨Tw,w⟩, w ∈ X , n ∈ N.
This forces ⟨Tx − y, w⟩ = 0. As this occurs for all w ∈ X , we have shown
that Tx = y.

(10.4.2) Let S, T ∈ B(H) be positive with S + T = 0. Show that
S = T = 0.

Answer. We have 0 ≤ S ≤ S + T = 0, so S = 0. Properly, these inequalities
show that ⟨Sξ, ξ⟩ = 0 for all ξ, and then ∥S1/2ξ∥2 = 0 for all ξ, which gives
S1/2 = 0 and hence S = 0. The same argument works for T .
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(10.4.3) Let A ∈ B(H) be positive and invertible. Show that A1/2 is
invertible.

Answer. There exists a uniqueB ∈ B(H) withB2 = A. We haveB(BA−1) =
AA−1 = I, so B has a right-inverse. We also have that B commutes with A,
for AB = B3 = BA, and so BA−1 = A−1B. Then (BA−1)B = AA−1B2 = I.
So B is invertible.

(10.4.4) Prove Proposition 10.4.3.

Answer.

(i) We have ⟨Aξ, ξ⟩ ≤ ∥A∥ ∥ξ∥2 = ⟨∥A∥ ξ, ξ⟩.
(ii) For any ξ ∈ H,

⟨TAT ∗ξ, ξ⟩ = ⟨AT ∗ξ, T ∗ξ⟩ ≤ ⟨BT ∗ξ, T ∗ξ⟩ = ⟨TB∗ξ, ξ⟩.
(iii) Let ξ ∈ H. We have, with η = A−1ξ,

⟨A−1ξ, ξ⟩ = ⟨η,Aη⟩ ≥ 0.
(iv) If A ≤ I, then ⟨Aξ, ξ⟩ ≤ ⟨ξ, ξ⟩ = ∥ξ∥2. By Proposition 10.3.3,

∥A∥ ≤ 1. The converse is (i).
(v) Suppose that A ≥ cI with c > 0. Then ⟨Aξ, ξ⟩ ≥ ⟨c ξ, ξ⟩ = c ∥ξ∥2

for all ξ ∈ H, and so W (A) ⊂ [c,∞). By Proposition 10.2.3, σ(A) ⊂
[c,∞) and so A is invertible. We also have, since A1/2 is invertible
and A ≥ cI,

A−1 = c−1/2A−1/2(cI)(c−1/2A−1/2) ≤ c−1/2A−1/2 A (c−1/2A−1/2) = c−1 I.

(10.4.5) Let T, S ∈ B(H), with S invertible. Show that T ≥ 0 if and
only if S∗TS ≥ 0.

Answer. If T ≥ 0, then S∗TS ≥ 0. Conversely, if S∗TS ≥ 0 with S
invertible, then for any ξ ∈ H

⟨Tξ, ξ⟩ = ⟨TS(S−1ξ), SS−1ξ⟩ = ⟨S∗TS(S−1ξ), S−1ξ⟩ ≥ 0.
So T ≥ 0.
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(10.4.6) Let T ∈ B(H,K). Show that T ∗ exists by using block matrices
over H⊕K and Theorem 10.1.6. For this, consider X ∈ B(H⊕
K) with X21 = T and X11 = 0, X12 = 0, X22 = 0.

Answer. Let X =
[

0 0
T 0

]
∈ B(H ⊕ K). By Theorem 10.1.6, X∗ exists. We

cannot finish by using Proposition 10.4.12, for we don’t know that T ∗ exists.
Write

X∗ =
[
A B
C D

]
.

Since X = P2XP1 we get X∗ = P1X
∗P2, which tells us that only (X∗)12 is

nonzero. That is, there exists S ∈ B(K,H) such that

X∗ =
[
0 S
0 0

]
.

Given ξ ∈ H and η ∈ K,

⟨Sη, ξ⟩ =
〈[

0 S
0 0

] [
ξ
η

]
,

[
ξ
η

]〉
=
〈[

ξ
η

]
,

[
0 0
T 0

] [
ξ
η

]〉
= ⟨η, Tξ⟩.

So S = T ∗.

(10.4.7) Let T ∈ B(H) with 0 ≤ T ≤ I. Show that T 2 ≤ T .

Answer. From I − T ≥ 0 we have T 1/2(I − T )T 1/2 ≥ 0. This is T − T 2 ≥ 0.

(10.4.8) Show an example of positive S, T ∈ B(H) such that S ≤ T but
S2 ̸≤ T 2. (Hint: examples already exist on dimension 2)

Answer. The matrices will have to fail to commute. We can take

S =
[
1 0
0 0

]
, T =

[
2 1
1 1

]
.

Then T − S =
[
1 1
1 1

]
≥ 0 (it is positive because it is selfadjoint and its

eigenvalues are 0, 2). But

T 2 − S2 =
[
5 3
3 2

]
−
[
1 0
0 0

]
=
[
4 3
3 2

]
.

So det(T 2 − S2) = −1, showing that at least one eigenvalue is negative.
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(10.4.9) Let S, T ∈ B(H) be positive and such that ST = TS. Show
that S1/2T 1/2 = T 1/2S1/2.

Answer. Since T 1/2 is a limit of polynomials on I − T , we get that ST 1/2 =
T 1/2S. And now, using that S1/2 is a limit of polynomials on (I − S),
S1/2T 1/2 = T 1/2S1/2.

(10.4.10) Show an example of T ∈ B(H) such that ranT is not closed.

Answer. Fix an orthonormal basis {en} and let Ten = 1
n en. Then ranT

is dense, since en ∈ ranT for all n, but ranT is not closed (for instance,
{1/n}n ̸∈ ranT ).

(10.4.11) Let T ∈ B(H). Show that ∥Tξ∥ = ∥ |T |ξ∥ for all ξ ∈ H,
and that |T | is the only positive operator in B(H) with that
property.

Answer. We have
∥Tξ∥2 = ⟨Tξ, Tξ⟩ = ⟨T ∗Tξ, ξ⟩ = ⟨|T |2ξ, ξ⟩ = ∥ |T |ξ∥2.

Now suppose that ∥Tξ∥ = ∥Sξ∥ for all ξ ∈ H and that S ≥ 0. With the same
computations as above we obtain

⟨(T ∗T − S2)ξ, ξ⟩ = 0.
As T ∗T − S2 is selfadjoint, Proposition 10.3.3 implies that S2 = T ∗T . And
S ≥ 0, so S = (T ∗T )1/2 = |T |.

(10.4.12) Let V ∈ B(H) be a partial isometry with P = V ∗V and Q =
V V ∗. Show that V = QV P .

Answer. This can be deduced from Proposition 10.4.10, but here is a simple
direct argument. We know from Proposition 10.1.10 that kerV = kerV ∗V =
kerP = (Ih − P )H. So V (Ih − P ) = 0. That is, V = V P . And then
V = V P = V V ∗V = QV .
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(10.4.13) Show that when dim H < ∞ the partial isometry in Proposi-
tion 10.4.11 can be chosen to be a unitary, at the cost of losing
the condition on the range.

Answer. Write T = V |T | as in Proposition 10.4.11. Since V : ranT ∗ →
ranT is a surjective isometry (due to the finite-dimension, dense range equals
surjective), we also have that their complements have equal dimension. Let
W : (ranT ∗)⊥ → (ranT )⊥ be a unitary, and form U = V +W . As V and W
are partial isometries with orthogonal initial and final spaces, U is a unitary.
And U |T | = V |T | = T .

(10.4.14) Show that if T = WZ = V S with W,V partial isometries with
V ∗V = [ranZ] = [ranS] = W ∗W , V V ∗ = WW ∗ = [ranT ], and
Z, S ≥ 0, then W = V and Z = S.

Answer. We have T ∗T = ZW ∗WZ = Z2, and similarly with S; so S = Z =
|T | by the uniqueness of the positive square root (Proposition 10.4.4). Then
W = V as in the proof of Proposition 10.4.11.

(10.4.15) Let T ∈ B(H) be invertible. Show that if T = V |T | is the Polar
Decomposition, then |T | is invertible and V is a unitary.

Answer. We know that T ∗ is invertible too. Since V is a partial isometry
with initial space ranT ∗ = H and final space ranT = H, we get that V is an
isometry: V ∗V = I. Same argument but with V ∗ shows that V V ∗ = I, so V
is a unitary. Now |T | = V ∗T , invertible.

(10.4.16) Give an example of T ∈ B(H), and decompositions T = V R =
WS, with R,S ≥ 0 and V,W partial isometries, such that
R ̸= S and V ̸= W . Explain why this does not contradict the
uniqueness in Proposition 10.4.11.

Answer. Let H = C3 and T = E11. Then Proposition 10.4.11 gives T = V |T |
with |T | = V = E11. Now let S = E11 + E22 and W = E11 + E33.
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(10.4.17) Let T ∈ B(H). Show T can be expressed as T = WA with A
positive and W a unitary if and only if dim kerT = dim kerT ∗.

Answer. Assume first dim kerT = dim kerT ∗. By the Polar Decomposition,
we have T = UA with A = |T | ≥ 0, and U ∈ B(H) is a partial isometry with
kerT = kerU = kerA.

The operator U∗U ∈ B(H) is a projection with
kerU∗U = kerT = kerA.

So ranU∗U = (kerU∗U)⊥ = (kerA)⊥ = ranA. This implies that U∗UA = A.
Thus

T ∗T = A∗U∗UA = A∗A = A2.

Also
kerU∗ = (ranU)⊥ = (ranT )⊥ = kerT ∗. (AB.10.11)

Since dim kerT = dim kerT ∗, and by mapping an orthonormal basis to
another, we can construct a partial isometry V : kerT → kerT ∗. Define

W = U + V.

By (AB.10.11) we have that U∗V = 0. Then
W ∗W = U∗U + V ∗V + 2 ReU∗V = U∗U + V ∗V = IH

The equality with the identity is due to U∗U being the projection onto ranA,
and V ∗V being the projection onto kerT = kerA = (ranA)⊥. Similarly,
since ranU∗ = (kerU)⊥ = (kerT )⊥, we have V U∗ = 0. Then

WW ∗ = UU∗ + V V ∗ = IH.

The last equality now holds because UU∗ is the projection onto
ranUU∗ = (kerUU∗)⊥ = (kerU∗)⊥ = (kerT ∗)⊥,

and V V ∗ is the projection onto kerT ∗.
Finally, we have V A = V U∗UA = 0, so WA = (U + V )A = UV .
For the converse, if T = WA with W a unitary, as W maps ranA onto

ranT , it also maps (ranA)⊥ = kerT onto (ranT )⊥ = kerT ∗.

(10.4.18) Let T ∈ B(H), invertible. Show that ∥T∥ = ∥T−1∥ = 1 if and
only if T is a unitary.

Answer. We have
∥T ∗T∥ = ∥T∥2 = ∥T−1∥2 = ∥T−1(T−1)∗∥ = ∥T−1(T ∗)−1∥ = ∥(T ∗T )−1∥.
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So S = T ∗T is a positive invertible operator with ∥S∥ = ∥S−1∥ = 1. Since S
is positive, we have ∥S∥ = max σ(S) (Proposition 10.3.3). Also,

1 = ∥S−1∥ = max σ(S−1) = max{λ−1 : λ ∈ σ(S)} = (min σ(S))−1.

So max σ(S) = 1 = min σ(S). Then σ(S) = {1}. As ∥S∥ = 1, we have for
any ξ ∈ H with ∥ξ∥ = 1,

⟨Sξ, ξ⟩ ≤ 1 = ⟨ξ, ξ⟩.
So I − S ≥ 0. Also, σ(I − S) = {0} (Exercise 9.5.1). Then ∥I − S∥ = 0
by Proposition 10.3.3. So S = I; that is T ∗T = I. Now we can repeat the
argument for T ∗, to obtain TT ∗ = I; thus, T is a unitary.

A more direct argument is the following: given ξ ∈ H with ∥ξ∥ = 1,
1 = ⟨ξ, ξ⟩ = ⟨T−1Tξ, T−1Tξ⟩ = ∥T−1Tξ∥2 ≤ ∥Tx∥2 = ⟨Tξ, Tξ⟩.

Also,
⟨Tξ, Tξ⟩ = ∥Tξ∥2 ≤ ∥ξ∥2 = ⟨ξ, ξ⟩ = 1.

Thus ⟨Tξ, Tξ⟩ = ⟨ξ, ξ⟩ for all ξ (as we can always scale to 1). This shows that
T ∗T = I. Repeating the argument for T ∗ we get that TT ∗ = I.

(10.4.19) Let S, T ∈ B(H) be positive. Show that σ(ST ) ⊂ [0,∞). Does
this imply that ST is positive?

Answer. By Proposition 9.2.15 we have that
σ(ST ) ⊂ σ(S1/2TS1/2) ∪ {0},

and so σ(ST ) ⊂ [0,∞) since S1/2TS1/2 ≥ 0 by Proposition 10.4.7. It is not
necessary that ST is positive, though, even in finite dimension. For instance
let

S =
[
1 1
1 1

]
, T =

[
1 0
0 2

]
.

Then S ≥ 0, T ≥ 0, but

ST =
[
1 2
1 2

]
is not even selfadjoint.

(10.4.20) Let T ∈ B(H)+ with ∥T∥ ≤ 1, and ξ0 ∈ H such that ∥Tξ0∥ =
∥ξ0∥. Show that Tξ0 = ξ0, and that T = P + T0, where P is a
projection and T0 ∈ B(H) satisfies ∥T0ξ∥ < ∥ξ∥ for all nonzero
ξ ∈ H.
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Answer.
Since T is selfadjoint, T 2 ≥ 0. We also have T 2 ≤ I by Proposi-

tion 10.4.3. Now
0 ≤ ∥(I − T 2)1/2ξ∥2 = ⟨(I − T 2)ξ, ξ⟩ = ∥ξ∥2 − ∥Tξ∥2 = 0.

Thus (I − T 2)1/2ξ = 0 and so (I − T 2)ξ = 0. This we can write as
(I + T )(I − T )ξ = 0.

By Exercise 9.5.1 we have that σ(I + T ) ⊂ [1,∞), so I + T is invertible.
Hence (I − T )ξ = 0, which is Tξ = ξ.

Let L = {η : ∥Tξ∥ = ∥ξ∥} = {η : Tη = η} ⊂ H. By the above
this is a nonempty subspace, and it is closed by the continuity of T . Let
P be the orthogonal projection onto L. Define T0 = T (I − P ). Then T =
TP + T (I − P ) = P + T0. For nonzero η ∈ L⊥ = (I − P )H, we have
∥T0η∥ = ∥Tη∥ < ∥η∥, for otherwise if ∥Tη∥ = ∥η∥ then η ∈ L.

(10.4.21) Let S, T ∈ B(H), both positive, and with ∥S∥ ≤ 1 and ∥T∥ ≤ 1.
Show that ∥S − T∥ ≤ 1.

Answer. We have 0 ≤ S, T ≤ I by Proposition 10.4.3. Then
−I ≤ −T ≤ S − T ≤ S ≤ I.

Given ξ ∈ H, this means that
−⟨ξ, ξ⟩ ≤ ⟨(S − T )ξ, ξ⟩ ≤ ⟨ξ, ξ⟩.

Then Proposition 10.2.3 implies σ(S − T ) ⊂ convσ(S − T ) ⊂ W (S − T ) ⊂
[−1, 1]. Therefore ∥S − T∥ = spr(S − T ) ≤ 1 by Proposition 10.3.3.

(10.4.22) Prove Proposition 10.4.12.

Answer. We have (T ∗)kj = PkT
∗Pj = (PjTPk)∗ = (Tjk)∗.



10. PROJECTIONS 451

10.5. Projections

(10.5.1) Let P ∈ B(H). Show that P ∗P = P if and only if P = P ∗ =
P 2.

Answer. If P ∗P = P , then P ∗ = (P ∗P )∗ = P ∗P = P , and
P 2 = (P ∗P )(P ∗P ) = P ∗P = P.

Conversely, if P = P ∗ = P 2 then P ∗P = P 2 = P .

(10.5.2) Let P ∈ B(H) be a projection. Show that kerP = P⊥H and
that P⊥ is the orthogonal projection onto (PH)⊥.

Answer. If Pξ = 0, then P⊥ξ = ξ − Pξ = ξ, so ξ ∈ P⊥H. Conversely, if
ξ = P⊥ξ, then Pξ = P (I − P )ξ = 0, so ξ ∈ kerP . Hence kerP = P⊥H

We have (PH)⊥ = (ranP )⊥ = kerP ∗ = kerP = P⊥H.

(10.5.3) When H = C2, we can identify B(H) with M2(C). Find all
orthogonal projections and all idempotents.

Answer. Let us start with the projections. We could play with equations
as we will do with the idempotents, but let us try something else. The only
rank-0 projection is 0, and the only rank-2 projections is the identity I2. It
remains to characterize the rank-1 projections. These are rank-one operators,
so they are of the form P = xy∗, with x, y nonzero. From P ∗ = P we obtain
yx∗ = xy∗. Evaluating at x we have ∥x∥2 y = (y∗x)x; as neither x nor y is
zero, this tells us that x and y are colinear. Write y = λx. Then P = λxx∗.
From P 2 = P , we have λxx∗ = λ2 ∥x∥2 xx∗. So λ = 1/∥x∥2, which is the
same as assuming that ∥x∥ = 1.

The vectors x ∈ C2 with ∥x∥ = 1 are of the form
x = (

√
t eiθ,

√
1 − t eiγ), t ∈ [0, 1].
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Then

P = xx∗ =
[ √

t eiθ√
1 − t eiγ

] [√
t e−iθ √

1 − t e−iγ]
=
[

t
√
t− t2 ei(θ−γ)

√
t− t2 e−i(θ−γ) 1 − t

]
=
[

t
√
t− t2 λ√

t− t2 λ 1 − t

]
t ∈ [0, 1], λ ∈ T.

For an idempotent E =
[
a b
c d

]
, the equation E2 = E translates to

a = a2 + bc, (a+ d)b = b, (a+ d)c = c, d = d2 + bc.

We consider two cases.

• If b = c = 0, then a, d = ±1. So

E =
[
±1 0
0 ±1

]
.

• If b or c is not zero, we get a+ d = 1. Both a and d are solutions of
the quadratic equation t2 − t+ bc = 0. Then

E =
[ 1

2 ± 1
2

√
1 − 4bc b

c 1
2 ∓ 1

2
√

1 − 4bc

]
, b, c ∈ C.

(10.5.4) Let T ∈ B(H) be normal, and T ̸= 0, ̸= I. Show that T is a
projection if and only if σ(T ) = {0, 1}.

Answer. If T 2 = T , then by Spectral Mapping (Proposition 9.2.9) we have
that λ2 = λ for all λ ∈ σ(T ). Thus σ(T ) ⊂ {0, 1}. If σ(T ) = {0}, then T = 0
by Proposition 10.3.3, a contradiction. If σ(T ) = {1}, then T = I again by
Proposition 10.3.3. Hence σ(T ) = {0, 1}.

Conversely, suppose that σ(T ) = {0, 1}. By Spectral Mapping (Propo-
sition 9.2.9), T 2 − T is a normal operator with σ(T 2 − T ) = {0}. Thus
T 2 − T = 0 by Proposition 10.3.3.

(10.5.5) Show that the projections are extreme points in the set B(H)+
1

of positive operators with norm at most 1 (it is actually true
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that the projections are the only extreme points, but that will
have to wait until Exercise 12.4.4).

Answer. Let P be a projection and suppose that P = tA + (1 − t)B with
A,B ≥ 0 and t ∈ [0, 1]. If ξ = Pξ and ∥ξ∥ = 1,

1 = ⟨Pξ, ξ⟩ = t⟨Aξ, ξ⟩ + (1 − t)⟨Bξ, ξ⟩ ≤ t∥A∥ + (1 − t)∥B∥ ≤ 1.
As all terms are nonnegative, the equality in the inequalities forces ⟨Aξ, ξ⟩ =
1. Similarly, if Pξ = 0 then

0 ≤ ⟨Aξ, ξ⟩ + (1 − t)⟨Bξ, ξ⟩ = ⟨Pξ, ξ⟩ = 0.
Arguing as above, we get ⟨Aξ, ξ⟩ = 0 when Pξ = 0. We can write this
as ⟨PAPξ, ξ⟩ = ⟨Pξ, ξ⟩ for all ξ ∈ H. Using Polarization, it follows that
PAP = P . That is, P (I − A)P = 0. As I − A ≥ 0, we can write this as
((I − A)1/2P )∗(I − A)1/2P = 0. So (I − A)1/2P = 0, and so (I − A)P = 0,
which is P = AP = PA (the last equality, by taking adjoints). Then, as A
commutes with P ,

A = PA+ (I −A)P = P.

Similarly, B = P and so P is extreme.

(10.5.6) Show that the converse of Proposition 10.5.6 is false. That is,
find projections P,Q ∈ B(H), unitarily equivalent, and such
that ∥P −Q∥ = 1.

Answer. Let H = ℓ2(N) and P =
∑
k E2k,2k. Let U =

∑
k E2k−1,2k +

E2k,2k−1. Then

U∗U =
∑
k,j

E2k−1,2kE2j−1,2j + E2k−1,2kE2j,2j−1

+ E2k,2k−1E2j−1,2j + E2k,2k−1E2j,2j−1

=
∑
k

E2k−1,2k−1 + E2k,2k = I.

As U is selfadjoint, it is a unitary. And

UP =
∑
k,j

(E2k−1,2k + E2k,2k−1)E2j,2j =
∑
k

E2k−1,2k,

(I − P )U =
∑
k,j

E2k−1,2k−1(E2j−1,2j + E2j,2j−1) =
∑
k

E2k−1,2k.

Then UP = (I − P )U . And U is a unitary, so UPU∗ = I − P . But ∥P −
(I − P )∥ = ∥2p− I∥ = 1.
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(10.5.7) Prove Proposition 10.5.9.

Answer. Let P =
∧
j Pj . By Exercise 10.5.2 we know that P⊥ is the orthog-

onal projection onto (PH)⊥. That is, P⊥ is the orthogonal projection onto
(using Exercises 10.5.2 and 4.3.12)(⋂

j

PjH
)⊥

= span
⋃
j

P⊥
j H.

Hence P⊥ =
∧
j

P⊥
j . The second equality follows by taking ⊥ on the first

one.

(10.5.8) Let P,Q ∈ B(H) be projections. Is is true that P = P ∧ Q +
P ∧Q⊥? Provide either a proof of a counterexample.

Answer. No, it’s not true in general. Let H = C2,

P =
[
1/2 1/2
1/2 1/2

]
, Q =

[
1 0
0 0

]
.

Then P ∧Q = P ∧Q⊥ = 0, so the equality does not hold.
The equality P = P ∧ Q + P ∧ Q⊥ occurs precisely when P and Q

commute. Indeed, if P = P ∧ Q + P ∧ Q⊥, multiplying by Q on the left
and separately on the right, we get QP = P ∧ Q = PQ. Conversely, if
PQ = QP , then PQ = P ∧Q (this can be seenby showing directly that PQ
is the orthogonal projection on PH ∩QH), so

P ∧Q+ P ∧Q⊥ = PQ+ PQ⊥ = P (Q+Q⊥) = P.

(10.5.9) Let {Pj} ⊂ B(H) a family of projections. Show that

U
(∨

j

Pj

)
U∗ =

∨
j

UPjU
∗.

Answer. Let P =
∨
j Pj . This is the projection onto span∥·∥ ⋃

j PjH. We
have

span∥·∥
⋃
j

UPjU
∗H = span∥·∥

⋃
UPjH = U span∥·∥

⋃
j

PjH.
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So P ′ =
∨
j UPjU

∗ is the orthogonal projection onto UPH. As UPU∗ is also
an orthogonal projection onto UH, the uniqueness gives us P ′ = UPU∗.

Another way to prove the equality is to use that fact that P is the
supremum of the family of projections. Then one sees that UPU∗ is the least
upper bound for {UPjU∗}.

(10.5.10) Let H be a Hilbert space and {Pj} ⊂ B(H) an increasing net
of projections such that

∨
j Pj = IH. Show that for all ξ ∈ H

we have limj Pjξ = ξ.

Answer. Write Hj = PjH. Then the hypothesis is that
⋃
j

Hj is dense in

H. Given ε > 0 there exists j0 and ξ0 ∈ Hj0 with ∥ξ − ξ0∥ < ε. When
k ≥ j we have PkPj = Pj by Proposition 10.5.3. Hence, for j ≥ j0 we have
Pjξ0 = PjPj0ξ0 = Pj0ξ0 = ξ0 so ξ0 ∈ Hj . Using Proposition 4.3.8,

∥ξ − Pjξ∥ ≤ ∥ξ − ξ0∥ < ε.

Thus Pjξ → ξ.

(10.5.11) Let P,R ∈ B(H) be projections. Show that
P ∨R+ (IM − P ) ∧ (IM −R) = IM.

Answer. We have (PH ∪RH)⊥ = (PH)⊥ ∩ (RH)⊥. This says that
IM − P ∨R = (IM − P ) ∧ (IM −R).

Hence P ∨R+ (IM − P ) ∧ (IM −R) = IM.

(10.5.12) Let H be a Hilbert space. Show that there exists an increasing
net {Pj} of finite-rank projections with

∨
j Pj = IH.

Answer. Let {ξk}k∈K be an orthonormal basis for H, and put J = {F ⊂
K, finite}, ordered by inclusion. Define, for j ∈ J , Hj = span{ξk : k ∈ j}.
Then {ξk} ⊂

⋃
j

Hj , so
∨
j

Pj = IH.
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(10.5.13) Let H be a Hilbert space and {Pj} an increasing net of projec-
tions with Pjξ → ξ for all ξ ∈ H. Show that for all T ∈ B(H),

∥T∥ = sup{∥PjTPj∥ : j}.

Answer. We always have ∥PjTPj∥ ≤ ∥Pj∥2∥T∥ = ∥T∥. Fix ε > 0. Then
there exists ξ ∈ H with ∥ξ∥ = 1 and ∥Tξ∥ > ∥T∥ − ε. By hypothesis there
exists j with ξ−Pjξ∥ < ε. Then if j is big enough so that ∥Pjξ− ξ∥ < ε and
∥PjTξ − Tξ∥ < ε,

∥PjTPjξ∥ =
∥∥Tξ +

(
PjTPjξ − PjTξ

)
+
(
PjTξ − Tξ

)∥∥
≥ ∥Tξ∥ − ∥PjTPjξ − PjTξ∥ − ∥PjTξ − Tξ∥

≥ ∥Tξ∥ − ∥T∥ ∥Pjξ − ξ∥ − ∥PjTξ − Tξ∥

≥ ∥Tξ∥ − (1 + ∥T∥)ε > ∥T∥ − (2 + ∥T∥)ε.
As this can be done for all ε > 0, we get that sup{∥PjTPj∥ : j} ≥ ∥T∥, and
thus we have the equality.

(10.5.14) Let T, P ∈ B(H) with P a projection, such that (IH−P )T (IH−
P ) = 0. Show that |⟨Tξ, ξ⟩| ≤ 2∥T∥ ∥Pξ∥ for all ξ ∈ H with
∥ξ∥ ≤ 1.

Answer. We have
|⟨Tξ, ξ⟩| ≤ |⟨Tξ, Pξ⟩| + |⟨Tξ, (IH − P )ξ⟩|

≤ |⟨Tξ, Pξ⟩| + |⟨TPξ, (IH − P )ξ⟩| + |⟨T (IH − P )ξ, (IH − P )ξ⟩|

= |⟨Tξ, Pξ⟩| + |⟨TPξ, (IH − P )ξ⟩

≤ ∥T∥ ∥Pξ∥ + ∥T∥ ∥Pξ∥ ∥(IH − P )ξ∥ ≤ 2∥T∥ ∥Pξ∥.

(10.5.15) Let T ∈ B(H)+, α, β, γ ∈ R with 0 < γ < α < β, and
P,Q ∈ B(H) two projections that commute with T and with
each other, and such that

αP ≤ PT ≤ βP, 0 ≤ (IH − P )T ≤ γ(IH − P ),
αQ ≤ QT ≤ βQ, 0 ≤ (IH −Q)T ≤ γ(IH −Q).

Show that P = Q.
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Answer. We have
α(IH − P )Q ≤ (IH − P )TQ ≤ γ(IH − P )Q.

As γ < α, (IH − P )Q = 0. That is Q = PQ, which is to say that Q ≤ P . As
the roles of P and Q can be reversed, we also have P ≤ Q and hence P = Q.

(10.5.16) Let P,Q ∈ B(H) be projections.

(a) Let T = I − P −Q. Show that TP = QT .
(b) Show that if ∥P −Q∥ < 1, then T is invertible.
(c) Show that if ∥P −Q∥ < 1 then

dim ranP = dim ranQ, dim ran(I − P ) = dim ran(I −Q).
(d) Conclude that there exists a unitary U with UPU∗ = Q.

This proves the result of Proposition 10.5.6, but without writ-
ing U as an expression depending on P and Q.

Answer.

(a) We have TP = P − P − PQ = −PQ, and QT = Q − QP − Q = −QP .
So TP = QT .

(b) We have
T 2 = (I − P −Q)2 = I − P +Q− (I − P )Q−Q(I − P )

= I − P +Q−Q+ PQ−Q− PQ = I − (P −Q).

Then ∥I − T 2∥ = ∥P − Q∥ < 1, and then T 2 is invertible by Proposi-
tion 6.2.3. Then T is invertible (otherwise we would have 0 ∈ σ(T ) and
then 0 ∈ σ(T 2)).

(c) We have just shown that T is invertible. Hence P = T−1QT . And
dim ranP = dimPH = dimT−1QTH = dimQTH = dimQH = dim ranQ.

We also have ∥(I −P ) − (I −Q)∥ = ∥P −Q∥ < 1, so the above applies to
show that dim ran(I − P ) = dim ran(I −Q).

(d) Let {xij}j∈J , {ξ′
k}k∈K , {etaj}j∈J , {eta′

k}k∈K be orthonormal bases for
PH, (I − P )H, QH, (I − Q)H respectively. The equalities of the ranks
allow us to use the same index sets J and K for P and Q. Let U be the
linear map induced by Uξj = ηj and Uξ′

k = η′
k for all j, k. Then U is a

unitary by Exercise 10.1.5.
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(10.5.17) Regarding Remark 10.5.7, show that U = (P +Q− I)|P +Q−
I|−1 is a unitary and that UPU∗ = Q.

Answer. Since P +Q− I is selfadjoint, we have
U∗U = |P +Q− I|−1(P +Q− I)2|P +Q− I|−1

= |P +Q− I|−1|P +Q− I|2|P +Q− I|−1 = I

and, since a selfadjoint operator commutes with its absolute value,
UU∗ = (P +Q− I)|P +Q− I|−2(P +Q− I) = |P +Q− I|−2(P +Q− I)2

= |P +Q− I|−2|P +Q− I|2 = I.

When we see U as
[
C S
S −C

]
, the equality UPU∗ = Q is a direct computation.

To check the other expression,

(P +Q− I)2 =
[
C2 CS
CS S2 − I

]2
=
[
C2 CS
CS −C2

]2

=
[
C4 + C2S2 0

0 C2S2 + C4

]
=
[
C2(C2 + S2) 0

0 C2(S2 + C2)

]
= C2 I2.

Hence |P + Q − I| = C, since C ≥ 0. Also P + Q − I = −(I − (P − Q)) is
invertible since ∥P −Q∥ < 1, so C is invertible. Then

(P +Q− I)|P +Q− I|−1 =
[
C2 CS
CS −C2

]
C−1 =

[
C S
S −C

]
.

10.6. Compact operators

(10.6.1) Let T ∈ B(H) be normal, ξ ∈ H. Show that ∥T ∗ξ∥ = ∥Tξ∥.
Use an example to show that the equality is not necessarily
true when T is not normal.
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Answer. We have
∥T ∗ξ∥2 = ⟨T ∗ξ, T ∗ξ⟩ = ⟨TT ∗ξ, ξ⟩ = ⟨T ∗Tξ, ξ⟩ = ⟨Tξ, Tξ⟩ = ∥Tξ∥2.

The typical counterexample was given in the text:

T =
[
0 1
0 0

]
, η =

[
0
1

]
.

Then Tη = η, but T ∗η = 0.

(10.6.2) Let T ∈ B(H) be normal. Prove the inequality ∥Tξ∥2 ≤
∥T 2ξ∥ ∥ξ∥, and use it to show that if T 2 is compact, then T is
compact. Show, with an example, that normality is crucial as
a hypothesis for both assertions.

Answer. We have, using the Cauchy–Schwarz in equality and Exercise 10.6.1,
∥Tξ∥2 = ⟨T ∗Tξ, ξ⟩ ≤ ∥T ∗Tξ∥ ∥ξ∥ = ∥T 2ξ∥ ∥ξ∥.

Let {Tξn} be a sequence with ∥ξn∥ ≤ 1 for all n. Since T 2 is compact, the
sequence {T 2ξn} admits a convergent subsequence {T 2ξnk}. Now

∥Tξnk − Tξnj∥2 = ∥T (ξnk − ξnj )∥2

≤ ∥T 2(ξnk − ξnj )∥ ∥ξnk − ξnj∥

≤ 2∥T 2ξnk − T 2ξnj∥,
which shows that {Tξnk} is Cauchy. Thus T is compact.

(10.6.3) Prove the identity (10.10).

Answer. Given ν ∈ H,
(ξ1 ⊗ η1)(X2 ⊗ η2)ν = ⟨ν, η2⟩ (ξ1 ⊗ η1)ξ2

= ⟨ν, η2⟩ ⟨ξ2, η1⟩ ξ1 = ⟨ξ2, η1⟩ (ξ1 ⊗ η2) ν.

(10.6.4) Given a rank-one operator ξη∗, show that
(ξη∗)∗ = ηξ∗. (10.1)
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Answer. Given ν ∈ H,
⟨(ξη∗)∗ν, ν⟩ = ⟨ν, (ξη∗)ν⟩ = ⟨ν, η⟩ ⟨ν, ξ⟩ = ⟨(⟨ν, ξ⟩)η, ν⟩ = ⟨(ηξ∗)ν, ν⟩.

Then polarization gives (10.1).

(10.6.5) Write a complete proof of Proposition 10.6.1.

Answer. In all of (ii),(iii),(iv),(v) it is clear that the image of T is finite-
dimensional, so they all imply (i).

(iv) =⇒ (v) Using Gram–Schmidt on ξ′
1, . . . , ξ

′
n, we obtain an orthonor-

mal basis ξ1, . . . , ξn. The coefficients come from ξ′
j =

∑
k ckjξk.

(i) =⇒ (iii) Let ξ1, . . . , ξn be an orthonormal basis of the image of T .
Then

Tξ =
n∑
k=1

⟨Tξ, ξk⟩ ξk, ξ ∈ H.

As T is bounded, the map ξ 7−→ ⟨Tξ, ξk⟩ is bounded. Then, by the Riesz Rep-
resentation Theorem (Theorem 4.5.4) there exist η′

1, . . . , η
′
n with ⟨Tξ, ξk⟩ =

⟨ξ, η′
k⟩.

(iii) =⇒ (ii) Trivial.
(i) =⇒ (iv) Since T ∈ F(H), by (iii) we can write

T =
n∑
k=1

ξk ⊗ η′
k.

Then, by Exercise 10.6.4,

T ∗ =
n∑
k=1

η′
k ⊗ ξk.

This shows that T ∗ is finite-rank, so by the implication (i) =⇒ (iii) we can
write

T ∗ξ =
n∑
k=1

⟨ξ, ξ′
k⟩ ηk,

with η1, . . . , ηn orthonormal. Then

Tξ =
n∑
k=1

⟨ξ, ηk⟩ ξ′
k.

(10.6.6) Show that the operator T from (ii) in Examples 10.6.5 is well-
defined, and that it is a limit of finite-rank operators.
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Answer. On a linear combination ξ =
∑n
j=1 cjξj we have

∥Tξ∥ =
∥∥∥∥T( n∑

j=1
cjξj

)∥∥∥∥2
=
∥∥∥∥ n∑
j=1

1
j
cjξj

∥∥∥∥2
=

n∑
j=1

|cj |2

j2 ≤
n∑
j=1

|cj |2 = ∥ξ∥2.

It follows that ∥T∥ ≤ 1 on the dense subspace span{ξj : j} and so it admits
a unique bounded extension to H by Proposition 6.1.9. If we let Tn be given
by

Tnξ =
n∑
j=1

1
j

⟨ξ, ξj⟩ ξj

then Tn ∈ F(H) and

∥(T − Tn)ξ∥2 =
∥∥∥∥T( ∞∑

j=n+1
cjξj

)∥∥∥∥2
=

∞∑
j=n+1

|cj |2

j2 ≤ 1
n2 ∥ξ∥.

Hence ∥T − Tn∥ ≤ 1
n and T = limn Tn.

(10.6.7) Fix an orthonormal basis {ξn} for H and define

Tξ =
∞∑
k=1

1
k

⟨ξ, ξk⟩ ξk+1.

(a) Show that T ∈ K(H);
(b) find T ∗;
(c) show that kerT ∗T = {0} and that kerTT ∗ = C ξ1.

Answer.

(a) We need to show that T is a limit of finite-rank operators; this will be
true if the series converges in norm. For this,∥∥∥ n∑

k=m

1
k

⟨ξ, ξk⟩ ξk+1

∥∥∥2
=

n∑
k=m

1
k2 |⟨ξ, ξk⟩|2 ≤ ∥ξ∥

n∑
k=m

1
k2 .

As the series for 1
k2 converges, its tails are Cauchy, and hence the series

for T converges in norm.
(b) Using Exercise 10.6.4 and the fact that taking adjoints is conjugate-linear,

T ∗ =
( ∞∑
k=1

1
k
ξn ⊗ ξn+1

)∗
=

∞∑
k=1

1
k
ξn+1 ⊗ ξn.
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That is,

T ∗ =
∞∑
k=1

1
k

⟨ξ, ξk+1⟩ ξk.

(c) We have
(ξ ⊗ η)∗(ξ′ ⊗ η′)ν = (η ⊗ ξ)⟨ν, ξ′⟩ η′ = ⟨ν, ξ′⟩ ⟨η′, η⟩ ξ.

We can now calculate directly,

T ∗Tξ =
∑
k,j

1
kj

(ξk ⊗ ξk+1)(ξk+1 ⊗ ξk)ξ =
∑
k

1
k2 ⟨ξ, ξk⟩ ξk.

So T ∗Tξ = 0 if and only if ⟨ξ, ξk⟩ = 0 for all k, which is equivalent to
ξ = 0. That is, kerT ∗T = {0}. On the other hand,

TT ∗ξ =
∞∑
k=1

1
k2 ⟨ξ, ξk+1⟩ ξk+1 =

∞∑
k=2

1
k2 ⟨ξ, ξk⟩ ξk.

It follows that ξ1 ∈ kerTT ∗. And if TT ∗ξ = 0, we get that ⟨ξ, ξk⟩ = 0 for
all k ≥ 2, so ξ ∈ C ξ1.

(10.6.8) If T ∈ F(H), show that T ∗ ∈ F(H).

Answer. Let ξ ∈ H. By (10.9), Tξ =
∑n
i,j=1 cij⟨ξ, ηi⟩ ξj . Now

⟨T ∗ξ, ξ⟩ = ⟨ξ, T ξ⟩ =
n∑

i,j=1
cij⟨ξ, ηi⟩ ⟨ξ, ξj⟩ =

n∑
i,j=1

cij⟨ξ, ξj⟩ ⟨ηi, ξ⟩

=
〈

n∑
i,j=1

cij⟨ξ, ξj⟩ ηi, ξ

〉
.

With ξ arbitrary, the Polarization Identity (Proposition 4.2.6) allows us to
conclude that T ∗ξ =

∑n
i,j=1 cj⟨ξ, ξj⟩ ηi, so T ∗ ∈ F(H) by Proposition 10.6.1.

(10.6.9) Let H be a Hilbert space and {ηj}j∈J an orthonormal basis.
For each finite F ⊂ J , let PF be the orthogonal projection onto
span{ξj : j ∈ F}. Show that, for each ξ ∈ H, ∥(T−PFT )ξ∥ →
0, ∥(T − TPF )ξ∥ → 0, and ∥(T − PFTPF )ξ∥ → 0.
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Answer. Write ξ =
∑
j cjηj with c ∈ ℓ2(J). We have, since {|⟨Tξ, ηj⟩|} ∈

ℓ2(J),

∥(T − PFT )ξ∥2 = ∥(IH − PF )Tξ∥2 =
∑
j ̸∈F

|⟨Tξ, ηj⟩|2 −−→
F

0.

And
∥(T − TPF )ξ∥2 = ∥T (Ih − PF )ξ∥2

≤ ∥T∥2 ∥(IH − PF )ξ∥2 = ∥T∥2
∑
j ̸∈F

|⟨ξ, ηj⟩|2 −−→
F

0.

Now we get
∥(T − PFTPF )ξ∥ ≤ ∥(T − PFT )ξ∥ + ∥(PFT − PFTPF )ξ∥

≤ ∥(T − PFT )ξ∥ + ∥(T − TPF )ξ∥ →c⃝ 2024 Mart́ın Argerami All Rights Reserved 0.
Less computationally, one may note that PF ξ → ξ for all ξ ∈ H. Then

PFTξ → Tξ and, since T is bounded TPF ξ → Tξ.

(10.6.10) Show that for T ∈ K(H) and {ξj} an orthonormal basis,
lim
j
Tξj = 0.

Answer. Assume first that T = ξ ⊗ η. Then
∥(ξ ⊗ η) ξj∥ = ∥⟨ξj , η⟩ ξ∥ ≤ ∥ξ∥ |⟨η, ξj⟩| −−−→

j→∞
0

by Parseval’s Equality (4.13). It follows automatically, via Proposition 10.6.1
that Tξj → 0 for any T ∈ F(H). For arbitrary T ∈ K(H), give ε > 0 there
exists S ∈ F(H) with ∥T − S∥ < ε. Then

∥Tξj∥ ≤ ∥(T − S)ξj∥ + ∥Sξj∥ ≤ ε+ ∥Sξj∥.
Then lim sup

j→∞
∥Tξj∥ ≤ ε. As we can do this for all ε > 0, the limit exists and

equals zero.

(10.6.11) Prove that whenever H is infinite-dimensional, any finite-rank
operator T ∈ F(H) has non-trivial kernel.

Answer. If T has trivial kernel, then it is injective. An injective linear
map takes linearly independent sets to linearly independent sets. So given an
infinite orthonormal set {ξk} ⊂ H, the image {Tξk} is a linearly independent
subset of the image of T .
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Another way to prove this is by using Proposition 10.6.1. If

T =
n∑
k=1

⟨·, ηk⟩ ξk,

we get that {η1, . . . , ηn}⊥ ⊂ kerT .

(10.6.12) Let H = ℓ2(N). Define operators
T (a1, a2, . . .) =

(
a1,

a2
2 ,

a3
3 , . . .

)
,

S(a1, a2, . . .) = (0, a1, a2, . . .).
Prove that T is an injective compact operator with

σ(T ) = {0, 1, 1/2, 1/3, . . .},
and that R = ST is an injective compact operator with σ(R) =
{0}. Conclude that Z = R∗ is a non-injective compact operator
with dense range and σ(Z∗) = {0}.

Answer. If Ta = 0, then ak/k = 0 for all k, so ak = 0 for all k and a = 0; so
T is injective. Since

T =
∞∑
k=1

λk Ekk,

we get from Lemma 10.6.11 that σ(T ) = {0, 1, 1/2, 1/3, . . .}. We have
Ra = STa =

(
0, a1,

a2
2 ,

a3
3 , . . .

)
.

Then R is injective (direct proof, or we notice that R here is the T from
Exercise 10.6.6 and 0 = kerR∗R = kerR). Being compact, the nonzero
spectrum of R has to consist of eigenvalues, but if Ra = λa, this gives

0 = λa1, a1 = λa2, a2 = 2λa3, · · ·
and so a = 0; this shows that σ(R) = {0}.

The operator R∗ is not injective, for
⟨R∗e1, a⟩ = ⟨e1, Ra⟩ = 0,

so e1 ∈ kerR∗. Hence R∗ is compact (adjoint of compact), not injective, and
its adjoint (the operator R) has spectrum {0}. As for the range, ranR∗ =
(kerR)⊥ = {0}⊥ = H, so R∗ has dense range.

(10.6.13) Let H be a Hilbert space with dim H > k and
A = {0, λ1, . . . , λk} ⊂ C.
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Show that there exists T ∈ K(H) with σ(T ) = A.

Answer. Let ξ1, . . . , ξk be pairwise orthogonal unit vectors in H and let Pj
be the orthogonal projection onto C ξj . Let

T =
k∑
j=1

λj Pj

is a finite-rank operator with σ(T ) = A. The reason 0 ∈ σ(T ) is that T
cannot be invertible, for it has rank at most k and dim H > k, so T is not
surjective (and, hence, not injective either).

(10.6.14) Let H be an infinite-dimensional Hilbert space and {λk} ⊂ C
be a sequence with limλk = 0. Let A = {0} ∪ {λk}. Show that
there exists T ∈ K(H) with σ(T ) = A.

Answer. Let {ξk} be an orthonormal basis and form T =
∑∞
j=1 λj Pj , with

Pj the orthogonal projection onto C ξj . Then T ∈ K(H) and σ(T ) = A by
Lemma 10.6.11.

(10.6.15) What is the relation between the operator in Exercise 10.6.6
and the operator in Exercise 10.6.12?

Answer. The operator T from Exercise 10.6.6 and the operator R from
Exercise 10.6.12 are the same.

(10.6.16) Write the explicit form of (10.11) in the case where T is a
diagonal matrix.

Answer. If T is diagonal, then T =
∑n
j=1 Tjj Ejj . That is precisely the form

the Spectral Theorem gives.

(10.6.17) Show that if T is normal then σk(T ) = |λk(T )|.
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Answer. By the Spectral Theorem we can write

T =
∑
k

λk(T )Pk.

Then
|T | = (T 2)1/2 =

∑
k

|λk|Pk.

By Corollary 10.6.28, σk(T ) = |λk(T )| for all k.

(10.6.18) Prove Proposition 10.6.19.

Answer. Write T as in (10.11) and f(T ) as in (10.12). Let µ ̸∈ f(σ(T )).
As f(σ(T )) is compact, there exists δ > 0 such that µ− f(λk) > δ for all k.
Then one can readily check that

[f(T ) − µI]−1 =
∞∑
k=0

1
f(λk) − µ

Pk

is bounded, since 1
|f(λk)−µ| <

1
δ , and it is the inverse of f(T ) − µI. Thus

µ ̸∈ σ(f(T )), showing that σ(f(T )) ⊂ f(σ(T )).
Conversely, if µ ̸∈ σ(f(T )), then f(T ) − µI is invertible; this implies

µ ̸= f(λk) for all k. It also implies that µ ̸= f(0) limk f(λk) (the limit exists
and is the only accumulation point of the sequence by the continuity of f),
because otherwise f(T ) − µI would be compact and thus not invertible; this
shows that µ ̸∈ f(σ(T )).

(10.6.19) Let T ∈ B(H) be a positive compact operator. Show that
ξ ∈ ranT ⇐⇒ there exists C > 0 such that

|⟨ξ, η⟩| ≤ C∥Tη∥, η ∈ H.

Show by example that the condition can fail for ξ ∈ ranT .

Answer.
If ξ ∈ ranT , then there exists ξ′ with ξ = Tξ′. Then

|⟨ξ, η⟩| = |⟨Tξ′, η⟩| = |⟨ξ′, Tη⟩| ≤ ∥ξ′∥ ∥Tη∥.
Conversely, suppose that there exists C > 0 with

|⟨ξ, η⟩| ≤ C∥Tη∥ (AB.10.12)
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for all η ∈ H. By Theorem 10.6.12 there exists an orthonormal set {ηk} such
that for all ξ we have

Tξ =
∑
k

λk ⟨ξ, ηk⟩ ηk.

If η′ ⊥ ηk for all k, then Tη′ = 0, which implies ⟨ξ, η′⟩ = 0. So we can write
ξ =

∑
k xkηk for appropriate coefficients xk. We have
n∑
k=1

|xk|2

λ2
k

=
〈 n∑
k=1

xk
λk
ηk,

n∑
k=1

xk
λk
ηk

〉

=
〈 n∑
k=1

xk ηk,

n∑
k=1

xk
λ2
k

ηk

〉
=
〈
ξ,

n∑
k=1

xk
λ2
k

ηk

〉

≤ C

∥∥∥∥∥T(
n∑
k=1

xk
λ2
k

ηk

)∥∥∥∥∥ = C

∥∥∥∥∥
n∑
k=1

xk
λk
ηk

∥∥∥∥∥ = C

( n∑
k=1

|xk|2

λ2
k

)1/2

This implies that
n∑
k=1

|xk|2

λ2
k

≤ C2

for all n, and hence the full series is convergent. This allows us to define
ξ′ =

∑
k

xk
λk
ηk ∈ H, and it is immediate that Tξ′ = ξ.

As for the example where the condition can fail, fix an orthonormal
basis {ηk} and let T =

∑
k

1
k ⟨·, ηk⟩ ηk. Then T is compact, positive, with

dense range since it is injective. The element ξ =
∑
k

1
k ηk is not in ranT , as

ξ = Tξ′ would require the coefficients of ξ′ with respect to the basis {ηk} to
be all 1, which is impossible. If (AB.10.12) held for all η, we would have
∞∑
k=n

1
k2 =

〈
ξ,

∞∑
k=n

1
k
ηk

〉
≤ C

∥∥∥∥ ∞∑
k=n

1
k
Tηk

∥∥∥∥ = C

∥∥∥∥ ∞∑
k=n

1
k2 ηk

∥∥∥∥ = C

( ∞∑
k=n

1
k4

)1/2
.

But, comparing with integrals,( ∞∑
k=n

1
k2

)2

∞∑
k=n

1
k4

≥

(∫ ∞

n+1

1
x2 dx

)2

∫ ∞

n

1
x4 dx

=
1

(n+ 1)2

1
3n3

= 3n3

(n+ 1)2

which is unbounded. So C cannot exist.
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(10.6.20) Show that if V is the Volterra operator on L2[0, 1], its adjoint
V ∗ is given by

V ∗f(s) =
∫ 1

s

f(t) dt, f ∈ L2[0, 1].

Answer. We have

⟨V ∗f, g⟩ = ⟨f, V g⟩ =
∫ 1

0
f(s)

∫ s

0
g(t) dt ds

=
∫ 1

0

∫ 1

t

f(s) ds g(t) dt = ⟨
∫ 1

t

f g⟩.

So
V ∗f(s) =

∫ 1

s

f(t) dt, f ∈ L2[0, 1].

(10.6.21) Let T ∈ K(H) and let T = V |T | be its Polar Decomposition.
Show that |T | ∈ K(H).

Answer. Because V ∗V is the projection onto the closure of the range of T ∗

and |T | = (T ∗T )1/2, we have V ∗V |T | = |T |. Then |T | = V ∗V |T | = V ∗T ∈
K(H) since K(H) is an ideal.

(10.6.22) Let H be an infinite-dimensional Hilbert space. Use the Po-
lar Decomposition to show that the unit ball of K(H) has no
extreme points.

Answer. Let T ∈ K(H) with ∥T∥ ≤ 1. By the Polar Decomposition and
Exercise 10.6.21, we can write T = V |T |, with |T | positive and compact. By
the Spectral Theorem (Theorem 10.6.12) we can write

|T | =
∞∑
k=0

λkPk,

where the sequence {λk} converges to zero. So there exists j such that Pj ̸= 0
and 0 ≤ λj < 1. Let δ = (1 − λj)/2. Then |T | = 1

2 T1 + 1
2 T2, where

T1 = (λj − δ)Pj +
∑
k ̸=j

λkPk, T2 = (λj + δ)Pj +
∑
k ̸=j

λkPk.
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Both T1 and T2 are selfadjoint compact operators with eigenvalues in [−1, 1],
so ∥T1∥ ≤ 1 and ∥T2∥ ≤ 1. And then we can write

T = V |T | = 1
2 V T1 + 1

2 V T2.

Since V ∗V |T | = |T | (as seen in the answer to Exercise 10.6.21), if we had
V T1 = V T2 we would have V ∗V T1 = V ∗V T2. After cancelling the parts that
are equal, this leads us to (λj − δ)V ∗V Pj = (λj + δ)V ∗V Pj , which reduces
to V ∗V Pj = 0. This gives V ∗V |T | ≠ |T |, a contradiction. So T1 ̸= T2 and T
is not extreme.

(10.6.23) Let H be an infinite-dimensional Hilbert space. Show that
K(H) is not a dual by using Exercise 10.6.22 and Krein–Milman
(Theorem 7.5.11).

Answer. Suppose that K(H) = X ∗ for some Banach space X . Then we
have a weak∗-topology on K(H) and in particular the unit ball is compact
in this topology (by Banach–Alaoglu, Theorem 7.2.13). Then Krein–Milman
(Theorem 7.5.11) shows that the unit ball of K(H) is the closed convex hull
of its extreme points; as the unit ball in K(H) has no extreme points (Exer-
cise 10.6.22), we conclude that K(H) is not a dual.

(10.6.24) Let T ∈ K(H) be normal. Show that convσ(T ) = W (T ).

Answer. We know from Proposition 10.2.3 that convσ(T ) ⊂ W (T ). Now fix
λ ∈ W (T ). So λ = ⟨Tξ, ξ⟩ for some unit vector ξ. By the Spectral Theorem
(Theorem 10.6.12) there exists an orthonormal basis {ξk} such that

T =
∑
k

λk Pk,

where Pk is the rank-one projection onto Cξk. Then

λ = ⟨Tξ, ξ⟩ =
∑
k,j

λk ⟨ξ, ξk⟩ ⟨ξ, ξj⟩ ⟨ξk, ξj⟩ =
∑
k

|⟨ξ, ξk⟩|2 λk.

From ∥ξ∥ = 1 we get that
∑
k |⟨ξ, ξk⟩|2 = 1. Fix ε > 0 and choose m

such that
∑
k>m |⟨ξ, ξk⟩|2 < ε. Let αk = |⟨ξ, ξk⟩|2 for k = 1, . . . ,m and

αm+1 =
∑
k>m |⟨ξ, ξk⟩|2. Then α1, . . . , αm+1 are convex coefficients and∣∣∣λ−

m+1∑
k=1

αkλk

∣∣∣ =
∣∣∣ ∑
k>m

|⟨ξ, ξk⟩|2(1 − λm+1)
∣∣∣ ≤ |1 − λm+1| ε ≤ (1 + ∥T∥) ε.



470 CHAPTER 10

As ε > 0 can be chosen arbitrarily small, this shows that λ ∈ convσ(T ).

(10.6.25) Let H be a Hilbert space with an orthonormal basis {ηj}j∈J .
For each k, j ∈ J , let Ekj be the rank-one operator that maps
Ekjηj = ηk. Explicitly, Ekjξ = ⟨ξ, ηj⟩ ηk. These operators are
called matrix units and satisfy the relations

EkjEab = δj,aEkb. E∗
kj = Ekj . (10.2)

Using notation we have also discussed, Ekj = ηkη
∗
j .

(a) Prove the matrix units relations (10.2).
(b) Show every Ekj is a partial isometry and {Ekk} are pairwise

orthogonal mutually equivalent projections.
(c) Let T ∈ B(H). Show that there exist unique numbers

{tkj}k,j∈J such that

T =
∑
k,j

tkj Ekj , (10.3)

where the series converges pointwise (if coming from a later
chapter, the series converges sot).

Answer.

(a) This was done in (10.10) and Exercise 10.6.4. Here is the argument in the
given notation. Given ξ ∈ H,

EkjEabξ = ⟨Eabξ, ηj⟩ ηk = ⟨ξ, ηb⟩ ⟨ηa, ηj⟩ ηk
= δj,a⟨ξ, ηb⟩ ηk = δj,aEkbξ.

And
⟨E∗

kjξ, η⟩ = ⟨ξ, Ekjη⟩ = ⟨η, ηj⟩ ⟨ξ, ηk⟩

= ⟨⟨ξ, ηk⟩ ηj , η⟩ = ⟨Ejkξ, η⟩.
As ξ, η ∈ H are arbitrary, E∗

kj = Ejk.

(b) From (10.2),
E∗
kjEkj = EjkEkj = Ejj , EkjE

∗
kj = EkjEjk = Ekk.

By Proposition 10.4.10, Ekj is a partial isometry and Ekk is a projection
(the projection part can obtained directly from the matrix unit relations).

(c) For each k, j ∈ J , let tkj = ⟨Tηj , ηk⟩. Fix ξ ∈ H, so ξ =
∑
j cjηj with

c ∈ ℓ2(J). The idea of what we need to do is in Proposition 10.6.2. Fix
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ε > 0 and choose F ∈ J , finite. Let PF be the orthogonal projection onto
span{ηj : j ∈ F}. Then∥∥∥Tξ −
∑
k,j∈F

tkj Ekjξ
∥∥∥=

∥∥∥∑
j

cjTηj −
∑
k,j∈F

tkj Ekjξ
∥∥∥

=
∥∥∥∑

j

⟨ξ, ηj⟩Tηj −
∑
k,j∈F

⟨Tηj , ηk⟩ ⟨ξ, ηj⟩ ηk
∥∥∥

=
∥∥∥∑
k,j

⟨ξ, ηj⟩ ⟨Tηj , ηk⟩ ηk −
∑
k,j∈F

⟨Tηj , ηk⟩ ⟨ξ, ηj⟩ ηk
∥∥∥

=
∥∥∥∑
k,j

⟨ξ, ηj⟩ ⟨Tηj , ηk⟩ ηk −
∑
k,j

⟨TPF ηj , PF ηk⟩ ⟨ξ, ηj⟩ ηk
∥∥∥

=
∥∥∥∑
k,j

⟨ξ, ηj⟩ ⟨(T − PFTPF )ηj , ηk⟩ ηk
∥∥∥

=
∥∥∥∑

j

⟨ξ, ηj⟩ (T − PFTPF )ηj
∥∥∥ = ∥(T − PFTPF )ξ∥

≤ ∥(T − PFT )ξ∥ + ∥(PFT − PFTPF )ξ∥

≤ ∥(T − PFT )ξ∥ + ∥(T − TPF )ξ∥

→c⃝ 2024 Mart́ın Argerami All Rights Reserved 0
by Exercise 10.6.9. The double series above can be manipulated freely
because we do not exchange the indices and everything converges.

For the uniqueness, if T =
∑
k,j tkjEkj then

⟨Tηs, ηr⟩ =
〈∑
k,j

tkjEkjηs, ηr

〉
=
〈∑

k

tksηk, ηr

〉
= trs.

10.7. Trace-Class Operators

(10.7.1) Proving the inequality | Tr(T )| ≤ Tr(|T |) in (iii) of Proposi-
tion 10.7.5, it is tempting to get a direct proof by using

|⟨Tξn, ξn⟩| ≤ ⟨|T |ξn, ξn⟩,
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from where the inequality would follow directly. Show that this
inequality does not hold in general.

Answer. Let H be any Hilbert space with dim H ≥ 2, and let {ξn} be an
orthonormal basis for H, with the usual associated matrix units {Ekj}. Put

T = E12, ξ =
√

3
2 ξ1 + 1

2 ξ2.

Then |T | = E22 and

⟨Tξ, ξ⟩ =
√

3
4 >

1
4 = ⟨|T |ξ, ξ⟩.

(10.7.2) Let φ : X → C be linear and positive, that is φ(T ) ≥ 0 if T ≥ 0.
Prove the Cauchy–Schwarz inequality

|φ(S∗T )| ≤ φ(S∗S)1/2φ(T ∗T )1/2.

Answer. The form [S, T ] = φ(S∗T ) is sesquilinear, and so the proof of
Cauchy–Schwarz (Theorem 4.2.2) applies.

(10.7.3) Show that if dim H = ∞ then the inclusions F(H) ⊂ T (H) ⊂
K(H) are proper.

Answer. Fix an orthonormal sequence {ξk} for H. Define the operators
S, T ∈ B(H) by

Sξ =
∑
k

1
k2 ⟨ξ, ξk⟩ ξk, T ξ =

∑
k

1
k

⟨ξ, ξk⟩ ξk.

Then S is trace-class but not finite-rank, and T is compact but not trace-
class. This can be verified directly because both S, T are positive, and then
Tr(S) =

∑
k

1
k2 < ∞ and Tr(T ) =

∑
k

1
k = ∞. Finally, S is not finite-rank

because ξk = S(kξk) ∈ ranS for all k.

(10.7.4) Show that T (H)∗ = B(H); that is, show that there is an iso-
metric isomorphism Γ : B(H) → T (H)∗ such that Γ(T )(S) =
Tr(TS).
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Answer. We define Γ : B(H) → T (H)∗ by Γ(T )(S) = Tr(TS). This map is
clearly linear. We have | Tr(TS)| ≤ ∥T∥ ∥S∥1, which shows that ∥Γ(T )∥ ≤
∥T∥. If ξ ∈ H with ∥ξ∥ = 1 and ∥Tξ∥ ≥ (1 − ε)∥T∥ for some ε > 0, let
S = 1

∥Tξ∥ ξ(Tξ)
∗. Then S is rank-one, so trace-class, with ∥S∥ = 1. And

calculating over an orthonormal basis whose first element is ξ,

Tr(ST ) = ⟨ 1
∥Tξ∥

ξ(Tξ)∗Tξ, ξ⟩ = ∥Tξ∥ ≥ (1 − ε)∥T∥.

It follows that ∥Γ(T )∥ = ∥T∥. So Γ(T ) is isometric. It remains to show that Γ
is surjective. Fix ψ ∈ T (H)∗. Consider the sesquilinear form [ξ, η] = ψ(ξη∗).
Since |[ξ, η]| ≤ ∥ψ∥ ∥ξ∥ ∥η∥, from Proposition 10.1.5 there exists T ∈ B(H)
with ψ(ξη∗) = ⟨Tξ, η⟩. If S ∈ T (H) is positive, by the Spectral Theorem we
can write

S =
∞∑
j=1

λj ξjξ
∗
j

for an orthonormal basis of eigenvectors for S. Then

ψ(S) =
∞∑
j=1

λj ψ(ξjξ∗
j ) =

∞∑
j=1

λj ⟨Tξj , ξj⟩

=
∞∑
j=1

⟨Tξj , λjξj⟩ =
∞∑
j=1

⟨Tξj , Sξj⟩ = Tr(ST ).

As any S ∈ T (H) can be written as a linear combination of four positive
trace-class operators, the equality Tr(TS) = ψ(S) holds for all S ∈ T (H).

(10.7.5) Let T ∈ B(H). Show that if λ ̸= 0 then kerT ∩ ker(T −λI)n =
{0} for all n.

Answer. If η ∈ kerT ∩ ker(T − λI)n, then (T − λI)η = −λη, and iterating
we get

(−1)nλnη = (T − λI)nη = 0,
and so η = 0.

(10.7.6) Show that dim ker(T − λI)n < ∞ for any T compact, λ ∈
C \ {0}, and n ∈ N.

Answer. We have

(T − λI)n = (−1)nλn I +
n−1∑
j=0

(
n

j

)
(−1)jλjTn−j = (−1)nλn I + S, .
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with S compact. Then, if µ = (−1)n+1λn, ker(T − λI)n = ker(S − µI) is
finite-dimensional by Corollary 9.6.14.

(10.7.7) Show that if ker(T − λI)n = ker(T − λI)n+1 then ker(T −
λI)n+k = ker(T − λI)n for all k ∈ N.

Answer. Suppose that ker(T − λI)n = ker(T − λI)n+1, and let v ∈ ker(T −
λI)n+k. Then, since n = (n+1)+(k−1) we have that (T−λI)k−1v ∈ ker(T−
λI)n+1 = ker(T − λI)n, which implies that v ∈ ker(T − λI)n+k−1. Iterating
this we get that v ∈ ker(T − λI)n. Hence ker(T − λI)n+k = ker(T − λI)n for
all k ∈ N.

(10.7.8) Let H,K be Hilbert spaces and T : H → K, S : K → H linear
and such that TS ∈ T (H), ST ∈ T (K). Show that ST and TS
have the same nonzero eigenvalues, with αλ(ST ) = αλ(TS) for
all λ ∈ σ(ST ) \ {0}. Conclude that Tr(TS) = Tr(ST ).

Answer. We know that ST and TS, being compact, have all their nonzero
elements of the spectrum as eigenvalues (Theorem 10.6.8), and that nonzero
elements of the spectrum are the same for both (Proposition 9.2.15; the proof
there is phrased in the context of an algebra, but all that matters is that we
can multiply).

Let ξ ∈ ker(ST − λI)k be nonzero. We can write this as
k∑
j=0

(
k

j

)
λk−j(ST )jξ = 0.

Then Tξ ̸= 0, for otherwise the equality above becomes λkξ = 0, a contra-
diction. This shows that T is injective when restricted to

⋃
k ker(ST − λI)k.

We also have that Tξ ∈
⋃
k ker(TS−λI)k. Indeed, from (TS−λI)T =

T (ST − λI) we get by induction (TS − λI)kT = T (ST − λI)k for all k, and
then (TS − λI)kTξ = T (ST − λI)kξ = 0.

Thus T is an injective map from
⋃
k ker(ST − λI)k into

⋃
k ker(TS −

λI)k, and hence αλ(ST ) ≤ αλ(TS). As the roles of S, T can be exchanged,
αλ(ST ) = αλ(TS).

The equality Tr(TS) = Tr(ST ) now follows from (10.27).
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(10.7.9) Let S ∈ B(H). Show that S∗S ∈ T (H) if and only if SS∗ ∈
T (H).

Answer. Let S = U |S| be the polar decomposition of S. Suppose that
S∗S ∈ T (H). Then

SS∗ = U |S|2U∗ = US∗SU∗ ∈ T (H)
since T (H) is an ideal. The converse is shown by exchanging the roles of S
and S∗.

(10.7.10) Let S ∈ T (H). Show that
inf{∥S +R∥1 : Tr(R) = 0} = | Tr(S)|. (10.4)

Answer.
For any R with Tr(R) = 0 we have

| Tr(S)| = | Tr(S +R)| ≤ ∥S +R∥1.

Hence | Tr(S)| ≤ inf{∥S +R∥1 : Tr(R) = 0}.
Fix ε > 0. By Proposition 10.7.9 there exists F ∈ F(H) with ∥S −

F∥1 < ε. Writing F as in Proposition 10.6.1, we see that F acts on the
subspace H0 = span{ξk, ηk : k}. This allows us to apply Schur’s Triangu-
larization (Proposition 1.7.14) to get (after expansion to the whole space)
an orthonormal basis in which F is triangular. Say the orthonormal basis is
{ξk}, so

Fξk = λkξk +
k−1∑
j=1

αkjξj

and λ1, . . . , λn are the nonzero eigenvalues of F . Now form the finite-rank
operator R where

Rξk = −λkξk −
k−1∑
j=1

αkjξj , k = 2, . . . , n

and

Rξ1 =
(

− λ1 +
n∑
j=1

λj

)
ξ1.

Then Tr(R) = 0 and
∥F +R∥1 =

∥∥Tr(F )E11
∥∥ = | Tr(F )|.
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Then
| Tr(S)| ≥ | Tr(F )| − ε = ∥F +R∥1 − ε ≥ ∥S +R∥1 − 2ε

≥ −2ε+ inf{∥S +R∥1 : Tr(R) = 0}.
As this can be done for any ε > 0, we get that | Tr(S)| ≥ inf{∥S + R∥1 :
Tr(R) = 0}.

(10.7.11) Let {ξn}, {ηn} ⊂ H such that∑
n

∥ξn∥2 < ∞,
∑
n

∥ηn∥2 < ∞.

Use Proposition 10.7.12 to show that the operator S =
∑
n ξnη

∗
n

is trace-class.

Answer. First we check quickly that S ∈ B(H). This is because

∥Sξ∥ =
∥∥∥∥∑

n

ξn⟨ξ, ηn⟩
∥∥∥∥ ≤

∑
n

∥ξn∥ ∥ηn∥ ∥ξ∥

≤
(∑

n

∥ξn∥2
)1/2(∑

n

∥ηn∥2
)1/2

∥ξ∥.

Fix an orthonormal basis {νn}. Then∑
k

|⟨Sνk, νk⟩| =
∑
k

∣∣∣∣∑
n

⟨ξn, νk⟩ ⟨νk, ηn⟩
∣∣∣∣ ≤

∑
n

∑
k

|⟨ξn, νk⟩| |⟨νk, ηn⟩|

=
∑
n

∑
k

|⟨ξn, νk⟩| |⟨νk, ηn⟩|

≤
∑
n

(∑
k

|⟨ξn, νk⟩|2
)1/2(∑

k

|⟨νk, ηn⟩|2
)1/2

=
∑
n

∥ξn∥ ∥ηn∥ ≤
(∑

n

∥ξn∥2
)1/2(∑

n

∥ηn∥2
)1/2

< ∞.

As the computation would be the same under any reordering of {νn}, we have
shown that

∑
n⟨Sνn, νn⟩ converges for any orthonormal basis {νn}. Hence

S ∈ T (H) by Proposition 10.7.12.
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(10.7.12) Let TS be as in (10.28) and let z1, . . . , zn ∈ C with |zj | ≤ 1
2 for

all j. Show that there exists an orthonormal basis {ξk} such
that the diagonal of TS in said basis begins with z1, . . . , zn.

Answer. We have TS =
∑
k E2k−1,2k, where the matrix units come from the

orthonormal basis {ηj}. Write zj = rje
iθj the polar form. Let

ξj = r
1/2
j e−iθj η4j−3 + r

1/2
j η4j−2 + (1 − 2rj)1/2 η4j−1, j = 1, . . . , n.

Then ξ1, . . . , ξn are orthonormal and

⟨(TS)ξj , ξj⟩ =
∑
k

E2k−1,2kξj , ξj⟩

= ⟨r1/2
j η4j−3, r

1/2
j e−iθj η4j−3 + r

1/2
j η4j−2 + (1 − 2rj)1/2 η4j−1⟩

= r
1/2
j r

1/2
j e−iθj = zj .

Then we finish by extending {ξ1, . . . , ξn} to an orthonormal basis.

(10.7.13) Let ξ, η ∈ H. Show that
∥ξη∗∥1 = ∥ξ∥ ∥η∥. (10.5)

Answer. Let Q be the projection onto Cη; that is, Q = 1
∥η∥2 ηη

∗. We have

|ξη∗| = (ηξ∗ξη∗)1/2 = ∥ξ∥ (ηη∗)1/2 = ∥ξ∥ ∥η∥Q1/2 = ∥ξ∥ ∥η∥Q.
Then

∥ξη∗∥1 = Tr(|ξη∗|) = ∥ξ∥ ∥η∥ Tr(Q) = ∥ξ∥ ∥η∥.

(10.7.14) Let ξ, η ∈ H be unit vectors and P = ξξ∗, Q = ηη∗ the corre-
sponding rank-one projections. Show that

∥P −Q∥1 = 2
√

1 − |⟨ξ, η⟩|2.

Answer. We have
(P −Q)2 = P +Q− 2RePQ,

and
Tr(PQ) = Tr(ξξ∗ηη∗) = Tr(ξ∗ηη∗ξ) = |η∗ξ|2 = |⟨ξ, η⟩|2.

Since P,Q are rank-one, P − Q has rank at most 2; so it has at most two
nonzero eigenvalues, say α, β. The equality Tr(P −Q) = 0 forces β = −α. As
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P−Q is selfadjoint, the eigenvalues λ1, λ2 of |P−Q| are the square roots of the
eigenvalues of (P −Q)2; that is, λ1 = |α2|1/2 = |α|, λ2 = |β2|1/2 = |α| = λ1.
Then

∥ϕ− ψ∥ = ∥P −Q∥1 = λ1 + λ2 = 2λ1 =
√

2 (2λ2
1)1/2

=
√

2
(
λ2

1 + λ2
2
)1/2 =

√
2 Tr

(
(P −Q)2)1/2

=
√

2 Tr(P +Q− 2RePQ)1/2 =
√

2
(
2 − 2|⟨ξ, η⟩|2

)1/2

= 2
√

1 − |⟨ξ, η⟩|2.

(10.7.15) Let H be a Hilbert space. Show that the Banach space T (H)
is separable if and only if H is separable.

Answer. Suppose that H is separable. By Proposition 10.7.9 it is enough to
show that F(H) is separable. Let {νn} be a countable dense subset in H. Fix

ε > 0 and T ∈ F(H). By Proposition 10.6.1 we can write T =
n∑
k=1

ξkη
∗
k for

certain ξk, ηk ∈ H, k = 1, . . . , n. Let c = max{∥ξk∥ + ∥ηk∥ : k} + 1. For each
k choose nk, mk such that ∥νnk − ξk∥ < ε/(2cn) and ∥νmk − ηk∥ < ε/(2cn).
Then, using (10.5),∥∥∥T −

n∑
k=1

νnkνmk

∥∥∥
1

≤
n∑
k=1

∥ξkη∗
k − νnkνmk∥1

≤
n∑
k=1

∥ξkη∗
k − ξkν

∗
mk

∥1 + ∥ξkν∗
mk

− νnkν
∗
mk

∥1

=
n∑
k=1

∥ξk∥ ∥ηk − νmk∥ + ∥νmk∥ ∥ξk − νnk∥

≤
n∑
k=1

2cε
2cn = ε.

This shows that the countable set

C =
{ n∑
k=1

νnkν
∗
mk

: n, nk,mk ∈ N, k = 1, . . . , n
}

is dense in T (H).
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Conversely, if H is not separable then there is an uncountable orthonor-
mal basis {xij} ⊂ H. Then the set of rank-one operators {ξjξ∗

j } is uncount-
able, and by Exercise 10.7.14

∥ξjξ∗
j − ξkξ

∗
j ∥1 = 2,

so T (H) cannot be separable.

(10.7.16) Let H,K be Hilbert spaces and U : H → K a unitary. Show
that A ∈ T (H) if and only if UAU∗ ∈ T (K).

Answer. Fix A ∈ T (H). This means that Tr(|A|) < ∞. Because U is a
unitary, |UAU∗| = U |A|U∗ (simply check that (U |A|U∗)2 = (UAU∗)∗UAU∗,
and recall that the positive square root is unique). Let {ηj} be an orthonormal
basis of K. Then {U∗ηj} is an orthonormal basis for H. Hence

Tr(|UAU∗|) = Tr(U |A|U∗) =
∑
j

⟨U |A|U∗ηj , ηj⟩

=
∑
j

⟨|A|U∗ηj , U
∗ηj⟩ = Tr(|A|) < ∞.

So UAU∗ ∈ T (K). The converse follows immediately by using that U∗ is a
unitary.

(10.7.17) Let H,K be Hilbert spaces and U : H → K a unitary. Show
that Tr(UAU∗) = Tr(A) for all A ∈ T (H) (this is slightly less
trivial than it looks, since we are using the trace in two different
spaces).

Answer. This follows from Exercise 10.7.8 but we offer here a short ad-hoc
proof. Fix A ∈ T (H). By Exercise 10.7.16, UAU∗ ∈ T (K). Now we can do
the same computation as in Exercise 10.7.16. Let {ηj} be an orthonormal
basis of K. Then {U∗ηj} is an orthonormal basis for H. Hence

Tr(UAU∗) =
∑
j

⟨UAU∗ηj , ηj⟩ =
∑
j

⟨AU∗ηj , U
∗ηj⟩ = Tr(A).
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CHAPTER

C∗-Algebras

11.1. C∗-Algebra Basics

(11.1.1) Prove the statements made in Remark 11.1.3.

Answer.

• Mn(C) is separable since it is finite dimensional.

• c0 is separable, since we can form the countable dense subset
span{(q + ip)en : q, p ∈ Q, n ∈ N}.

• ℓ∞(N) is not separable because it contains the uncountable subset
{0, 1}N, and any two elements in it are at distance 1, so there cannot
be a dense countable subset.

• We can embed ℓ∞(N) in B(H) as multiplication operators over a
fixed orthonormal basis, so B(H) cannot be separable when dim H =
∞.

481
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(11.1.2) Show that the norm defined in (11.1) is submultiplicative.

Answer. We have
∥(a, λ)(b, µ)∥ = sup{∥abc+ λbc+ µac+ λµc∥ : ∥c∥ = 1}.

Since ∥abc+ λbc+ µac+ λµc∥ = ∥a(bc+ µc) + λ(bc+ µc)∥, we get that
∥(a, λ)(b, µ)∥ ≤ lim sup

∥c∥≤1
∥(a, λ)∥ ∥bc+ µc∥ = ∥(a, λ)∥ ∥(b, µ)∥.

(11.1.3) Show that if x ∈ Ã satisfies bx = 0 for all b ∈ A, then x = 0.

Answer. We have x = (a, λ) for some a ∈ A and λ ∈ C. The condition
bx = 0 looks like ba+ λb = 0. Then

∥(a∗, λ)∥ = sup{∥a∗b+ λb∥ : b ∈ A, ∥b∥ ≤ 1}]

= sup{∥ba+ λb∥ : b ∈ A, ∥b∥ ≤ 1} = 0.
Thus (a, λ)∗ = 0, and then (a, λ) = 0.

(11.1.4) Show that if A is a C∗-algebra, unital or not, then
∥(a, λ)∥ = max

{
|λ|, sup{∥ab+ λb∥ : ∥b∥ ≤ 1}

}
.

defines a norm that makes Ã a C∗-algebra, and that when A
is not unital we recover Ã as in Proposition 11.1.4. (Hint: at
some point you will possibly need the fact that the norm on a
C∗-algebra is unique)

Answer. If ∥(a, λ)∥ = 0, then |λ| = 0, and
0 = sup{∥ab+ λb∥ : ∥b∥ ≤ 1} = sup{∥ab∥ : ∥b∥ ≤ 1} ≥ ∥a∥,

so a = 0. The homogeneity follows easily since
∥µ(a, λ)∥ = ∥(µa, µλ)∥ = max

{
|µλ|, sup{∥µab+ µλb∥ : ∥b∥ ≤ 1}

}
= |µ| ∥(a, λ)∥.
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For the subadditivity,
∥(a, λ) + (a′, λ′)∥ = ∥(a+ a′, λ+ λ′)∥

= max
{

|λ+ λ′|, sup{∥(a+ a′)b+ (λ+ λ′)b∥ : ∥b∥ ≤ 1}
}

≤ ∥(a, λ)∥ + ∥(a′, λ′)∥,
where we are using that the absolute value, the norm of A, and the supremum
are subadditive. Now the submultiplicativity. We have
∥(a, λ)(a′, λ′)∥ = ∥(aa′ + λa′ + λ′a, λλ′)∥

= max
{

|λλ′|, sup{∥aa′b+ λa′b+ λ′ab+ λλ′b∥ : ∥b∥ ≤ 1}
}

= max
{

|λ| |λ′|, sup{∥a(a′b+ λ′b) + λ(a′b+ λ′b)∥ : ∥b∥ ≤ 1}
}

≤ max
{

|λ| |λ′|, ∥(a, λ)∥ sup{∥a′b+ λ′b∥ : ∥b∥ ≤ 1}
}

= max
{

|λ| |λ′|, ∥(a, λ)∥ ∥(a′, λ′)∥}
}

≤ ∥(a, λ)∥ ∥(a′, λ′)∥.
And now we have, with the same idea as in the proof of Proposition 11.1.4,
∥(a, λ)∥2 = max

{
|λ|2, sup{∥ab+ λb∥2 : ∥b∥ ≤ 1}

}
= max

{
|λ|2, sup{∥(ab+ λb)∗(ab+ λb)∥ : ∥b∥ ≤ 1}

}
= max

{
|λ|2, sup{∥b∗a∗ab+ λb∗ab+ λb∗a∗b+ |λ|2b∗b∥ : ∥b∥ ≤ 1}

}
= max

{
|λ|2, sup{∥b∗(a∗ab+ λab+ λa∗b+ |λ|2b)∥ : ∥b∥ ≤ 1}

}
≤ max

{
|λ|2, sup{∥a∗ab+ λab+ λa∗b+ |λ|2b∥ : ∥b∥ ≤ 1}

}
= ∥(a∗a+ λa+ λa∗, |λ|2)∥ = ∥(a, λ)∗(a, λ)∥

≤ ∥(a, λ)∗∥ ∥(a, λ)∥.
Then when (a, λ) is nonzero we can cancel and we get ∥(a, λ)∥ ≤ ∥(a, λ)∗∥.
As the roles can be exchanged, this becomes an equality and so

∥(a, λ)∥2 ≤ ∥(a, λ)∗(a, λ)∥ ≤ ∥(a, λ)∗∥ ∥(a, λ)∥ = ∥(a, λ)∥2.

Thus ∥(a, λ)∥2 = ∥(a, λ)∗(a, λ)∥.
When A is non-unital we know from Proposition 11.1.4 that sup{∥ab+

λb∥ : ∥b∥ ≤ 1} defines a norm on A. Being a subalgebra of Ã, and because
the norm on a C∗-algebra is unique, we get

max
{

|λ|, sup{∥ab+ λb∥ : ∥b∥ ≤ 1}
}

= sup{∥ab+ λb∥2 : ∥b∥ ≤ 1}.
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(11.1.5) Show that the inequality
|λ| ≤ sup{∥ab+ λb| : ∥b∥ ≤ 1}, a ∈ A,

holds when A is non-unital, and fails when A is unital.

Answer. When A is non-unital, we have by Exercise 11.1.4 that sup{∥ab+
λb∥2 : ∥b∥ ≤ 1} defines a norm on A. Being a subalgebra of Ã, and because
the norm on a C∗-algebra is unique, we get

max
{

|λ|, sup{∥ab+ λb∥ : ∥b∥ ≤ 1}
}

= sup{∥ab+ λb∥2 : ∥b∥ ≤ 1}.
In particular,

|λ| ≤ sup{∥ab+ λb∥2 : ∥b∥ ≤ 1}.
When A is unital we can take a = IA, λ = −1, and the inequality above

becomes 1 = |λ| ≤ 0.

(11.1.6) Show that, for any a ∈ A, σ(a∗) = σ(a).

Answer. If a−λIA is invertible, then a∗ −λIA = (a−λIA)∗ is invertible by
Eq. (11.3).

(11.1.7) Let {Aj}j∈J be a family of C∗-subalgebras of a C∗-algebra A.
Show that

⋂
j Aj is a C∗-subalgebra of A.

Answer. Let B =
⋂
j Aj . Being an intersection of algebras, B is an algebra.

If b ∈ B, then b ∈ Aj for all j, and so b∗ ∈ Aj for all j, which means that
b∗ ∈ B. So B is a ∗-algebra. As C∗-algebras are closed, B is closed being an
intersection of closed sets. So B is a closed ∗-subalgebra of A; that is to say,
a C∗-subalgebra.

(11.1.8) Let A be a C∗-algebra and a ∈ A. Show that C∗(a) is equal to
{p(a, a∗) : p non-commutative polynomial with p(0, 0) = 0}.

Answer. Let
B = {p(a, a∗) : p non-commutative polynomial with p(0, 0) = 0}.
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Being the closure of a ∗-subalgebra of A, it is a C∗-subalgebra of A that
contains a. Hence C∗(a) ⊂ B by definition. On the other hand, p(a, a∗) ∈
C∗(a) for any non-commutative polynomial with p(0, 0) = 0, as C∗(a) is a
∗-algebra. So B ⊂ C∗(a), and therefore C∗(a) = B.

(11.1.9) Let A be a C∗-algebra such that every normal element has
spectrum consisting of a single point. Prove that A = C.

Answer. Let a ∈ A be normal with σ(a) = {λ}. Working in the unitization
if needed (which is a condition to define σ(a)), we have that b = a − λ IA is
normal and σ(b) = {0}. By Lemma 11.1.10, ∥b∥ = spr(b) = 0, so b = 0 and
hence a = λIA. As the normal elements span A by Proposition 11.1.13, we
get that A = C.

(11.1.10) Show that if A is not unital then (Ã)∗ ≃ A∗ ⊕1 C.

Answer. Let Γ : A∗ ⊕1 C → (Ã)∗ be given by
[Γ(φ, λ)](a, µ) = φ(a) + λµ.

The map Γ is clearly linear, and it is injective, for if Γ(φ, λ) = 0 this means
that φ(a) + λµ = 0 for all a ∈ A and all µ ∈ C. Taking a = 0, µ = 1 we
get that λ = 0, and then φ(a) = 0 for all a, so φ = 0. Γ is also surjective:
if ψ ∈ (Ã)∗, then we can define ψA(a) = ψ(a, 0) and λ = ψ(0, 1) and we get
Γ(ψA, λ) = ψ. And Γ is continuous. Indeed, the identity map id : A⊕1C → Ã
satisfies

∥id(a, λ)∥ = ∥(a, λ)∥Ã ≤ ∥a∥ + |λ| = ∥(a, λ)∥1,

so it is a bounded bijection. By the Inverse Mapping Theorem (6.3.6) the
inverse is bounded, which implies that there exists c > 0 such that ∥a∥+ |λ| ≤
c∥(a, λ)∥ for all a ∈ A, λ ∈ C. Then

|[Γ(φ, λ)](a, µ)| = |φ(a) + λµ|

≤ (∥φ∥ + |λ|) max{∥a∥, |λ|}

≤ c ∥(φ, λ)∥1 ∥(a, µ)∥,
showing that ∥Γ(φ, λ)∥ ≤ c ∥(φ, λ)∥1 and Γ is bicontinuous again by the
Inverse Mapping Theorem.
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11.2. The Gelfand Transform and
the Continuous Functional Calculus

(11.2.1) Let a ∈ A be selfadjoint and let v = eia. Show that v∗ = e−ia.

Answer. By definition, v =
∞∑
k=0

ikak

k! . The operation of taking the adjoint is

an isometry; in particular, it is continuous. Hence

v∗ =
( ∞∑
k=0

ikak

k!

)∗

=
∞∑
k=0

(ikak)∗

k!

∞∑
k=0

(−ik)ak

k! = e−ia.

(11.2.2) Show that if A is an abelian C∗-algebra then Γ(A) = {Γ(a) :
a ∈ A} ⊂ C0(Σ(A)) is a closed, selfadjoint subalgebra that
separates points and vanishes nowhere.

Answer. From Γ being a ∗-monomorphism we know that Γ(A) is a C∗-
subalgebra of C0(Σ(A)). So it is closed and selfadjoint. If vanishes nowhere,
because given τ ∈ Σ(A) it is nonzero and so there exists a ∈ A with τ(a) ̸= 0,
which is â(τ) ̸= 0. Finally, if τ̸ = τ2, this means that there exists a ∈ A with
τ1(a) ̸= τ2(a); this is â(τ1) ̸= â(τ2), so Γ(A) separates points.

(11.2.3) Let A be a C∗-algebra, a ∈ A and f ∈ C(σ(a∗a) ∪ {0}). Show
that af(a∗a) = f(aa∗)a.

Answer. We have a(a∗a) = (aa∗)a. Inductively, if a(a∗a)n = (aa∗)na, then
a(a∗a)n+1 = a(a∗a)na∗a = (aa∗)naaa = (aa∗)n+1a.

It follows that ap(a∗a) = p(aa∗)a for all p ∈ C[x]. Now if f ∈ C(σ(a∗a) ∪
{0}) = C(σ(aa∗) ∪ {0}), by Stone–Weierstrass (Corollary 7.4.23) there exists
{pn} ⊂ C[x] such that pn → f uniformly. Then

af(a∗a) = lim
n
apn(a∗a) = lim

n
pn(aa∗)a = f(aa∗)a.
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(11.2.4) Let A be a C∗-algebra and a ∈ A be normal. Let λ ∈ C \σ(a).
Show that dist(λ, σ(a)) = ∥(a− λIA)−1∥−1.

Answer. As a is normal, ∥a∥ = max{|α| : α ∈ σ(a)}.
Let g(t) = 1/t. Since 0 ̸∈ σ(a − λIA), we have that g ∈ C(a − λIA).

Then
∥(a− λIA)−1∥−1 = 1

∥g(a− λIA)∥ = 1
∥g∥∞

= 1
max{|g(t)| : t ∈ σ(a− λIA)}

= min
{

1
|g(t)| : t ∈ σ(a− λIA)

}
= min{|t| : t ∈ σ(a− λIA)}

= min{|t− λ| : tσ(a)} = dist(λ, σ(a)).

(11.2.5) Let A,B be C∗-algebras and ρ : A → B a ∗-homomorphism.
Let Â denote A is A is unital, and Ã if A is not unital,
and do similarly with B. Show that there exists a unique ∗-
homomorphism ρ̃ : Â → B̂, unital onto its image, that extends
ρ.

Answer. If A is unital, there is nothing to be done, as we take ρ̂ = ρ and
ρ : A → ρ(A) is unital; the uniqueness is trivially true from Â = A. So we
assume that A it not unital. We define

ρ̃(a, λ) = ρ(a) + λ IB̂.

This is linear:
ρ̃(a+b, λ+µ) = ρ(a+b)+(λ+µ)IB = ρ(a)+λ IB̂+ρ(b)+µ IB̂ = ρ̃(a, λ)+ρ̃(b, µ);
and multiplicative, for

ρ̃
(
(a, λ)(b, µ)

)
= ρ̃(ab+ λb+ µa, λµ) = ρ(ab+ λb+ µa) + λµ IB̂

=
(
ρ(a) + λ IB

)(
ρ(b) + µ IB̂

)
= ρ̃(a, λ)ρ̃(b, µ).

Also,
ρ̃
(
(a, λ)∗) = ρ̃(a∗, λ) = ρ(a∗) + λ IB̂ =

(
ρ(a) + λ IB̂

)∗ =
(
ρ̃(a, λ)

)∗
.

So ρ̃ is a ∗-homomorphism, and ρ̃(a, 0) = ρ(a) by construction.
If ν : Ã → B̂ is another unital ∗-homomorphism that satisfies ν(a, 0) =

ρ(a), then
ν(a, λ) = ν(a, 0) + λν(0, 1) = ρ(a) + λ IB = ρ(a, λ)
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so ν = ρ̃.

(11.2.6) Let A,B be C∗-algebras and ρ : A → B a ∗-homomorphism.
Prove that for all a ∈ A, σ(ρ(a)) ⊂ σ(a) ∪ {0}. The zero can
be omitted when ρ(A) is not unital, and also when A,B are
unital and ρ is unital. The zero cannot be omitted in general.

Answer. To talk about the spectrum we need to work on the unitization.
By working on Â and B̂ as in Exercise 11.2.5, we get to assume that A,B are
unital and that ρ is unital onto its image. If a− λIA is invertible, then so is
ρ(a) − λIρ(A) = ρ(a− λIA) in ρ(A). Thus σρ(A)(ρ(a)) ⊂ σ(a).

If ρ(IA) = IB, from Proposition 11.1.12 we have σB(ρ(a)) = σρ(A)(a),
and hence σB(ρ(a)) ⊂ σ(a).

And when ρ(IA) ̸= IB, Proposition 11.1.12 gives us
σB(ρ(a)) = σρ(A)(a) ∪ {0}.

For an example that the zero cannot be omitted in general, let A = C,
B = C2, and ρ(a) = (a, 0). Then for any nonzero a ∈ C we have σ(a) = {a},
while σ(ρ(a)) = {0, a}.

(11.2.7) Let A,B be C∗-algebras and ρ : A → B a ∗-homomorphism.
Given a ∈ A normal and f ∈ C(σ(a) ∪ {0}), show that f(ρ(a))
makes sense and that f(ρ(a)) = ρ(f(a)).

Answer. By Exercise 11.2.6 we know that σ(ρ(a)) ⊂ σ(a) ∪ {0}. So f is
continuous on σ(ρ(a)) and thus f(ρ(a)) makes sense. From Stone–Weierstrass
(Theorem 7.4.20), the two-variable complex polynomials on z and z are dense
in C(σ(a)∪{0}). So there is a sequence {pn} of such polynomials with pn → f
uniformly. As mentioned after Definition 11.2.7, we have

f(a) = lim
n
pn(a, a∗),

and similarly with ρ(a). By proposition: *-homomorphisms:pre2 ρ is bounded,
so
f(ρ(a)) = lim

n
pn(ρ(a), ρ(a)∗) = lim

n
ρ(pn(a, a∗)) = ρ(lim

n
pn(a, a∗)) = ρ(f(a)).
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(11.2.8) The Banach algebra A = {f ∈ C(D) : analytic on D} is not a
C∗-subalgebra of C(D) because it does not contain adjoints for
non-scalar functions. Show that A fails to be a C∗-algebra in
a deeper sense: it is not isomorphic to C(X) for any compact
Hausdorff X, even if the isomorphism is not required to be
isometric.

Answer. The idea one can use is that A does not contain divisors of zero,
while any C∗-algebra of dimension at least 2 (that is, any C∗-algebra that
is not C) contains divisors of zero. Indeed, if dimC(X) ≥ 2 then X has
at least two points. Using Urysohn’s Lemma (Theorem 2.6.5) we can con-
struct g1, g2 ∈ C(X) with disjoint supports. So g1g2 = 0 everywhere, so the
isomorphism would have to map one of them to zero.

(11.2.9) Let v ∈ A be a selfadjoint partial isometry (that is, v∗ = v, and
v2 is a projection). Show that there exist projections p, q ∈ A
with pq = 0 and v = p− q.

Answer. Since r = v2 is a projection, from r2 = r we get that sigma(v2) ⊂
{0, 1}. Therefore σ(v) ⊂ {−1, 0, 1}. The function f(t) = 1[0,∞) is continuous
on σ(v), so we can use functional calculus to define p = f(v). By the Spectral
Mapping Theorem (Corollary 11.2.8) we have σ(p) = {0, 1}, so p is a projec-
tion (p2 = p and p is selfadjoint by construction). We can similarly define
q = −g(v), with g(t) = 1(−∞,0); then q is a projection. As f(t) + g(t) = t on
σ(v), we have v = p− q. The condition pq = 0 follows from f(t)g(t) = 0.

11.3. Positivity

(11.3.1) Let a ∈ A. Show that ∥Re a∥ ≤ ∥a∥ and ∥Im a∥ ≤ ∥a∥.

Answer. We have 2∥Re a∥ = ∥a + a∗∥ ≤ ∥a∥ + ∥a∗∥ = 2∥a∥. Similarly,
2∥Im a∥ = ∥a− a∗∥ ≤ ∥a∥ + ∥a∗∥ = 2∥a∥.
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(11.3.2) Let A be a C∗-algebra. Show that IA is an extreme point in
the closed unit ball of A.

Answer. Suppose that IA = 1
2 (a+b) with ∥a∥ ≤ 1 and ∥b∥ ≤ 1. Considering

the real part we have IA = 1
2 (Re a+Re b). We get 0 = (IA−Re a)+(IA−Re b),

and both terms are positive by Corollary 11.3.8 since ∥Re a∥ ≤ ∥a∥ ≤ 1 and
the same for b. It follows that Re a = IA and Re b = IA. Then

1 = ∥a∥2 = ∥a∗a∥ = ∥(IA + iIm a)∗(IA + iIm a)∥ = ∥IA + (Im a)2∥.
This implies that IA + (Im a)2 ≤ IA, and so Im a = 0. Similarly Im b = 0,
and so a = b = IA and IA is extreme.

(11.3.3) Let a ∈ A+. Show that its positive square root is unique.

Answer. Let b = f(a), where f(t) = t1/2.
If c ∈ A+ and c2 = a, then c = f(c2) = f(a) = b. The first equality

can be seen by writing f as a uniform limit of polynomials on c2 (as in
Remark 7.4.17).

(11.3.4) Let A be a C∗-algebra and a, b ∈ A+. Show that if b ≤ a, then
b1/2 ≤ a1/2.

Answer. We may assume without loss of generality that A is unital. Suppose
first that b is invertible. Then so is a, as 0 ̸∈ σ(a), and we have

a−1/2ba−1/2 ≤ IA.

Hence ∥b1/2a−1/2∥ ≤ 1. By Proposition 9.2.15,
σ(a−1/4b1/2a−1/4) = σ(b1/2a−1/2.

Thus
∥a−1/4b1/2a−1/4∥ = spr(a−1/4b1/2a−1/4) = spr(b1/2a−1/2)

≤ ∥b1/2a−1/2∥ ≤ 1.

This implies a−1/4b1/2a−1/4 ≤ IA, and so b1/2 ≤ a1/2.
When b is not invertible, we have shown above that (b+ 1

n )1/2 ≤ (a+
1
n )1/2. So it is enough to show that (b + 1

n )1/2 → b1/2, and that a limit of
positive operators is positive. We have, since everything commutes,

∥(b+ 1
n

)1/2 − b1/2∥ = 1
n

∥(b+ 1
n

)1/2 + b1/2)−1∥ ≤ 1
n

√
n→c⃝ 2024 Mart́ın Argerami All Rights Reserved 0,
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using that
( 1
n

)1/2 ≤ (b+ 1
n )1/2 + b1/2 and so ((b+ 1

n )1/2 + b1/2)−1 ≤
√
n.

As for a limit of positive operators, if bn ≥ 0 for all n and b = lim bn,
then for any character τ(b) = limn τ(bn) ≥ 0, so σ(b) ⊂ [0,∞).

(11.3.5) Show by example that it is not true in general that if 0 ≤ b ≤ a,
then b2 ≤ a2.

Answer. Let A = M2(C), and

b =
[
1 0
0 0

]
, a =

[
2 1
1 1

]
.

We have b = b∗b and a = b + e, where e is the matrix with all entries equal
to 1; so e = 1

2 e
2 ≥ 0, and a ≥ 0. We have

a2 =
[
5 3
3 2

]
.

Then
a2 − b2 =

[
4 3
3 2

]
,

which is not positive (the determinant is negative, which implies that one
eigenvalue is negative).

(11.3.6) Let a ∈ A be selfadjoint. Show that the following statements
are equivalent:

(a) a ≥ 0;
(b) ∥γ IA − a∥ ≤ γ for all γ ≥ ∥a∥;
(c) there exists γ ∈ R with γ ≥ ∥a∥ and ∥γ IA − a∥ ≤ γ.

Answer. (a) =⇒ (b) Fix γ ∈ R with γ ≥ ∥a∥. By Theorem 9.2.12 we have
σ(a) ⊂ [0, ∥a∥] ⊂ [0, γ]. Then a ≤ γ IA by Corollary 11.3.6, so γ IA − a ≥ 0.
We also have γ IA − a ≤ γ IA, for γ IA − (γ IA − a) = a ≥ 0. Hence 0 ≤
γ IA − a ≤ γ IA. By Corollary 11.3.6, σ(γ IA − a) ⊂ [0, γ], and then

∥γ IA − a∥ = spr(γ IA − a) ≤ γ.

(b) =⇒ (c) Trivial.
(c) =⇒ (a) We have spr(γ IA − a) = ∥γ IA − a∥ ≤ γ. So σ(γ IA − a) ⊂

[−γ, γ], and then σ(a) ⊂ [0, 2γ]. Then a ≥ 0 by Lemma 11.3.2.
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(11.3.7) Let A be a C∗-algebra. A function f : [0,∞) → [0,∞) is
operator monotone if f(a) ≤ f(b) whenever 0 ≤ a ≤ b.

(a) Use Corollary 11.3.7 to prove that fs(t) = st(1 + st)−1 is
operator monotone for each s > 0.

(b) Prove that g(t) = tβ is operator monotone for all β ∈ (0, 1)
by considering g(t) =

∫∞
0 fs(t)s−β−1 ds.

Answer.

(a) We have
fs(t) = st

1 + st
= 1 − 1

1 + st
.

If 0 ≤ a ≤ b, then 1 + sa ≤ 1 + sb, so (1 + sb)−1 ≤ (1 + sa)−1 by
Corollary 11.3.7. Then

fs(a) = IA − (1 + sa)−1 ≤ IA − (1 + sb)−1 = fs(b).
(b) We have, with the substitution v = ts,∫ ∞

0
fs(t) s−β−1 ds =

∫ ∞

0

st

(1 + st)sβ+1 ds = tβ
∫ ∞

0

v

1 + v

1
v1+β dv.

The improper integral converges both at 0 and ∞ because it the integrand
is of the form v−β and v−β+1 respectively. So if

r =
∫ ∞

0

v

1 + v

1
v1+β dv,

we have
tβ = g(t) = 1

r

∫ ∞

0
fs(t) s−β−1 ds.

We have fs(a)s−β−1 ≤ fs(b)s−β−1 for all s. This inequality will survive
through Riemann sums (valued on the C∗-algebra). We will show that
the Riemann sums of an integral of a continuous function over a closed
interval converge uniformly. Indeed, if h is continuous on [1/R,R] and
ε > 0 is given, since h is uniformly continuous there exists δ > 0 with
|h(x) − h(y)| < ε whenever |x − y| < δ. Let {sj} be a partition of [0, R]
with |sj − sj−1| < δ. Then∣∣∣∣ ∫ R

0
f(s) ds−

n∑
j=1

f(sj) ∆j

∣∣∣∣ =
∣∣∣∣ n∑
j=1

∫ sj

sj−1

(
f(s) − f(sj)

)
ds

∣∣∣∣
≤

n∑
j=1

∫ sj

sj−1

∣∣f(s) − f(sj)
∣∣ ds ≤ εR.
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If follows that if hR(t) = 1
r

∫ R
0 fs(t) s−β−1 ds, then

hR(a) = lim
n

n∑
j=1

f
s

(n)
j

(a) ∆j ,

and hence hR(a) ≤ hR(b). We also have that∣∣∣∣ ∫ ∞

0
fs(t) s−β−1 ds−

∫ R

1/R
fs(t) s−β−1 ds

∣∣∣∣ ≤
∣∣∣∣ ∫ 1/R

0

st

1 + st

1
sβ+1 ds

∣∣∣∣
+
∣∣∣∣ ∫ ∞

R

st

1 + st

1
sβ+1 ds

∣∣∣∣
≤ t

∫ 1/R

0
s−β ds+

∫ ∞

R

s−β−1 ds

= t

(1 − β)R1−β + 1
βRβ

,

and, as t ≤ ∥b∥, the limit goes to 0 uniformly on R; that is, hR → g
uniformly. Then

aβ = g(a) = lim
R→∞

hR(a) ≤ lim
R→∞

hR(b) = g(t) = bβ .

(11.3.8) Let A be a C∗-algebra and a, p ∈ A with a ≥ 0 and p a projec-
tion (p = p2 = p∗). Show that a ≤ p if and only if ∥a∥ ≤ 1 and
a = pa = ap. (When a and p are projections in B(H) this was
done in Proposition 10.5.3; now we rather similar arguments,
but they have to be entirely algebraic)

Answer. We can work on the unitization if needed. If a ≤ p, then
0 ≤ (IA − p)a(IA − p) ≤ (IA − p)p(IA − p) = 0.

Hence
0 = (IA − p)a(IA − p) =

[
a1/2(IA − p)

]∗[
a1/2(IA − p)

]
,

so a1/2(IA −p) and then a(IA −p) which is a = ap; taking adjoints, a = ap =
pa. Also, from 0 ≤ a ≤ p we get ∥a∥ ≤ ∥p∥ = 1.

Conversely, if a = pa = ap and ∥a∥ ≤ 1, then a = pa = pap ≤ ∥a∥ p2 =
p.
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(11.3.9) Let A be a C∗-algebra and a ∈ A nonzero. Show that there
exist r ∈ {1,−1} and s ∈ {1, i} such that (Re rsa)+ ̸= 0.

Answer. Via Proposition 11.3.10 we can write
a = Re a+ iIm a = a1 − a2 + i(a3 − a4),

with a1, a2, a3, a4 ∈ A+, a1a2 = a3a4 = 0. Since a ̸= 0, there exists j with
aj ̸= 0. If j ∈ {1, 2} we take s = 1 for aj is already in the real part; otherwise
we take s = i. Now sa has real part with aj either the positive part—in which
case we take r = 1—or as the negative part—in which case we take r = −1.
Now rsa = aj − ak + i(am − an) for k,m, n ∈ {1, 2, 3, 4} \ {j} distinct, and
thus (Re rsa)+ = aj .

11.4. Ideals and ∗-Homomorphisms

(11.4.1) Let A be a C∗-algebra. Show that Z(A) is a C∗-subalgebra of
A.

Answer. If a1, a2 ∈ Z(A) and b ∈ A, λ ∈ C,
(a1 +λa2)b = a1b+λa2b = b(a1 +λa2), and a1a2b = a1ba2 = ba1a2.

And from a1b
∗ = b∗a1, taking adjoints we get a∗

1b = ba∗
1. Thus Z(A) is a

∗-subalgebra of A. If {an} ⊂ Z(A) and an → a, then
ab = lim anb = lim ban = b lim an = ba.

So Z(A) is closed, and it is thus a C∗-subalgebra.

(11.4.2) Show the equivalence (11.8).

Answer. If limj aej = a for all a, then for a fixed a we have limj a
∗ej = a∗;

as the adjoint operation is continuous, limj eja = a.
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(11.4.3) If A is separable, show that it admits a countable approximate
unit (Hint: consider an increasing sequence of finite sets with
dense union)

Answer. Since A is separable, there exist subsets F1 ⊂ F2 ⊂ · · · ⊂ A with⋃
n Fn dense. From Z as in Theorem 11.4.4, choose e1 ∈ Z with ∥a−ae1∥ < 1

for all a ∈ F1; inductively, given ek, choose ek+1 ∈ Z with ek+1 ≥ ek and
∥a − aek+1∥ < 1/(k + 1) for all a ∈ Fk+1. So, for any a ∈

⋃
n Fn, we have

that limn ∥a− aen∥ = 0. As
⋃
n Fn is dense, limn ∥a− aen∥ = 0.

(11.4.4) Let A be a C∗-algebra and {ej} ⊂ A an approximate unit.
Show that limj ∥ej∥ = limj ∥e2

j∥ = 1.

Answer. Since the approximate unit is monotone, if j ≤ k then 0 ≤ ej ≤ ek,
and so ∥ej∥ ≤ ∥ek∥ by Corollary 11.3.8. Then c = limj ∥ej∥ exists, and c ≤ 1
as ∥ej∥ ≤ 1 for all j. Let a ∈ A with ∥a∥ = 1. Then ∥aej∥ ≤ ∥ej∥ ≤ c, and
so

1 − c = ∥a∥ − ∥aej∥ ≤ ∥a− aej∥ →c⃝ 2024 Mart́ın Argerami All Rights Reserved 0.
Therefore c = 1. For the squares, we simply note that ∥e2

j∥ = ∥ej∥2 since
they are positive.

(11.4.5) Let B ⊂ A be an inclusion of C∗-algebras. Suppose that B has
an approximate unit {ej} that is also an approximate unit for
A. Show that any other approximate unit of B is an approxi-
mate unit for A.

Answer. Fix a ∈ A and let {fk} be another approximate unit for B. Then
∥a− afk∥ ≤ ∥a− aej∥ + ∥aej − aejfk∥ + ∥aejfk − afk∥

= ∥a− aej∥ + ∥a(ej − ejfk)∥ + ∥(aej − a)fk∥

≤ ∥a− aej∥ + ∥a(ej − ejfk)∥ + ∥aej − a∥

Now
lim sup

k
∥a− afk∥ ≤ 2∥a− aej∥.

As we are free to choose j, we get that limk ∥a−afk∥ = 0. An entirely similar
argument (or, taking adjoints) shows that ∥a− fka∥ → 0 for all a ∈ A.
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(11.4.6) Let A be a C∗-algebra and A0 ⊂ A a dense ∗-subalgebra. Let B
be a C∗-algebra and π : A0 → B an injective ∗-homomorphism.
Show by example that π is not necessarily bounded.

Answer. Let A = C[0, 1], B = C ⊕ C[0, 1], and A0 = C[x], considered as a
subalgebra of A (so ∥p∥ = sup{|p(x)| : x ∈ [0, 1]}). Define π : A0 → B by

π(p) = p(2) ⊕ p.

This is clearly an injective ∗-homomorphism. Moreover, π(A0) is dense in B:
given (λ, f) ∈ B, let g ∈ C[0, 2] with g = f on [0, 1] and g(2) = λ. By Stone–
Weierstrass (Theorem 7.4.20) there exists a sequence {pn} of polynomials
with pn → g. In particular, π(pn) → (λ, f).

But π is not bounded: consider qn(x) = xn. Then ∥qn∥ = 1 for all n,
but ∥π(qn)∥ = 2n.

(11.4.7) Let A be approximately finite dimensional (AFD); that is,
A =

⋃
n An, where An ⊂ An+1 and dim An < ∞ for all n.

Show that A has a countable approximate unit made out of
projections. (Hint: use that finite-dimensional C∗-algebras are
unital Lemma 11.8.2)

Answer. Let pn be the identity of An, which exists by Lemma 11.8.2. Since
pn ∈ An+1, we have pn+1pn = pn, so they commute (by taking adjoints)
and—working momentarily on Ã—pn = pn+1pnpn+1 ≤ pn+1IÃpn+1 = pn+1.
Fix ε > 0. Given a ∈ A, by hypothesis there exists n0 and b ∈ An0 with
∥a− b∥ < ε. Then, for n ≥ n− 0,

∥a− apn∥ ≤ ∥a− b∥ + ∥b− bpn∥ + ∥bpn − apn∥

= ∥a− b∥ + ∥(b− a)pn∥leq2∥a− b∥ < 2ε.
Thus limn apn = a

(11.4.8) Let A be a C∗-algebra and {es} an approximate unit for A.
Consider linearly independent elements b1, . . . , bm ∈ A. Show
that there exists s0 such that for all s ≥ s0, esb1, . . . , esbm are
linearly independent.
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Answer. Suppose that there exists a subnet {st} and, for every t, coefficients

αt,1, . . . , αt,m with
∑
j

αt,jestbj = 0.

Since at least one coefficient is nonzero, we may assume that for each t the
largest coefficient is 1. Then there exists at least one j with infinitely many
αt,j = 1. By passing to a further subset, we may assume that there exists
j with αt,j = 1 for all t. Since each net {αt,j} of coefficients is bounded, it
admits a convergent subnet. After taking m subnets, we get α1, . . . , αm ∈ C
with αt,j → αj . Then ∑

j

αjbj = lim
t
αt,jestbj = 0.

So, if b1, . . . , bm are linearly independent, there has to exist s0 such that
esb1, . . . , exbm

is linearly independent for all s ≥ s0.

11.5. States

(11.5.1) Show that ϕ ∈ A∗ is Hermitian if and only if ϕ(a∗) = ϕ(a) for
all a ∈ A.

Answer. If ϕ(a∗) = ϕ(a), then for a selfadjoint we have ϕ(a) = ϕ(a∗) = ϕ(a),
so ϕ(a) ∈ R.

Conversely, suppose that ϕ(a) ∈ R for all selfadjoint a. For arbitrary
a, we have

ϕ(a) + ϕ(a∗) = ϕ(a+ a∗) ∈ R, i(ϕ(a) − ϕ(a∗)) = ϕ(i(a− a∗)) ∈ R.
From the first equality we get that Imϕ(a∗) = −Imϕ(a); and from the second
one we get that Reϕ(a∗) = Reϕ(a). Thus ϕ(a∗) = ϕ(a).

(11.5.2) Let φ ∈ A∗. Let
φ∗(a) = φ(a∗).

Show that φ∗ ∈ A∗ and that φ+ φ∗ is Hermitian.
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Answer. We have
φ∗(βa+b) = φ((βa+ b)∗) = φ(βa∗ + b∗) = β φ(a∗)+φ(b∗) = βφ∗(a)+φ∗(b),
so φ∗ is linear. Also |φ∗(a)| ≤ ∥φ∥ ∥a∗∥ = ∥φ∥ ∥a∥, so φ∗ is bounded and
then φ∗ ∈ A∗. If a = a∗, then

φ(a) + φ∗(a) = φ(a) + φ(a) = 2Reφ(a) ∈ R.
So φ+ φ∗ is Hermitian.

(11.5.3) Show that a positive linear functional is Hermitian.

Answer. Given a ∈ A selfadjoint, we can write a = a+ −a− with a+, a− ≥ 0
(Proposition 11.3.10), and then φ(a) = φ(a+) − φ(a−) ∈ R.

(11.5.4) Let φ ∈ A∗ be positive, a, b ∈ A with b ≥ 0. Show that
|φ(ab)| ≤ ∥a∥φ(b).

Answer. We use Cauchy–Schwarz in the following way:
|φ(ab)| = |φ(ab1/2 b1/2)| ≤ φ(b1/2a∗ab1/2)1/2φ(b)1/2

≤ ∥a∥φ(b)1/2φ(b)1/2 = ∥a∥φ(b).

(11.5.5) Let A be a unital C∗-algebra and A0 ⊂ A a ∗-subalgebra with
IA ∈ A0. Let φ : A0 → C be linear and positive. Show that φ
is bounded, ∥φ∥ = φ(IA), and φ extends to a state on A.

Answer. Compared to Proposition 11.5.4, the presence of the unit makes all
the difference. Given a ∈ A0 with ∥a∥ ≤ 1, we have that a∗a ≤ IA. Then,
using Cauchy–Schwarz,

|φ(a)|2 ≤ φ(IA)φ(a∗a) ≤ φ(IA)2.

Hence |φ(a)| ≤ φ(IA) ∥a∥ for all a ∈ A and so ∥φ∥ ≤ φ(IA). As φ(IA) ≤ ∥φ∥,
we get ∥φ∥ = φ(IA). Now we extend by Hahn–Banach (Corollary 5.7.6) to
get φ̃ : A → C with

∥φ̃∥ = ∥φ∥ = φ(IA) = φ̃(IA).
Then φ̃ ≥ 0 by Proposition 11.5.4.
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(11.5.6) Let A be a C∗-algebra and a ∈ A. Show that
∥a∥ = max{φ(a∗a)1/2 : φ ∈ S(A)}.

Answer. Suppose first that a ≥ 0. By Corollary 11.5.8 there exists φ ∈ S(A)
with φ(a) = ∥a∥. We also have, for any ψ ∈ S(A), that |ψ(a)| ≤ ∥a∥; so
∥a∥ = max{φ(a) : φ ∈ S(A)}.

For arbitrary a ∈ A,
∥a∥ = ∥a∗a∥1/2 = max{φ(a∗a) : φ ∈ S(A)}1/2

= max{φ(a∗a)1/2 : φ ∈ S(A)}.

(11.5.7) We outline here a proof of Proposition 11.5.16 and Corol-
lary 11.5.17 that goes another way. So let A be a C∗-algebra
and φ ∈ A∗ a Hermitian functional.

(a) Let K = {ψ ∈ A∗ : ψ ≥ 0 and ∥ψ∥ ≤ 1}. Show that K is
weak∗-compact and it separates points.

(b) Use the idea in Proposition 7.2.24 to show that A embeds
isometrically in C(K) in a way that preserves positivity.

(c) Show that φ ◦ ρ−1 : ρ(A) → C extends to a positive linear
functional φ̃ on C(K).

(d) Use Theorem 5.6.15 and the Jordan decomposition of a
measure to conclude that there exist φ+, φ− ∈ S(A) and
non-negative scalars α, β such that φ = αφ+ − βφ−.

Answer.

(a) That K separates points is Corollary 11.5.8. For the weak∗-compactness
one can either repeat the proof of Proposition 11.5.15 now for {ψj} with
∥ψj∥ ≤ 1 instead of equal to 1; or we notice that K = γ(T × S(A)), a
continuous image of a compact set, with γ(λ, ψ) = λψ.

(b) Let ρ : A → C(K) be given by (ρ(a))(ψ) = ψ(a). This map is linear, and
it is isometric by Corollary 11.5.8. If a ≥ 0, the ψ(a) ≥ 0 for all ψ ∈ K,
so ρ(a) is a positive function.

(c) We extend by using Theorem 11.5.7.
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(d) By Theorem 5.6.15 there exists a complex measure µ such that

φ(a) = φ̃(ρ(a)) =
∫
K

ρ(a) dµ.

Using the Jordan Decomposition on Reµ and Imµ we find finite measures
µr, with r = 1, 2, 3, 4 such that µ = µ1 = µ2 + i(µ3 − µ4). Now we can
define φ′

j(a) =
∫
K
ρ(a) dµj , a positive bounded linear functional on A,

and normalizing we get φj = 1
αj
φ′
j ∈ S(A) for all j, where αj = ∥φ′

j∥.

(11.5.8) Show that when A is non-unital Lemma 11.5.14 still holds if
we replace condition (ii) by the existence, for every ε > 0,
of positive x, y ∈ A with x + y ≤ IA and φ(x) ≥ ∥φ∥ − ε,
ψ(y) ≥ ∥ψ∥ − ε.

Answer. (i) =⇒ (ii) Let w with ∥w∥ = 1 such that φ(w)−ψ(w) > ∥φ−ψ∥−ε.
Because φ − ψ is Hermitian we may assume without loss of generality that
w = w∗. Fix an approximate unit {ej} and fix j such that φ(ej) > ∥φ∥ − ε

2
and ψ(ej) > ∥ψ∥ − ε

2 ; also, because w = limj ejwej and φ,ψ are continuous,
by choosing j large enough we can also guarantee that φ(ejwej)−ψ(ejwej) >
∥φ− ψ∥ − ε. Put

x = 1
2 (ej + ejwej), y = 1

2 (ej − ejwej).

Then x ≥ 0, y ≥ 0, and x+ y = ej ≤ IA. We have
2∥φ∥ − 2φ(x) + 2∥ψ∥ − 2ψ(y) = 2∥φ∥ − φ(ej + ejwej) + 2∥ψ∥

− ψ(ej − ejwej)

= ∥φ∥ − φ(ej) + ∥ψ∥ − ψ(ej) + ∥φ− ψ∥

− (φ− ψ)(ejwej)

≤ 2ε.
As the left-hand-side can be seen as the sum of the two non-negative term
2∥φ∥ − 2φ(x) and 2∥ψ∥ − 2ψ(y), we conclude that

∥φ∥ − φ(x) < ε, ∥ψ∥ − ψ(y) < ε

as desired.
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(ii) =⇒ (i) Let b = x + y, w = x − y. We have ∥b∥ ≤ 1 and ∥w∥ ≤ 1.
And
∥φ− ψ∥ ≤ ∥φ∥ + ∥ψ∥ ≤ ∥φ∥ + ∥ψ∥ + 2ε+ 2φ(x) − 2∥φ∥ + 2ε+ ψ(y) − 2∥ψ∥

= 4ε+ φ(b+ w) + ψ(b− w) − ∥φ∥ − ∥ψ∥

= 4ε+ (φ− ψ)(w) + φ(b) − ∥φ∥ + ψ(b) − ∥ψ∥

≤ 4ε+ (φ− ψ)(w)

≤ 4ε+ ∥φ− ψ∥.
As ε > 0 was arbitrary, ∥φ− ψ∥ = ∥φ∥ + ∥ψ∥.

(11.5.9) Let A be a C∗-algebra and p ∈ A a projection. Show that pAp
is a hereditary C∗-subalgebra of A.

Answer. If x, y, z, w ∈ A and λ ∈ C,
pxp+ λpyp+ (pzp)(pwp) = p[pxp+ λpyp+ (pzp)(pwp)]p ∈ pAp.

Together with (pxp)∗ = px∗p, this shows that pAp is a ∗-algebra. It remains
to show that it is closed and hereditary. For closed, if {pxnp} is Cauchy, then
by the completeness of A there exists x ∈ A with pxnp → x. But then pxp =
lim pxnp = x, so x ∈ A. Finally, if 0 ≤ y ≤ pxp, working on the unitization
we get (IA − p)y(IA − p) = 0. This is [y1/2(IA − p)]∗y1/2(IA − p) = 0, so
y1/2(IA − p) = 0, from where y(IA − p) = 0; that is y = yp. Taking adjoints
we also get y = py, and so y = pyp ∈ pAp.

(11.5.10) Let A be a C∗-algebra and a ∈ A+. Show that aAa is a
hereditary C∗-subalgebra of A. Show by example that the
closure is needed in general.

Answer. If x, y, z, w ∈ A and λ ∈ C,
axa+ λaya+ (aza)(awa) = a[x+ λy + za2w]a ∈ aAa.

And (axa)∗ = ax∗a ∈ aAa, so aAa is a ∗-algebra; its closure is then a C∗-
subalgebra of A. As for hereditary, if 0 ≤ b ≤ c and c ∈ aAa, let {ej} be an
approximate unit for aAa. Working on the unitization, we have

0 ≤ (IA − ej)b(IA − ej) ≤ (IA − ej)c(IA − ej).
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This gives us
∥b1/2 − b1/2ej∥2 = ∥(IA − ej)b(IA − ej)∥

≤ ∥(IA − ej)c(IA − ej)∥ = ∥c1/2 − c1/2ej∥2.

Since c1/2 = limj c
1/2ej , the above inequality implies that b1/2 = limj b

1/2ej ,
and so b = limj ejbej ∈ aAa.

As for the example, let A = C[0, 1] and a(t) = t. We claim that aAa is
not closed. To see this, we will show that f(t) = t1/2 is in aAa but not in aAa.
Indeed, consider the algebra cB = C0(0, 1]. By Corollary 7.4.23, aBa = a2B
is dense in B. Hence f ∈ a2A. And we cannot have t1/2 = t2g(t) for some
g ∈ C[0, 1]; for we would have, for t > 0, that 1 = t3/2 g(t), contradicting the
fact that the right-hand-side goes to 0 as t → 0.

Another example can be A = K(H), and a =
∑
k

1
k Ekk for a fixed set of

matrix units {Ekj}. Then aAa = A, since a is strictly positive (alternatively,
one can show that Ekj ∈ aAa for all k, j, and that the span of the matrix
units is dense in K(H)). But every element in aAa is Hilbert–Schmidt, while
of course there are many compact operators which are not Hilbert–Schmidt.

(11.5.11) Show that the ideal generated by the identity function in C[0, 1]
is an example of a non-closed, non-hereditary ideal of a C∗-
algebra. Use the example to give an explanation for why the
argument after Definition 11.5.19 fails in that case.

Answer. We have J = {t 7−→ tg(t) : g ∈ C[0, 1]}. This is an ideal, since it
is of the form hC[0, 1], where h(t) = t is the identity function. We need to
show that this is not closed. The norm closure of J is J0 = {f ∈ C[0, 1] :
f(0) = 0}. Indeed, given f ∈ J0 and ε > 0, choose δ > 0 such that |f(t)| < ε
for all t ∈ [0, δ]. Let gε ∈ C[0, 1] the continuous function with gε(t) = f(t)/t
for all t ≥ δ and that goes linearly to 0 on [0, δ). Then |f(t) − t gε(t)| = 0 for
all t ≥ δ. And for t < δ,

|f(t) − t gε(t)| ≤ |f(t)| + δ|f(δ)/δ| ≤ 2ε.
Hence ∥f − h ge∥∞ < 2ε, showing that f ∈ J . As J ⊂ J0, this shows that
J = J0.

Consider the function g(t) = t sin2 1/t. This is in J0. But it is not in
J0, for if g(t) = tf(t), then f(t) = sin2 1/t for all t > 0 and it cannot be
continuous at 0. And g(t) ≤ t for all t while g ̸∈ J , showing that J is not
hereditary.

The reason the argument after Definition 11.5.19 does not work for our
J is that even though the map ρ : A → A/J is a ∗-homomorphism, it is not
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guaranteed that it maps positive elements to positive elements. The problem
is that the argument that ρ(a) ≥ 0 if a ≥ 0 relies on writing a = b∗b, and this
only works on a C∗-algebra. The objects in the quotient are not functions,
and we cannot rely on pointwise evaluation to assess positivity. The spectrum
does not behave well on non-closed algebras either, so it cannot be used to
define positivity.

(11.5.12) Let A be a non-unital C∗-algebra and Ã its unitization. Show
that ψ((a, λ)) = λ defines a state on Ã.

Answer. We have that ψ is unital by definition, and its linearity is straight-
forward. Also,

ψ
(
(a, λ)∗(a, λ)

)
= ψ(a∗a+ 2Reλa∗, |λ|2) = |λ|2 ≥ 0,

so ψ is positive. Then ∥ψ∥ = 1 by Eq. (11.2).

(11.5.13) Let B ⊂ A be C∗-algebras with B hereditary and A non-unital.
Show that B is hereditary in Ã.

Answer. A positive element in Ã is of the form a = (c + λIÃ)∗(c + IÃ) =
c∗c + 2Reλc∗ + |λ|2 IÃ, for c ∈ A and λ ∈ C. Suppose that a ≤ b for some
b ∈ B. If ρ ∈ S(Ã) is the state given by ρ(α IÃ) = α and ρ|A = 0 from
Exercise 11.5.12, then 0 ≤ ρ(b− a) = −|λ|2, so λ = 0. This gives us a = c∗c
and, as B is a hereditary subalgebra of A, from c∗c = a ≤ b we get that
a = c∗c ∈ B. Hence B is hereditary in Ã.

(11.5.14) Let a ∈ A positive. Show that a is strictly positive if and only

if
{
a

(
1
n IA + a

)−1}
n

is an approximate unit for A.

Answer. Write

en = a

(
1
n
IA + a

)−1
.

Suppose first that a is not strictly positive. Then there exists φ ∈ S(A) with
φ(a) = 0. We have

φ

(
a

(
1
n
IA + a

)−1)
= φ

(
a1/2

(
1
n
IA + a

)−1
a1/2

)
≤ c φ(a) = 0,
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so φ
(
a

(
1
n IA + a

)−1)
= 0. Let b ∈ A with φ(b) = 1. Then

|φ(ben)| = |φ(be1/2
n en1/2)| ≤ φ(en)φ(|be1/2

n |2) = 0.
Thus

∥b− ben∥ ≥ |φ(b− ben)| = φ(b) = 1.
So {ben} does not converge to b and {en} is not an approximate unit.

Conversely, suppose that a is strictly positive. Then {en} is an approx-
imate unit by the proof of Proposition 11.5.24. Here is another argument,
though. By Proposition 11.5.23, A = aAa. Let b ∈ A; fix ε > 0 and let c ∈ A
such that ∥b− aca∥ < ε. We have

a
( 1
n

+ a
)−1

b− b = a
( 1
n

+ a
)−1

b−
( 1
n

+ a
)( 1

n
+ a
)−1

b

= − 1
n

( 1
n
IA + a

)−1
b.

Then, using that
∥∥∥ 1
n ( 1

n + a)−1
∥∥∥ ≤ 1,∥∥∥∥a( 1

n
IA + a

)−1
b− b

∥∥∥∥ =
∥∥∥∥ 1
n

( 1
n
IA + a

)−1
b

∥∥∥∥
≤
∥∥∥∥ 1
n

( 1
n
IA + a

)−1
aca

∥∥∥∥+
∥∥∥∥ 1
n

( 1
n
IA + a

)−1
(aca− b)

∥∥∥∥
≤
∥∥∥∥ 1
n

( 1
n
IA + a

)−1
aca

∥∥∥∥+ ∥aca− b∥

≤ ∥ac∥
∥∥∥∥ 1
n

( 1
n
IA + a

)−1
a

∥∥∥∥+ ε

≤ ∥ac∥
1 + n

+ ε,

where the last estimate comes from functional calculus on a with the function
t
n ( 1

n + t)−1 = t
1+nt ≤ 1

1+n for t ∈ [0, 1].
Thus

lim sup
n

∥∥∥∥ 1
n

( 1
n
IA + a

)−1
b− b

∥∥∥∥ ≤ ε

and, as ε was arbitrary, we get that

lim
n

∥∥∥∥ 1
n

( 1
n

+ a
)−1

b− b

∥∥∥∥ = 0.
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(11.5.15) Let a ∈ A positive with ∥a∥ ≤ 1. Show that a is strictly
positive if and only if {a1/n}n is an approximate unit for A.

Answer. Suppose first that a is not strictly positive. Then there exists
φ ∈ S(A) with φ(a) = 0. Using Cauchy–Schwarz we have, working on Ã
with the unique extension of φ,

φ(a1/n) ≤ φ(a2/n)1/2 ≤ · · ·φ(a2m/n)2−m
.

If r > 1, then
φ(ar) = φ(a1/2ar−1a1/2) ≤ φ(a) = 0,

so φ(ar) = 0. With m big enough so that 2m/n > 1, we have φ(a2m/n) = 0,
and hence φ(a1/n) = 0. Given b ∈ A with φ(b) = 1,

|φ(ba1/n)| = |φ(ba1/2na1/2n)| ≤ φ(a1/n)1/2φ(|ba1/2n|2)1/2 = 0.
Then

∥b− ba1/n∥ ≥ |φ(b− ba1/n)| = φ(b) = 1,
showing that ba1/n does not converge to b.

Conversely, suppose that a is strictly positive. By Proposition 11.5.23,
A = aAa. Let b ∈ A; fix ε > 0 and let c ∈ A such that ∥b − aca∥ < ε. We
have

∥a1/nb− b∥ ≤ ∥a1/nb− a1/naca∥ + ∥a1/naca− aca∥ + ∥aca− b∥

≤ ∥a1/n∥ ∥b− aca∥ + ∥ca∥ ∥a1+1/n − a∥ + ∥b− aca∥

≤ 2ε+ ∥c∥ ∥a1+1/n − a∥.

We will be done if we show that ∥a1+1/n − a∥. For this, we use functional
calculus. Let fn(t) = t1+1/n − t. Fix δ ∈ (0, 1). When t < δ,

|fn(t)| = |t1+1/n − t| ≤ δ1+1/n + δ ≤ δ2 + δ.

And when t ≥ δ, we have δ1/n ≥ δ, so

|f ′
n(t)| =

∣∣∣ 1
n
t1/n−1

∣∣∣ ≤ 1
nδ1 − 1/n,

and then for t ≥ δ we have, via the Mean Value Theorem, some ξ ∈ [0, 1]

|fn(t)| ≤ t |f ′
n(ξ)| ≤ 1

nδ1−1/n .

So, given ε > 0 we can choose δ > 0 so that δ2 + δ < ε and n big enough
so that 1

nδ1−1/n < ε, and then |fn(t)| < ε. It follows that fn → 0 uniformly,
and so fn(a) → 0 in A. That is, ∥a1+1/n − a∥ → 0. Then

lim sup
n

∥a1/nb− b∥ ≤ 2ε

and, as this can be done for all ε > 0, limn ∥a1/nb− b∥ = 0.
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11.6. Representations

(11.6.1) Let {Hj} be a family of Hilbert spaces and let H =
⊕

j the
ℓ2 direct sum as in Definition 5.3.8. Show that H is a Hilbert
space.

Answer. We are given the norm and not the inner product, but knowing
seeing that if g ∈ H the norm of g is ∥g∥ =

∑
j ∥g(j)∥2, it is not hard to guess

that this norm comes from the inner product

⟨g, h⟩ =
∑
j

⟨g(j), h(j)⟩.

A double use of Cauchy–Schwarz shows that |⟨g, h⟩| ≤ ∥g∥ ∥h∥. That the
product is sesquilinear follows from the sesquilinearity of the inner product
in each Hj and linearity of limits. The completeness of H was addressed in
Exercise 5.3.6.

(11.6.2) Show that in the proof of Theorem 11.6.2, the form ⟨a+L, b+
L⟩ = [a, b] is well-defined and an inner product.

Answer. If a′ − a = l1 ∈ L and b′b = l2 ∈ L,
[a′, b′] = [a+ l1, b+ l2] = [a, b] + [l1, b] + [a, l2] + [l1, l2] = [a, b], .

so the definition of the form does not depend on the representatives. The
sesquilinearity follows from the sesquilinearity of the form:

[a1 + αa2, b1 + βb2] = φ((b1 + βb2)∗(a1 + αa2))

= φ(b∗
1a1) + βφ(b∗

2a1) + αφ(b∗
1a2) + βαφ(b∗

2a2)

= [a1, b1 + β[a1, b2] + α[a2, b1] + βα[a2, b2].
Finally, if [a, a] = 0 this is φ(a∗a) = 0, so a ∈ L and a+ L = L, so the form
is an inner product.
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(11.6.3) If φ,ψ ∈ S(A) with φ ∼ ψ, construct V and show the equality
(11.18).

Answer. We have ψ = φ(u · u∗). Note that
Lφu = {au : φ(a∗a) = 0} = {au : ψ(u∗a∗au) = 0} = Lψ.

Define V (a+ Lφ) = au+ Lψ; this is well-defined since Lψ = Lφu. We have
∥V (a+ Lφ)∥2 = ∥au+ Lψ∥ = ψ(u∗a∗au) = φ(a∗a) = ∥a+ Lφ∥2,

so V is an isometry. As it has dense range it is isometric, V is a unitary.
Also,
πψ(a)V (b+Lφ) = πψ(a)(bu+Lψ) = abu+Lψ = V (ab+Lφ) = V πφ(a)(b+Lφ).
As A + Lφ is dense in Hφ and the operators involved are bounded, we get
that πψ(a)V = V πφ(a) for all a. As V is a unitary this is πψ(a) = V ∗πφ(a)V .

(11.6.4) Find an example of A, a ∈ A, φ ∈ S(A), such that φ(a) = 0
but πφ(a) ̸= 0.

Answer. The assertion πφ(a) = 0 is equivalent to φ(b∗a∗ab) = 0 for all
b ∈ A. So for instance take A = M2(C), and φ(X) = X11, and A = E12.
Then φ(A) = 0, but for instance

⟨πφ(A)(E21 + L), E11 + L⟩ = φ(E11) = 1,
so πφ(A) ̸= 0.

(11.6.5) Let A be a simple C∗-algebra and π : A → B(H) a nonzero
representation. Show that π is faithful.

Answer. Since π is bounded by Proposition 11.4.9, kerπ is is a closed bilateral
ideal. It cannot be all of A because π is nonzero; so kerπ = {0} and hence π
is injective/faithful.

(11.6.6) Let φ ∈ S(A), a ∈ A. Show that πφ(a) = 0 if and only if
φ(b∗a∗ab) = 0 for all b ∈ A. Conclude that φ faithful implies
πφ faithful. Show that the converse is not necessarily true.
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Answer. If πφ(a) = 0 then π(φ(a∗a) = 0 and this means that, for all b ∈ A,
0 = ⟨πφ(a)bξ, bξ⟩ = φ(b∗a∗ab). (AB.11.1)

And the equality in (AB.11.1) also implies the converse. So, if φ is faithful
and πφ(a) = 0, in particular 0 = φ(a∗a) = 0 and so a = 0.

Finally, we need to construct a non-faithful state with faithful GNS
representation. This is actually easy if we take A to be simple: in that
case any non-zero representation is faithful. We did this in the text with
A = M2(C) and φ(a) = a11. Then

L = {a ∈ M2(C) : (a∗a)11 = 0} =
{[

0 w
0 z

]
: w, z ∈ C

}
.

So Hφ = A/L is 2-dimensional and is spanned by the classes of E11 and E21;
also,

⟨E11, E11⟩ = φ(E11) = 1,

⟨E21, E21⟩ = φ(E12E21) = 1,

⟨E11, E21⟩ = φ(E12E11) = 0.
So {E11, E21} is an orthonormal basis of Hφ. And

⟨πφ(a)E11, E11⟩ = φ(E11aE11) = a11,

⟨πφ(a)E11, E21⟩ = φ(E12aE11) = a21,

⟨πφ(a)E21, E11⟩ = φ(E11aE21) = a12,

⟨πφ(a)E21, E21⟩ = φ(E12aE21) = a22.

So using the orthonormal basis {E11, E21} on Hφ, we get that πφ is the
identity representation, which of course is faithful.

(11.6.7) Let φ ∈ S(A) be faithful, and a ∈ A. Show that if πφ(a)ξφ = 0,
then a = 0. We will give a name to this property in Sec-
tion 12.5: separating.

Answer. We have
φ(a∗a) = ⟨πφ(a∗a)ξφ, ξφ⟩ = ⟨πφ(a)ξφ, πφ(a)ξφ⟩ = 0.

As φ is faithful, a = 0.
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(11.6.8) Let A be a C∗-algebra, π : A → B(H) a representation, and
ξ ∈ H. Let P ∈ B(H) be the orthogonal projection onto π(A)ξ.
Show that Pπ(a) = π(a)P for all a ∈ A.

Answer. We have
(Pπ(a)P )π(b)ξ = Pπ(ab)ξ = π(ab)ξ = π(a)π(b)ξ = π(a)Pπ(b)ξ.

As {π(b)ξ : b ∈ A} is dense in PH, we get that Pπ(a)P = π(a)P for all a ∈ A.
When a is selfadjoint, taking adjoints we get Pπ(a) = Pπ(a)P = π(a)P . And
as the selfadjoint elements span A, we get Pπ(a) = π(a)P for all a ∈ A.

(11.6.9) Let A be a C∗-algebra and a ∈ A. Show that there exists a
unique b ∈ A such that a = bb∗b.

Answer. We can think of A ⊂ B(H). Write a = u|a| the polar decomposition.
Recall that |a| ∈ A but that in general u ̸∈ A. Let b = u|a|1/3. Since u∗u|a| =
|a| (because u∗u is the orthogonal projection onto the closure of the range of
a∗), we obtain u∗u|a|m = |a|m for all m ∈ N, and hence u∗up(a) = p(a) for
every p ∈ C[x]. Taking limits we get u∗u|a|1/3 = |a|1/3. Then

bb∗b = u|a|1/3|a|1/3u∗u|a|1/3 = u|a| = a.

We haven’t shown yet that b ∈ A. Note that |b|2 = b∗b = |a|1/3u∗u|a|1/3 =
|a|2/3. So |b| = |a|1/3 ∈ A. We have that u|a| = a ∈ A. Then u|a|m =
a|a|m−1 ∈ A for all m ∈ N. Thus up(|a|) ∈ A for all p ∈ C[x]. By Functional
Calculus, if {pn} is a sequence of polynomials with pn(t) → t1/3 uniformly,
b = u|a|1/3 = limn upn(|a|) ∈ A.

As for the uniqueness, suppose that bb∗b = cc∗c. Then
|b|6 = (b∗bb∗)bb∗b = (c∗cc∗)cc∗c = |c|6.

Functional calculus then gives us |b| = |c|. So b|b| = c|b|. Now since ker b =
ker b∗b = ker |b|2 = ker |b|, we have that (ker b)⊥ = ran|b|. And from |c| = |b|
we get that (ker c)⊥ = (ker b)⊥. Given ξ ∈ H we can write ξ = ξ0 + ξ1 with
ξ0 ∈ ker b and ξ1 ∈ ran|b|. Write ξ1 = limn |b|ηn. Then

bξ = bξ1 = lim
n
b|b|ηn = lim

n
c|b|ηn = cξ1 = cξ.

Thus c = b.
The existence can also be shown without using representations and

using instead Proposition 11.3.11 to see that a = u(a∗a)1/3 for some u ∈ A.
The construction of u in Proposition 11.3.11 allows one to check that u∗u =
(a∗a)1/3, and then uu∗u = a.
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Here is a third argument using block matrices. Let

r =
[
0 a∗

a 0

]
, u =

[
IÃ 0
0 −IÃ

]
.

Then u is a unitary and u∗ru = −r. As f(t) = t1/3 is continuous everywhere,
we have −r1/3 = −f(r) = f(−r) = f(u∗ru) = u∗f(r)u = u∗r1/3u. So
r1/3u = −ur1/3, which forces

r1/3 =
[
0 b∗

b 0

]
for some b ∈ A. Since[

0 a∗

a 0

]
= (r1/3)3 =

[
0 b∗

b 0

]3
=
[

0 b∗bb∗

bb∗b 0

]
,

and so a = bb∗b. For the uniqueness, if a = cc∗c, we form

z =
[
0 c∗

c 0

]
,

and then z is selfadjoint with z3 = r. Then z = f(z3) = f(r) = r1/3, and
hence c = b.

(11.6.10) Let A be a non-unital C∗-algebra and π : A → B(H) a rep-
resentation. Prove that there exists a (unique, if π is non-
degenerate) representation π̃ : Ã → B(H) that extends π. If π
is faithful, so is π̃.

Answer. Let π̃A : Ã → B(H) be given by π̃A(a, λ) = πA(a) +λ IH. We have
π̃A(a1 + a2, λ1 + λ2) = πA(a1 + a2) + (λ1 + λ2) IH = π̃A(a, λ) + π̃A(a, λ2),

so π̃ is linear. Similarly,
π̃
(
(a1, λ1)(a2, λ2)

)
= π̃(a1a2 + λ2a1 + λ1a2, λ1λ2)

= π(a1a2) + λ2π(a1) + λ1π(a2) + λ1λ2 IH

=
(
π(a1) + λ1 IH

)(
π(a2) + λ2 IH

)
= π̃(a1, λ1)π̃(a2, λ2),

so π̃ is multiplicative. And
π̃
(
(a, λ)∗) = π̃(a∗, λ) = π(a∗) + λ IH = π̃(a, λ)∗.

Thus π̃ is a representation, and it extends π by construction. When π is
faithful and π̃(a, λ) = 0, we have π(a) = −λIH. If λ ̸= 0, then for any b ∈ A
we have

π((λ−1a)b) = λ−1π(a)π(b) = IHπ(b) = π(b).
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As π is faithful, (λ−1a)b = b, and a similarly computation can be made on
the other side, showing that (λ−1a) = IA; but A was assumed not unital. It
follows that λ = 0, and then π(a) = 0 whence a = 0 by the faithfulness of π.
So π̃ is faithful.

As for the uniqueness, suppose that π is non-degenerate and ρ : Ã →
B(H) is a representation with ρ|A = π. We have ρ(a, λ) = ρ(a, 0)+λρ(0, 1) =
π(a) + λρ(0, 1). In Ã we have, for every a ∈ A+ with ∥a∥ ≤ 1, that (a, 0) ≤
(0, 1) (this is Corollary 11.3.8). Then π(a) = π̃(a, 0) = ρ(a, 0) ≤ ρ(0, 1). As
ρ(0, 1) is a projection, it follows by Exercise 11.3.8 that ρ(0, 1)π(a) = π(a)
for all a ∈ A+, and a fortiori for all a ∈ A. Then ρ(0, 1)π(a)ξ = π(a)ξ for all
a ∈ A and ξ ∈ H; and because π is non-degenerate, ρ(0, 1) = IH.

Then, for any a ∈ A and λ ∈ C,
ρ(a, λ) = ρ(a, 0) + λρ(0, 1) = π(a) + λIH = π̃(a, λ).

When π is degenerate the extension is not unique because ρ(0, 1) can be
assigned to be any projection with range containing π(A)H.

11.7. Matrices over a C∗-algebra

(11.7.1) Prove Proposition 11.7.1 (block matrices were already consid-
ered in Section 10.4).

Answer.

(i) Let j be such that ∥aj∥ = max{∥ak∥ : k}. Given ξ̃ ∈ Hn,∥∥∥( n∑
k=1

Ekk ⊗ ak

)
ξ̃
∥∥∥2

=
n∑
k=1

∥akξk∥2 ≤
n∑
k=1

∥ak∥2 ∥ξk∥2

≤ ∥aj∥2
n∑
k=1

∥ξj∥2 = ∥aj∥2 ∥ξ̃∥2.

So the norm is at most ∥aj∥. Now fix ε > 0 and choose ξ ∈ H such
that ∥ξ∥ = 1 and ∥ajξ∥ ≥ ∥aj∥ − ε. Let ξ̃ ∈ Hn be the vector with
ξ in the jth entry and zeros elsewhere. Then∥∥∥( n∑

k=1
Ekk ⊗ ak

)
ξ̃
∥∥∥2

= ∥ajξ∥2 ≥ (∥aj∥ − ε)2.
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This shows that
∥∥∥ n∑
k=1

Ekk ⊗ak

∥∥∥ ≥ ∥aj∥ − ε. As ε was arbitrary, the

reverse inequality is proven, and so
∥∥∥ n∑
k=1

Ekk ⊗ ak

∥∥∥ = ∥aj∥.

(ii) We have, since the matrix is selfadjoint and using what we have just
proven,∥∥∥ [ 0 a

a∗ 0

] ∥∥∥2
=
∥∥∥ [ 0 a
a∗ 0

]2 ∥∥∥∥∥∥ [aa∗ 0
0 a∗a

] ∥∥∥ = max{∥a∗a∥, ∥aa∗∥} = ∥a∥2.

(iii) If
[
IA a
a∗ b

]
≥ 0, then for any ξ ∈ H

⟨(b− a∗a)ξ, ξ⟩ =
〈[
IA a
a∗ b

] [
−aξ
ξ

]
,

[
−aξ
ξ

]〉
≥ 0,

so a∗a ≤ b. Conversely, if a∗a ≤ b, then for any ξ, η ∈ H,〈[
IA a
a∗ b

] [
ξ
η

]
,

[
ξ
η

]〉
= ∥ξ∥2 + ⟨bη, η⟩ + 2Re ⟨aη, ξ⟩

≥ ∥ξ∥2 + ⟨bη, η⟩ − 2⟨a∗aη, η⟩1/2 ∥ξ∥

≥ ∥ξ∥2 + ⟨bη, η⟩ − 2⟨bη, η⟩1/2 ∥ξ∥

= (∥ξ∥ − ⟨bη, η⟩1/2)2 ≥ 0.

(iv) Let ξ, η ∈ H. Let ξ̃ = (0, . . . , 0, ξ, 0, . . . , 0), η̃ = (0, . . . , 0, η, 0, . . . , 0),
where ξ is in the j position and η in the k position. Then

|⟨akjξ, η⟩| = |⟨aξ̃, η̃⟩| ≤ ∥a∥ ∥ξ̃∥ ∥η̃∥ = ∥a∥ ∥ξ∥ ∥η∥.
As ∥akj∥ = max{|⟨akjξ, η⟩| : ∥ξ∥ = ∥η∥ = 1}, we get that ∥akj∥ ≤
∥a∥.

(11.7.2) Given a compact Hausdorff space T , show that the C∗-algebras
A = Mn(C(T )) and B = C(T,Mn(C)) are canonically isomor-
phic, where the norm in B is given by

∥y∥B = sup{∥y(t)∥ : t ∈ T}.

Answer. Since we know that a C∗-algebra admits a unique C∗-norm and
the given norm is a C∗-norm, we do not have to worry about the norm. We
define Γ : A → B by

Γ(ã) =
∑
k,j

akj(t)Ekj .
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We have
Γ(ã+ b̃)(t) =

∑
k,j

(
akj(t) + bkj(t)

)
Ekj =

∑
k,j

akj(t)Ekj +
∑
k,j

bkj(t)Ekj

= Γ(ã)(t) + Γ(b̃)(t).
Also,

Γ(ãb̃)(t) =
∑
k,j

akj(t)Ekj
∑
r,s

brs(t)Ers = Γ(ã)(t) Γ(b̃)(t).

And
Γ(ã∗)(t) =

∑
k,j

ajk(t)Ekj = Γ(ã)(t)∗.

So Γ is a ∗-homomorphism. If Γ(ã) = 0, this means that akj(t) = 0 for all t
and all k, j, so akj = 0 for all k, j and hence a = 0; thus Γ is injective. Given
y ∈ C(T,Mn(C)), let ã =

∑
k,j ykj(t)Ekj . Then Γ(ã) = y and Γ is surjective.

Thus Γ is a C∗-isomorphism.

(11.7.3) Let A be a C∗-algebra and J̃ ⊂ Mn(A). Show that J̃ is an
ideal if and only if J̃ = Mn(J ) for an ideal J ⊂ A.

Answer. Let
J = {a : there exists ã ∈ J̃ such that (ã)11 = a}.

Since addition of matrices and multiplication by scalars are entrywise, J is
a subspace. Given b ∈ J and a ∈ A, let b̃ ∈ J̃ such that b is the 1, 1 entry
of b̃. Then ab is the 1, 1 entry of (E11 ⊗ a)b̃; that is, ab ∈ J . Similarly,
ba ∈ J and so J is an ideal. Assume initially that A is unital. Given any
b̃ =

∑
k,j bkj ⊗ Ekj ∈ J̃ , fix indices r and s. Then

J̃ ∋ (E1r ⊗ IA)b̃(Es1 ⊗ IA) =
∑
k,j

E1rEkjEs1 ⊗ bkj = E11 ⊗ brs,

(AB.11.2)
showing that brs ∈ J . As r, s were arbitrary, b̃ ∈ Mn(J ). Now, given an

arbitrary element b̃ ∈ Mn(J ) the computation (AB.11.2) shows that bkj ∈ J
for all k, j. So, for fixed r, s there exists c̃ ∈ J̃ such that brs is the 1, 1 entry
of c̃. Then

E11 ⊗ brs = (E1r ⊗ IA)c̃(Es1 ⊗ IA) ∈ J̃ .
Then

b̃ =
∑
k,j

Ekj ⊗ bkj =
∑
k,j

(Ek1 ⊗ IA)(E11 ⊗ bkj)(E1j ⊗ IA) ∈ J̃ .
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When A is not unital in the computations above, we replace IA above
with elements from an approximate identity; for instance we get a net of
elements in J̃ that converge to E11 ⊗ brs; and as J̃ is closed, we are done.

Conversely, if J̃ = Mn(J ) for an ideal J ⊂ A, when we perform the
matrix product between and element ã ∈ A and b̃ ∈ J̃ , all the terms will
have a factor from J , and so the result stays in Mn(J ), which is thus an
ideal. Note that we already know that Mn(J ) is a C∗-algebra.

11.8. Finite-Dimensional C∗-algebras

(11.8.1) Let A be a C∗-algebra and p ∈ A a projection. Show that p is
positive and that 0 ≤ p ≤ IA.

Answer. By definition of projection we have p = p∗p, so p is positive. We
also have ∥p∥2 = ∥p∗p∥ = ∥p∥, so if p is nonzero we get that ∥p∥ = 1. Then
0 ≤ p ≤ IA by Corollary 11.3.8.

(11.8.2) Let A be a C∗-algebra and p1, . . . , pm ∈ A projections. Show
that the following statements are equivalent:

(a) p1, . . . , pm are pairwise orthogonal;

(b)
m∑
k=1

pk ≤ IA.

Answer. If p1, . . . , pm are pairwise orthogonal, let p =
∑
k pk. Then p2 = p

and p∗ = p, so p is a projection. By Exercise 11.8.1 we have that p ≤ IA.
The converse is proven in Proposition 10.5.5. The argument is entirely

algebraic, so it applies in any C∗-algebra.
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(11.8.3) Let A be a C∗-algebra, λ1, . . . , λn ∈ C nonzero, and p1, . . . , pn ∈
A pairwise orthogonal projections. Let

a =
n∑
j=1

λjpj .

Show that a is normal, σ(a) = {λ1, . . . , λn} when
∑
j pj = IA

and σ(a) = {0} ∪ {λ1, . . . , λn} when
∑
j pj ̸= IA; and for any

function f : C → C,

f(a) =
n∑
j=1

f(λj)pj .

Answer. The fact that p1, . . . , pn are pairwise orthogonal gives a∗a = aa∗

by a direct computation. From (a−λjIA)pj = 0 we get that a−λjIA cannot
be invertible, and so {λ1, . . . , λn} ⊂ σ(a). Conversely, if

∑
j pj ̸= IA and

λ ̸∈ {λ1, . . . , λn} is nonzero, let q = IA −
∑
j pj , and put

b = − 1
λ
q +

n∑
j=1

1
λj − λ

pj .

Then b(a− λIA) = (a− λIA)b = IA, so λ ̸∈ σ(a). When
∑
j pj = IA, we get

q = 0 in the computation above, so b can be defined even if λ = 0.
When f is any function, it is continuous on σ(a) since it is a finite set.

In fact f agrees with a polynomial on σ(a). The pairwise orthogonality of
the projections gives

ak =
n∑
j=1

λkj pj ,

for any km and so by taking linear combinations we get that g(a) =
n∑
j=1

g(λj)pj

for any polynomial g, and thus for f too.

(11.8.4) Let A be a C∗-algebra, λ1, . . . , λn ∈ C nonzero, and p1, . . . , pn ∈
A pairwise orthogonal projections. Let

a =
n∑
j=1

λjpj .

Show that if a is a projection, then λ1 = · · · = λn = 1.
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Answer. Since a is a projection, σ(a) ⊂ {0, 1} (this follows from a2 = a and
Spectral Mapping, Proposition 9.2.9). From Exercise 11.8.3 we know that
λ1, . . . , λn ∈ σ(a); since they are nonzero, necessarily λj = 1 for all j.

(11.8.5) Let A be a C∗-algebra, λ1, . . . , λn ∈ C distinct and nonzero,
and also µ1, . . . , µm ∈ C distinct and nonzero. Consider pro-
jections p1, . . . , pn, and q1, . . . , qm in A with pkpj = qkqj = 0
when k ̸= j. Show that if

n∑
k=1

λkpk =
m∑
j=1

µjqj

then n = m and λj = µj , pj = qj for all j.

Answer. We use Exercise 11.8.3. Let g be a polynomial with g(λ1) = 1 and
g(λk) = 0 for all k ≥ 2. Then

p1 = g(a) =
m∑
j=1

g(µj)qj .

By Exercise 11.8.4, g(µj) ∈ {0, 1} for all j. If we have µj ̸= λ1 for all j, we can
choose g with g(µj) = 0 for all j and g(λ1) = 1, giving us the contradiction
p1 = 0. Hence there exists j with µj = λ1. By reordering if needed we may
assume that µ1 = λ1. Using a function g with g(µ1) = 1 and g(µj) = 0 for all
j ≥ 2 (possible since µ1, . . . , µm are distinct), we get p1 = q1. We may now
remove the first term, and repeat the argument with both sides starting from
2. Thus we inductively get µj = λj and qj = pj , after possibly reordering on
each step. If one side runs out before the other we would get 0 on one side
of the equality and a nonzero linear combination of projections on the other,
leading to a contradiction; so m = n.
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CHAPTER

Bounded Operators on a Hilbert Space:
Part II

12.1. Locally Convex Topologies in B(H)

(12.1.1) Let H be a Hilbert space. Show that the adjoint map T 7−→ T ∗

is wot-continuous on B(H).

Answer. Let {Tj} ⊂ B(H) be a net such that Tj
wot−−−→ T ∈ B(H). Fix

ξ, η ∈ H. Then
⟨T ∗
j ξ, η⟩ = ⟨Tjη, ξ⟩ →c⃝ 2024 Mart́ın Argerami All Rights Reserved ⟨Tη, ξ⟩ = ⟨T ∗ξ, η⟩.

As this can be done for all choices of ξ, η, we get that T ∗
j

wot−−−→ T .

(12.1.2) Show that any bounded sot or wot Cauchy net in B(H) is
convergent.

517
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Answer. Since wot is weaker than sot, it is enough to show that a wot-Cauchy
net is convergent. Let {Tj} ⊂ B(H) be a bounded wot-Cauchy net with
∥Tj∥ ≤ c for all j. Given ξ, η ∈ H, we can consider the wot neighbourhoods
of 0 given by Nε = {S ∈ B(H) : |⟨Sξ, η⟩| < ε}, ε > 0. So for each ε > 0 there
exists j0 such that Tj − Tk ∈ Nε for all j, k ≥ j0. This implies that the net
of numbers {⟨Tjξ, η⟩} is Cauchy. Define [ξ, η] = limj⟨Tjξ, η⟩. As limits are
linear, this is a sesquilinear form. And it is bounded, for |[ξ, η]| ≤ c ∥ξ∥ ∥η∥.
By Proposition 10.1.5 there exists T ∈ B(H) such that ⟨Tξ, η⟩ = limj⟨Tξ, η⟩
for all ξ, η ∈ H, so Tj

wot−−−→ T .

(12.1.3) Let H be a separable Hilbert space. Show that the sot and wot
are metrizable on the closed unit ball.

Answer. Since H is separable and subsets of separable metric spaces are
separable, BH

1 (0) is separable. Let {ξn} ⊂ BH
1 (0) be a countable dense

subset and put

ds(S, T ) =
∞∑
n=1

2−n ∥(S − T )ξn∥.

This is a metric in B
B(H)
1 (0). Indeed, ds ≥ 0 and ds(T, T ) = 0; and the

triangle inequality follows from the triangle inequality for the norm: ∥(S −
T )ξn∥ ≤ ∥(S − R)ξn∥ + ∥(R − T )ξn∥. Since both the sot topology and the
metric ds are translation invariant, we only need to deal with convergence at
0. Suppose that Tj

sot−−−→ 0. Fix ε > 0 and choose n0 such that 2n0 > ε−1.
Then, since ∥Tξn∥ ≤ 1 for all n,

ds(Tj , 0) =
∞∑
n=1

2−n ∥Tξn∥ ≤
n0∑
n=1

2−n ∥Tξn∥ +
∞∑

n=n0+1
2−n ∥Tξn∥

≤
n0∑
n=1

2−n ∥Tξn∥ +
∞∑

n=n0+1
2−n =

n0∑
n=1

2−n ∥Tξn∥ + 2−n0

<

n0∑
n=1

2−n ∥Tξn∥ + ε.

By the Limsup Routine, limj ds(Tj , 0) = 0. Now, conversely, suppose that
ds(Tj , 0) → 0. Fix ε > 0 and ξ ∈ H with ∥ξ∥ ≤ 1. As {ξn} is dense, there
exists n0 such that ∥ξn0 − ξ∥ < ε. Choose j0 such that ds(Tj , 0) < ε/2n0 .
Then, for j ≥ j0,

∥Tjξ∥ ≤ ∥Tjξn0∥ + ∥Tj(ξ − ξn0)∥ ≤ ∥Tjξn0∥ + ε ≤ 2n0ds(Tj , 0) + ε

Then limj ∥Tjξ∥ = 0 by the Limsup Routine.
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Now we need to consider the wot. With the same notation as above,
we define

dw(S, T ) =
∞∑

n,m=1
2−n−m|⟨(S − T )ξn, ξm⟩|.

The fact that ∥S∥, ∥T∥, ∥ξn∥ ∈ [0, 1] for all n guarantees that convergence
of the series. With the same argument as for ds above we get that dw is a
metric. If Tj

wot−−−→ 0 we argue as above to get

dw(Tj , 0) ≤
n0∑

n,m=1
|⟨Tjξn, ξm⟩| + 3ε,

and we conclude that limj dw(Tj , 0) = 0 by the Limsup Routine. Conversely,
if we have dw(Tj , 0) → 0 fix ε > 0 and ξ, η ∈ H. We may assume without
loss of generality that ∥ξ∥ ≤ 1 and ∥η∥ ≤ 1. We can get n0 and m0 with
∥ξ − ξn0∥ < ε and ∥η − ξm0∥ < ε. Choose

|⟨Tjξ, η⟩| ≤ 2ε+ |⟨Tjξn0 , ξm0 | ≤ 2n0+m0dw(Tj , 0) + 2ε.
Then limj |⟨Tjξ, η⟩| = 0 by the Limsup Routine.

(12.1.4) Prove the equalities (12.1):

B
B(H)
1 (0) = B

B(H)
1 (0)

sot
= B

B(H)
1 (0)

wot
.

Answer. Because each topology is successively weaker than the previous one,
we have

B
B(H)
1 (0) ⊂ B

B(H)
1 (0)

sot
⊂ B

B(H)
1 (0)

wot
.

Now suppose that {Tj} ⊂ B
B(H)
1 (0)

wot
is wot-Cauchy. Exercise 12.1.2 guar-

antees that there exists T ∈ B(H) with Tj
wot−−−→ T . Each Tj is a wot limit of

a net {Tj,k}k with ∥Tj,k∥ ≤ 1 for all k. Then
|⟨Tjξ, η⟩| = lim

k
|⟨Tj,kξ, η⟩| ≤ lim sup

k
∥Tj,k∥ ∥ξ∥ ∥η∥ ≤ ∥ξ∥ ∥η∥.

Then ∥Tj∥ = sup{|⟨Tjξ, η⟩| : ∥ξ∥ = ∥η∥ = 1} ≤ 1. And then repeating the

argument we get that ∥T∥ ≤ 1. Thus BB(H)
1 (0)

wot
⊂ B

B(H)
1 (0), completing

the chain of equalities.

(12.1.5) Let {Tn}n∈N ⊂ B(H) such that Tn
sot−−−→ T ∈ B(H). Show that

{Tn} is bounded.
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Answer. The idea we need was already used in the proof of Corollary 6.3.17.
Since {Tnx} is a convergent sequence in a normed space, it is bounded.

Then
sup{∥Tnx∥ : n ∈ N} < ∞

for each x. By the Uniform Boundedness Principle (Theorem 6.3.16), there
exists k > 0 with ∥Tn∥ ≤ k for all n.

(12.1.6) Let T ∈ B(H), {ξj} ⊂ H with dense span, and {Tα} ⊂ B(H) a
net such that there exists c > 0 with ∥Tα∥ ≤ c for all α. Show
that if Tαξj → Tξj for al j, then Tα

sot−−−→ T .

Answer. Let ξ ∈ H. Fix ε > 0. By hypothesis there exists η ∈ span{ξj}
with ∥ξ − η∥ < ε. Then

∥(T − Tj)ξ∥ ≤ ∥Tξ − Tη∥ + ∥Tη − Tjη∥ + ∥Tjη − Tjξ∥

≤ 2c∥ξ − η∥ + ∥Tη − Tjη∥ ≤ 2cε+ ∥Tη − Tjη∥.
So lim supj ∥(T−Tj)ξ∥ ≤ 2cε. As ε was arbitrary, the Limsup Routineimplies
that Tjξ → Tξ.

(12.1.7) Explain why the argument you used in Exercise 12.1.5 does not
apply to nets (as guaranteed by Remark 12.1.11).

Answer. The argument in Exercise 12.1.5 needs the fact that a convergent
sequence of numbers is bounded. The same is not true for nets of numbers,
so the argument does not apply. For a simple example, consider the net
{e−n}n∈Z with the usual order in the integers. For an example that “feels
more like a net” let F the collection of all finite subsets of N, and let

αF =
{

|F |, 1 ̸∈ F

0, 1 ∈ F

Then αF → 0, as eventually 1 ∈ F , but |αF | can be arbitrary large.

(12.1.8) Let K ∈ K(H) and {Tj} ⊂ B(H) be a bounded net with
Tj

sot−−−→ 0. Show that ∥TjK∥ → 0. Show by example that
the assertion can fail if the net is unbounded.
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Answer. Suppose first that K is rank-one. Then Kξ = ⟨ξ, η⟩nu for some
η, ν ∈ H. We have

∥TjKξ∥ = |⟨ξ, η⟩| ∥Tjν∥ ≤ ∥Tjν∥ ∥η∥ ∥ξ∥.
Given ε > 0 choose j0 such that ∥Tjν∥ ≤ ε/∥η∥ for all j ≥ j0. Then for
j ≥ j0 we have

∥TjKξ∥ ≤ ε ∥ξ∥,
which means that ∥TjK∥ → 0. When K is finite-rank it is a sum of rank-one
operators, and we also get ∥TjK∥ → 0. For K arbitrary, by Proposition 10.6.4
there exists a sequence {Kn} of finite-rank operators with ∥K − Kn∥ → 0.
Fix c with ∥Tj∥ ≤ c for all j. Then

∥TjK∥ ≤ ∥Tj(K −Kn)∥ + ∥TjKn∥ ≤ c∥K −Kn∥ + ∥TjKn∥,
which gives

lim sup
j

∥TjK∥ ≤ c∥K −Kn∥.

As this can be done for all n, the Limsup Routine gives us that ∥TjK∥ → 0.
As for the example, let Tj = √

nj ⟨ξ, ξnj ⟩ ξnj as in Remark 12.1.12. Let

Kξ =
∑
n

n−1/4 ⟨ξ, ξn⟩ ξn

for the same orthonormal basis as in the remark. Then
TjKξ = n

1/4
j ⟨ξ, ξnj ⟩ ξnj .

So ∥TjK∥ = n
1/4
j is unbounded and cannot converge to 0.

(12.1.9) Show that Tj
sot−−−→ T if and only if Tr(S(Tj−T )∗(Tj−T )) → 0

for all S ∈ F(H).

Answer. Suppose first that Tj → T . Then ∥(Tj − T )ξ∥ → 0 for all ξ ∈ H.
Since S is finite-rank, we may write S =

∑m
k=1 ξkη

∗
k. Then

Tr(S(Tj − T )∗(Tj − T )) =
m∑
k=1

Tr(ξkη∗
k(Tj − T )∗(Tj − T ))

=
m∑
k=1

⟨(Tj − T )ξ, (Tj − T )η⟩

≤
m∑
k=1

∥(Tj − T )ξ∥ ∥(Tj − T )η∥ →c⃝ 2024 Mart́ın Argerami All Rights Reserved 0.
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Conversely, if Tr(S(Tj − T )∗(Tj − T )) → 0 for all S ∈ F(H) and ξ ∈ H, with
S = ξξ∗ we have

∥(Tj − T )ξ∥2 = ⟨(Tj − T )∗(Tj − T )ξ, ξ⟩ = Tr(S(Tj − T )∗(Tj − T )) →c⃝ 2024 Mart́ın Argerami All Rights Reserved 0.

(12.1.10) Let {Tj} ⊂ B(H) with ∥Tj∥ ≤ c for all j and families {Pj} and
{Qj} of pairwise orthogonal projections such that Tj = QjTjPj
for all j. Show that

∑
j Tj converges sot.

Answer. As projections are positive, the series P =
∑
j Pj converges sot by

Proposition 12.1.10. Then, for any ξ ∈ H

ξ =
∑
j

Pjξ and ∥ξ∥2 =
∑
j

∥Pjξ∥2.

Fix ξ ∈ H and ε > 0. Then there exists j0 such that
∑
j≥j0

∥Pjξ∥2 < ε. Then
for any finite set F ⊂ {j : j ≥ j0}, as the Qj are pairwise orthogonal,∥∥∥∑

j∈F
Tjξ
∥∥∥2

=
∑
j∈F

∥Tjξ∥2 =
∑
j∈F

∥TjPjξ∥2 ≤ c
∑
j∈F

∥Pjξ∥2 < cε.

This shows that the tails of the series are arbitrarily small, and so
∑
j Tjξ

converges sot.

(12.1.11) Show that in Exercise 12.1.10 it is not possible to relax the
hypothesis on the projections to just Tj = PjTj (that is, it
is not enough for the ranges to be pairwise orthogonal, the
domains should be too).

Answer. Let {Ek,j} be the canonical matrix units on an infinite-dimensional
Hilbert space. Let Tj = Ej,1. Then the ranges of the Tj are pairwise orthog-
onal but the series

∑
j Ej,1 cannot converge sot, as Ej,1e1 = ej for all j, and

the series
∑
j ej cannot converge as all its elements have norm equal to 1.

(12.1.12) Prove Proposition 12.1.5. Use ideas from the proof of Propo-
sition 12.1.4 and Exercise 10.4.13. The idea in Exercise 11.2.3
will be needed, too.
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Answer. Fix a wot-neighbourhood W of 0: choose ξ1, . . . , ξn, η1, . . . , ηn ∈ H
and put

W = {S ∈ B(H) : |⟨Sξk, ηk⟩| < 1}.
Let

L = span{ξ1, . . . , ξn, η1, . . . , ηn}
Because dimL < ∞ and dim H = ∞, there exists a subspace L′ ⊂ L⊥ with
dimL′ = dimL. We then have a natural identification of L + L′ with L2,
and we can consider operators on L2 as 2 × 2 block matrices. Let Q be the
orthogonal projection onto L, and R the orthogonal projection onto L′. Let
V : L → L′ be a partial isometry such that V ∗V = Q, V V ∗ = R (it exists
because dimL′ = dimL). Let S = QTQ. We define
U0 = S+(Q−|S∗|2)1/2V ∗−V (Q−|S|2)1/2+V S∗V ∗, U = U0+(IH−Q−R).
Then (to be checked at the end) U∗

0U0 = Q+R, and since Q+R = IL+L′ on
the finite-dimensional space L+L′ we also get that U0U

∗
0 = IL+L′ . Therefore

U∗U = UU∗ = IH. And, since QUQ = QTQ,
⟨(U − T )ξk, ηk⟩ = ⟨(U − T )Qξk, Qηk⟩ = ⟨Q(U − T )Qξk, ηk⟩ = 0,

showing that U − T ∈ W, which is U ∈ T + W. We have shown that for
every wot-neighbourhood W of T , there exists a unitary UW ∈ T + W. That
is, T = limW UW is a wot-limit of unitaries.

As for the computation for U0, using Exercise 11.2.3 and noting that
S∗V = SV = QV = V R = 0,

we have
U∗

0U0 = |S|2 + S∗(Q− |S∗|2)1/2V ∗ + V (Q− |S∗|2)1/2S + V (Q− |S∗|2)V ∗

+Q− |S|2 − (Q− |S|2)1/2S∗V ∗ − V S(Q− |S|2)1/2 + V |S∗|2V ∗

= |S|2 + S∗(Q− |S∗|2)1/2V ∗ + V (Q− |S∗|2)1/2S + V (Q− |S∗|2)V ∗

+Q− |S|2 − S∗(Q− |S∗|2)1/2V ∗ − V (Q− |S∗|2)1/2S + V |S∗|2V ∗

= V QV ∗ +Q = R+Q.

(12.1.13) Show that Tj
wot−−−→ T if and only if Tr(STj) → Tr(ST ) for all

S ∈ F(H).

Answer. By Proposition 10.6.1, any S ∈ F(H) is of the form S =
∑m
k=1 ξkη

∗
k.

If Tj → T wot, then for an orthonormal basis {νn} such that its first r
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elements span the subspace span{η1, . . . , ηm},

Tr(STj) = Tr(TjS) =
∑
n

⟨TjSνn, νn⟩ =
r∑

n=1

m∑
k=1

⟨Tjξk, νn⟩ ⟨νn, ηk⟩

−−→
j

r∑
n=1

m∑
k=1

⟨Tξk, νn⟩ ⟨νn, ηk⟩ = Tr(TS) = Tr(ST ).

Conversely, if Tr(STj) → Tr(ST ) for all S ∈ F(H), then given ξ, η ∈ H
⟨Tjξ, η⟩ = Tr(STj) →c⃝ 2024 Mart́ın Argerami All Rights Reserved Tr(ST ) = ⟨Tξ, η⟩,

where S = ξη∗. So Tj
wot−−−→ T .

(12.1.14) Prove Proposition 12.1.6.

Answer. We have
∥(Pj − P )ξ∥2 = ⟨(Pj − P )2ξ, ξ⟩ = ⟨(Pj + P − PPj − PjP )ξ, ξ⟩

= ⟨Pjξ, ξ⟩ + ⟨Pξ, ξ⟩ − ⟨Pjξ, Pξ⟩ − ⟨PjPξ, ξ⟩

→c⃝ 2024 Mart́ın Argerami All Rights Reserved 2⟨Pjξ, ξ⟩ − 2⟨Pjξ, ξ⟩ = 0,

so Pj
sot−−−→ P . For the case of unitaries,

∥(Uj − U)ξ∥2 = ⟨(Uj − U)∗(Uj − U)ξ, ξ⟩

= ⟨(U∗
j Uj − U∗

j U − U∗Uj + U∗U)ξ, ξ⟩

= ⟨ξ, ξ⟩ − ⟨Uξ, Ujξ⟩ − ⟨Ujξ, Uξ⟩ + ⟨ξ, ξ⟩

→c⃝ 2024 Mart́ın Argerami All Rights Reserved 2⟨ξ, ξ⟩ − 2⟨Uξ, Uξ⟩ = 0,

and so Uj
sot−−−→ U .

(12.1.15) Find an example of a wot-convergent sequence of projections
such that its limit is not a projection.

Answer. Let H be a separable infinite-dimensional Hilbert space with or-
thonormal basis {ξn} and corresponding matrix units {Ekj}. Let

Pk = 1
2(E11 + E1k + Ek1 + Ekk).
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Then P ∗
kPk = Pk for all k, and so Pk is an orthogonal projection. If ξ =∑

n cnξn, then

⟨(Pk − 1
2 E11)ξ, ξ⟩ = 1

2

∞∑
n,m=1

cncm
〈(
E1k + Ek1 + Ekk

)
ξn, ξm

〉
= 1

2

∞∑
m=1

cm
〈
ckξ1 + c1ξk + ckξk, ξm

〉
= 1

2
(
ckc1 + c1ck + |ck|2

)
−−−−→
k→∞

0.

So Pk
wot−−−→ 1

2 E11. In light of Proposition 12.1.6, the sequence {Pk} does
not converge sot.

(12.1.16) Find an example of a wot-convergent sequence of unitaries such
that its limit is not a unitary.

Answer. We can use the exact same idea as in Exercise 12.1.15.
Let H be a separable infinite-dimensional Hilbert space with orthonor-

mal basis {ξn} and corresponding matrix units {Ekj}. Let

Uk = 1√
2
(E11 + E1k + Ek1 − Ekk).

Then U∗
kUk = UkU

∗
k = I for all k, and so Uk is a unitary. If ξ =

∑
n cnξn,

then

⟨(Uk − 1√
2
E11)ξ, ξ⟩ = 1√

2

∞∑
n,m=1

cncm
〈(
E1k + Ek1 − Ekk

)
ξn, ξm

〉
= 1√

2

∞∑
m=1

cm
〈
ckξ1 + c1ξk − ckξk, ξm

〉
= 1√

2
(
ckc1 + c1ck − |ck|2

)
−−−−→
k→∞

0.

So Uk
wot−−−→ 1√

2 E11, which is not a unitary. In light of Proposition 12.1.6,
the sequence {Uk} does not converge sot.

(12.1.17) Show that the sot-closure of U(H) is the set of isometries.
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Answer. Suppose that {Uj} is a net of unitaries and Uj
sot−−−→ V . For any

ξ ∈ H,
∥V ξ∥ = lim

j
∥Ujξ∥ = ∥ξ∥,

so V is an isometry.
Conversely, let V ∈ B(H) be an isometry. If dim H < ∞, V is a

unitary and there is nothing to prove, so we assume dim H = ∞. Let W =
{T : ∥(T − V )ξj∥ < ε, j = 1, . . . , n} be a sot neighbourhood of V . Let
H1 = span{ξ1, . . . , ξn} and K1 = span{V ξ1, . . . , V ξn}. As H is infinite-
dimensional, dim H⊥

1 = dim K⊥
1 = ∞. By mapping an orthonormal basis of

H⊥
1 to an orthonormal basis of K⊥

1 we induce a unitary W : H⊥
1 → K⊥

1 . Then
U = V |H1 ⊕ W is a unitary; indeed, both V |H1 and W are unitaries with
orthogonal ranges, so
U∗U = (V |∗H1

+W ∗)(V |H1 +W ) = V |∗H1
V |H1 +W ∗W = IH1 + IH⊥

1
= IH,

and similarly UU∗ = IH. , we have
(U − V )ξj = V |H1ξj − V ξj = 0.

So U ∈ W. This shows that given the family {W} of sot-neighbourhoods of
V , for each W we can construct a unitary U with U ∈ W. Thus there is a
net of unitaries that converges sot to V .

(12.1.18) Show that both sot and σ-weak are weaker than σ-sot, which
is weaker than the norm topology.

Answer. It ∥Tj − T∥ → 0, then for any S ∈ T (H) we have
| Tr(S(Tj − T )∗(Tj − T ))| ≤ ∥Tj − T∥2 Tr(|S|) →c⃝ 2024 Mart́ın Argerami All Rights Reserved 0.

So the σ-sot is weaker than the norm topology. If Tj − T
σ-sot−−−−→ 0 and

S ∈ T (H) is positive, then
| Tr(S(T − Tj))| = | Tr(S1/2 S1/2(T − Tj))|

≤ Tr(S)1/2 Tr((T − Tj)∗S(T − Tj)1/2 →c⃝ 2024 Mart́ın Argerami All Rights Reserved 0.
As the positive trace-class operators span T (H) (Lemma 10.7.4 and Propo-
sition 10.7.5), we get that Tj

σ-weak−−−−−−→ T . Also, given ξ ∈ H, with S = ξξ∗

we have
∥(Tj − T )ξ∥2 = Tr(S(Tj − T )∗(Tj − T )) →c⃝ 2024 Mart́ın Argerami All Rights Reserved 0.

So Tj
sot−−−→ T .
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(12.1.19) Show that the sot and σ-sot agree on bounded sets.

Answer. The sot is weaker than the σ-sot, so we need to show that if Tj
sot−−−→

T and ∥Tj∥ ≤ c for all j, then Tj
σ-sot−−−−→ T . Fix ε > 0 and let S ∈ T (H). By

Proposition 10.7.9 there exists S0 ∈ F(H) such that ∥S − S0∥1 < ε. Then
| Tr(S(Tj − T )∗(Tj − T ))| ≤

∣∣Tr
(
(S − S0)(Tj − T )∗(Tj − T )

)
|

+ | Tr(S0(T − Tj)∗(Tj − T ))|

≤ ∥S − S0∥1 ∥Tj − T∥2

+ | Tr(S0(T − Tj)∗(Tj − T ))|

≤ 4c2 ε+ | Tr(S0(T − Tj)∗(Tj − T ))|.

Then lim supj | Tr(S(Tj − T )∗(Tj − T ))| ≤ 4c2ε for all ε > 0 and so
lim sup

j
| Tr(S(Tj − T )∗(Tj − T ))| = 0,

which shows that limj | Tr(S(Tj − T )∗(Tj − T ))| = 0. That is, Tj
σ-sot−−−−→ T .

(12.1.20) Let P,Q ∈ B(H) be projections. Show that
IH − P ∧Q = (IH − P ) ∨ (IH −Q).

Answer. Given a subset K ⊂ H, we use the notation [K] to mean the
orthogonal projection onto span K. We have

IH − P ∧Q = [(PH ∩QH)⊥] = [(PH)⊥ ∪ (QH)⊥]

= [(IH − P )H ∪ (IH −Q)H] = (IH − P ) ∨ (IH −Q).

(12.1.21) For each k, j = 1, . . . , n consider a net {Tk,j,α}α ⊂ B(H). Form
the n× n matrices T̃α = [Tk,j,α].

(a) Show that T̃α
wot−−−→ T̃ in B(Hn) if and only if Tk,j,α

wot−−−→
Tk,j for each k, j.

(b) Show that T̃α
sot−−−→ T̃ in B(Hn) if and only if Tk,j,α

sot−−−→
Tk,j for each k, j.
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Answer. By the linearity of the topologies we may assume without loss of
generality that T = 0.

(a) Suppose first that T̃α
wot−−−→ 0. Fix ξ, η ∈ H, and let ξ̃ ∈ Hn be the vector

with ξ in the jth entry and zeros elsewhere, and let η̃ with η in the kth

entry and zeros elsewhere. Then
⟨Tk,j,αξ, η⟩ = ⟨T̃αξ̃, η̃⟩ →c⃝ 2024 Mart́ın Argerami All Rights Reserved 0.

This can be done for any ξ, η ∈ H, so Tk,j,α
wot−−−→ 0.

Conversely, if Tk,j,α
wot−−−→ 0 for each k, j, fix ξ̃, η̃ ∈ Hn. Then

⟨T̃αξ̃, η̃⟩ =
n∑

k,j=1
⟨Tk,j,αξj , ηk⟩ →c⃝ 2024 Mart́ın Argerami All Rights Reserved 0.

Therefore T̃α
wot−−−→ 0.

(b) Suppose first that T̃α
sot−−−→ 0. Fix ξ ∈ H, and let ξ̃ ∈ Hn be the vector

with ξ in the jth entry and zeros elsewhere. Then

∥Tk,j,αξ∥2 ≤
n∑
h=1

∥∥∥Th,j,αξj∥∥∥2
= ∥T̃αξ̃∥2 →c⃝ 2024 Mart́ın Argerami All Rights Reserved 0.

This can be done for any ξ ∈ H, so Tk,j,α
sot−−−→ 0.

Conversely, if Tk,j,α
sot−−−→ 0 for each k, j, fix ξ̃ ∈ Hn. Then

∥T̃αξ̃∥2 =
n∑
k=1

∥∥∥∥ n∑
j=1

Tk,j,αξj

∥∥∥∥2
≤

n∑
k=1

n∑
j=1

∥Tk,j,αξj∥2 →c⃝ 2024 Mart́ın Argerami All Rights Reserved 0.

Therefore T̃α
sot−−−→ 0.

(12.1.22) Let {Pj}j∈J ⊂ B(H) be a net of pairwise orthogonal projec-
tions. Show that the series P =

∑
j Pj converges sot, and

P =
∨
j Pj .

Answer. Since Pj ≥ 0 for all j, the net of partial sums is monotone non-
decreasing. Also,

∑
j∈F Pj ≤ IH for all finite F (since the sum is a projection).

Then the series converges by Proposition 12.1.10. Let us denote the limit by
P . We know that P is a projection since P 2 = P by Proposition 12.1.13, and
P = P ∗ because P is positive, being a sot limit of positives (even a wot limit
of positives is positive).
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If ξ ∈
⋃
j PjH, then there exists j with Pjξ = ξ. This gives us

Pξ = PPjξ = Pjξ = ξ. Thus span∥·∥
⋃
j

PjH ⊂ PH. Conversely, if

ξ ∈
(⋃

j PjH
)⊥

, then Pjξ = 0 for all j. This gives us
∑
j∈F Pjξ = 0 for all

finite F , and taking limit Pξ = 0. That is,
(

span∥·∥
⋃
j

PjH
)⊥

⊂ (PH)⊥,

which is the inclusion PH ⊂
⋃
j PjH.

Alternatively, here is a direct argument to show the convergence. Let
V = {T : ∥Tξk∥ < 1, k = 1, . . . ,m} be a sot-neighbourhood of 0. Form
an orthonormal basis {ηj,ℓ}j,∈J, ℓ∈Lj ∪ {νr}r where each {ηj,ℓ}ℓ∈Lj is an or-
thonormal basis for PjH. For each k = 1, . . . ,m, by Parseval there exists a
finite set Fk ⊂

⋃
j∈J, ℓ∈Lj (j, ℓ) such that∑

(j,ℓ)̸∈Fk

|⟨ξk, ηj,ℓ⟨|2 < 1.

Put F = {j : ∃ℓ, k, (j, ℓ) ∈ Fk. Then for any F ′ ⊃ F∥∥∥ ∑
j ̸∈F ′

Pjξk

∥∥∥2
≤
∥∥∥∑
j ̸∈F

Pjξk

∥∥∥2
≤

∑
(j,ℓ)̸∈Fk

|⟨ξk, ηj,ℓ⟩|2 < 1.

for all k. This means that
∑
j∈F ′ Pj ∈ V. As this can be done for any

sot-neighbourhood of 0, we have that the series converges.

12.2. Multiplication Operators

(12.2.1) Prove Proposition 12.2.2.

Answer.

(i) We have
∥Mfh∥2

2 =
∫
X

|f |2 |h|2 dµ ≤ ∥f∥2
∞ ∥h∥2

2.
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So Mf is bounded and ∥Mf∥ ≤ ∥f∥∞. Now fix ε > 0 and choose E with
µ(E) < ∞ and |f | > ∥f∥∞ − ε on E. Then

∥Mf1E∥2
2 =

∫
E

|f |2 dµ ≥ (∥f∥∞ − ε)2 µ(E) = (∥f∥∞ − ε)2 ∥1E∥2.

Thus ∥Mf∥ ≥ (∥f∥∞ − ε)2. As ε was arbitrary, ∥Mf∥ ≥ ∥f∥∞.
(ii) We have

(Mf +Mg)h = Mfh+Mgh = fg + fh = (f + g)h = Mf+gh

and
MfMgh = f Mgh = fgh = Mfgh

for all h, so Mf +Mg = Mf+g and MfMg = Mfg.
(iii) We have

⟨Mfg, h⟩ =
∫
X

fg h̄ dµ =
∫
X

g f̄ h dµ = ⟨g,Mf̄h⟩.

So M∗
f = Mf̄ . If Mf = M∗

f , then 0 = Mf − Mf̄ = Mf−f̄ , so f = f̄ a.e.
and f is real a.e.

(iv) Suppose that λ ∈ ess ran f . Then for ε > 0 there exists E with µ(E) > 0
and |f − λ| < ε on E. In particular, for each n ∈ N we have

µ(f−1(B1/n(λ))) > 0.
The sets f−1(B1/n(λ)) decrease as n increases. Fix X0 ⊂ X with 0 <

µ(X0) < ∞ and µ(X0 ∩ f−1(B1(λ))) > 0 (X0 exists because µ is semifi-
nite). Let

Fn = X0 ∩ f−1(B1/n(λ)), gn = 1
µ(Fn)1/2 1Fn .

Then ∥gn∥2 = 1, and

∥(Mf − λI)gn∥2
2 = 1

µ(Fn)

∫
Fn

|f − λ|2 ≤ 1
n2 →c⃝ 2024 Mart́ın Argerami All Rights Reserved 0.

Hence Mf − λI is not bounded below, which implies it is not invertible.
So λ ∈ σ(Mf ).

Conversely, if λ ̸∈ ess ran f then there exists ε > 0 such that
µ(f−1(Bε(λ))) = 0.

LetG = f−1(Bε(λ)) and g = 1
f−λ 1X\G. OnX\G we have that |f−λ| ≥ ε,

so ∥g∥∞ ≤ 1
ε . And

(Mf − λI)Mgh = |f − λ| 1
|f − λ|

1X\G h = 1X\G h,

which is equal to h in L2(X) since µ(G) = 0. As multiplier operators
commute, Mg is the inverse of Mf − λI and so λ ̸∈ σ(Mf ).
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(12.2.2) Show that the semifinite hypothesis is crucial for (iv) to hold
in Proposition 12.2.2.

Answer. Let X = {1,∞} with µ({1}) = 1 and µ({∞}) = ∞. Let f =
α 1{1} + β 1{∞} ∈ L∞(X) with α ̸= β. Given g ∈ L2(X), since ∥g∥2 < ∞ we
have g(∞) = 0. Then fg = αg, so σ(Mf ) = {α} ⊊ {α, β} = ess ran f .

(12.2.3) Show that λ ∈ σ(Mf ) is an eigenvalue with multiplicity m if
and only if {f = λ} consists of exactly m atoms.

Answer. We work first with the case where m < ∞.
Suppose first that dim ker(Mf − λI) = m. This subspace consists pre-

cisely of those functions h ∈ L2(X) such that (f − λ)h = 0. If {f = λ} =⋃m+1
j=1 Ej with µ(Ej) > 0 for all j and the Ej pairwise disjoint, then {1Ej}m+1

j=1
would be m+1 linearly independent functions in ker(Mf −λI), contradicting
that dim ker(Mf − λI) = m. We cannot have any Ej infinitely divisible into
sets of positive measure, because this would give us dim ker(Mf − λI) = ∞.
So there is a maximal partition ker(Mf − λI) =

⋃r
j=1 Ej with each Ej an

atom for µ. If r < m we also get a contradiction, because we cannot distin-
guish m linearly independent functions by using r < m points (there would
be two functions that agree at every point). We have shown that {f = λ}
consists of precisely m atoms.

Conversely, if {f = λ} consists of preciselym atoms {Ej}, thenMf1Ej =
λ 1Ej , so dim ker(Mf − λI) ≥ m. As before the dimension cannot be more
than m, because we would have m + 1 linearly independent functions to be
separated by m points. Thus dim ker(Mf − λI) = m.

Now we assume m = ∞. If dim ker(Mf − λI) = ∞, then there are
infinitely many linearly independent functions in ker(Mf − λI), making it
impossible for {f = λ} to have finitely many atoms. Conversely, if {f = λ} is
arbitrarily divisible into partitions of sets with positive measure, we get that
dim ker(Mf − λI) = ∞.

12.3. Commutants and Double Commutants
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(12.3.1) Show that B(H)′ = K(H)′ = C IH, and (C IH)′ = B(H).

Answer. We know that C IH ⊂ B(H)′. Suppose that T ∈ B(H)′. In partic-
ular T commutes with all rank-one operators. So for any ξ, η ∈ H we have
Tξη∗ = ξη∗T . Applied to η with ∥η∥ = 1, this gives us

Tξ = ⟨η, η⟩Tξ = Tξη∗η = ξη∗Tη = ⟨Tη, η⟩ξ.
If T = 0 then T = λ I with λ = 0; and if T ̸= 0, then there exists ξ with
Tξ ̸= 0, which implies that λ = ⟨Tη, η⟩ ≠ 0, and thus Tξ = λξ for all ξ ∈ H.
That is T ∈ C IH.

The argument above only used finite-rank operators (in fact, rank-one),
so it also proves that K(H)′ = C IH.

The equality (C IH)′ = B(H) is just the fact that λIH commutes with
all T ∈ B(H), so (CIH)′ is a big as it can be.

(12.3.2) Let H = ℓ2(N). Let A = {Ma : a ∈ ℓ∞(N)} the algebra of
multipliers. Show that A′ = A.

Answer. Since TaTb = Tab = Tba = TbTa for all a, b, A is abelian and so
A ⊂ A′. Now let T ∈ A′. Write {en} ⊂ H for the canonical basis, both
as elements of H and of ℓ∞(N). Then we can consider the multiplication
operators {Men}. The operator Men is precisely the projection onto C en,
since Mena = anen. Then, since T ∈ A′,

⟨Tej , ek⟩ = ⟨TMejej ,Mekek⟩ = ⟨MekTMejej , ek⟩

= ⟨MekMejTej , ek⟩ = δk,j⟨Tek, ek⟩.
Therefore, denoting tn = ⟨Ten, en⟩,

Tξ =
∑
n

⟨ξ, en⟩Ten =
∑
n

tn⟨ξ, en⟩ en.

That is, T = Ma with a = (tn). And a ∈ ℓ∞(N) since
|tn| = |⟨Ten, en⟩| ≤ ∥T∥.

So T ∈ A.

(12.3.3) Let M ⊂ B(H) be a von Neumann algebra. Show that
Z(M′) = Z(M).

Conclude that M is a factor if and only if M′ is a factor.
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Answer. We have
Z(M′) = M′ ∩ M′′ = M′ ∩ M = Z(M).

When either of M or M′ is a factor, we have Z(M) = C Ih = Z(M′), so the
other one is a factor.

(12.3.4) Let D ∈ Mn(C) be diagonal with all diagonal entries distinct.
Show {D}′ = {D}′′ = {E ∈ Mn(C) : diagonal}.

Answer. We have D =
∑n
k=1 dkEkk. Suppose that TD = DT . Writing

T =
∑n
k,j=1 tkjEkj , we have

TD =
n∑

h,k,j=1
tkjdhEkjEhh =

n∑
k,j=1

djtkjEkj

and

DT =
n∑

h,k,j=1
tkjdhEhhEkj =

n∑
k,j=1

dktkjEkj .

Comparing entries we see that for each k, j we have
djtkj = dktkj .

If k ̸= j, from dj ̸= dk we conclude that tkj = 0. Thus the only nonzero
entries of T are withon those with k = j; that is, T is diagonal.

As for the double commutant, we have that
A = {E ∈ Mn(C) : diagonal }

is an abelian algebra, so A ⊂ A′. If T ∈ A′, in particular TD = DT , so by the
first part of the argument T ∈ A. So A′ ⊂ A, showing that {D}′′ = A′ = A.

(12.3.5) Let A ⊂ B(H) be a finite-dimensional C∗-algebra. Show that
A is a von Neumann algebra.

Answer. By Theorem 5.4.16, the restriction of the sot topology to A agrees
with the norm topology. Thus A is sot-complete and therefore a von Neumann
algebra.

(12.3.6) Prove Proposition 12.3.2.
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Answer.

(i) For any T ∈ M, λ ∈ C, T (λIH) = λT = (λIh)T .
(ii) The fact that A is abelian means that each of its elements in the

commutant. Conversely, if A ⊂ A′ this means that every element
of A commutes with every element of A, so A is abelian.

(iii) Suppose that {Sj} ⊂ M′ is a net and Sj → S wot. For any T ∈ M
and ξ, η ∈ H,

⟨TSξ, η⟩ = ⟨Sξ, T ∗η⟩ = lim
j

⟨Sjξ, T ∗η⟩

= lim
j

⟨TSjξ, η⟩ = lim
j

⟨SjTξ, η⟩ = ⟨STξ, η⟩.

As ξ, η were arbitrary, TS = ST . So M′ is wot-closed. As wot is
weaker than sot, it is also sot-closed. If S1, S2 ∈ M′ and T ∈ M,
then (S1 +S2)T = S1T +S2T = TS1 +TS2 = T (S1 +S2). Similarly,
S1S2T = S1TS2 = TS1S2. So M is an algebra.

(iv) If T ∈ M′, this means that TS = ST for all S ∈ M. As N ⊂ M,
we have TS = ST for all S ∈ N , so T ∈ N ′. That is, M′ ⊂ N ′.

(v) If T ∈ M′ and S ∈ M, then S∗ ∈ M and we have TS∗ = S∗T .
Taking adjoints, ST ∗ = T ∗S, so T ∗ ∈ M′. That is, M′ contains its
adjoints.

(vi) Is T ∈ M and S ∈ M′, then ST = TS, so T ∈ M′′.
(vii) By the above, M′ ⊂ M′′′. Now, if T ∈ M′′′ and S ∈ M, then

S ∈ M′′ and so ST = ST . So M′′′ ⊂ M′.

(12.3.7) Prove Proposition 12.3.4.

Answer. Given T ∈ B(H(n)) and X ∈ M(n), ξ ∈ Hj ,
πkTX(ξ ⊗ ej) = πkT (Xjξ ⊗ ej) = TkjXjξ,

and
πkXT (ξ ⊗ ej) = πkX(Thjξ)h = πk(XhThjξ)h = XkTkjξ.

As the two equalities above can be obtained for any k, j, and any ξ ∈ Hj , we
get that TX = XT if and only if TkjXj = XkTkj for all k, j.

Next suppose that S ∈ (M(n))′′. Given T1, T2, . . . ∈ M′, we can form
T̃ =

⊕
k Tk ∈ B(H(n)); by the above, T̃ ∈ (M(n))′. Then ST̃ = T̃ S. Com-

ponent wise, this is SkjTj = TkSkj . For j ̸= k, we may take Tj = I,
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Tk = 0 to conclude that Skj = 0; so S is diagonal. And SkkTk = TkSkk,
so Skk ∈ (M′)′ = M′′. The converse is trivial to check.

(12.3.8) Let M be a von Neumann algebra and P ⊂ M a set of projec-
tions. Show that

∨
P and

∧
P are respectively the supremum

and infimum of P.

Answer. For any P ∈ P, since
⋃
Q∈P QH ⊃ PH, we have that

∨
P ≥ P .

So
∨

P is an upper bound. Now suppose that Q ∈ M is a projection and
Q ≥ P for all P ∈ P. Then QH ⊃

⋃
P∈P PH, so Q ≥

∨
P, showing that∨

P is the least upper bound of P. The argument for the infimum is entirely
similar.

(12.3.9) Given an alternative proof of Corollary 12.3.10 by using an
approximate unit.

Answer. Since M is a C∗-algebra it contains an approximate unit {Ej}
(Theorem 11.4.4). Since the approximate unit is monotone and bounded by
definition, Proposition 12.1.10 shows that E = limsot Ej ∈ M exists. For any
X ∈ M and ξ ∈ H,

∥(EX −X)ξ∥ = lim
j

∥(EjX −X)ξ∥ ≤ ∥ξ∥ lim
j

∥EjX −X∥ = 0.

Thus EX = X for all X ∈ M. The same argument works to show that
XE = X (or, we can use EX = X for X ≥ 0, take adjoints, and use that
positive elements span the algebra). So E = IM.

(12.3.10) Let A ⊂ B(H) be a non-degenerate C∗-algebra and n ∈ N.
Consider Mn(A) ⊂ B(Hn) and show that

Mn(A)′ = {X ⊗ In : X ∈ A′}, (12.1)
{X ⊗ In : X ∈ A}′ = Mn(A′), (12.2)

Mn(A)′′ = Mn(A′′). (12.3)
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Answer. Let X ∈ A′ and Y ∈ Mn(A). Then, writing X̃ = X ⊗ In,

(X̃Y )kj =
n∑
h=1

(X̃)khYhj = XYkj = YkjX =
n∑
h=1

Ykh(X̃)hj = (Y X̃)kj .

So X̃Y = Y X̃, and therefore {X ⊗ In : X ∈ A′} ⊂ Mn(A)′. Conversely,
suppose that X̃ ∈ Mn(A)′. Fix k, j and A ∈ A, and consider the matrix
Ã ∈ Mn(A) that has Ãkj = A and zeros elsewhere. We have

(X̃Ã)rs =
n∑
h=1

Xrh Ãhs = δj,sXrkA

and

(Ã X̃)rs =
n∑
h=1

ÃrhXhs = δr,k AXjs.

These two expressions should be equal for any choice of r, s, k, j and A. If we
take r = k and j = s, we get that XkkA = AXjj for all k, j. In particular
Xkk ∈ A′ for all k. If we take an approximate unit {Eℓ} in A, we have
IH = limsot Eℓ by Corollary 12.3.10 and the fact that A is non-degenerate.
Then

Xkk = XkkIH = lim
sot

XkkEℓ = lim
sot

EℓXjj = Xjj .

Thus the diagonal of X̃ is constant, made out of elements of A′. When
k ̸= j, choose s = r = k. Then the equality δj,sXrkA = δr,k AXjs becomes
0 = AXjk. Using again the approximate unit as above, we get that Xjk = 0.
Thus X̃ = X11 ⊗ In, proving (12.1).

For (12.2), applying (12.1) to A′′, taking commutants, and using that
A′′′ = A′,

{X ⊗ In : X ∈ A′′}′ = Mn(A′)′′

By Exercise 12.1.21, Xα⊗ In
wot−−−→ X⊗ In if and only if Xα

wot−−−→ X. Then,
using the Double Commutant Theorem (12.3.5)

{X ⊗ In : X ∈ A′′} = {X ⊗ In : X ∈ Awot} = {X ⊗ In : X ∈ A}
wot

= {X ⊗ In : X ∈ A}′′.

We also know from Exercise 12.1.21 that if X ∈ Mn(A′) then Xα
wot−−−→ X

if and only if (Xα)kj
wot−−−→ Xkj for all k, j. Therefore Mn(A′) is a von

Neumann algebra and
{X ⊗ In : X ∈ A}′ = ({X ⊗ In : X ∈ A}′′)′ = {X ⊗ In : X ∈ A′′}′

= Mn(A′)′′ = Mn(A′),
which is (12.2).

Finally,
Mn(A)′′ = {X ⊗ In : X ∈ A′}′ = Mn((A′)′) = Mn(A′′).
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(12.3.11) Let X ⊂ B(H). Prove that W ∗(X) = (X ∪X∗)′′, and show by
example that it is possible to have X ′′ ⊊W ∗(X).

Answer. We have by Proposition 12.3.2 that X ⊂ W ∗(X), and since W ∗(X)
is a C∗-algebra, we also have X∗ ⊂ W ∗(X). Thus X ∪X∗ ⊂ W ∗(X) and so
(X ⊂ X∗)′′ ⊂ W ∗(X)′′ = W ∗(X) by Proposition 12.3.2 and Theorem 12.3.5.
Conversely, using again Proposition 12.3.2 and Theorem 12.3.5 we have that
(X ∪ X∗)′′ is a von Neumann algebra that contains X, hence W ∗(X) ⊂
(X ∪X∗)′′.

For an example, let H = C2 and let X consist of the single element

S =
[
0 1
0 0

]
. It is easy to check that X ′ consists of the matrices of the form[

a b
0 a

]
. These in turn can be seen as aI2 + bS. As everything commutes

with the identity, it follows that X ′′ = {aI2 + bS : a, b ∈ C}. Which is
not a ∗-algebra, since it does not contain S∗. A straightforward computation
shows that {S, S∗}′ = CI2. Then {S, S∗}′′ = (C I2)′′ = M2(C). Thus X ′′ ⊊
W ∗(X) = M2(C).

(12.3.12) Show that S and Sb, as in Lemma 12.3.16, are closed under
uniform limits.

Answer. Suppose that {fn} ⊂ S and fn → f uniformly. Let {Tj} ⊂ B(H)sa

with Tj
sot−−−→ T . Fix ε > 0. By hypothesis there exists n0 such that ∥fn −

f∥∞ < ε for all n > n0. Fix ξ ∈ H. Then, for n ≥ n0,
∥(f(Tj) − f(T ))ξ∥ ≤ ∥(f(Tj) − fn(Tj))ξ∥ + ∥(fn(Tj) − fn(T ))ξ∥

+ ∥(fn(T ) − f(T ))ξ∥

≤ 2∥fn − f∥∞ ∥ξ∥ + ∥(fn(Tj) − fn(T ))ξ∥

≤ 2ε ∥ξ∥ + ∥(fn(Tj) − fn(T ))ξ∥.
As fn ∈ S, we get that lim supj ∥(f(Tj)−f(T ))ξ∥ ≤ 2ε ∥ξ∥. This can be done
for all ε > 0, so the limsup is zero which shows that the limit exists and is
zero. That is, f(Tj)

sot−−−→ f(T ). The computation is Sb is exactly the same.
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(12.3.13) Let M ⊂ B(H) be a von Neumann algebra and M0 ⊂ M a
subspace. Show that the following statements are equivalent:

(a) M0 is wot-dense in M;
(b) M0 is sot-dense in M;
(c) M0 is σ-weak dense in M.

Answer. As M0 is convex we have M0
sot = M0

wot by Corollary 12.1.3.
If M0 is σ-weak dense in M, then it is wot dense as the wot is weaker.

Conversely, suppose that M0 is sot dense in M. Given T ∈ M there exists a
net {Tj} ⊂ M0 with Tj

sot−−−→ T . By Kaplansky’s Density Theorem we may
assume that the net {Tj} is bounded. But then Tj

wot−−−→ T and bounded, so
Tj

σ-weak−−−−−−→ T by Lemma 12.1.21.

12.4. The Spectral Theorem

(12.4.1) Let T ∈ K(H) be normal. Show that Theorem 10.6.12 is a
particular case of Theorem 12.4.4.

Answer. By Theorem 12.4.4 there exists a unique Borel measure µT on σ(T )
such that

T =
∫
σ(T )

λ dµT (λ).

Since the identity is 0 at 0, we can consider the integral over σ(T )\{0}. From
Theorem 9.6.13 we know that σ(T ) is either finite or a sequence {λk} that
converges to zero. So we can write σ(T ) \ {0} as a finite or countable disjoint
union of singletons. Thus

T =
∑
k

∫
{λk}

λ dµT (λ) =
∑
k

λkµT ({λk}).

The operators Pk = µT ({λk}) are pairwise orthogonal projections. Since
TPk = λkPk, each Pk is finite-rank for otherwise we would have an infinite-
dimensional eigenspace, contradicting Theorem 9.6.13.
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(12.4.2) Let T ∈ B(H) be normal. Show that there exists S ∈ B(H),
selfadjoint, and a continuous f : σ(S) → C such that T = f(S).
(Hint: Proposition 7.6.7)

Answer. By Theorem 7.6.5 there exists f : C → σ(T ), continuous and
surjective. And by Proposition 7.6.7 there exists g : σ(T ) → C with f ◦ g =
idσ(T ). By the Spectral Theorem (Theorem 12.4.4) there exists a spectral
measure µT such that

T =
∫
σ(T )

λ dµT (λ).

We define
S =

∫
σ(T )

g(λ) dµT (λ).

This S is well-defined because g is bounded Borel. And S is selfadjoint
because g is real-valued. And we have

f(S) =
∫
σ(T )

(f ◦ g)(λ) dµT (λ) =
∫
σ(T )

λ dµT (λ) = T.

(12.4.3) Expanding on the ideas of Example 12.4.7, show that if g ∈
L∞[0, 1], then µMg

(E) = M1g−1(E)
.

Answer. If {fr} is a bounded sequence of polynomials in L∞[0, 1] with
fr → 1E as in Example 12.4.7, then

⟨µMg
(E)h, h⟩ = lim

r

∫
[0,1]

fr(g) |h|2 dm = lim
r

∫
[0,1]

(fr ◦ g) |h|2 dm

=
∫

[0,1]
(1E ◦ g) |h|2 dm

So
µMg (E) = M1E◦g = M1g−1(E)

.

(12.4.4) Show that the extreme points in the convex set B(H)+
1 of pos-

itive operators with norm at most 1, are precisely the projec-
tions.
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Answer. We know that projections are extreme from Exercise 10.5.5. Now
suppose that T ≥ 0, ∥T∥ ≤ 1, and T is not a projection. By Exercise 10.5.4
there exists λ0 ∈ (0, 1) ∩σ(T ). And by Corollary 12.4.14, µT (Br(λ0)) > 0 for
all r > 0. Fix r = (1 − λ0)/3. We have

∥T 1Ec∥ = sup{|λ| : λ ∈ Ec} = sup{|λ| : λ ∈ Br(λ0)} ≤ λ0 + r < 1 − r.

Let
T1 = T + r 1Ec(T ), T2 = T − r 1Ec(T ).

We have ∥T 1Ec(T ) + r 1Ec(T )∥ ≤ (1 − r) + r = 1. Then
∥T1∥ = max

{
∥T 1E(T )∥, ∥T 1Ec(T ) + r 1Ec(T )∥

}
≤ 1.

Similarly ∥T2∥ ≤ 1, and then T = 1
2 (T1 + T2) is not extreme.

(12.4.5) Let T ∈ B(H) be normal, λ0 ∈ C. Consider the extension of
µT to all of C as in Exercise 2.3.8. Show that the following
statements are equivalent:

(i) T is compact;
(ii) for every λ0 ∈ σ(T ) \ {0} there exists r > 0 such that

µT (Br(λ0)) is a finite-rank projection.

Answer. (i) =⇒ (ii) We have that T is compact, and λ0 ∈ σ(T ) \ {0}. By
Theorem 9.6.13 there exists r > 0 with Br(λ0) ∩ σ(T ) = {λ0}. Recall that
µT (Br(λ0)) = 1Br(λ0)(T ). If ξ ∈ 1Br(λ0)(T )H, as t 1Br(λ0)(t) = λ0 1Br(λ0)(t)
on σ(T ), by functional calculus T 1Br(λ0)(T ) = λ0 1Br(λ0)(T ). Then

Tξ = T 1Br(λ0)(T )ξ = λ0 1Br(λ0)(T )ξ = λ0ξ.

Therefore µT (Br(λ0))H ⊂ ker(T − λI), which is finite-dimensional.
(ii) =⇒ (i) Since An = {λ ∈ σ(T ) : λ ≥ 1

n} is compact, there ex-
ist λ1, . . . , λm ∈ σ(T ) and r1, . . . , rm > 0 with An ⊂

⋃m
j=1 Brj (λj). Let

B1, . . . , Bm withBj ⊂ Brj (λj), pairwise disjoint and with union
⋃m
j=1 Brj (λj).

Then

µT (An) ≤ µT

(⋃
j

Brj (λj)
)

= µT

(⋃
j

Bj

)
=

m∑
j=1

µT (Bj).

As the Bj are pairwise disjoint the projections µT (Bj) are pairwise orthogo-
nal, and each is below the corresponding µT (Brj (λj)), so finite-rank. There-
fore µT (An) is finite-rank. So T µT (An) is finite-rank. And since |t −
t 1An(t)| < 1

n on σ(T ), ∥T − T µT (An)∥ < 1
n , so T µT (An) → T . Hence

T is a norm-limit of finite-rank operators, and thus compact.
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(12.4.6) Let M be a von Neumann algebra and T ∈ M+ nonzero. Show
that there exists a nonzero projection P ∈ M that commutes
with T and λ > 0 such that TP ≥ λP .

Answer. Since T ≥ 0 and nonzero, there exists nonzero λ with 2λ ∈ σ(T ).
So λ > 0. Let P = µT ((λ,∞)). We have P ̸= 0, for otherwise T = T (I − P )
and then ∥T∥ = ∥T (I − P )∥ ≤ λ

2 , contradicting that 2λ ∈ σ(T ). Functional
calculus and the inequality t 1(λ,∞)(t) ≥ λ1(λ,∞) then give us

PTP ≥ λP.

(12.4.7) Let T ∈ B(H) be normal. Show that the construction of µT in
the proof of the Spectral Theorem gives µT (σ(T )) = IH.

Answer. The function 1σ(T ) equals 1 on σ(T ) (this not deep!). In (12.9), we
can take fr = 1 for all r, and fr(T ) = IH. Hence ⟨µT (σ(T ))ξ, ξ⟩ = ⟨ξ, ξ⟩ for
all ξ ∈ H, and using polarization we get µT (σ(T )) = IH.

(12.4.8) Let T ∈ B(H) be normal. Show that 1{0}(T ) is the projection
onto kerT , and that 1σ(T )\{0}(T ) is the projection onto ranT .

Answer. We know from Exercise 12.4.7 that 1σ(T )(T ) = IH. Hence 1{0}(T )+
1σ(T )\{0}(T ) = IH.

Let ξ ∈ 1{0}(T )H. As T 1{0}(T ) = 0 (from the equality of functions
t 1{0}(t) = 0), we get Tξ = T 1{0}(T )ξ = 0, so ξ ∈ kerT . That is, 1{0}(T )H ⊂
kerT . Conversely, let ξ ∈ kerT . Since Tξ = 0 we have T kξ = 0 for all k ∈ N,
so p(T )ξ = 0 for all polynomials p with p(0) = 0. As was done in page 856
of the Book we can get a sequence {pj} of polynomials with pj → 1{0}(t)
pointwise. Since the limit takes the value 1 at 0, we may assume without
loss of generality that pj(0) = 1 for all j. Then pj(T )ξ = ξ for all j, which
gives us, as in (12.9), 1{0}(T )ξ = ξ. Thus kerT ⊂ 1{0}(T )H and the equality
kerT = 1{0}(T )H is proven.

Now 1σ(T )\{0}(T ) = Ih − 1{0}(T ) is the projection onto (kerT )⊥ =
ranT ∗ = ranT .
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(12.4.9) Let M = ℓ∞[0, 1] ⊂ B(L2[0, 1]), seen as multiplication opera-
tors. Fix t ∈ [0, 1] and for δ > 0 let Pδ = M1[t−δ,t+δ] .

(a) Show that Pδ
sot−−−→ 0 as δ → 0.

(b) Show that if K ∈ K(L2[0, 1]) then ∥PδK∥ → 0.
(c) Show that there exists T ∈ B(L2[0, 1]) such that PδT does

not converge in norm to 0.

Answer.

(a) Fix f ∈ L2[0, 1]. We have

∥P1/nf∥2
2 =

∫
[0,1]

1[t−1/n,t+1/n]|f |2 dm→c⃝ 2024 Mart́ın Argerami All Rights Reserved 0

by Dominated Convergence. For arbitrary δ, given ε > 0 there exists n
such that ∥P1/nf∥2 < ε; if δ < 1/n, then

∥Pδf∥2 = ∥PδP1/nf∥2 ≤ ∥P1/nf∥2 < e.

Thus Pδf → 0.
(b) This is Exercise 12.1.8, since the net is bounded.
(c) We can take T = IH, then ∥PδT∥ = ∥Pδ∥ = 1 for all δ.

(12.4.10) Show that in Corollary 12.4.18, if a sot-dense separable C∗-sub-
algebra A0 ⊂ A is prescribed, the operator T can be chosen so
that C∗(T ) ⊃ A0. (Attention: the word “separable” has differ-
ent meanings when referring to C∗ and von Neumann algebras,
see )

Answer. Since A0 is separable, it has a countable dense subset {Tn}. By
considering the real and imaginary parts of each Tn, we may assume without
loss of generality that Tn = T ∗

n for all n. For each n, k ∈ N by the Spectral
Theorem there exist projections Pn,k,1, . . . , Pn,k,rn,k such that

dist(Tn, span{Pn,k,1, . . . , Pn,k,rn,k}) < 1/k.
If we now bunch all the countably many projections {Pn,k} with the projec-
tions in the proof of Corollary 12.4.18, we get that Pn,k,s ∈ C∗(T ) for all s,
so A0 ⊂ C∗(T ) (note that the proof of Corollary 12.4.18 only uses continuous
functional calculus).
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(12.4.11) Let M be a von Neumann algebra and T ∈ M normal. Give an
alternative proof of Corollary 12.3.8 by using Corollary 12.4.15
and the fact that UTU∗ = T for all unitaries U ∈ M′.

Answer. Fix U ∈ M′ a unitary. From UTU∗ = T and the fact that
f(UTU∗) = Uf(T )U∗ for all continuous f (or, the uniqueness of the pos-
itive square root), |UTU∗| = |T | = U |T |U∗. Then

T = UTU∗ = UV |T |U∗ = (UV U∗)U |T |U∗ = (UV U∗)|T |.
Since V ∗V is the range projection of T ∗, we have V ∗V, V V ∗ ∈ M by Corol-
lary 12.4.15. LetW = UV U∗. We haveW ∗W = UV ∗U∗UV U∗ = UV ∗V U∗ =
V ∗V and similarly WW ∗ = V V ∗. Then the uniqueness in the polar decom-
position guarantees that UV U∗ = V . That is, UV = V U . As we can do this
for any unitary in M′ and unitaries span M′, we have that V ∈ M′′ = M.

12.5. Cyclic and Separating Vectors

(12.5.1) In Proposition 12.5.6, where is σ-finiteness used?

Answer. The direct sum and the series of projections can be done in any
dimension. But if A is not σ-finite, we cannot construct the vector ξ, as any
vector in any Hilbert space has at most countable many nonzero coefficients.
For instance consider A = ℓ∞[0, 1] acting on H = ℓ2[0, 1]. As any ξ ∈ H
has only countably many non-zero entries, there exists s such that ξ(s) = 0.
Then δsξ = 0, even though δs ̸= 0. So ξ cannot be separating for A.

(12.5.2) In the context of Proposition 12.5.6, show an example of A ⊂
B(H), abelian and without a separating vector.

Answer. The result in Proposition 12.5.6 tells us that we need to look at an
uncountably-dimensional H. Let H = ℓ2[0, 1] and take A to be the diagonal
masa, that is

A = {Ett : t ∈ [0, 1]}′′,
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where Ett is the orthogonal projection onto Cδt. Let ξ ∈ H. So ξ =
∑
t ctδt,

with
∑
t |ct|2 = ∥ξ∥2. Since the series is convergent, only countably ct are

nonzero. Let s ∈ [0, 1] such that cs = 0. Then Essξ = 0, and so ξ is not
separating.

(12.5.3) Verify the facts about the atomic masa stated after its defini-
tion (12.18). The only nontrivial part is that Aa ̸≃ Am, which
can be seen by looking at the existence or not of minimal pro-
jections in both algebras.

Answer. For each T ∈ Aa there exists a sequence {tn} such that Tξn = tnξn
for all n. Since |tn| = ∥Tξn∥ ≤ ∥T∥, this allows us to define γ : Aa → ℓ∞(N)
by γ(T ) = {tn}. It is clear that γ is linear. It is also multiplicative: STξn =
tnSξn = sntnξn, so γ(ST ) = γ(S)γ(T ). Also,

⟨T ∗ξn, ξm⟩ = ⟨ξn, T ξm⟩ = ⟨tnξn, ξm⟩,
so γ(T ∗) = {tn} = {tn}∗. If γ(T ) = 0, then Tξn = 0 for all n and then
T = 0; so γ is injective. And if {tn} ∈ ℓ∞(N), we can define T ∈ B(H) by
Tξn = tnξn and extend by linearity. We have

∥T
m∑
j=1

αjξj∥2 = ∥
m∑
j=1

αjtjξj∥2 =
m∑
j=1

|αj |2 |tj |2

≤ ∥t∥2
∞

m∑
j=1

|αj |2 = ∥t∥2
∞ ∥

m∑
j=1

αjξj∥.

Thus T is bounded on a dense subspace, and being linear it extends to all of
H, bounded with the same norm.

We have in particular the Ekk ∈ A for all k, since the Ekk correspond
to the canonical bases en in ℓ∞(N). Also, since ℓ∞(N) is abelian, we get that
Aa is abelian. If S ∈ A′, then for each n we have Sξn = SEnnξn = EnnSξn ∈
Cξn. So S ∈ Aa, and A′

a = Aa, showing that it is a masa.
We can construct an easy ∗-monomorphism Aa → Am by choosing an

infinite partition {En} of [0, 1] (say, En = ( 1
n+1 ,

1
n ], missing 0 does not matter

because it is a nullset) and mapping {tn} ⊂ ℓ∞(N) to
∑
n t,1En . This is a

∗-monomorphism which of course is not surjective.
We cannot have Aa ≃ Am because A has minimal projections (namely,

Enn for each n) while L∞[0, 1] does not. Every projection in L∞[0, 1] is 1E for
some measurable set E of positive measure; and these can always be divided
to obtain proper subprojections.
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(12.5.4) Let A ⊂ B(H) be a maximal abelian von Neumann algebra (a
masa). Show that if A has a cyclic (equivalently, separating)
vector then A is σ-finite.

Answer. Suppose that A is not σ-finite. Then there exist uncountably many
pairwise orthogonal projections {Pj} ⊂ A. By extending the family if needed
we may assume that

∑
j Pj = IH. We have

∥ξ∥2 =
∥∥∥∑

j

Pjξ∥2 =
∑
j

∥Pjξ∥2.

As this is finite, only finitely many Pjξ can be nonzero. That is, there exists
some j such that Pjξ = 0. As Pj ̸= 0, this contradicts the fact that ξ is
separating.

(12.5.5) Let M ⊂ B(H) be a von Neumann algebra such that ξ ∈ H is
separating for M. Show that M is σ-finite.

Answer. As in the argument from Exercise 12.5.4 the fact that a vector in a
Hilbert space can only admit countably many nonzero components forces, if
M is not σ-finite, the existence of a nonzero projection P ∈ A with Pξ = 0.
Then ξ is not separating.

12.6. Normal Functionals

(12.6.1) Let φ ∈ M be a positive normal functional with support pro-
jection Fφ. Show that φ(TFφ) = φ(T ) for all T ∈ M.

Answer. Suppose first that T ≥ 0. Then
φ(TFφ) = φ(T ) = φ(T ) = φ(TFφ) = φ(FφT ) = φ(T ).

For arbitrary T ∈ M, we can write T as a linear combination of four positive
elements, and so the equality φ(TFφ) = φ(T ) follows.



546 CHAPTER 12

(12.6.2) Let φ be a state on M and F a support projection for φ. Show
that φ is faithful when restricted to FMF .

Answer. Suppose that T ≥ 0 and φ(FTF ) = 0. If FTF ̸= 0, by Ex-
ercise 12.4.6 there exists λ > 0 and a nonzero projection Q ∈ FMF that
commutes with FTF and such that λQ ≤ QFTF . Then
φ(Q) = λ−1φ(λQ) ≤ φ(QFTF ) = φ

(
(FTF )1/2Q(FTF )1/2) ≤ φ(FTF ) = 0.

Hence Q ≤ IM − F by definition of support projection. But this gives 0 ≤
λQ ≤ QFTF = 0, so Q = 0. The contradiction shows that FTF = 0 and φ
is faithful on FMF .

(12.6.3) Let M be a von Neumann algebra and φ ∈ M∗ such that there
exists a projection P ∈ M with φ(P ) = 0. Show that there
exists a pairwise orthogonal family {Pj} ⊂ M, maximal with
respect to the property that φ(Pj) = 0 for all j.

Answer. Let
F =

{
{Pj} ⊂ M : pairwise orthogonal projections with φ(Pj) = 0 for all j

}
,

ordered by inclusion. The family is nonempty because {P} ∈ F . Given a
chain

{
{Pj}j∈Jk}k ⊂ F , with Jk1 ⊂ Jk2 if k1 ≤ k2, the union {Pj}j∈⋃

k
Jk

is
in F and is an upper bound for the chain. By Zorn’s Lemma there exists a
maximal {Pj} ∈ F .

(12.6.4) Let M ⊂ B(H) and N ⊂ B(K) be von Neumann algebras,
and U : H → K a unitary such that UMU∗ ⊂ N . Show that
Γ(T ) = UTU∗ is a σ-weak continuous ∗-monomorphism.

Answer. With U a unitary, that Γ is a ∗-monomorphism is straightforward.
Now suppose that {Tj} ⊂ M with Tj

σ-weak−−−−−−→ 0. This means that Tr(ATj) →
0 for all A ∈ T (H). Given B ∈ T (K), by Exercise 10.7.16, U∗BU ∈ T (H).
Then (using Exercise 10.7.8)

Tr(BΓ(T )) = Tr(BUTU∗) = Tr
(
(U∗BU)T

)
→c⃝ 2024 Mart́ın Argerami All Rights Reserved 0.

So Γ(Tj)
σ-weak−−−−−−→ 0.
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(12.6.5) Let M be a von Neumann algebra and φ ∈ M∗. Show that φ
is normal if and only if its GNS representation πφ is normal.

Answer. We have φ(T ) = ⟨πφ(T )ξφ, ξφ⟩ for all T ∈ M. If πφ is normal and
Tj

σ-weak−−−−−−→ T , then
φ(T ) = ⟨πφ(lim

j
Tj)ξφ, ξφ⟩ = ⟨lim

j
πφ(Tj)ξφ, ξφ⟩

= lim
j

⟨πφ(Tj)ξφ, ξφ⟩ = lim
j
φ(Tj),

the last equality because point functionals are σ-weak continuous.
Conversely, suppose that φ is normal. Then if {Tj} ⊂ M is an increas-

ing net of selfadjoints with Tj ↗ T , then S∗TjS ↗ S∗TS for all S ∈ M and
hence

⟨πφ(Tj)πφ(S)ξφ, πφ(S)ξφ⟩ = φ(S∗TjS) ↗ φ(S∗TS)

= ⟨πφ(T )πφ(S)ξφ, πφ(S)ξφ⟩.
It follows that πφ(Tj) ↗ πφ(T ). Composing with normal functionals of
πφ(M)′′ and using Proposition 12.6.11, we get that πφ is normal.

(12.6.6) Let M be a von Neumann algebra and ψ ∈ M∗ normal and
faithful. Show that πψ(M)′′ = πψ(M). (This is a direct con-
sequence of Corollary 12.6.12, but it is needed earlier in the
text)

Answer. Since πψ is injective, it is isometric. So it maps BM
1 (0) onto

B
πψ(M)
1 . As ψ is normal and the closed unit ball is compact, its image is wot-

closed, hence sot-closed. Kaplansky then implies that πψ(M) is sot-closed,
and by the Double Commutant Theorem πψ(M)′′ = πψ(M).
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12.7. Preduals and the Enveloping von Neumann Algebra

(12.7.1) Let M be a von Neumann algebra. Show that M∗ is norm-
closed.

Answer. Let {φn} ⊂ M∗ be a Cauchy sequence. Being Cauchy in a metric
space, the sequence is bounded, so there exists c > 0 such that ∥φn∥ ≤ c for
all n. Since M∗ is complete, φ = limφn ∈ M∗ exists. We need to show that
φ is wot-continuous on bounded sets.

Let {Tj} ⊂ M be a bounded net such that Tj
wot−−−→ 0. By enlarging c

is needed, we may assume that ∥Tj∥ ≤ c for all j. Then
|φ(Tj)| ≤ |(φ− φn)(Tj)| + |φn(Tj)| ≤ c ∥φ− φn∥ + |φn(Tj)|.

Hence lim supj |φ(Tj)| ≤ c ∥φ−φn∥. As we are free to choose φn and φ−φn →
0, we get that lim supj |φ(Tj)| = 0 and thus the limit exists and is zero,
showing that φ is wot-continuous on bounded sets.

(12.7.2) Provide an alternative proof to the fact that M∗ is a predual
for the von Neumann algebra M by using Corollary 7.3.8 to
see that a predual for M is given by T (H)/Mo. This means
identifying all normal functionals that agree on M, so we have
precisely the normal functionals of M.

Answer. We know that M ⊂ B(H) is σ-weak-closed by Proposition 12.3.19.
From Theorem 10.7.11 we know that B(H) = T (H)∗. So the proof of
Corollary 7.3.8 says that T (H)/Mo is a predual for M. For each class
φ = S + Mo with S ∈ T (H), we are interpreting this as the functional
φ(T ) = Tr(ST ). This is well-defined on M for if S − S′ ∈ Mo, this means
that Tr(ST ) = Tr(S′T ) for all T ∈ M, and so they define the same linear func-
tional. The functional is normal by Proposition 12.6.3. So T (H)/Mo ⊂ M∗.
Now, given φ ∈ M∗, by Proposition 12.6.3 there exists S ∈ T (H) with
φ(T ) = Tr(ST ); that is, φ = S + Mo ∈ T (H)/Mo. Hence M∗ = T (H)/Mo

is a predual for M.
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(12.7.3) Let A,B be C∗-algebras and γ : A → B a ∗-isomorphism. Show
that A∗∗ ≃ B∗∗ as C∗-algebras.

Answer. We have a canonical isometric linear isomorphism γ∗∗ : A∗∗ → B∗∗.
But we need to account for the multiplication, and for this we look at the
enveloping von Neumann algebras. Let πA : A → B(H) be a universal rep-
resentation. Then there exists, by Theorem 12.7.8, a unique linear surjective
isometry π̃A : A∗∗ → π(A)′′ that extends πA. We can define a representation
πB : B → B(H) by πB = πA ◦ γ−1. This is universal: if ρ : B → B(K) is a
representation, then ρ ◦ γ : A → B(K) is a representation. By universality
there exists ρ′ : πA(A)′′ → ρ(γ(A))′′ = ρ(B)′′ such that ρ′ ◦πA = ρ ◦ γ. Then
ρ′ ◦πB = ρ, showing that πB is universal. Now B∗∗ ≃ πB(B)′′ = π(A)′′ ≃ A∗∗,
where the two isomorphisms are canonical.

We have πB ◦ γ = πA by construction, so the extensions from Theo-
rem 12.7.8 satisfy π̃B ◦ γ∗∗ = π̃A.

(12.7.4) Let A be a unital C∗-algebra. Show that the unit of A∗∗ is the
unit of A; that is, show that ÎA = IA∗∗ .

Answer. Given Ψ ∈ A∗∗, by Theorem 7.2.14 there exists a net {aj} ⊂ A
with âj

weak∗

−−−−→ Ψ. Then, using the universal representation π : A → B(H)
and its associated homeomorphism π̃ : A∗∗ → π(A)′′ as in Theorem 12.7.8,

π̃(ÎA)π̃(Ψ) = lim
j
π̃(ÎA)π̃(âj) = lim

j
π(IA)π(aj) = lim

j
π(aj)

= lim
j
π̃(âj) = π̃(Ψ).

The same computation can be done on the right, so π̃(ÎA) = Iπ(A)′′ (note
that we can always have π non-degenerate by shrinking H if needed). And
we are done, because Iπ(A)′′ is what we mean when we write IA∗∗ , as we only
see A∗∗ as an algebra via π̃.

(12.7.5) Let A be a C∗-algebra and Z ∈ Z(A∗∗) a central projection.
Show that (ZA)∗∗ = ZA∗∗.

Answer. Given ψ ∈ A∗∗, there exists a net {ak} ⊂ A such that âk
weak∗

−−−−→
ψ. When we see this in the enveloping von Neumann algebra, we have
ak

σ-weak−−−−−−→ ψ. Then Zak
σ-weak−−−−−−→ Zψ. So ZA∗∗ ⊂ (ZA)∗∗. For the



550 CHAPTER 12

reverse inclusion, we have ZA ⊂ ZA∗∗; thinking of the enveloping von Neu-
mann algebra as the double commutant of the image through the universal
representation, (ZA)∗∗ ⊂ ZA∗∗.

(12.7.6) Let A be a C∗-algebra and J ⊂ A a proper ideal. Show that
A∗∗ ≃ J ∗∗ ⊕ (A/J )∗∗ as C∗-algebras.

Answer. Because J is a proper ideal of A, by Hahn–Banach (Corollary 5.7.19)
there exists nonzero φ ∈ A∗ with φ|J = 0. When we look at J ∗∗ ⊂ A∗∗, the
functional φ becomes normal and so φ|J ∗∗ = 0, which guarantees that J ∗∗

is a proper ideal of A∗∗. By Corollary 12.3.12 there exists Z ∈ Z(A∗∗) with
J ∗∗ = ZA∗∗. So

A∗∗ = J ∗∗ ⊕ (IA∗∗ − Z)A∗∗.

Consider now the map γ : A/J → (IA∗∗ −Z)A given by γ(A+ J ) = (IA∗∗ −
Z)A. This is well-defined: it is linear and if A ∈ J then A = ZA and so
(IA∗∗ −Z)A = 0. It is clearly surjective and if (IA∗∗ −Z)A = 0 then A = ZA
so A ∈ J , so it is injective. It is also straightforward by construction that γ is
a ∗-homomorphism. Then γ∗∗ is a ∗-isomorphism (A/J )∗∗ → (IA∗∗ −Z)A∗∗,
via Exercise 12.7.5. By Corollary 12.6.12, γ∗∗ is normal. Now id ⊕ γ∗∗ is the
desired isomorphism, where Exercise 12.7.3 confirms the multiplicativity.

(12.7.7) Let A be the closed unit ball of ℓ∞(R) ⊂ B(ℓ2(R)). Show that
on A the σ-weak topology is precisely pointwise convergence.

Answer. Suppose that {fj} ⊂ A and fj
σ-weak−−−−−−→ 0. This means in particular

that fj(t) = ⟨fj , et⟩ → 0. Conversely, suppose that fj(t) → 0 for all t. Fix
g ∈ ℓ1(R). Let ε > 0. Choose t0 such that

∑
|t|>t0 |g(t)| < ε. Then

|⟨fj , g⟩| ≤
∑

|t|≤t0

|fj(t)| |g(t)| +
∑

|t|>t0

|fj(t)| |g(t)|

≤
∑

|t|≤t0

|fj(t)| |g(t)| +
∑

|t|>t0

|g(t)|

≤
∑

|t|≤t0

|fj(t)| |g(t)| + ε

Then lim supj |⟨fj , g⟩| = 0. By the Limsup Routine, the limit exists and is 0.
So fj

σ-weak−−−−−−→ 0.
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(12.7.8) Show that ℓ∞(R) ⊂ B(ℓ2(R)) is σ-weak separable.

Answer. Since the whole space is a countable union of balls, it is enough to
show that the unit ball has a countable dense subset. By Exercise 12.7.7 we
consider pointwise convergence. Our countable dense set will be

C =
{ n∑
k=1

qk 1Ek , n ∈ N, qk ∈ Q + iQ, |qk| ≤ 1, E1, . . . , En

partition of R with endpoints in Q
}
.

Fix f ∈ ℓ∞(R) and ε > 0. For each F = {t1, . . . , tn} ⊂ R finite, given
tk ∈ F choose qk ∈ Q + iQ with |t − qk| < ε. Let r1, . . . , rn+1 ∈ Q with
rk < tk < rk+1 for all k = 1, . . . , n. Take E1 = (−∞, r1), En+1 = (rn+1,∞),
and Ek = (rk−1, rk). Then gF =

∑
k qk1Ek ∈ C and |f(t) − gF (t)| < ε for

all t ∈ F . Hence gF → f pointwise, when we consider the finite subsets of R
ordered by inclusion.

(12.7.9) Let M be a von Neumann algebra and X a Banach space such
that M = X ∗. Put P = {φ1 −φ2 + i(φ3 −φ4) : φj ∈ X +, j =
1, . . . , 4}. Show that P is a subspace.

Answer. For the subspace part, that P is closed under addition is just
the fact that sums of positive functionals are positive, and X is a vector
space. As for the multiplication by scalars, by writing λ ∈ C in the form
λ = a1 − a2 + i(a3 − a4) with a1, a2, a3, a4 ≥ 0 we get

λ
(
φ1 − φ2 + i(φ3 − φ4)

)
= (a1φ1 + a2φ2 + a3φ4 + a4φ3)

− (a1φ2 + a2φ1 + a3φ3 + a4φ4)

+ i(a1φ3 + a2φ4 + a3φ1 + a4φ2)

− i(a1φ4 + a2φ3 + a3φ2 + a4φ1)

∈ P.

(12.7.10) Let A be a C∗-algebra and X ,Y Banach spaces such that X ∗ =
Y∗ = A. Show that X ≃ Y.
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Answer. By the existence of the predual we get from Theorem 12.7.5 that
there exists a faithful representation π : A → B(H) such that π(A) is a von
Neumann algebra. If γ : X ∗ → A is an isometric isomorphism, we get that
π ◦ γ : X∗ → π(A) is an isometric isomorphism of Banach spaces. Now
Theorem 12.7.2 implies that X ≃ π(A)∗. As the same can be done for Y, we
get that Y ≃ X .
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CHAPTER

Constructions with C∗-Algebras

13.1. Algebraic Tensor Products

(13.1.1) Prove Proposition 13.1.2.

Answer. This follows rather directly from the definition. Indeed, for ϕ
bilinear(

λ(x⊗ y)
)
(ϕ) = λ(x⊗ y)(ϕ) = λϕ(x, y) = ϕ(λx, y) = (λx⊗ y)(ϕ),

so λ(x⊗ y) = (λx) ⊗ y). The other scalar multiplication is similar.
For the sum, for any bilinear ϕ(

(x+ z) ⊗ y
)
(ϕ) = ϕ(x+ z, y) = ϕ(x, y) + ϕ(z, y) = (x⊗ y)(ϕ) + (z ⊗ y(ϕ)

=
(
(x⊗ y) + (z ⊗ y)

)
(ϕ),

so (x+ z) ⊗ y = x⊗ y+ z⊗ y. The other distributivity is proven similarly.

553
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(13.1.2) Let {ek} be a basis for X and {fj} be a basis for Y. Show that
B = {ek ⊗ fj}k,j is a basis for X ⊗ Y.

Answer. The linear independence follows from Proposition 13.1.3. And
given z ∈ X ⊗ Y, there exists x1, . . . , xr ∈ X and y1, . . . , yr ∈ Y with z =∑r
s=1 xs ⊗ ys. Expressing each xs and ys in its respective basis we have for

each s
xs =

∑
k

αs,kek, ys =
∑
j

βs,jfj .

Then

z =
r∑
s=1

∑
k,j

αs,kβs,j ek ⊗ fj .

Thus X ⊗ Y = spanB, and B is a basis.

(13.1.3) Let X,Y be complex vector spaces and X⊗′Y a tensor product
defined in some way other than via our bilinear maps. This
means that X⊗′Y is a vector space, spanned by elements of the
form x⊗′ y which satisfy the properties in Propositions 13.1.2
and 13.1.3. Show that X ⊗′ Y ≃ X ⊗ Y canonically.

Answer. Consider the bilinear map ϕ : X × Y → X ⊗′ Y given by ϕ(x, y) =
x ⊗′ y. By Theorem 13.1.6 there exists a linear map Φ : X ⊗ Y → X ⊗′ Y
that satisfies Ψ(x ⊗ y) = x ⊗′ y for all x ∈ X and y ∈ Y . As Ψ is lin-
ear, it is automatic that it is surjective. And if Ψ(

∑
j xj ⊗ yj) = 0, this

means that
∑
j xj ⊗′ y = 0. The fact that the tensor product ⊗′ satisfies

Propositions 13.1.2 and 13.1.3 guarantees that proposition: criterion for ten-
sor equal zero, and so

∑
j xj ⊗ yj = 0. Therefore Ψ is a linear bijection and

X ⊗′ Y ≃ X ⊗ Y .

(13.1.4) Use Theorem 13.1.6 to show that the map X ⊗ Y → Y ⊗ X
induced by x⊗ y 7−→ y ⊗ x is an isomorphism.

Answer. Let ϕ : X × Y → Y ⊗ X be given by ϕ(x, y) = y ⊗ x. By Theo-
rem 13.1.6, there exists Tϕ : X ⊗ Y → Y ⊗ X with

Tϕ(x⊗ y) = ϕ(y, x) = y ⊗ x.

Similarly, we can get ψT : Y ⊗ X → X ⊗ Y with ψT (y ⊗ x) = x ⊗ y. As
ψT ◦ Tϕ(x ⊗ y) = x ⊗ y for all x ∈ X , y ∈ Y, it follows by linearity that
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ψT ◦ Tϕ = idX ⊗Y . We also get that Tϕ ◦ ψT = idY⊗X . Thus Tϕ is a vector
space isomorphism of Y ⊗ X onto X ⊗ Y.

(13.1.5) Using Theorem 13.1.6 as in Exercise 13.1.4, show that there
are canonical isomorphisms (in that they do the obvious thing
to the elementary tensors) as follows:

(a) C ⊗ X ≃ X ;
(b) Cn ⊗ X ≃ Xn;
(c) X ⊗ Y∗ ≃ B(Y,X ), if X and Y are finite-dimensional;
(d) Mn(C) ⊗ X ≃ Mn(X ).

Note that when X and Y are finite-dimensional one could es-
tablish the existence of isomorphisms as above by dimension
considerations. But we do not always require finite-dimension,
and we want our isomorphisms to be canonical.

Answer.

(a) Consider the bilinear map ϕ : C × X → X given by ϕ(λ, x) = λx. By
Theorem 13.1.6, there exists a linear map T : C ⊗ X → X such that
T (λ ⊗ x) = λx. It is obvious that T is onto, so we only need to show
that T is on-to-one. Suppose that T (

∑
j λj ⊗ xj) = 0. This means that∑

j λjxj = 0. Then∑
j

λj ⊗ xj =
∑
j

1 ⊗ λjxj = 1 ⊗
∑
j

λjxj = 0.

(b) Now consider the bilinear map ϕ : Cn × X → Xn given by
ϕ((λ1, . . . , λn), x) = (λ1x, . . . , λnx).

By Theorem 13.1.6 there exists a linear map T : Cn ⊗ X → Xn such
that T ((λ1, . . . , λn) ⊗ x) = (λ1x, . . . , λnx). We can define an inverse for
T explicitly by

T−1(x1 . . . , xn) =
n∑
k=1

ek ⊗ xk ∈ Cn ⊗ X .

(c) This time the bilinear map is ϕ(x, f) = f(·)x ∈ B(Y,X ). By The-
orem 13.1.6 there exists a linear map T : X ⊗ Y∗ → B(Y,X ) with
T (x⊗ f) = f(·)x.
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If X is finite-dimensional, then given a basis x,1 . . . , xn of X we can
write any A ∈ B(Y,X ) as Ay =

∑n
k=1 fj(y)xj , where fj ∈ Y∗ is deter-

mined uniquely by the fact that {xj} is a basis. Thus

T−1
( n∑
k=1

fj(·)xj
)

=
n∑
k=1

xj ⊗ fj

gives an inverse for T and so T is an isomorphism.
(d) Consider the bilinear map ϕ : Mn(C) × X → Mn(X ) given by ϕ(A, x) =

[akjx]k,j . By Theorem 13.1.6 there exists a linear map T : Mn(C) ⊗ X →
Mn(X ) with T (A⊗ x) = [akjx]k,j . Given any X ∈ Mn(X ), we can define
an inverse for T by

T−1(X) =
∑
k,j

Ekj ⊗ xkj .

(13.1.6) In the situation of Corollary 13.1.9 where X ,Y are algebras
and φ,ψ homomorphisms, show an example where both φ and
ψ are injective but φ × ψ is not (Hint: abelian algebras and
finite-dimension are enough).

Answer. Let X = Y = A = C2, with pointwise addition and multiplication,
and let φ = ψ = id. Then φ and ψ are injective homomorphisms with
commuting ranges. But

(φ× ψ)(e1 ⊗ e2) = e1e2 = 0.

13.2. Completely Positive Maps

(13.2.1) Prove that if S ⊂ A is an operator system, then Mn(S) ⊂
Mn(A) is an operator system.

Answer. This of course assumes that A is unital. In that case, Mn(S)
contains the identity matrix

∑
k IA ⊗ Ekk. It is obvious that Mn(S) is a

subspace of Mn(A), so all that remains is to check that Mn(S) is closed
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under taking adjoints. Given S =
∑
k,j skj ⊗ Ekj ∈ Mn(S), we have

S∗ =
∑
k,j

s∗
kj ⊗ Ejk.

As each s∗
kj ∈ S—since S is an operator system—we get that S∗ ∈ Mn(S).

(13.2.2) Show that that if n,m ∈ N with n < m, and ϕ : S → B, then
∥ϕ(m)∥ ≥ ∥ϕ(n)∥, and ϕ(m) ≥ 0 implies ϕ(n) ≥ 0.

Answer. We may assume without loss of generality that B ⊂ B(H). We have
∥ϕ(n)∥ = sup{∥ϕ(n)(A)∥ : A ∈ Mn(S), ∥A∥ = 1}.

Since
ϕ(n)(A) = ϕ(m)(A⊕ 0m−n),

every number ∥ϕ(n)(A)∥ can be written as ∥ϕ(m)(Ã)∥ with ∥Ã∥ = 1. Thus
∥ϕ(n)∥ ≤ ∥ϕ(m)∥.

Similarly, if ϕ(m) ≥ 0 and A ∈ Mn(S) is positive, then Ã = A ⊕ 0 ≥ 0
and

⟨ϕ(n)(A)ξ, ξ⟩ = ⟨ϕ(m)(Ã)ξ̃, ξ̃⟩ ≥ 0
for any ξ ∈ Hn, with ξ̃ = ξ ⊕ 0.

(13.2.3) Let S = A be a C∗-algebra, and ϕ : A → B a ∗-homomorphism.
Show that ϕ is completely positive.

Answer. If A ∈ Mn(A) is positive, we can write A = B∗B for some B ∈
Mn(A). Then

ϕ(n)(A) = ϕ(n)(B∗B) =
∑
k,j

ϕ(n)((B∗B)kj
)

⊗ Ekj

=
∑
k,j

∑
h

ϕ(B∗
hkBhj) ⊗ Ekj =

∑
k,j

∑
h

ϕ(Bhk)∗ϕ(Bhj) ⊗ Ekj

∑
k,j

∑
h

(
ϕ(Bhk) ⊗ Ehk)∗(ϕ(Bhj) ⊗ Ehj

)
=
∑
h

(∑
k

ϕ(Bhk ⊗ Ehk

)∗(∑
k

ϕ(Bhk ⊗ Ehk

)
≥ 0.
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(13.2.4) Show an example of a C∗-algebra A with a dense subalgebra
A0 and a ∗-homomorphism ρ : A0 → A0 that is unbounded
(so, in particular, it doesn’t extend to A).

Answer. Let A = C[0, 1], A0 = C[x], and ρ : A0 → A0 given by ρ(p) = p(2).
Then ρ is a ∗-homomorphism. If pn(x) = xn, then ∥pn∥ = 1 for all n but
|ρ(pn) = 2n, so ρ is unbounded.

(13.2.5) Given a compact Hausdorff space T , show that the C∗-algebras
A = Mn(C(T )) and B = C(T,Mn(C)) are canonically isomor-
phic, where the norm in B is given by

∥y∥B = sup{∥y(t)∥ : t ∈ T}.

Answer. Let π : A → B be given by

π(A)(t) =
∑
k,j

Akj(t) ⊗ Ekj .

Because the algebraic operations between functions are defined pointwise, it
is clear that π is a ∗-homomorphism. It is injective, for if Akj(t) = 0 for all
t then Akj = 0. And it is surjective. If g : T → Mn(C) is continuous, let
A =

∑
k,j gkj ⊗ Ekj , and then π(A) = g.

(13.2.6) Prove that a positive map ϕ : S → B maps selfadjoint elements
to selfadjoint elements.

Answer. Let a ∈ S be selfadjoint. Then a + ∥a∥ IA is positive, so z =
ϕ(a) + ∥a∥ϕ(IA) is positive. Therefore ϕ(a) = z − ∥a∥ϕ(IA) is a linear
combination of positive elements and hence selfadjoint.

(13.2.7) Show that
α+ βz + γz̄ ≥ 0, z ∈ D ⇐⇒ α ≥ 0, γ = β̄, 2|β| ≤ α

⇐⇒
[
α 2β
2γ α

]
≥ 0.
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Answer. Suppose first that α+βz+γz̄ ≥ 0 for all z in the disk. From z = 0
we get that α ≥ 0. It follows that βz+γz̄ ∈ R for all z. With z = 1 and z = i
we obtain β + γ ∈ R, (β − γ)i ∈ R. We get from these that Im γ = −Im β,
and Reβ = Re γ; so γ = β. Now we have that α + 2Reβz ≥ 0 for all z.
Choosing z such that bz = −|b| we get 2|β| ≤ α.

Now assume that α ≥ 0, γ = β̄, 2|β| ≤ α. We have〈[
α 2β
2γ α

] [
z1
z2

]
,

[
z1
z2

]〉
= α|z1|2 + α|z2|2 + 4Reβz1z2

≥ α|z1|2 + α|z2|2 − 4|β| |z1| |z2|

≥ α|z1|2 + α|z2|2 − 2α |z1| |z2|

= α (|z1|2 − |z2|2) ≥ 0.
So the matrix is positive.

Finally, suppose that
α|z1|2 + α|z2|2 + 2βz1z2 + 2γz1z2 ≥ 0

for all z1, z2. Given z = reiθ ∈ D, let

z1 =
√

1 +
√

1 − r2

2 e−iθ, z2 =
√

1 −
√

1 − r2

2 .

Then |z1|2 + |z2|2 = 1 and 2z1z2 = z, giving us α+ βz + γz̄ ≥ 0.

(13.2.8) Prove equation (13.4), i.e.
n∑

k,j=1
⟨ϕ(a∗

jak)ξk, ξj⟩ =
〈
ϕ(n)(A∗A)ξ, ξ

〉
,

where ξ = (ξ1, . . . , ξn)⊤ ∈ Hn and A ∈ Mn(A) is the matrix
with some row a1, . . . , an and zeroes elsewhere.

Answer. If we write ξ =
[
ξ1 · · · ξn

]⊤ and A =
∑
j aj ⊗ Erj , then

A∗A =
∑
k,j

(ak⊗Erk)∗(aj ⊗Erj) =
∑
k,j

(a∗
k⊗Ekr)(aj ⊗Erj) =

∑
k,j

a∗
kaj ⊗Ekj .

Then
∗⟨ϕ(n)(A∗A)ξ, ξ⟩ =

∑
k,j

∑
r,s

⟨(a∗
kaj ⊗ Ekj)(ξr ⊗ er), ξs ⊗ es⟩ (13.1)

=
∑
k,j

∑
s

(a∗
kajξk, ξj⟩. (13.2)
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(13.2.9) Show that if X ∈ Mn(A), then we can write X = X1 + · · · +
Xn—where Xk is the matrix such that its kth row is that of X,
and the rest of the rows are zero—and then X∗X =

∑
kX

∗
kXk.

Answer. We have Xk =
∑
j Xkj ⊗ Ekj , so X =

∑
kXk. And

X∗X =
∑
r,s

X∗
rXs =

∑
r,s

∑
j,h

(Xrh ⊗ Erh)∗(Xsj ⊗ Esj)

=
∑
r,s

∑
j,h

X∗
rhXsj ⊗ EhrEsj

=
∑
r

∑
j,h

(Xrh ⊗ Erh)∗(Xrj ⊗ Erj)

=
∑
r

X∗
rXr.

(13.2.10) In the proof of Proposition 13.2.12, show that ∥X∥ = ∥ξ∥.

Answer. We have

∥X∥2 = ∥X∗X∥ =
∥∥∥∥ [∑j |cj |2 0

0 0

] ∥∥∥∥ =
∑
j

|cj |2 = ∥ξ∥2,

where we are using that ∥E11∥ = 1 (since it is a projection).

(13.2.11) Show that if A ∈ Mn(C) and B ∈ Mn(S), then AB ∈ Mn(S).
Show an example where A,B ∈ Mn(S) and AB ̸∈ Mn(S).

Answer. Because A is scalar, the k, j entry in AB is (AB)kj =
∑
j AkhBhj ,

a linear combination of elements in S. Hence AB ∈ Mn(S).
For the example, consider the operator system

S = {α+ βt : α, β ∈ C} ⊂ C[0, 1]}.
Already for n = 1 we have, with g(t) = t, g ∈ S but g2 ̸∈ S. We can make
this look like matrices with

A =
[
g 0
0 0

]
∈ M2(S), while A2 =

[
g2 0
0 0

]
̸∈ M2(S).
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(13.2.12) Show that the set K00 in the proof of Stinespring’s Theo-
rem 13.2.15 is actually a subspace. (Hint: Cauchy-Schwarz)

Answer. Suppose that ξ, η ∈ K00 and α ∈ C. It was established in (13.7)
that ⟨·, ·⟩K is a positive sesquilinear form, so Cauchy–Schwarz applies. Then

|⟨ξ, η⟩|2 ≤ ⟨ξ, ξ⟩ ⟨η, η⟩ = 0.
Thus

⟨ξ + αη, ξ + αη⟩ = ⟨ξ, ξ⟩ + |α|2⟨η, η⟩ + 2Reα ⟨ξ, η⟩ = 0.

(13.2.13) Prove the uniqueness, up to unitary conjugation, of the Stine-
spring’s Dilation (Theorem 13.2.15).

Answer. Suppose that (K1, π1, V1) is another minimal Stinespring triple for
ϕ. So K1 = π1(A)V1H, K = π(A)VH. Define a map W : K → K1 by

Wπ(a)V ξ = π1(a)V1ξ.

We first need to check this is well defined: if π(a)V ξ = π(b)V η, then
∥π1(a)V1ξ − π1(b)V1η∥2 = ⟨π1(a)V1ξ, π1(a)V1ξ⟩ + ⟨π1(b)V1η, π1(b)V1η⟩

− 2Re ⟨π1(a)V1ξ, π1(b)V1η⟩

= ⟨V ∗
1 π1(a∗a)V1ξ, ξ⟩ + ⟨V ∗

1 π1(b∗b)V1η, η⟩

− 2Re ⟨V ∗
1 π1(b∗a)V1ξ, η⟩

= ⟨ϕ(a∗a)ξ, ξ⟩ + ⟨ϕ(b∗b)η, η⟩ − 2Re ⟨ϕ(b∗a)ξ, η⟩

= ⟨V ∗π(a∗a)V ξ, ξ⟩ + ⟨V ∗π(b∗b)V η, η⟩

− 2Re ⟨V ∗π(b∗a)V ξ, η⟩

= ⟨π(a)V ξ, π(a)V ξ⟩ + ⟨π(b)V η, π(b)V η⟩

− 2Re ⟨π(a)V ξ, π(b)V η⟩

= ∥π(a)V ξ − π(b)V η∥2 = 0,
so π1(a)V1ξ = π1(b)V1η. Also, working on the inner products as above,

∥Wπ(a)V ξ∥ = ∥π1(a)V1ξ∥ = ∥ϕ(a∗a)ξ∥ = ∥π(a)V ξ∥,
and W is an isometry. From K1 = π1(A)V1H the range of W is dense; as
W is an isometry its range is also closed, and thus W is onto. Finally, we
show that the unitary W conjugates one Stinespring triple into the other: by
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construction, WK = K1, and
Wπ(a)π(b)V ξ = Wπ(ab)V ξ = π1(ab)V1ξ = π1(a)π1(b)V1ξ = π1(a)Wπ(b)V ξ;
as the elements of the form π(b)V ξ are dense in K, we get that Wπ(a) =
π1(a)W and hence Wπ(a)W ∗ = π1(a) for all a ∈ A. Assuming that A is
unital, for all ξ ∈ H we have

WV1ξ = Wπ1(IA)V1ξ = π(IA)V ξ = V ξ.

So WV1 = V .
If A is not unital, the whole argument can still be carried by using an

approximate unit. Indeed, if {ej} ⊂ A is an approximate unit, then the net
{εj ⊗ ξ} is weakly convergent in K; for

⟨ej ⊗ ξ − ek ⊗ ξ, b⊗ ξ⟩ = ⟨ϕ(b∗(ej − ek))ξ, ξ⟩ →c⃝ 2024 Mart́ın Argerami All Rights Reserved ⟨ϕ(b∗ − b∗)ξ, ξ⟩ = 0.
And for arbitrary η ∈ K given ε > 0 there exists η0 =

∑
j bj ⊗ ηj with

∥η − η0∥ < ε. Then
|⟨ej ⊗ ξ − ek ⊗ ξ, η⟩| ≤ |⟨ej ⊗ ξ − ek ⊗ ξ, η0⟩| + |⟨ej ⊗ ξ − ek ⊗ ξ, η − η0⟩|

≤ |⟨ej ⊗ ξ − ek ⊗ ξ, η0⟩| + ∥η − η0∥ ∥(ek − ej) ⊗ ξ∥

≤ |⟨ej ⊗ ξ − ek ⊗ ξ, η0⟩| + ε ⟨ϕ((ek − ej)2)ξ, ξ⟩1/2

≤ |⟨ej ⊗ ξ − ek ⊗ ξ, η0⟩| + ε ∥φ∥1/2 ∥ξ∥.

Then lim supj |⟨ej ⊗ ξ − ek ⊗ ξ, η⟩| ≤ ε ∥φ∥1/2 ∥ξ∥ for all ε > 0, and so by the
Limsup Routine the limit exists and is zero. Thus there exists ξ̃ ∈ K with
ξ̃ = limweak ej ⊗ ξ. We define V ξ = ξ̃. The only moment where we used the
definition of V was to check the formula V ∗π(a)V = ϕ(a). In this case we
can do (note that there is no double limit below, just two limits applied one
after the other)
⟨V ∗π(a)V ξ, η⟩ = ⟨π(a)V ξ, V η⟩ = ⟨π(a)ξ̃, η̃⟩ = lim

j
lim
k

⟨π(a)(ej ⊗ ξ), ek ⊗ η⟩

= lim
j

lim
k

⟨π(ekaej)ξ, η⟩ = lim
j

⟨ϕ(aej)ξ, η⟩ = ⟨ϕ(a)ξ, η⟩.

For the norm of V , we have
∥V ξ∥2 = ⟨V ξ, V ξ⟩ = lim

j
lim
k

⟨ej ⊗ ξ, ek ⊗ ξ⟩ = lim
j

lim
k

⟨ϕ(ekej)ξ, ξ⟩ ≤ ∥ϕ∥ ∥ξ∥2

for all ξ ∈ H, so ∥V ∥2 ≤ ∥ϕ∥. Conversely, given ε > 0 choose a ∈ A with
∥a∥ = 1 and ∥ϕ∥ ≤ ε + ∥ϕ(a)∥. Now choose ξ ∈ H with ∥ξ∥ = 1 and
∥ϕ(a)∥ ≤ ε+ ∥ϕ(a)ξ∥. Then
∥ϕ∥ ≤ 2ε+ ∥ϕ(a)ξ∥ = 2ε+ ∥V ∗π(a)V ξ∥ = 2ε+ ⟨V ∗π(a∗)V V ∗π(a)V ξ, ξ⟩1/2

≤ 2ε+ ∥V ∥ ⟨V ∗π(a∗a)V ξ, ξ⟩1/2 = 2ε+ ∥V ∥ ⟨π(a∗a)V ξ, V ξ⟩1/2

≤ 2ε+ ∥V ∥ ∥π(a∗a)∥1/2 ∥V ξ∥ ≤ 2ε+ ∥V ∥2.
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As ε was arbitrary we get the reverse inequality and then ∥V ∥2 = ∥ϕ∥.

(13.2.14) Let Φ : A → B be a linear map. Let γ : B → B(H) be a
faithful representation and H =

⊕
j Hj a decomposition of H

such that γ(B)Hj ⊂ Hj . Show that Φ is completely positive if
and only if each restriction Pj(γ ◦ Φ)Pj is completely positive,
where Pj : H → Hj is the canonical projection.

Answer. If Φ is completely positive, then Pj(γ ◦ Φ)Pj is completely positive
since it is a composition of completely positive maps.

Conversely, suppose that Pj(γ ◦ Φ)Pj is completely positive for each j.
Fix a1, . . . , an ∈ A and ξ1, . . . , ξn ∈ H. For each ξk we have (since the Pj are
pairwise orthogonal projections) a decomposition ξk =

∑
j Pjξk. Then (note

that γ(Φ(a))Pj = Pjγ(Φ(a)) for all a ∈ A)
n∑

k,h=1
⟨γ(Φ(a∗

hak))ξk, ξh⟩ =
∑
g,j

n∑
k,h=1

⟨γ(Φ(a∗
hak))Pjξk, Pgξh⟩

=
∑
g,j

n∑
k,h=1

⟨Pgγ(Φ(a∗
hak))Pjξk, ξh⟩

=
∑
j

n∑
k,h=1

⟨Pjγ(Φ(a∗
hak))Pjξk, ξh⟩

=
∑
j

n∑
k,h=1

⟨Pjγ(Φ(a∗
hak))Pjξk, ξj⟩ ≥ 0.

By Lemma 13.2.10 φ ◦ Φ is completely positive, and then Φ is completely
positive since γ−1 is.

(13.2.15) Show that the transpose map ϕT : M2(C) → M2(C) is positive,
unital, and contractive.

Answer. We have ϕT (A∗A) = (A∗A)⊤ = (A⊤)∗A⊤ ≥ 0, so ϕT is positive.
We have ϕT (I2) = I⊤

2 = I2, so ϕT is unital.
As for the norm,

∥ϕT (A)∥2 = ∥A⊤∥2 = ∥(A⊤)∗(A⊤)∥ = ∥(A∗A)⊤∥ = ∥A∗A∥ = ∥A∥2.
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(13.2.16) Work out the missing details in Example 13.2.20. Namely,
show that the matrix inside ϕ(2)

T is positive, while its image is
not positive.

Answer. Let

A =

1 0 0 1
0 0 0 0
0 0 0 0dir0o 0 0 1

 .
As A is real and symmetric, it is selfadjoint. Also, A2 = 2A, so A =
(A/

√
2)2 ≥ 0. Or, we deduce from A2 = 2A that σ(A) = {0, 2}.
The other matrix is

B = ϕ
(2)
T =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .
One can compute directly that B(e2 − e3) = −(e2 − e3), which shows that
−1 ∈ σ(B). Hence B is not positive.

(13.2.17) Let φ : A → B(H) be contractive and completely positive with
minimal Stinespring triple (π,K, V ). Use ideas from the proof
of Lemma 13.2.37, to show there exists a ∗-homomorphism
ρ : φ(A)′ → π(A)′ ⊂ B(K) that satisfies

φ(a)T = V ∗π(a)ρ(T )V, a ∈ A, T ∈ φ(A)′.

Answer. Given T ∈ φ(A)′ we define for a ∈ A and ξ ∈ H
ρ(T )π(a)V ξ = π(a)V Tξ

and extended by linearity. If we get that ρ(T ) is well-defined and bounded,
then

ρ(T1T2)π(a)V ξ = π(a)V T1T2ξ = ρ(T1)π(a)V T2ξ = ρ(T1)ρ(T2)π(a)V ξ,
and

⟨ρ(T ∗)π(a)V ξ, π(b)V η = ⟨π(a)V T ∗ξ, π(b)V η⟩ = ⟨ξ, TV ∗π(a)∗π(b)V η⟩

= ⟨ξ, Tφ(a∗b)η⟩ = ⟨ξ, φ(a∗b)Tη⟩

= ⟨π(a)V ξ, π(b)V Tη⟩ = ⟨π(a)V ξ, ρ(T )π(b)V η⟩

= ⟨ρ(T )∗π(a)V ξ, π(b)V η⟩.
As this can be done for all a, b ∈ A and all ξ, η ∈ H these equalities survive
sums, and so ρ(T ∗) = ρ(T ). Now we check that ρ(T ) is well-defined and
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bounded. We have∥∥∥∥ρ(T )
(∑

j

π(aj)V Tξj
)∥∥∥∥2

=
∥∥∥∥∑

j

π(aj)V Tξj
∥∥∥∥2

=
∑
k,j

⟨T ∗V ∗π(a∗
jak)V Tξk, ξj⟩

=
∑
k,j

⟨T ∗φ(a∗
jak)Tξk, ξj⟩ = ⟨(T̃ )∗φ(m)(A∗A)T̃ ξ̃, ξ̃⟩

= ⟨φ(m)(A∗A)1/2 (T̃ )∗T̃ φ(m)(A∗A)1/2ξ̃, ξ̃⟩

≤ ∥T∥2 ⟨φ(m)(A∗A)ξ̃, ξ̃⟩ = ∥T∥2
∥∥∥∥∑

j

π(aj)V ξj
∥∥∥∥2
.

where A =
[
a1 · · · am

]
, ξ̃ =

[
ξ1 · · · ξm

]⊤, and T̃ ∈ Mm(φ(A)′) is the
matrix with T in the diagonal and zeros elsewhere.

Hence ρ extends uniquely to an operator ρ(T ) ∈ B(K), and from
ρ(T )π(a)π(b)V ξ = ρ(T )π(ab)V ξ = π(ab)V Tξ = π(a)π(b)V Tξ

= π(a)ρ(T )π(b)V ξ,
we conclude that ρ(T ) ∈ π(A)′.

(13.2.18) Let X ∈ Mn(A)+. Show that if Xkk = 0 for some k, then
Xkj = Xjk = 0 for all j = 1, . . . , n.

Answer. Since X is positive, we have X = Y ∗Y for some Y ∈ Mn(A). Then

0 = Xkk =
n∑
j=1

(Y ∗)kjYjk =
n∑
j=1

YjkYjk =
n∑
j=1

|Yjk|2

It follows that Yjk = 0 for all j = 1, . . . , n. Now, for any j,

Xkj =
n∑
ℓ=1

YℓkYjk = 0.

And here is a different argument:
|Xjk| = |⟨Xek, ej |⟩ ≤ ∥Xek∥ ∥ej∥ ≤ ∥X1/2∥ ∥X1/2ek∥

= ∥X1/2∥ ⟨Xek, ek⟩ = ∥X1/2∥Xkk = 0.

In both cases, we have Xkj = Xjk, so it is enough to show that one of them
is zero.
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(13.2.19) Let
[
x y
y∗ z

]
∈ M2(A) with

[
0 0
0 0

]
≤
[
x y
y∗ z

]
≤
[
IA 0
0 0

]
.

Show that y = z = 0. Use the same idea to conclude that if
X ∈ Mn(A) and 0 ≤ X ≤ IA ⊗ Ekk, then X = a ⊗ Ekk for
some a ∈ A.

Answer. The second inequality is[
IA −y

−y∗ −z

]
≥ 0.

The 2,2 entry gives that −z ≥ 0, while the first inequality
[
0 0
0 0

]
≤
[
x y
y∗ z

]
gives z ≥ 0. Thus z = 0 and now Exercise 13.2.18 gives us y = 0.

For X ∈ Mn(A), the idea is the same. We write X =
∑
k,j xkj ⊗ Ekj .

Then, for any h,
⟨xhhξ, ξ⟩ = ⟨X(ξ ⊗ ξh), ξ ⊗ ξh⟩ ≥ 0,

so xhh ≥ 0. We also have, for any ξ ∈ H and h ̸= k,
0 ≤ ⟨(IA ⊗ Ekk −X)(ξ ⊗ ξh), (ξ ⊗ ξh⟩ = −⟨xhhξ, ξ⟩,

so −xhh ≥ 0. It follows that xhh = 0 for all h ̸= k. Now we can repeat the
argument as in Exercise 13.2.18: for ξ ∈ H with ∥ξ∥ = 1,

⟨xjhξ, η⟩ = ⟨X(ξ ⊗ ξh), ξ ⊗ ξj⟩ ≤ ∥X(ξ ⊗ ξj∥2 = ⟨X2(ξ ⊗ ξh), ξ ⊗ ξh⟩

≤ ∥X∥ ⟨X(ξ ⊗ ξh), ξ ⊗ ξh⟩ = ∥X∥ ⟨xhhξ, ξ⟩ = 0.
Then xjh = 0 for all h ̸= k and all j. Since X∗ = X, we also get xhj = 0.
Thus only xkk is possibly nonzero, and then X = xkk ⊗ Ekk.

(13.2.20) Let ϕ : A → B(H) be unital and 2-positive. Show that ϕ is
bounded and ∥ϕ∥ = 1.

Answer. Fix a ∈ A with ∥a∥ = 1. Then a∗a ≤ I and, using Kadison’s
Schwarz inequality (13.8),

∥ϕ(a)∥2 = ∥ϕ(a)∗ϕ(a)∥ ≤ ∥ϕ(a∗a)∥ ≤ ∥ϕ(I)∥ = ∥I∥ = 1.
Thus, ϕ is bounded and ∥ϕ∥ ≤ 1. As I = ϕ(I), we have ∥ϕ∥ = 1.
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(13.2.21) Let A be a non-unital C∗-algebra and f ∈ S(A) pure. Show
that the unique extension f̃ of f to Ã (which exists by Propo-
sition 11.5.6) is pure.

Answer. By Proposition 13.2.41 it is enough to show that f̃ is extreme.
Suppose that f̃ = tg + (1 − t)h for g, h ∈ S(Ã) and t ∈ [0, 1]. By restriction
to A and the fact that f is pure, we get that g|A = h|A = f . Then g(a, λ) =
g(a, 0) + λ = f(a) + λ = f̃(a, λ), and similarly for h. Thus g = h = f̃ , and so
f̃ is pure.

(13.2.22) Show that, using the matrix units {Ekj} as the basis of Mn(C),
the basis can be ordered in such a way that the matrix repre-
sentation of the multiplication operator MX : Y 7−→ XY is
X ⊗ In.

Answer. The (n2 × n2) matrix of MX is obtained via the equation

XEk,j =
∑
h,ℓ

Xk,j,h,ℓEhℓ. (AB.13.1)

As X =
∑
h,ℓXh,ℓEhℓ, we obtain

XEkj =
∑
h

Xh,kEhj . (AB.13.2)

Comparing (AB.13.1) with (AB.13.2), we get
Xk,j,h,ℓ = δj,ℓXh,k.

So if we see the matrix of MX as a block matrix with the blocks indexed by
j, ℓ, we will have a copy of X in each diagonal block: MX ≃ X ⊗ In.

To visualize this more concretely, consider the case n = 2. We identify
M2(C) with C4 by

Y 7−→


Y11
Y21
Y12
Y22

 ,
and then Y 7−→ XY is achieved by

[
X 0
0 X

] 
Y11
Y21
Y12
Y22

 .
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(13.2.23) Let {ϕj} ⊂ CP (S,B(H)) be a bounded net. Show that ϕj
BW−−−→

if and only if ⟨ϕj(x)ξ, ξ⟩ → ⟨ϕ(x)ξ, ξ⟩ for all ξ ∈ H and x ∈ S.

Answer. Let c > 0 with ∥φj∥ ≤ c for all j.
Suppose first that ϕj

BW−−−→ and ξ ∈ H. Let P be the rank-one projection
with Pξ = ξ. Then

⟨φj(x)ξ, ξ⟩ = Tr(Pφj(x)P ) = Tr(Pφj(x)) →c⃝ 2024 Mart́ın Argerami All Rights Reserved Tr(Pφ(x)) = ⟨φ(x)ξ, ξ⟩.
Conversely, if ⟨ϕj(x)ξ, ξ⟩ → ⟨ϕ(x)ξ, ξ⟩ for all ξ then using polarization we
get that ⟨ϕj(x)ξ, η⟩ → ⟨ϕ(x)ξ, η⟩ for all ξ, η ∈ H. From this we get that
∥φ(x)∥ ≤ c∥x|, and that Tr(Sφj(x)) → Tr(Sφ(x)) for all finite-rank S. Given
S ∈ T (H), by Proposition 10.7.9 there exist finite-rank operators {Sn} with
∥S − Sn∥1 → 0. Then
| Tr(S(φj(x) − φ(x)))| ≤ | Tr(Sn(φj(x) − φ(x)))| + ∥S − Sn∥1 ∥φj(x) − φ(x)∥

≤ | Tr(Sn(φj(x) − φ(x)))| + 2c∥x∥ ∥S − Sn∥1.

Then lim supj | Tr(S(φj(x) − φ(x)))| ≤ 2c∥x∥ ∥S − Sn∥1. As we can do this
for all n, the limsup is zero, showing that the limit exists and is zero.

(13.2.24) Let P ∈ B(H) be a finite-rank projection, n = Tr(P ). Show
that PB(H)P ≃ Mn(C) as C∗-algebras.

Answer. Since P has rank n, there exist n pairwise orthogonal rank-one
projections P1, . . . , Pn with

∑
j Pj = P . Let {ξj} ⊂ H unit vectors with

Pjξj = ξj (hence orthonormal) and put V1jξ = ⟨ξ, ξj⟩ξ1. Then (V1j)∗V1j =
Pj , V1jV

∗
1j = P1. If we define

Vkj = V ∗
1kV1j ,

we get a system of matrix units. Let ρ : Mn(C) → PB(H)P be given by
ρ(Ekj) = Vkj and extended by linearity. The matrix unit properties guarantee
that ρ is a ∗-homomorphism. As Mn(C) is simple, ρ is injective. Now given
T ∈ PB(H)P , we have

V1kTVj1ξ = ⟨ξ, ξ1⟩ ⟨Tξj , ξk⟩ ξ1 = ⟨Tξj , ξk⟩P1ξ.
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Then
T = PTP =

∑
k,j

PkTPj =
∑
k,j

Vk1(V1kTVj1)V1j

=
∑
k,j

PkTPj =
∑
k,j

⟨Tξj , ξk⟩Vk1P1V1j

=
∑
k,j

⟨Tξj , ξk⟩Vkj = ρ
(∑
k,j

⟨Tξj , ξk⟩Ekj
)
.

So ρ is surjective, and therefore a ∗-isomorphism.

(13.2.25) Show that the composition of cp maps is cp.

Answer. This is simply the observation that (φ ◦ ψ)(n) = φ(n) ◦ ψ(n).

(13.2.26) Show that if A ∈ Mn(S), i.e. A =
∑n
k,j=1 akj ⊗ Ekj with

akj ∈ S for all k, j, then ∥A∥ ≤
∑
k,j ∥akj∥.

Answer. We have ∥A∥ ≤
∑n
k,j=1 ∥akj ⊗ Ekj∥. And, given any ξ ∈ Hn,

∥(akj ⊗ Ekj)ξ∥ = ∥akjξj∥ ≤ ∥akj∥ ∥ξj∥ ≤ ∥akj∥ ∥ξ∥.

(13.2.27) Let A be a non-unital C∗-algebra and φ ∈ S(A) a pure state.
Show that the extension φ̃ to Ã (Proposition 11.5.6) is pure.

Answer. By Proposition 13.2.41 we need to show that φ̃ is extreme. Sup-
pose that φ̃ = tψ̃1 + (1 − t)ψ̃2 for t ∈ [0, 1] and ψ1, ψ2 ∈ A∗ positive with
∥ψ1∥ ≤ 1 and ∥ψ2∥ ≤ 1 (that any state in Ã is an extension of a positive
linear functional is guarantees by the uniqueness in Proposition 11.5.6). The
restrictions to A then satisfy φ = tψ1 + (1 − t)ψ2. With {ej} an approximate
unit for A, by Proposition 11.5.4

1 = ∥φ∥ = lim
j
φ(ej) = lim

j
tψ1(ej) + (1 − t)ψ2(ej)

= t∥ψ1∥ + (1 − t)∥ψ2∥ ≤ 1 + 1 − t = 1.
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As ∥ψ1∥ ≤ 1 and ∥ψ2∥ ≤ 1, the only way the equality can hold is if ∥ψ1∥ =
∥ψ2∥ = 1, so ψ1, ψ2 ∈ S(A). As φ is extreme, ψ1 = ψ2 = φ, and then
φ̃ = ψ̃1 = ψ̃2 and φ̃ is extreme. By Proposition 13.2.41, φ̃ is pure.

(13.2.28) Let A be a C∗-algebra and φ : A → B(H) a contractive com-
pletely positive map. Show that φ admits a unique ucp exten-
sion to the unitization Ã.

Answer. The extension should necessarily be φ̃(a, λ) = φ(a) + λφ(0, 1) =
φ(a) + λ IH since φ̃ is required to be unital. So the only task ahead is to
show that φ̃ is cp. Let φ = V ∗πV be a minimal Stinespring dilation, with
π : A → B(K) a representation and V : K → H linear and bounded. Since φ
is contractive, we have ∥V ∥ = ∥ϕ∥1/2 ≤ 1. Let Z = IH − V ∗V ≥ 0. We have

φ̃(a, λ) = V ∗π(a)V + λV ∗V + λZ = V ∗(π(a) + λIH)V + λZ.

As conjugating with V is cp and the map (a, λ) 7−→ λZ is cp (being of the
form “state times fixed operator”) and the sum of cp maps is cp, it only
remains to show that we can extend representations to the unitization. This
was done in Exercise 11.6.10.

(13.2.29) Let A = Mn(C), and B the diagonal subalgebra. Show that the
map A 7−→ diag(A11, . . . , Ann) is a conditional expectation.

Answer. Denoting the map by E , we have
E(A+ λB) = diag(A11 + λB11, . . . , Ann + λBnn)

= diag(A11, . . . , Ann) + λ diag(B11, . . . , Bnn).
If B is already diagonal, the diagonal of AB is diag(A11B11, . . . , AnnBnn). So
E(AB) = E(A)B, and the other side is similar. The positivity of E is the fact
that the diagonal of a positive matrix is positive, namely Akk = e∗

kAek ≥ 0.

(13.2.30) Let A be a unital C∗-algebra and φ ∈ A∗ a positive linear func-
tional. Show that a 7−→ φ(a) IA is a conditional expectation
onto C IA.

Answer. The linearity and positivity are those of φ. If b = λIA ∈ B, then
φ(ab)IA = (φ(a)IA)λ = (φ(a)IA)b. So the map is B-linear.



13. COMPLETELY POSITIVE MAPS 571

(13.2.31) Write a direct proof of (ii) =⇒ (i) in Proposition 13.2.68.

Answer. Since E satisfies equation: Kadison’s Inequality, it is positive. It
remains to show that E(ba) = bE(a) for all a ∈ A, b ∈ B (the equality to
the other side can be obtained by taking adjoints). We have E(b)∗E(b) =
b∗b = E(b∗b). The proof of Theorem 13.2.29 only uses the 2-positive to have
access to Kadison’s Schwarz inequality, which is a hypothesis here. Hence the
proof applies, and b is in the multiplicative domain of E . This means that
E(ba) = E(b)E(a) = bE(a).

(13.2.32) Show that the map E from Example 13.2.70 is a faithful normal
conditional expectation.

Answer. For each T ∈ B(H), we have FjTFj = λT,jFj for some λT,j ∈ C
(due to the minimality of Fj , and |λT,j | ≤ ∥T∥. So the series

∑
j FjTFj

converges sot since the Fj are pairwise orthogonal. So E : B(H) → A is a
linear map, and ∥E(T )∥ = sup{∥FjTFj∥ : j} ≤ ∥T∥. And if A ∈ A, then

E(A) =
∑
j

FJAFj =
∑
j

AFj = AIA = A;

hence E is a projection of norm 1 and thus a conditional expectation by
Proposition 13.2.68.

If E(T ∗T ) = 0, then
∑
j FjTFj = 0. Compressing with a single Fj we

get
0 = FjT

∗Fj = (TFj)∗TFj ,

so TFj = 0. Then T = T IA =
∑
j TFj = 0 and E is faithful.

Finally, normality. Fix φ ∈ S(A) a normal state. The maps T 7−→
φ(FjTFj) are normal for each j (since trace-class operators form an ideal).
Sums of normal maps are normal, and so are limits by Exercise 12.7.1; then
φ ◦ E is normal. As this can be done for all normal φ, E is normal.

(13.2.33) Show that if on ℓ∞(Z) we consider the states

φN (a) = 1
2N + 1

N∑
n=−N

a(n).

and φ is a weak∗-accumulation point {φN}N , then φ is an
invariant mean. That is, if b(n) = a(n + m) for all n (that is,
b is a translate of a), show that φ(b) = φ(a).
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Answer. Let {Nj} be a net of integers such that φNj → φ pointwise. We
have

|φNj (b) − φNj (a)| = 1
2Nj + 1

∣∣∣∣ Nj∑
n=−Nj

a(n+m) − b(n)
∣∣∣∣

≤ 1
2Nj + 1

Nj∑
n=−Nj

|a(n+m) − b(n)|

= 1
2Nj + 1

( −Nj−1∑
n=−Nj−m

|a(n)| +
Nj∑

n=Nj−m+1
|a(n)|

)

≤ 2m∥a∥∞

2Nj + 1 →c⃝ 2024 Mart́ın Argerami All Rights Reserved 0.

Therefore φ(b) = φ(a).

13.3. Group Algebras

(13.3.1) Prove Proposition 13.3.2.

Answer. Given γ ∈ HG, since G is a group

∥λ(g)γ∥2 =
∑
h∈G

|γ(g−1h)|2 =
∑
h

|γ(h)|2 = ∥γ∥2.

This shows that λ(g) is an isometry. The linearity is automatic since λ(g)
acts inside of γ. Namely,(

λ(g)(αγ1 + γ2)
)
(h) = (αγ1 + γ2)(g−1h) = αγ1(g−1h) + γ2(g−1h)

= (αλ(g)γ1)(h) + (λ(g)γ2)(h).
So λ(g) ∈ B(HG). We have
(λ(gh)γ)(k) = γ((gh)−1k) = γ(h−1g−1k) = (λ(h)γ)(g−1k) = (λ(g)λ(h)γ)(k)
for all g, h, k ∈ G, so λ(gh) = λ(g)λ(h). As λ(e) = IHG

and every g is
invertible in G, we get that λ(g) is invertible with inverse λ(g−1) (no need
for theorems here, as λ(g−1) is a bounded operator). So λ(g) is a surjective
isometry and hence a unitary.
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We have, for all g, h, k ∈ G,
(λ(g)δh)(k) = δh(g−1k) = δgh(k).

Hence λ(g)δh = δgh.

(13.3.2) Prove Proposition 13.3.4.

Answer. Given γ ∈ HG, since G is a group

∥ρ(g)γ∥2 =
∑
h∈G

|γ(hg)|2 =
∑
h

|γ(h)|2 = ∥γ∥2.

This shows that ρ(g) is an isometry. The linearity is automatic since ρ(g)
acts inside of γ. Namely,(

ρ(g)(αγ1 + γ2)
)
(h) = (αγ1 + γ2)(hg) = αγ1(hg) + γ2(hg)

= (αρ(g)γ1)(h) + (ρ(g)γ2)(h).
So ρ(g) ∈ B(HG). We have

(ρ(gh)γ)(k) = γ(kgh) = (ρ(h)γ)(kg) = (ρ(g)ρ(h)γ)(k)
for all g, h, k ∈ G, so ρ(gh) = ρ(g)ρ(h). As ρ(e) = IHG

and every g is
invertible in G, we get that ρ(g) is invertible with inverse ρ(g−1) (no need
for theorems here, as ρ(g−1) is a bounded operator). So ρ(g) is a surjective
isometry and hence a unitary.

We have, for all g, h, k ∈ G,
(ρ(g)δh)(k) = δh(kg) = δhg−1(k).

Hence ρ(g)δh = δhg−1.

(13.3.3) Let x ∈ C∗
λ(G) and y ∈ C∗

ρ(G). Show that xy = yx.

Answer. We have
λ(g)ρ(h)δk = δgkh−1 = ρ(h)λ(g)δk.

By linearity and continuity, xyδk = yxδk for all k ∈ G. Then linearity and
continuity again gives us xy = yx.

(13.3.4) Let J be given by (Jξ)(g) = ξ(g−1). Show that J ∈ B(HG) is
a unitary and Jλ(g)J = ρ(g) for all g ∈ G.



574 CHAPTER 13

Answer. Given ξ ∈ HG,
(Jλ(g)Jξ)(h) = (λ(g)Jξ)(h−1) = (Jξ)(g−1h−1) = ξ(hg) = (ρ(g)ξ)(h)

for all g, h ∈ G. Then Jλ(g)J = ρ(g). The fact that J is a unitary follows
from J2 = IHG

and ∥Jξ∥ = ∥ξ∥, since g 7−→ g−1 is a bijection on G.

(13.3.5) Let G be a discrete group, c ∈ ℓ2(G) with the property that
c ∗ η ∈ ℓ2(G) for all η ∈ ℓ2(G), and T : ℓ2(G) → ℓ2(G) the
operator Tη = c ∗ η. Use the Closed Graph Theorem to show
that T is bounded.

Answer. We want to use the Closed Graph Theorem (6.3.12) and Exer-
cise 6.3.9.

Suppose that ηn → 0 and c∗ηn → ξ. Since ∥c∗ηn∥∞ ≤ ∥c∥2∥ηn∥2 → 0,
we have that c ∗ ηn → 0 pointwise. Now Proposition 7.1.20 implies that
c ∗ ηn → 0, so ξ = 0.

(13.3.6) Let c, η ∈ ℓ2(G), F ⊂ G and PF ∈ B(ℓ2(G)) the projection
(PF ξ)(g) = 1F (g)ξ(g). Show that (PF c) ∗ η = c ∗ (PF−1gη).

Answer. We have, for each g ∈ G,[
(PF c) ∗ η

]
(g) =

∑
h∈G

(PF c)(h) η(h−1g) =
∑
h∈F

c(h) η(h−1g)

=
∑

k∈F−1g

c(gk−1) η(k) =
∑
k∈G

c(gk−1) (PF−1gη)(k)

=
∑
h∈G

c(h) (PF−1gη)(h−1g) =
[
c ∗ (PF−1gη)

]
(g).

(13.3.7) For each g ∈ G let Pg be the orthogonal projection onto C δg.
Show that

λ(g)Peλ(g)∗ = Pg, and ρ(g)Pe ρ(g)∗ = Pg−1 .

Answer. To avoid confusion with the canonical basis, we use the notation

δ(a, b) =
{

1, a = b

0, a ̸= b
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We have
ρ(g)Pe ρ(g)∗ δs = ρ(g)Pe ρ(g−1)δs = δ(s, g−1) ρ(g)Pe δe

= δ(s, g−1) δg−1 = Pg−1δs.

So Pg and ρ(g)Peρ(g)∗ agree on each element of the canonical basis and are
thus equal. The other equality is similar.

(13.3.8) Show that the tracial state τ is faithful on L(G).

Answer. We need to show that τ(ξ∗ ∗ ξ) = 0 implies that ξ = 0. The adjoint
of ξ =

∑
g cgδg as an element of L(G) is given by

ξ∗ =
∑
g

cgδ
∗
g =

∑
g

cgδg−1 =
∑
g

cg−1δg.

Then
(ξ∗ ∗ ξ)(g) =

∑
h

ξ∗(h)ξ(h−1g) =
∑
h

ξ(h−1)ξ(h−1g).

Hence
τ(ξ∗ ∗ ξ) = ⟨(ξ∗ ∗ ξ)δe, δe⟩ = (ξ∗ ∗ ξ)(e) =

∑
h

ξ(h−1)ξ(h−1) =
∑
h

|ξ(h)|2.

Therefore, if τ(ξ∗ ∗ ξ) = 0, then ξ(h) = 0 for all h; that is, ξ = 0 and τ is
faithful.

(13.3.9) Write an alternate proof of (13.17) by writing each coordinate
of Tη.

Answer. For g ∈ G, we have

(Tη)(g) = ⟨Tη, δg⟩ =
∑
h

αh⟨Tδh, δg⟩ =
∑
h

αh
∑
k

ck⟨δkh, δg⟩

=
∑
h

αhcgh−1 =
∑
h

chαh−1g.

(13.3.10) Let G be a discrete group. The full C∗-algebra of G is the
completion C∗(G) of CG via the norm∥∥∥∑

g∈G
ag g

∥∥∥ = sup
{∥∥∥σ(∑

g∈G
ag g

)∥∥∥ : σ ∈ RG

}
,
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where Rg is the set of ∗-representations σ : CG → ℓ2(Sn)
where each Sn is a set of cardinality n for each n ≤ |G| (these
convoluted choice guarantees that the set of representations is
actually a set). Show that C∗λ(G) and C∗

ρ(G) are quotients of
C∗(G).

Answer. By definition of the norm on C∗(G), we have ∥x∥λ ≤ ∥x∥ for all
x ∈ CG. So the identity map CG → CG, with ∥ ·∥ in the domain and ∥ ·∥λ in
the codomain, is bounded. So we get a ∗-homomorphism β : C∗(G) → C∗

λ(G)
with dense range (hence surjective).

The argument for C∗
ρ(G) runs the same.

(13.3.11) Let G be a discrete group and T ∈ B(ℓ2(G)). Show that T ∈
L(G) if and only if T is “Toeplitz”, in the sense that diagonals
are constant, meaning that

⟨Tδhg, δg⟩ = Tg,hg = Tk,hk = ⟨Tδhk, δh⟩, g, k, h ∈ G.
(13.3)

Answer. We know that L(G) = λ(G)′′. So there exists a net {Tj} ⊂
spanλ(G) with Tj

sot−−−→ T . As the equality (13.3) survives wot limits, it
is enough to show that T ∈ spanλ(G) has the property, and by linearity it is
enough to show it for λ(h) for a fixed h ∈ G. We have

⟨λ(h)δg, δrg⟩ = ⟨δhg, δrg⟩ = ⟨δhk, δrk⟩ = ⟨λ(h)δk, δrk⟩,
since the left inner product will be 1 or 0 depending on whether h = r, and
the same with the right one.

For the converse, suppose that T satisfies (13.3). Fix k ∈ G. We have
⟨Tρ(k)δg, δh⟩ = ⟨Tδgk−1 , δh⟩ = ⟨Tδgk−1 , δ(hkg−1) gk−1⟩ = ⟨Tδg, δ(hkg−1) g⟩

= ⟨Tδg, δhk⟩ = ⟨Tδg, ρ(k−1)δh⟩ = ⟨ρ(k)Tδg, δh⟩.
It follows that T ∈ ρ(G)′ = L(G).
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13.4. Topological Tensor Products

(13.4.1) Let H,K be Hilbert spaces with orthonormal bases {ξj} and
{ηk}, respectively. Show that {ξj⊗ηk} is an orthonormal basis
for H ⊗ K.

Answer. We have
⟨ξj ⊗ ηk, ξr ⊗ ηs⟩ = ⟨ξj , ξr⟩⟨ηk, ηs⟩ = δj,rδk,s,

so the family {ξj ⊗ ηk} is orthonormal. We also have span{ξj ⊗ ηk : k, j} =
H ⊗ K is dense in H ⊗ K, so {ξj ⊗ ηk} is an orthonormal basis.

(13.4.2) Prove Corollary 13.1.9.

Answer. Via Theorem 13.1.6 we define φ × ψ = Tb, where b : X ⊗ Y → A
is the bilinear form b(x, y) = φ(x)ψ(y). If L : X ⊗ Y → A is linear and
L(x⊗ y) = φ(x)ψ(y) for all x ∈ X and y ∈ Y, the bilinear form induced by L
is bL(x, y) = L(x⊗y) = φ(x)ψ(y) agrees with b, and so L = TbL = Tb = φ×ψ.

In the case where X ,Y are algebras and φ,ψ homomorphisms with
commuting ranges, due to the linearity we only have to show multiplicativity
on elementary tensors. We have

(φ× ψ)
(
(x1 ⊗ y1)(x2 ⊗ y2)

)
= (φ× ψ)(x1x2 ⊗ y1y2)

= φ(x1x2)ψ(y1y2)

= φ(x1)φ(x2)ψ(y1)ψ(y2)

= φ(x1)ψ(y1)φ(x2)ψ(y2)

= (φ× ψ)(x1 ⊗ y1) (φ× ψ)(s2 ⊗ y2).

(13.4.3) Prove the isomorphisms (13.20).
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Answer. With the notation from Lemma 13.4.3, let Γ : H ⊗ K →
⊕

k∈K H
be Γ(ξ) =

⊕
k ζk. Let lemma gives us that Γ is well-defined and injective.

The linearity of Γ can be obtained either by looking at the definition of ζk,
or out of the uniqueness of the ζk. Given ζ̃ =

⊕
k ζk ∈

⊕
k H we have∑

k ∥ζk∥2 < ∞. Then
ζ̃ = Γ

(∑
k

ζk ⊗ ηk

)
.

Thus Γ is a linear bijection. It remains to check that it preserves the inner
product. For this by polarization it is enough to check that it preserves norms;
and 〈

Γ
(∑

k

ζk ⊗ ηk

)
,Γ
(∑

k

ζk ⊗ ηk

)〉
=
〈⊕

k

ζk,
⊕
k

ζk

〉
=
∑
k

∥ζk∥2

=
〈∑

k

ζk ⊗ ηk,
∑
k

ζk ⊗ ηk

〉
.

The second isomorphism is proven in the same manner, with the roles of H
and K exchanged.

(13.4.4) Show that the tensor product of operators obeys the same
arithmetic rules as the elementary tensors of vectors, as in
Proposition 13.1.2.

Answer. The properties follow directly from the corresponding properties of
vectors. For instance,(

(T1 + T2) ⊗ S
)
(ξ ⊗ η) = (T1 + T2)ξ ⊗ Sη = T1ξ ⊗ Sη + T2ξ ⊗ Sη

=
(
T1 ⊗ S + T2 ⊗ S

)
(ξ ⊗ η).

By linearity and continuity we get (T1 + T2) ⊗ S = T1 ⊗ S + T2 ⊗ S.

(13.4.5) Let M ⊂ B(K) be a von Neumann algebra and H a Hilbert
space. Fix an orthonormal basis {ηj}j∈J and consider the asso-
ciated matrix units {Ekj}. Show that for each T̃ ∈ M ⊗ B(H)
there exist unique operators {Tkj} ⊂ M such that

T̃ =
∑
k,j

Tkj ⊗ Ekj ,

where the series converges sot.
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Answer.
Let γ : M → (IK ⊗ E11)(M ⊗ B(H))(IK ⊗ E11) be given by γ(T ) =

T ⊗ E11. Since E11 is projection, it is straightforward to check that γ is a
∗-homomorphism. It is injective by Proposition 13.1.3. And if T̃ ∈ (IK ⊗
E11)(M ⊗ B(H))(IK ⊗ E11), positive, define a form on K by

[ξ, ν] = ⟨T̃ (ξ ⊗ η1), ξ ⊗ η1⟩.
This form is sequilinear and positive, so by Proposition 10.1.5 there exists
T ∈ B(H) with [ξ, ν] = ⟨Tξ, ν⟩. Let S ∈ M′. Then S ⊗ IH ∈ (M ⊗ B(H))′.
We have

⟨TSξ, ν⟩ = [Sξ, ν] = ⟨T̃ (S ⊗ IH)(ξ ⊗ η1), ν ⊗ η1⟩

= ⟨(S ⊗ IH)T̃ (ξ ⊗ η1), ν ⊗ η1⟩

= ⟨T̃ (ξ ⊗ η1), S∗ν ⊗ η1⟩

= [ξ, S∗ν] = ⟨Tξ, S∗ν⟩ = ⟨STξ, ν⟩.
As this can be done for all ξ, ν ∈ K, we have that ST = TS. Thus T ∈ M′′ =
M. By construction, γ(T ) = T ⊗ E11 = (IK ⊗ E11)T̃ (IK ⊗ E11) = T̃ . So, as
any C∗-algebra is spanned by its positive elements, γ is surjective, hence a
bijection.

Fix T̃ ∈ M⊗B(H). For each k, j ∈ J , let Tkj = γ−1((IK ⊗E1k)T̃ (IK ⊗
Ej1)

)
. By Lemma 13.4.3 for each ξ ∈ K there exist unique vectors {ζk} ⊂ K

such that
ξ =

∑
k

ζk ⊗ ηk
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and
∑
k ∥ζk∥2 = ∥ξ∥2. Fix F ⊂ J , finite. Then∑

k,j∈F

(Tkj ⊗ Ekj)ξ =
∑
r

∑
k,j∈F

Tkjζr ⊗ Ekjηr =
∑
k,j∈F

Tkjζj ⊗ ηk

=
∑
k,j∈F

(Tkj ⊗ Ekk)(ζj ⊗ ηk)

=
∑
k,j∈F

(IK ⊗ Ek1)(Tkj ⊗ E11)(IK ⊗ E1k)(ζj ⊗ ηk)

=
∑
k,j∈F

(IK ⊗ Ek1)(IK ⊗ E1k)T̃ (IK ⊗ Ej1)(ζj ⊗ η1)

=
∑
k,j∈F

(IK ⊗ Ekk)T̃ (ζj ⊗ ηj)

=
∑
k,j∈F

(IK ⊗ Ekk)T̃ (IK ⊗ Ejj))(ζj ⊗ ηj)

=
∑
k,j∈F

∑
r

(IK ⊗ Ekk)T̃ (IK ⊗ Ejj))(ζr ⊗ ηr)

= (IK ⊗ PF )T̃ (IK ⊗ PF )ξ.
Now, with a similar argument as that in Exercise 10.6.9,∑

k,j∈F

(Tkj ⊗ Ekj)ξ −−→
F

T̃ ξ.

(13.4.6) Let M ⊂ B(H) be a von Neumann algebra and {Ekj}k,j∈J ⊂
M matrix units such that

∑
k Ekk = IM (with the series con-

verging sot). Fix j0 ∈ J and let P = Ej0,j0 . Show that there
exists a Hilbert space K such that M ≃ PMP⊗B(K) (we take
as assumed knowledge that PMP ⊂ B(PH) is a von Neumann
algebra; this will be proven in Proposition 14.1.1).

Answer. Let N = PMP , let K = ℓ2(J), and let {Gkj}k,j∈J the matrix units
corresponding to the canonical basis. By Exercise 13.4.5 we know that any
T̃ ∈ N ⊗ B(K) can be written in the form

T̃ =
∑
k,j

Tkj ⊗Gkj
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for certain operators {Tkj} ⊂ N . Let W : PH ⊗ ℓ2(J) → H be given by

W :
∑
j

ζj ⊗ δj 7−→
∑
j

Ej,j0ζj .

where we are using Lemma 13.4.3to write the elements of PH ⊗ ℓ2(J). The
uniqueness in the lemma makes W well-defined. It is clearly linear, for all
the algebra occurs on the side of the ζj . It is surjective, for given ξ ∈ H we
have

ξ =
∑
j

Ejjξ =
∑
j

Ej,j0 Ej0,jξ = W
(∑

j

Ej0,jξ ⊗ δj

)
.

And (using the continuity of the inner product to exchange with the series)∥∥∥W(∑
j

ζj ⊗ δj

)∥∥∥2
=
∥∥∥∑

j

Ej,j0ζj

∥∥∥2
=
∑
k,j

⟨Ej,j0ζj , Ek,j0ζk⟩

=
∑
k,j

⟨Ej0,kEj,j0ζj , ζk⟩ =
∑
j

⟨Ej0,j0ζj , ζj⟩ =
∑
j

∥ζj∥2

=
∥∥∥∑

j

ζj ⊗ δj

∥∥∥2
.

So W is a unitary. Let Γ : N ⊗ B(K) → M be given by

Γ
( ∑
k,j∈F

Tkj ⊗Gkj

)
=
∑
k,j

Ek,j0TkjEj0,j ,

where F ∈ J is some finite subset.
First thing is to check that this makes sense, which is to say that

the series converges and it belongs to M. Let F ⊂ J be finite. Let T̃ =∑
k,j∈F Tkj ⊗Gkj ∈ N ⊗ B(K). Then, with PF =

∑
j∈F Ejj and ξ ∈ H,

ξ =
∑
k,j∈F

Ek,j0TkjEj0,j

∑
r

Er,j0 Ej0,rξ

=
∑
k,j∈F

Ek,j0TkjEj0,j Ej,jξ =
∑
k∈F

Ek,j0

(∑
j∈F

Tkj Ej0,jξ
)

= W
(∑
k∈F

(∑
j∈F

Tkj Ej0,jξ
)

⊗ δk

)
= W

(∑
k∈F

(∑
j∈F

Tkj Ej0,jξ
)

⊗Gkjδj

)
= W

( ∑
k,j∈F

Tkj ⊗Gkj
∑
r

Ej0,rξ ⊗ δr

)
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Since ξ = W
(∑

r Ej0,rξ ⊗ δr

)
and W is a unitary, we conclude that∑

k,j∈F

Ek,j0TkjEj0,j = W
( ∑
k,j∈F

Tkj ⊗Gkj

)
W ∗. (AB.13.3)

As the series on the right converges sot, so does the series on the left. This
also shows that Γ is a normal ∗-monomorphism and that its range lies in M.
And given T ∈ M, we have

T =
∑
k,j

EkkTEjj =
∑
k,j

Ek,j0

(
Ej0,kTEj,j0

)
Ej0,j .

Looking at (AB.13.3) but with W ∗ and W on the left-hand-side we see that∑
k,j Ej0,kTEj,j0 ⊗ Gkj is bounded with Ej0,kTEj,j0 ∈ N for all k, j. Hence

Γ is surjective.

(13.4.7) Let H1,H2 be Hilbert spaces. Show that
K(H1 ⊗ H2) = K(H1) ⊗ K(H2).

Answer. By Proposition 10.6.4 and Proposition 10.6.1 it is enough to show
that if T ∈ B(H1 ⊗ H2) is rank-one, then T ∈ K(H1) ⊗ K(H2). Suppose then
that T = ξ̃η̃∗ for ξ̃, η̃ ∈ H1 ⊗ H2 and fix ε > 0. There exist ξ, η ∈ H1 ⊗ H2
with ∥ξ̃ − ξ∥ < ε and ∥η̃ − η∥ < ε. Then

∥(T − ξη∗)ν∥ ≤ ∥(ξ̃ − ξ)η̃∗ν∥ + ∥ξ(η̃ − η)∗ν∥ ≤ ε(∥η̃∥ + ∥ξ̃∥ + ε) ∥ν∥.
Thus we may assume without loss of generality that T = ξη∗ for ξ, η ∈
H1 ⊗ H2. And now

T =
( m∑
k=1

ξ1,k ⊗ ξ2,k

)( n∑
k=1

η1,k ⊗ η2,k

)∗

=
∑
k,j

ξ1,kη
∗
1,j ⊗ ξ2,kη

∗
2,j ∈ K(H1) ⊗ K(H2).

(13.4.8) Let S ∈ T (H), T ∈ T (K). Show that S ⊗ T ∈ T (H ⊗ K).

Answer. Fix orthonormal basis {ξj} and {ηk} for H and K. We know from
Exercise 13.4.1 that {ξj ⊗ ηk} is an orthonormal basis for H ⊗ K. We have
|S ⊗ T | = |S| ⊗ |T |, since |S| ⊗ |T | ≥ 0 and

(|S| ⊗ |T |)2 = |S|2 ⊗ |T |2 = S∗S ⊗ T ∗T = (S ⊗ T )∗(S ⊗ T ).
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Then
Tr(|S ⊗ T |) =

∑
k,j

⟨(|S| ⊗ |T |)(ξj ⊗ ηk), ξj ⊗ ηk⟩

=
∑
k,j

⟨⟨|S|ξj , ξj⟩ ⟨Tηk, ηk⟩ = Tr(|S|) Tr(|T |) < ∞

(no issues with summation order by Tonelli, since everything is non-negative).
So S ⊗ T ∈ T (H ⊗ K).

(13.4.9) Let H1,H2,H3 be Hilbert spaces. Show that
(H1 ⊗ H2) ⊗ H3 ≃ H1 ⊗ (H2 ⊗ H3)

canonically.

Answer. We know from Proposition 13.1.7 that the linear map U : (H1 ⊗
H2) ⊗ H3 ≃ H1 ⊗ (H2 ⊗ H3) induced by

U : (ξ ⊗ η) ⊗ ν 7−→ ξ ⊗ (η ⊗ ν)
is well-defined. And since

⟨U [(ξ1 ⊗ η1) ⊗ ν1], U [(ξ2 ⊗ η2) ⊗ ν2]⟩ = ⟨ξ1 ⊗ (η1 ⊗ ν1), ξ2 ⊗ (η2 ⊗ ν2)⟩

= ⟨ξ1, ξ2⟩ ⟨η1 ⊗ ν1, η2 ⊗ ν2⟩

= ⟨ξ1, ξ2⟩ ⟨η1, η2⟩ ⟨ν1, ν2⟩

= ⟨(ξ1 ⊗ η1) ⊗ ν1, (ξ2 ⊗ η2) ⊗ ν2⟩,
together with the linearity of U this shows that U is isometric. Taking limits,
U extends first to an isometry

(H1 ⊗ H2) ⊗ H3 ≃ H1 ⊗ (H2 ⊗ H3),
and then to an isometry

(H1 ⊗ H2) ⊗ H3 ≃ H1 ⊗ (H2 ⊗ H3).
As it has dense range, U is a unitary.

(13.4.10) Let H be an infinite-dimensional Hilbert space, and n ∈ N.
Show that Mn(C) ⊗ B(H) = Mn(C) ⊗ B(H) ≃ B(H) as von
Neumann algebras.

Answer. We discussed at the beginning of Section 11.7 how Mn(M) is
complete. And Mn(M) ≃ Mn(C) ⊗ M canonically by Exercise 13.1.5. Thus
Mn(C) ⊗ B(H) is complete and therefore equal to Mn(C) ⊗ B(H).
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As dim H = ∞, we can split an orthonormal basis into n sets of equal
cardinality, and this way we induce a unitary U : H →

⊕n
k=1 H. Then

B(H) ≃ B(
⊕n

k=1 H), so we have reduced the problem to showing that

B(
n⊕
k=1

H) ≃ Mn(B(H)).

We can achieve this by naturally interpreting a matrix in Mn(B(H)) as an
operator on

⊕
k H; this was done at the beginning of Section 11.7.

(13.4.11) Let Mk ⊂ B(Hk), k = 1, 2, 3, be von Neumann algebras. Show
that there is a canonical isomorphism

(M1 ⊗ M2) ⊗ M3 ≃ M1 ⊗ (M2 ⊗ M3).

Answer. We know from Exercise 13.4.9 that the underlying tensor product
of Hilber spaces behaves the right way. The unitary that implements the
isomorphism at the level of Hilbert spaces then gives

U
[
(T1 ⊗ T2) ⊗ T3

]
U∗ = T1 ⊗ (T2 ⊗ T3)

and the same for any linear combination of such operators. As unitary con-
jugation is as continuous as any map in a von Neumann algebra will ever be,
it extends to the closures and so

U
[
(M1 ⊗ M2) ⊗ M3

]
U∗ = M1 ⊗ (M2 ⊗ M3).

(13.4.12) Let H,K be separable infinite-dimensional Hilbert spaces. Show
that the subalgebras

K(H) ⊗min K(K), K(H) ⊗min B(K),
and

B(H) ⊗min K(K)
are three distinct ideals of B(H) ⊗min B(K).

Answer. Let φ ∈ S(B(H)) and ψ ∈ S(B(K)) such that φ|K(H) = 0 and
ψ|K(K) = 0. These exist because we can apply Corollary 11.5.8 to the Calkin
algebra B(H)/K(H) to get a nonzero state φ′, and then we define φ = φ′ ◦ q,
where q : B(H) → B(H)/K(H) is the quotient map; and we do the similar
thing with ψ.

By Corollary 13.4.21 we can consider the state φ × ψ ∈ S(B(H) ⊗min
B(()K). Let T ∈ K(H) and S ∈ K(K) be nonzero and positive. Then T⊗IK ∈
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K(H) ⊗min B(K), IH ⊗ S ∈ B(H) ⊗min K(K). Let also ν ∈ S(B(H)) and
ϱ ∈ S(B(K)) be given by ν(X) = Tr(WX), where W ∈ T (H) is positive, with
Tr(W ) = 1, and injective; and form ϱ similarly. We have (ν×ψ)(T ⊗S) = 0,
so by linearity and continuity ν×ψ|K(H)⊗minK(K) = 0, while (ν×ψ)(T⊗IK) =
ν(T ) > 0. This shows that K(H)⊗min K(K) ⊊ K(H)⊗min B(K), and a similar
argument with ϱ and ψ shows that K(H) ⊗min K(K) ⊊ B(H) ⊗min K(K).
Finally, ν × ψ is nonzero on K(H) ⊗min B(K) but zero on B(H) ⊗min K(K),
so these two are also distinct.

(13.4.13) Let π : A → B(H) a representation. In Definition 12.6.15 we
considered the amplification of π given by π̃ : A →

⊕
k∈K

H.

Show that there is a unitary U :
⊕
k∈K

H →c⃝ 2024 Mart́ın Argerami All Rights Reserved H ⊗ K, where K is a

Hilbert space with dim K = |K|, such that π̃ = U∗(π ⊗ IK)U .

Answer. We write
⊕
k∈K

H = H|K| convenience. Let K = ℓ2(K). Given

ξ̃ = {ξk} ∈ H|K|, we define

Uξ̃ =
∑
k∈K

ξk ⊗ ek.

This is linear because tensor products are linear on each component, and

∥Uξ̃∥2 = ⟨Uξ̃, Uξ̃⟩ =
∑
k,j∈K

⟨ξk ⊗ ek, ξj ⊗ ej⟩

=
∑
k∈K

∥ξk∥2 = ∥ξ̃∥2.

So U is an isometry. Given K0 ⊂ K finite and
∑
k∈K0

ξk ⊗ ejk ∈ H ⊗ K, we
have ∑

k∈K0

ξk ⊗ ejk = Uξ̃,

where ξ̃(jk) = ξk for all k ∈ K0. This shows that U has dense range; being
an isometry, it is surjective and hence a unitary. Now

(π(a) ⊗ IK)Uξ̃ = (π(a) ⊗ IK)
∑
k

ξk ⊗ ek =
∑
k

π(a)ξk ⊗ ek

= U({π(a)ξk}) = Uπ̃(a)ξ̃.

This can be done for all ∈̃H|K|, so (π(a) ⊗ IK)U = Uπ̃(a). With U a unitary,
the equality π̃ = U∗(π ⊗ IK)U holds.
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(13.4.14) Let H,K be Hilbert spaces and {Pj}j∈J ⊂ B(H), {Qk}k∈K ⊂
B(K) increasing nets of projections. Show that {Pj ⊗ Qk} ⊂
B(H ⊗ K) is an increasing net of projections. And if Pjξ → ξ
for all ξ ∈ H and Qkη → η for all η ∈ K, then (Pj ⊗Qk)ν → ν
for all ν ∈ H ⊗ K.

Answer. We have (Pj ⊗Qk)∗(Pj ⊗Qk) = P ∗
j Pj ⊗Q∗

kQk = Pj ⊗Qk, so they
are projections.

We order J×K by saying that (j1, k1) ≤ (j2, k2) if j1 ≤ j2 and k1 ≤ k2.
If j1 ≤ j2 and k1 ≤ k2 then Pj1 ≤ Pj2 and Qk1 ≤ Qk2 . Using Proposi-

tion 10.5.3 we have (Pj2 ⊗Qk2)(Pj1 ⊗Qk1) = Pj2Pj1 ⊗Qk2Qk1 = Pj1 ⊗Qk1 ,
so again by Proposition 10.5.3 we get Pj2 ⊗Qk2 ≥ Pj1 ⊗Qk1 .

As for the limit,
∥(Pj ⊗Qk)(ξ ⊗ η) − ξ ⊗ η∥ ≤ ∥(Pj ⊗Qk)(ξ ⊗ η) − ξ ⊗Qkη∥

+ ξ ⊗Qkη − ξ ⊗ η∥

= ∥Pjξ − ξ∥ ∥Qkη∥ + ∥ξ∥ ∥Qkη − η∥

≤ ∥η∥ ∥Pjξ − ξ∥ + ∥ξ∥ ∥Qkη − η∥ −−→
j,k

0.

When ν =
∑m
r=1 ξr ⊗ ηr, by linearity of the limit we obtain (Pj ⊗Qk)ν → ν.

As Pj ⊗Qk ∈ B(H ⊗ K) by Proposition 13.4.4, for arbitrary ν ∈ H ⊗ K given
ε > 0 there exists ν0 ∈ H ⊗ K with ∥ν − ν0∥ < ε. Then
∥(Pj ⊗Qk)ν − ν∥ ≤ ∥(Pj ⊗Qk)(ν − ν0)∥ + ∥(Pj ⊗Qk)ν0 − ν0∥ + ∥ν0 − ν∥

≤ 2ε+ ∥(Pj ⊗Qk)ν0 − ν0∥.
Thus

lim sup
j,k

∥(Pj ⊗Qk)ν − ν∥ ≤ 2ε,

and as ε was arbitrary this shows that the limit exists and is zero.

(13.4.15) Let A,B be C∗-algebras. Use Proposition 13.1.4 to show that
the product and involution are well-defined.

Answer. Suppose that
n∑
j=1

aj ⊗ bj =
m∑
r=1

a′
r ⊗ b′

r. (AB.13.4)
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By relabelling an+j = −a′
j and bn+j = b′

j , we may write the above as
n+m∑
j=1

aj ⊗ bj = 0.

Then Proposition 13.1.4 gives us coefficients {γkj} such that
n+m∑
k=1

γkjak = 0,
n+m∑
j=1

γkjbj = bk. (AB.13.5)

We want to show that( n∑
j=1

aj ⊗ bj

)( p∑
k=1

ck ⊗ dk

)
=
( m∑
r=1

a′
r ⊗ b′

r

)( p∑
k=1

ck ⊗ dk

)
,

which expanded amounts to
n∑
j=1

p∑
k=1

ajck ⊗ bjdk =
m∑
r=1

p∑
k=1

a′
rck ⊗ b′

rdk.

Now
n∑
j=1

p∑
k=1

ajck ⊗ bjdk =
n∑
j=1

p∑
k=1

n+m∑
s=1

γjsajck ⊗ bsdk

=
n+m∑
s=1

p∑
k=1

( n∑
j=1

γjsaj

)
ck ⊗ bsdk

= −
n+m∑
s=1

p∑
k=1

( n+m∑
j=n+1

γjsaj

)
ck ⊗ bsdk

=
n+m∑
j=n+1

p∑
k=1

ajck ⊗
( n+m∑
s=1

γjsbs

)
dk

=
n+m∑
j=n+1

p∑
k=1

ajck ⊗ bjdk

=
m∑
r=1

p∑
k=1

a′
rck ⊗ b′

rdk.

The same argument can be used for different presentations of
∑
k ck ⊗ dk,

and therefore the product does not depend on the presentation.
With the involution we can use a similar idea. If we have the equality

(AB.13.4), we can again relabel and use the relations (AB.13.5). We want to
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show that
n+m∑
j=1

a∗
j ⊗ b∗

j = 0.

We have
n+m∑
k=1

γkja
∗
k = 0,

n+m∑
j=1

γkjb
∗
j = b∗

k.

Then, by Proposition 13.1.4,
n+m∑
j=1

a∗
j ⊗ b∗

j = 0

as desired.

(13.4.16) Let A,B be C∗-algebras. Show that the product on A ⊗ B is
well-defined (use Theorem 13.1.6 and Corollary 13.1.8).

Answer. For each a ∈ A consider the multiplication operator La : A → A
given by left multiplication by a, and similarly we have Lb : B → B. By
Corollary 13.1.8 there exists a linear map La ⊗Lb : A ⊗ B → A ⊗ B, with the
property that

(La ⊗ Lb)(c⊗ d) = ac⊗ bd.

If L is the space of linear maps A ⊗ B → A ⊗ B, we can consider a bilinear
form ϕ : A × B → L given by ϕ(a, b) = La ⊗ Lb. By Theorem 13.1.6 there
exists a linear map M : A ⊗ B → L such that M(a ⊗ b) = La ⊗ Lb. This
allows us to define, for x, y ∈ A ⊗ B,

xy = (Mx)(y).
This is bilinear, for M is linear and the map Mx is linear. And, on elementary
tensors,

(M(a⊗ b))(c⊗ d) = (La ⊗ Lb)(c⊗ d) = ac⊗ bd.

(13.4.17) Let A,B, C be unital C∗-algebras and π : A ⊗ B → C a ∗-
homomorphism. Show that there exist ∗-homomorphisms πA :
A → C and πB : B → C, with commuting ranges, such that
π = πA × πB.
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Answer. Let πA(a) = π(a ⊗ IB), πB(b) = π(IA ⊗ b). Then πA, πB are
∗-homomorphisms. We have
πA(a)πB(b) = π(a⊗IB)π(IA⊗b) = π(a⊗b) = π(IA⊗b)π(a⊗IB) = πB(b)πA(a),
so the ranges commute. Now Corollary 13.1.9 guarantees that π = πA × πB.

(13.4.18) Let A,B be C∗-algebras and π : A ⊗ B → B(H) a representa-
tion. Fix a ∈ A. Show that the map ρ : b 7−→ π(a⊗ b) is linear
and bounded. (Hint: for the bounded part, assume that a ≥ 0
so that φ ◦ ρ is positive for any state φ, and use the Closed
Graph Theorem)

Answer. We have
ρ(b1 + λb2) = π(a⊗ (b1 + λb2)) = π(a⊗ b1 + λa⊗ b2)

= π(a⊗ b1) + λπ(a⊗ b2) = ρ(b1) + λρ(b2).
So ρ is linear. To show that ρ is bounded, we can assume without loss of
generality that a ≥ 0, for an arbitrary a is a linear combination of positives
and then ρ will be a linear combination of bounded. Suppose that bn → 0
and ρ(bn) → T . Let φ ∈ S(B(H)). We have, for b ∈ B,

φ(ρ(b∗b)) = φ(π(a⊗ b∗b)) = φ(π(a1/2 ⊗ b)∗π(a1/2 ⊗ b)) ≥ 0.
So φ ◦ ρ is a positive linear functional on B. By Proposition 11.5.4, φ ◦ ρ is
bounded. Then

φ(T ) = φ(lim
n
ρ(bn)) = φ ◦ ρ(lim

n
bn) = 0.

As φ can be any state, it follows that T = 0 (by Corollary 11.5.8) and so ρ is
bounded.

(13.4.19) Let A,B be C∗-algebras and π : A⊗B → B(H) a non-degenerate
representation. Show that there exist non-degenerate represen-
tations πA : A → B(H) and πB : B → B(H), with commuting
ranges, such that π = πA × πB. When π is faithful, so are πA
and πB.

(As opposed to Exercise 13.4.17, the algebras are not re-
quired to be unital, so a different method is required; use the
non-degeneracy to define πA and πB on a dense subspace of H,
and use Exercise 13.4.18 when needed)
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Answer. Since π(A ⊗ B)H is dense in H, we define

πA(a)π
(∑

k

ak ⊗ bk

)
ξ =

∑
k

π(aak ⊗ bk)ξ.

We need to check that this is well-defined and that πA(a) ∈ B(H). Suppose
that ∑

k

π(ak ⊗ bk)ξ =
∑
r

π(cr ⊗ dr)η.

Let {eℓ} be an approximate unit for B. Then, using Exercise 13.4.18,

πA(a)π
(∑

k

ak ⊗ bk

)
ξ =

∑
k

π(aak ⊗ bk)ξ = lim
ℓ

∑
k

π(aak ⊗ eℓbk)ξ

= lim
ℓ
π(a⊗ eℓ)

∑
k

π(ak ⊗ bk)ξ

= lim
ℓ
π(a⊗ eℓ)

∑
r

π(cr ⊗ dk)η

= lim
ℓ

∑
r

π(acr ⊗ eℓdk)η =
∑
r

π(acr ⊗ dk)η.

Thus πA(a) is well-defined and linear by construction. By Exercise 13.4.18
there exists c > 0 with ∥π(a⊗ eℓ)∥ ≤ c for all ℓ. Then∥∥∥∥πA(a)π

(∑
k

ak ⊗ bk

)
ξ

∥∥∥∥ = lim
ℓ

∥∥∥∥π(a⊗ eℓ)
∑
k

π(ak ⊗ bk)ξ
∥∥∥∥

≤ c

∥∥∥∥π(∑
k

ak ⊗ bk

)
ξ

∥∥∥∥.
Hence πA(a) is bounded and by Proposition 6.1.9 it extends uniquely to an
operator πA(a) ∈ B(H).

The definition and justification for πB is entirely analogous. As for the
commuting ranges, that’s straightforward:

πA(a)πB(b)
(∑

k

ak⊗bk
)
ξ =

(∑
k

π(aak⊗bbk)
)
ξ = πB(b)πA(a)

(∑
k

ak⊗bk
)
ξ,

so πB(b)πA(a) and πA(a)πB(b) agree on a dense subset and are hence equal.
It remains to check that the representations are non-degenerate. Given an
approximate unit {eℓ} for B,

πB(eℓ)
(∑

k

ak ⊗ bk

)
=
(∑

k

ak ⊗ eℓbk

)
−→
ℓ

(∑
k

ak ⊗ bk

)
.

Thus πB(B)H is dense in H, and πB is non-degenerate. A similar argument
establishes that πA is non-degenerate.
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When π is faithful, if πA(a) = 0, then π(a ⊗ b) = πA(a)πB(b) = 0 for
all b ∈ B. This implies that a⊗ b = 0 for all b ∈ B and then a = 0. Hence πA
is faithful, and the argument for πA is entirely analogous.

(13.4.20) Let A,B be C∗-algebras and π : A⊗B → B(H) a non-degenerate
representation. Show that if {es} and {ft} are approximate
units for A and B respectively, the representations πA and πB
of Exercise 13.4.19 satisfy

πA(a) = lim
s
π(a⊗ ft), πB(b) = lim

t
π(es ⊗ b),

where the limits are understood pointwise.

Answer. This was done more or less explicitly in the answer to Exer-
cise 13.4.19. Concretely, with ρk(b) = π(aak ⊗ b) and using Exercise 13.4.18,∥∥∥∥πA(a)π

(∑
k

ak ⊗ bk

)
ξ − π(a⊗ eℓ)π

(∑
k

ak ⊗ bk

)
ξ

∥∥∥∥
=
∥∥∥∥∑

k

aak ⊗ (bk − bkeℓ)
)
ξ

∥∥∥∥
=
∥∥∥∥∑

k

ρk(bk − bkeℓ)ξ
∥∥∥∥

≤ ∥ξ∥
∑
k

ck∥bk − bkeℓ∥ −→
ℓ

0.

For arbitrary η ∈ H fix ε > 0 and choose ξ ∈ H and {ak} ⊂ A, {bk} ⊂ B
with ∥∥∥∥η −

(∑
k

ak ⊗ bk

)
ξ

∥∥∥∥ < ε.
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Then, using that ∥π(a⊗ eℓ)∥ ≤ c∥εℓ∥ ≤ c by Exercise 13.4.18,
∥πA(a)η − π(a⊗ eℓ)η∥

≤ ∥πA(a)∥
∥∥∥∥η −

(∑
k

ak ⊗ bk

)
ξ

∥∥∥∥
+
∥∥∥∥πA(a)π

(∑
k

ak ⊗ bk

)
ξ − π(a⊗ eℓ)π

(∑
k

ak ⊗ bk

)
ξ

∥∥∥∥
+ ∥π(a⊗ eℓ)∥

∥∥∥∥∑
k

ak ⊗ bkξ − η

∥∥∥∥
≤ (1 + c)∥a∥ ε

+
∥∥∥∥πA(a)π

(∑
k

ak ⊗ bk

)
ξ − π(a⊗ eℓ)π

(∑
k

ak ⊗ bk

)
ξ

∥∥∥∥.
Hence

lim sup
ℓ

∥πA(a)η − π(a⊗ eℓ)η∥ ≤ (1 + c)∥a∥ ε.

As ε was arbitrary, this shows that the limit exists and is zero. The compu-
tation for πB is entirely analog.

(13.4.21) Let A,B be C∗-algebras and πA : A → HA and πB : B → HB
cyclic representations. Show that πA ⊗ πB is cyclic.

Answer. We have ξA ∈ HA cyclic and ξB ∈ HB cyclic. We want to show
that (πA ⊗ πB)(A ⊗ B)(HA ⊗ HB) is dense in HA ⊗ HB. Given ξ ∈ HA and
η∈HB there exist sequences {an} ⊂ A and {bn} ⊂ B with πA(an)ξA → ξ and
πB(bn)ξB → η. Then
∥(πA ⊗ πB)(an ⊗ bn)(ξA ⊗ ξB) − ξ ⊗ η∥ = ∥πA(an)ξA ⊗ πB(bn)ξB − ξ ⊗ η∥

≤ ∥(πA(an)ξA − ξ) ⊗ πB(bn)ξB∥

+ ∥ξ ⊗ (piB(bn)ξB − η)∥

= ∥(πA(an)ξA − ξ)∥ ∥πB(bn)ξB∥

+ ∥ξ∥ ∥piB(bn)ξB − η∥

−→
n

0.
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(13.4.22) Let A,B be C∗-algebras with A non-unital, γ a C∗-norm on
Ã ⊗ B, and ψ ∈ S(Ã) the unique state with kerψ = A. Show
that, for the map ψ⊗γ idB : Ã⊗γ B → C⊗B, we have ker(ψ⊗γ

idB) = A ⊗γ B.

Answer. If B is not unital, by Exercise 11.6.10 we have that idB̃ is the unique
∗-homomorphism that extends idB to B̃. Then Exercise 13.2.28 guarantees
that ψ ⊗γ idB̃ is the unique ucp extension of ψ ⊗γ idB to Ã ⊗γ B̃ → C ⊗ B̃.
In the end, we may assume without loss of generality that B is unital.

Let x ∈ Ã⊗γ B with ∥x∥γ = 1 and (ψ⊗γ idB)(x) = 0. Then there exists
a sequence {xn} ⊂ Ã ⊗ B with ∥x− xn∥γ → 0. As ψ ⊗γ idB is γ-continuous,
we have 0 = (ψ ⊗γ idB)(x) = limn(ψ ⊗γ idB)(xn). Each of these xn is of the
form xn =

∑
j anj ⊗ bnj , where we might assume that the bnj are linearly

independent for each n (Remark 13.1.5). Let

zn =
∑
j

(anj − ψ(anj)IÃ) ⊗ bnj .

By definition of ψ, anj − ψ(anj)IÃ ∈ A for all n, j. So zn ∈ A ⊗ B for all n.
Also

∥xn − zn∥γ =
∥∥∥∥∑

j

ψ(anj)IÃ ⊗ bnj

∥∥∥∥
γ

=
∥∥∥∥IÃ ⊗

∑
j

ψ(anj)bnj
∥∥∥∥

=
∥∥∥∥∑

j

ψ(anj)bnj
∥∥∥∥ = ∥(ψ ⊗γ idB)(zn)∥ →c⃝ 2024 Mart́ın Argerami All Rights Reserved 0,

showing that x ∈ A ⊗γ B.

(13.4.23) Let A,B be C∗-algebras, x ∈ A ⊗min B. Show that if (φ ⊗
ψ)(x∗x) = for all φ ∈ S(A) and ψ ∈ S(B), then x = 0.

Answer. Let πA : A → B(HA) and πB : B → B(HB) be faithful repre-
sentations. By Proposition 13.4.8 and Corollary 13.4.24 we have a faith-
ful representation πA ⊗ πB : A ⊗min B → B(HA ⊗ HB). If x ̸= 0 then
(πA ⊗πB)(x∗x) ̸= 0. Then there exists an elementary tensor ξ⊗η ∈ HA ⊗HB
with (πA ⊗ πB)(x1/2)(ξ ⊗ η) ̸= 0. Let

φ(a) = ⟨πA(a)ξ, ξ⟩, ψ(b) = ⟨πB(b)η, η⟩.
Then
(φ⊗ ψ)(x) = ⟨(πA ⊗ πB)(x) ξ ⊗ η, ξ ⊗ η⟩ = ∥(πA ⊗ πB)(x1/2)(ξ ⊗ η)∥2 > 0.
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(13.4.24) Let A ⊂ B(HA), B ⊂ B(HB) be separable C∗-algebras. Show
that if A ⊗min B ⊂ B(HA ⊗ HB) contains a nonzero compact
operator, then A contains a nonzero compact operator.

Answer. We have A ⊗min B = A ⊗ B. Let T ∈ A ⊗ B be compact and
nonzero. Then T ∗T is compact, nonzero, and in A ⊗ B, and we may assume
without loss of generality that T ≥ 0. By Exercise 13.4.7 we know that
T = limn Tn with Tn ∈ K(HA) ⊗ K(HB).

As B is separable, it admits a faithful state ψ. By Lemma 13.4.26, the
map idB(HA) ⊗min ψ : B(HA) ⊗min B → A is completely positive and faithful.
Let Sn = (idB(HA) ⊗ ψ)(Tn) ∈ K(HA). We have (using the norm estimate
from Lemma 13.4.26)

∥Sn − Sm∥ = ∥(idB(HA) ⊗ ψ)(Tn − Tm)∥ ≤ ∥Tn − Tm∥,
so {Sn} is Cauchy in K(HA), and there exists S = limn Sn ∈ K(HA). By
continuity of the map idB(HA) ⊗ψ, S = (idB(HA) ⊗ψ)(T ) ∈ A. As idB(HA) ⊗ψ
is faithful, S ̸= 0. So S ∈ A and A contains a nonzero compact operator.

(13.4.25) Let X be locally compact Hausdorff, A a C∗-algebra, and π :
A → B(H) a representation. Let δ : C0(X) → B(ℓ2(X)) be
given by δ(f) = Mf . Given Z =

∑
k

fk ⊗ ak ∈ C0(X) ⊗ A,

show that∥∥∥(δ ⊗ π)(Z)
∥∥∥

B(ℓ2(X)⊗H)
= sup

{∥∥∥(δx⊗π)(Z)
∥∥∥

B(H)
: x ∈ X

}
.

Answer. Let Z =
∑
k

fk ⊗ ak ∈ C0(X) ⊗ A and ξ̃ =
∑
j

gj ⊗ ξj , η̃ =
∑
j

hj ⊗

ξj ∈ ℓ2(X) ⊗ H (where {ξj}j is an orthonormal basis, as in Lemma 13.4.3).
Write

DZ = sup
{∥∥∥(δx ⊗ π)

(∑
k

fk ⊗ ak

)∥∥∥
B(H)

: x ∈ X
}
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We have

∥(δ ⊗ π)(Z)ξ̃∥2 =
∥∥∥(δ ⊗ π)

(∑
k

fk ⊗ ak

)(∑
j

gj ⊗ ξj

)∥∥∥2

ℓ2(X)⊗H

=
∥∥∥∑

k

∑
j

fkgj ⊗ π(ak)ξj
∥∥∥2

ℓ2(X)⊗H

=
∑
k1,k2

∑
j1,j2

⟨fk1gj1 , fk2gj2⟩ ⟨π(ak1ξj1 , π(ak2ξj2⟩

=
∑
k1,k2

∑
j1,j2

∑
x

fk1(x)gj1(x) fk2(x)gj2(x) ⟨π(ak1)ξj1 , π(ak2)ξj2⟩

=
∑
x

∑
k1,k2

∑
j1,j2

fk1(x)gj1(x) fk2(x)gj2(x) ⟨π(ak1)ξj1 , π(ak2)ξj2⟩

=
∑
x

∥∥∥(δx ⊗ π)
(∑

k

fk ⊗ ak

)(∑
j

gj(x)ξj
)∥∥∥2

H

≤ DZ

∑
x

∥∥∥∑
j

gj(x)ξj
∥∥∥2

= DZ ∥ξ̃∥2.

(for the exchanging of series, the sums on k1, k2 are actual sums, and the
series for j1, j2, and x converge absolutely by Cauchy-Schwarz). Thus ∥(δ ⊗
π)(Z)∥ ≤ sup{(δx ⊗ π)(Z)∥B(H).

Conversely, fix ε > 0 and y ∈ X such that∥∥∥∑
k

fk(y)π(ak)
∥∥∥2

B(H)
≥ sup

{∥∥∥∑
k

fk(x)π(ak)
∥∥∥ : x ∈ X

}2
− ε.

Fix ξ ∈ H with ∥ξ∥ = 1 and∥∥∥∑
k

fk(y)π(ak) ξ
∥∥∥2

≥
∥∥∥∑

k

fk(y)π(ak)
∥∥∥2

− ε.
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Let ξ̃ = δy ⊗ ξ ∈ ℓ2(X) ⊗ H. Then

∥(δ ⊗ π)(Z)ξ̃∥2 =
∥∥∥(δ ⊗ π)

(∑
k

fk ⊗ ak

)
(δy ⊗ ξ)

∥∥∥2

ℓ2(X)⊗H

=
∥∥∥(δ ⊗ π)

(∑
k

fk ⊗ ak

)
(δy ⊗ ξ)

∥∥∥2

ℓ2(X)⊗H

=
∑
k1,k2

fk1(y)fk2(y) ⟨π(ak1)ξ,π(ak2)ξ⟩ =
∥∥∥∑

k

fk(y)π(ak) ξ
∥∥∥2

≥
∥∥∥∑

k

fk(y)π(ak)
∥∥∥2

− ε

≥ sup
{∥∥∥∑

k

fk(x)π(ak)
∥∥∥ : x ∈ X

}2
− 2ε.

As ε was arbitrary, the equality is established.

(13.4.26) Let B ⊂ A be C∗-algebras, with B hereditary. Show that if idA
is nuclear, then so is idB. (Hint: use an approximate identity
for B)

Answer. By hypothesis there exit nets of contractive completely positive
maps {φℓ} and {ψℓ} with φℓ : A → Mn(ℓ)(C) and ψℓ : Mn(ℓ)(C) → A with
ψℓ(φℓ(a)) → a for all a ∈ A. Let {ej} be an approximate unit for B. Because
B is hereditary, this means that ejaej ∈ B for all a ∈ A and all j. So we can
define maps ψℓ,j(X) = ejψℓ(X)ej , still contractive and completely positive,
now with codomain B. So ψℓ,j(φℓ(b)) → b for all b ∈ B if we make a new net
by ordering (ℓ1, j1) ≤ (ℓ2, j2) if ℓ1 ≤ ℓ2 and j1 ≤ j2.

(13.4.27) Let A be a C∗-algebra. Show that idA is nuclear if and only if
idÃ is nuclear.

Answer. Suppose first that idA is nuclear. So there exit nets of contractive
completely positive maps {φℓ} and {ψℓ} with φℓ : A → Mn(ℓ)(C) and ψℓ :
Mn(ℓ)(C) → A with ψℓ(φℓ(a)) → a for all a ∈ A. We can define maps φ̃ℓ :
A → Mn(ℓ)+1(C) given by φ̃ℓ(a, λ) = φℓ(a) ⊕λ, and similarly define ψ̃ℓ(X) =
(ψℓ(PℓXPℓ), Xn(ℓ)+1,n(ℓ)+1), where Pℓ is the compression to the n(ℓ) × n(ℓ)
upper left corner. In both cases the new maps are completely positive because
direct sums of completely positive maps are completely positive. They are
also contractive.
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Conversely, suppose that idÃ is nuclear. As A is an ideal in Ã, we get
that idA is nuclear by Exercise 13.4.26.

(13.4.28) Let M be a von Neumann algebra. Show that
(M ⊗min IK)′ = M′ ⊗B(K),

where M′ ⊗B(K) is the von Neumann algebra generated by
M′ ⊗ B(K) in B(H ⊗ K). Conclude that Z(M ⊗ B(K)) =
Z(M) ⊗ IK.

Answer. If T ∈ M, S ∈ M′ and R ∈ B(K), then
(T ⊗ IK)(S ⊗R) = TS ⊗R = ST ⊗R = (S ⊗R)(T ⊗ IK).

So (after taking linear combinations and sot-closure, which stay in the com-
mutant) M′ ⊗ B(K) ⊂ (M ⊗min IK)′.

Now consider X ∈ (M′ ⊗ B(K))′. In particular X(IM ⊗Ekj) = (IM ⊗
Ekj)X for all {Ekj} matrix units for a fixed orthonormal basis. Then
X(ξ ⊗ ek) = X(IM ⊗ Ekk)(ξ ⊗ ek) = (IM ⊗ Ekk)X(ξ ⊗ ek) = α(ξ) ⊗ ek

for some function α. By linearity and uniqueness of the tensor product when
one side is linearly independent (so in particular for elementary tensors), α
is linear. We also have

∥α(ξ)∥ = ∥α(ξ) ⊗ ek∥ = ∥X(ξ ⊗ ek)∥ ≤ ∥X∥ ∥ξ∥,
so α ∈ B(H). By linearity and continuity we get that X = S ⊗ IK, where
S = α ∈ B(H). But X also commutes with elements of the form T ⊗R with
T ∈ M′. So ST ⊗R = TS ⊗R for all R ∈ B(K). Then

⟨(TS − ST )ξ, η⟩ = ⟨((TS − ST ) ⊗ IK)(ξ ⊗ ek), η ⊗ ek⟩ = 0
for all ξ, η ∈ H, so TS = ST which shows that S ∈ (M′)′ = M′′ = M.
We have shown that (M′ ⊗ B(K))′ ⊂ M ⊗ IK. Taking commutants we get
(M ⊗min IK)′ ⊂ (M′ ⊗ B(K))′ = M′ ⊗B(K).

As for the centre, if T̃ ∈ Z(M⊗B(K)) then T ∈ (M⊗B(K))′ = M′⊗IK.
So T̃ = T ⊗ IK for some T ∈ M′. Given S ∈ M′, since T̃ ∈ M ⊗ B(K) and
S ⊗ IK ∈ M′ ⊗ IK, we have

TS ⊗ IK = (T ⊗ IK)(S ⊗ IK) = (S ⊗ IK)(T ⊗ IK) = ST ⊗ IK.

Then, for any ξ ∈ H and η ∈ K with ∥η∥ = 1,
⟨TSξ, ξ⟩ = ⟨(TS ⊗ IK)(ξ ⊗ η), ξ ⊗ η⟩ = ⟨(ST ⊗ IK)(ξ ⊗ η), ξ ⊗ η⟩ = ⟨STξ, ξ⟩.
By polarization TS = ST , so T ∈ M′′ = M. Hence T ∈ Z(M) and T̃ ∈
Z(M) ⊗ IK.
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13.5. Crossed Products

(13.5.1) Let (A, G, α) be a C∗-dynamical system and (π, U) a covariant
representation. Show that π ⋊ U is indeed a representation.

Answer. For multiplicativity, let

A =
∑
g∈F

ag · g, B =
∑
h∈F

bg · h

(we use the same F below since we can take the larger of two and make new
coefficients equal to zero). Then

(π ⋊ U)[AB] = (π ⋊ U)
( ∑
g,h∈F

(ag · g)(bh · h)
)

= (π ⋊ U)
( ∑
g,h∈F

agαg(bh) · gh
)

=
∑
g,h∈F

π(agαg(bh))Ugh

=
∑
g,h∈F

π(ag)Ugπ(bh)U∗
g Ug Uh

=
∑
g,h∈F

π(ag)Ug π(bh)Uh

=
(∑
g∈G

π(ag)Ug
)(∑

h∈F

π(bh)Uh
)

= (π ⋊ U)(A) (π ⋊ U)(B).
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As for adjoint preservation,

(π ⋊ U)
[(∑

g∈F
ag · g

)∗
]

= (π ⋊ U)
(∑
g∈F

α−1
g (a∗

g) · g−1
)

=
∑
g∈F

π(α−1
g (a∗

g))Ug−1 =
∑
g∈F

Ug−1π(a∗
g)U∗

g−1 Ug−1

=
∑
g∈F

Ug−1π(a∗
g) =

(∑
g∈F

π(ag)Ug
)∗

=
[
(π ⋊ U)

(∑
g∈F

ag · g
)]∗

.

(13.5.2) Show that when A is unital every ∗-representation β : A ·G →
B(H) is β = π ⋊ U for a covariant representation (π, U).

Answer. Let β : A ·G → B(H) be a ∗-representation. Define π : A → B(H)
by π(a) = β(a · e). The equalities in (13.25) and (13.26) show that

π(ab) = β(ab · e) = β
(
(a · e)(b · e)

)
= β(a · e)β(b · e) = π(a)π(b)

and
π(a∗) = β(a∗ · e) = β

(
(a · e)∗) = β(a · e)∗ = π(a)∗.

The additivity is trivial, and hence π is a ∗-representation. Similarly, let
U : G → B(H) be given by Ug = β(IA · g). Then
U−1
g = β(IA · g−1) = Ug−1 , U∗

g = β
(
(IA · g)∗) = β(IA · g−1) = Ug−1 ,

so Ug is a unitary. We also have
Ugh = β(IA · gh) = β

(
(IA · g)(IA · h)

)
= UgUh,

so U is a representation. We have
π(αg(a)) = β(αg(a) · e) = β

(
(IA · g)(a · e)(IA · g−1)

)
= Ugπ(a)U∗

g ,

so the representation is covariant. Finally,
(π ⋊ U)(a · g) = π(a)Ug = β(a · e)β(IA · g) = β

(
(a · e)(IA · g)

)
= β(a · g),

so by linearity β = π ⋊ U .

(13.5.3) Let A = C and αg(g) = IA for al g. Show that C⋊αG = C∗(G)
and C⋊rα G = C∗

λ(G).
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Answer. Because αg(g) = IA for all G we have that the product in A · G
agrees with the plan product in CG, and so does the adjoint. The fact that
π(A) = C IH makes the covariance condition trivial, too. So the covariant
representations are precisely the representations where π is trivial (as it acts
on the scalars) and U is any unitary representation of G. Then the norm
used for the full crossed product and the norm for the full group algebra are
the same, which gives C⋊α G = C∗(G).

For the regular representations the same happens: as π and α the norm
of the reduced crossed product is calculated over the (unique) norm∥∥∥∑

g∈G
ag λ(g)

∥∥∥
which is precisely the norm in C∗

λ(G). Therefore C⋊rα G = C∗
λ(G).

(13.5.4) Show that A⋊rαG is a quotient of A⋊αG via a surjection that
extends the identity map on A ·G.

Answer. Since the norm of the reduced product is obtained over less rep-
resentations that the full one, the identity map A · G → A · G is bounded
∗-homomorphism when considered with the full norm on the domain and
the reduced norm on the codomain. Then it extends to a ∗-homomorphism
A ⋊α G → A ⋊rα G with dense range and hence surjective.

(13.5.5) Show that (13.28) makes (C0(X), G, α) a C∗-dynamical system.

Answer. We need to check that α is a homomorphism and that αs ∈
AutC0(X) for all s ∈ G. For the latter,
[αs(fg + λh∗)](x) = (fg + λh∗)(s−1 · x) = f(s−1 · x)g(s−1 · x) + λh(s−1 · x)

= [αsf ](x)[αsg](x) + λ[αsh](x).

This shows that αs is a ∗-homomorphism. If αsf = 0, then f(s−1 · x) = 0
for all x ∈ X. In particular f(x) = f(s−1 · (s · x)) = 0 for all x, so f = 0
and αs is injective. Given f ∈ C0(X), let g(x) = f(s · x). Because the map
x 7−→ s · x is continuous, g ∈ C0(X); and αsg = f . So αs is surjective, and
thus αs ∈ AutC0(X).

It remains to check that α is a homomorphism. We have
[αstf ](x) = f

(
(st)−1 · x

)
= f(t−1s−1 · x) = f

(
t−1 · (s−1 · x)

)
= [αtf ](s−1 · x) = [αsαtf ](x).
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Hence αst = αsαt.

(13.5.6) Let G be a group, A = c0(G), and αg(f)(h) = f(g−1h). Show
that c0(G) ⋊α G ≃ K(ℓ2(G)).

Answer. By remark Remark 13.5.1 we may assume that there is a faithful
covariant representation (π, U) of c0(G) ⋊α G ⊂ B(H) into some H. Let
Pg = π(δg) ∈ bh. The family {Pg} are pairwise orthogonal projections. We
also have

Ugπ(δh)U∗
g = π(αg(δh)) = π(δgh).

Let Eg,h = Ugh−1π(δh) ∈ B(H). We have
Ea,bEg,h = Uab−1π(δb)Ugh−1π(δh)

= Uab−1π(δb)π(δgh−1h)Ugh−1

= δb,g Uag−1π(δg)Ugh−1

= δb,g Uag−1π(δgh−1 h)Ugh−1

= δb,g Uag−1Ugh−1π(δh)

= δb,g Uah−1π(δh)

= δb,g Ea,h.

That is, the family F = {Eg,h}g,h∈G is a family of matrix units, and so
C∗(F) ≃ K(ℓ2(G)). Since π(δg) ∈ C∗(F) for all g and c0(G) = C∗({δg}g),
we have π(c0(G)) ⊂ C∗(F). We also have by construction that π(δg)Uh =
Uh−1π(δh−1g) ∈ C∗(F). Hence C∗(F) = (π ⋊ U)(c0(G) ⋊α G) and therefore
c0(G) ⋊α G ≃ K(ℓ2(G)).

(13.5.7) Let (G,X) be a locally compact transformation group. Show
that if AutC0(X) is considered with the pointwise-norm topol-
ogy, then α as in (13.28) is continuous.

Answer. We want to show that limt→s ∥α(t)f −α(s)f∥∞ → 0. Since we can
write

∥αtf − αsf∥∞ = ∥αs (αs−1tf − f∥∞

and t → s if and only if s−1t → e, we only need to show that ∥αsf−f∥∞ → 0
when s → e. For this latter property to fail we would have an ε > 0, and nets
{sj} ⊂ G, {xj} ⊂ X with sj → e and

∥f(s−1
j · xj) − f(xj)| ≥ ε (AB.13.6)
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for all j. Let K = {|f | ≥ ε/2}; this is compact because f ∈ C0(X)
(Exercise 2.6.2). The inequality (AB.13.6) then means that at least one of
s−1
j ·xj ∈ K of xj ∈ K. Let V be a neighbourhood of e with compact closure.

Then sj ∈ V for all big enough j. The set V ·K is compact, being a continu-
ous image of the compact set V ×K. If the set of xj in K is infinite, then it
admits a convergent subnet. By picking only those we have that xj → x0 for
some x0 ∈ K; then s−1

j · xj → x0, and by the continuity of f is contradicts
(AB.13.6). If instead we have infinitely many s−1

j · xj in K for j big enough
sj ∈ V and then xj = sj ·(s−1

j ·xj) ∈ V ·K. As this latter set is compact, again
we get that xj admits a convergent subnet and we can repeat the previous
argument.
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CHAPTER

von Neumann Algebras

14.1. Subalgebras

(14.1.1) Let M ⊂ B(H) be a von Neumann algebra, P ∈ M a pro-
jection, K = MPH, and Q ∈ B(H) the orthogonal projection
onto K. Show that K is invariant for M and M′, and conclude
that Q ∈ Z(M).

Answer. Fix S ∈ M. For any T ∈ M and ξ ∈ H, S(TPξ) = (ST )Pξ ∈
MPH. As S is continuous, SK ⊂ K. Similarly, if S ∈ M′ and T ∈ M, ξ ∈ H,
we have S(TPξ) = TP (Sξ) ∈ MPH; again by linearity and continuity,
SK ⊂ K. Thus K is invariant for both M and M′.

Now consider the orthogonal projection Q onto K. Fix S ∈ Msa. For
any ξ ∈ H, we have Qξ ∈ K and SQξ ∈ K, so QSQξ = SQξ. This can be
done for all ξ ∈ H, giving us QSQ = SQ. Using that S = S∗,

QS = (SQ)∗ = (QSQ)∗ = QSQ = SQ.

This says that Q commutes with all sefadjoints in M; but the selfadjoint
elements span the whole algebra (as any element T ∈ M can be written as
T = ReT + i ImT ), so Q ∈ M′. The previous computations would have been

603
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the exact same if S ∈ M′, selfadjoint, so we also get that Q ∈ M′′ = M.
Thus Q ∈ M ∩ M′ = Z(M).

(14.1.2) Let M be a factor, S ∈ M, T ∈ M′. Show that ST = 0 if and
only if S = 0 or T = 0.

Answer. Suppose that ST = 0. If T = 0 we are done. Otherwise, by
Exercise 12.4.8 and Corollary 12.4.15, the rank projection P of T is in M′.
Since P is a wot limit of polynomials pj(T ), with pj(0) = 0 for all j, we have
SP = limsot Spj(T ) = 0. With the notation of Corollary 14.1.4, we have
γ(S) = 0 and hence S = 0.

The converse is trivial.

(14.1.3) Let P,Q,Z ∈ M ⊂ B(H) be projections with Z central and
Q = ZP . Show that c(Q) = Zc(P ).

Answer. Since
MQH = MZPH = Z MPH,

we get that c(Q) = Zc(P ).

(14.1.4) Let M be a von Neumann algebra and R ⊂ M a subset that
is closed under multiplication and taking adjoints, and such
that W ∗(R) = M. Let P ∈ M ∪ M′ be a projection. Show
that W ∗(PRP ) = PMP . Show also that the result is not
necessarily true if R is not closed under multiplication.

Answer. From PRP ⊂ PMP we get W ∗(PRP ) ⊂ PMP . The assump-
tions on R guarantee that M = span∥·∥ R. Then PMP ⊂ span∥·∥ PRP ⊂
W ∗(PRP ).

For an example when R is not closed under multiplication, consider
M = M2(C), and R = {E12}. Then W ∗(R) = M (because W ∗(R) contains
E12, E∗

12 = E21, E12E
∗
12 = E11). Let P = E11. Then PMP = CE11, while

PRP = {0}.

(14.1.5) Let M be a von Neumann algebra, H a Hilbert space, P ∈ M
a projection. Fix also an orthonormal basis for H and let {Ekj}
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be the associated matrix units. Show that
PMP ≃ (P ⊗ E11)(M ⊗ B(H))(P ⊗ E11).

Answer. Let γ : PMP ≃ (P ⊗ E11)(M ⊗ B(H))(P ⊗ E11) be given by
γ(PTP ) = PTP ⊗ E11.

This is well-defined, since PTP ⊗ E11 = (P ⊗ E11)(PTP ⊗ IH)(P ⊗ E11) ∈
(P ⊗ E11)(M ⊗ B(H))(P ⊗ E11). It is linear, for

γ(PTP + λPSP ) = γ(P (T + λS)P ) = P (T + λS)P ⊗ E11

= PTP ⊗ E11 + λPSP ⊗ E11 = γ(T ) + λγ(S).
Similarly,
γ(PTPSP ) = PTPSP ⊗ E11 = (PTP ⊗ E11)(PSP ⊗ E11) = γ(T )γ(S)

(this is the first place we use that E11 is a projection). And
γ((PTP )∗) = (PTP )∗ ⊗ E11 = (PTP ⊗ E11)∗ = γ(T )∗

(here we use that E11 is selfadjoint). So γ is a ∗-homomorphism. If γ(PTP ) =
0, this means that PTP ⊗E11 = 0 and so PTP = 0 since E11 = 0 (Proposi-
tion 13.1.3). It remains to check that γ is surjective. Given T̃ ∈ M⊗B(H) we
can write T =

∑n
k=1 Tk ⊗ Sk, with T1, . . . , Tn ∈ M and S1, . . . , Sn ∈ B(H).

For each k we have E11SE11 = λk E11 since E11 is minimal. Then

(P ⊗ E11)T̃ (P ⊗ E11) =
n∑
k=1

PTkP ⊗ E11SkE11 =
n∑
k=1

λkPTkP ⊗ E11

= γ
( n∑
k=1

λkPTkP
)
.

Hence γ has dense range. By Proposition 11.4.9, γ is surjective.

14.2. Comparison of Projections

(14.2.1) Let P ∈ M be a projection with P ⪯ 0. Show that P = 0.

Answer. By hypothesis we have V ∈ M with V ∗V = P and V V ∗ = 0. Then
∥V ∥2 = ∥V ∗∥2 = ∥V V ∗∥2 = 0. So V = 0 and P = V ∗V = 0.



606 CHAPTER 14

(14.2.2) Let P,Q ∈ Mn(C) be projections. Show that P ∼ Q if and
only if Tr(P ) = Tr(Q).

Answer. If P ∼ Q, then there exists V ∈ Mn(C) with V ∗V = P and
V V ∗ = Q. Therefore

Tr(P ) = Tr(V ∗V ) = Tr(V V ∗) = Tr(Q).
Now suppose that Tr(P ) = Tr(Q). By fixing an orthonormal basis for PH
and extending it to an orthonormal basis for the whole Cn, we can see P
as a diagonal matrix with dimPH ones in the diagonal, and the rest zeros.
Thus Tr(P ) = dimPH. The equality Tr(P ) = Tr(Q) gives us dimPH =
dimQH. Fix orthonormal bases {e1, . . . , er} and {f1, . . . , fr} for PH and
QH respectively, and define V to be the linear operator that maps V ek = fk,
and V = 0 on (PH)⊥. Then V ∗ is the operator that maps fk to ek, and is
zero on (QH)⊥. So V ∗V = P and V V ∗ = Q.

(14.2.3) Let M be a finite-dimensional von Neumann algebra and P,Q ∈
M be projections. Show that P ∼ Q if and only if Tr(ZP ) =
Tr(ZQ) for every central projection Z.

Answer. If P ∼ Q there exists V ∈ M with V ∗V = P and V V ∗ = Q. Then
Tr(ZP ) = Tr(PZ) = Tr(V ∗V Z) = Tr(V ZV ∗) = Tr(ZV V ∗) = Tr(ZQ).

Conversely, suppose that Tr(ZP ) = Tr(ZQ) for all central projections. We
know from Theorem 11.8.10 that M =

⊕k
j=1 Mnj (C) (properly, up to iso-

morphism). For each j we can consider the central projection Zj = 0 ⊕ · · · ⊕
Inj ⊕ 0 ⊕ · · · ⊕ 0. As Tr(ZjP ) = Tr(ZjQ), we can use Exercise 14.2.2 to get
a partial isometry Vj ∈ Mnj (C) with V ∗

j Vj = ZjP and VjV
∗
j = ZjQ. Then

V = V1 ⊕ · · · ⊕ Vk is a partial isometry in M with V ∗V = P and V V ∗ = Q.

(14.2.4) Let P,Q,R ∈ M be projections, with P ⪯ Q and Q ⪯ R.
Show that P ⪯ R.

Answer. By hypothesis there exist V,W ∈ M with V ∗V = P , V V ∗ ≤ Q,
W ∗W = Q, WW ∗ ≤ R. Then

(VW )∗VW = W ∗V ∗VW = W ∗PW ≤ W ∗W = Q.

And
VW (VW )∗ = VW ∗WV
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(14.2.5) Let P,Q,Z ∈ M be projections, with Z ∈ Z(M) and such
that P ⪯ Q. Show that ZP ⪯ ZQ.

Answer. By definition there exists V ∈ M with V ∗V = P , V V ∗ = Q. Then
(ZV )∗(ZV ) = ZV ∗V = ZP, (ZV )(ZV )∗ = ZQ,

showing that ZP ⪯ ZQ.

(14.2.6) Let P,Q ∈ M with P ⪯ Q and Q ⪯ P . Prove that P ∼ Q by
structuring the argument the same as the proof of Schröder–
Bernstein (Theorem 1.6.13).

Answer. By hypothesis there exist V,W ∈ M with V ∗V = P , V V ∗ ≤ Q,
W ∗W = Q, WW ∗ ≤ P . It is enough to show that P ∼ WW ∗, since WW ∗ ∼
Q. We define projections
P0 = P, R1 = WW ∗, Pk+1 = WVRk+1V

∗W ∗, Rk+1 = WV PkV
∗W ∗.

By construction, R1 ≤ P0, and
P1 = WVR1V

∗W ∗ ≤ WV PV ∗W ∗ = WV V ∗W ∗ ≤ WW ∗ = R1.

Repeated inductively, we get that Rk+1 ≤ Pk and Pk+1 ≤ Rk+1. Hence
P0 ≥ R1 ≥ P1 ≥ R2 ≥ P2 ≥ · · ·

Assume for the moment that Pk −Rk+1 ∼ Pk+1 −Rk+2. Let

P∞ =
∧
k

Pk =
∧
k

Rk.

Then, noting that P∞ = limsot Pk = limsot Rk,

P = P∞ +
∞∑
k=0

(
Pk −Rk+1

)
+

∞∑
k=1

(
Rk − Pk)

and

R1 = P∞ +
∞∑
k=1

(
Pk −Rk+1

)
+

∞∑
k=1

(
Rk − Pk).

By Proposition 14.2.7, P ∼ R1. So it remains to prove that Pk − Rk+1 ∼
Pk+1 −Rk+2. We note that

WVWV PkV
∗W ∗V ∗W ∗ = WVRk+1V

∗W ∗ = Pk+1

and
WVWV Rk+1V

∗W ∗V ∗W ∗ = WV Pk+1V
∗W ∗ = Rk+2.
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Also, since V ∗W ∗WV = V ∗QV = V ∗V = P

V ∗W ∗V ∗W ∗Pk+1WVWV = V ∗W ∗V ∗W ∗(WVRk+1V
∗W ∗)WVWV

= V ∗W ∗PRk+1PWV = V ∗W ∗Rk+1WV

= V ∗W ∗(WV PkV
∗W ∗)WV = PPkP = Pk

and
V ∗W ∗V ∗W ∗Rk+2WVWV = V ∗W ∗V ∗W ∗(WV Pk+1V

∗W ∗)WVWV

= V ∗W ∗PPk+1PWV = V ∗W ∗Pk+1WV

= V ∗W ∗(WVRk+1V
∗W ∗)WV

= PRk+1P = Rk+1.

Let U = (Pk − Rk+1)V ∗W ∗V ∗W ∗(Pk+1 − Rk+2). Then the equalities
above show that

U∗U = Pk+1 −Rk+2, UU∗ = Pk −Rk+1.

(14.2.7) Let M be a von Neumann algebra and {Pj} and {Qj} two
families of pairwise orthogonal projections in M, such that
Pj ⪯ Qj for all j. Show that

∑
j Pj ⪯

∑
j Qj .

Answer. By hypothesis there exist projections Q′
j ≤ Qj such that Pj ∼ Q′

j

for all j. The projections {Q′
j} are pairwise orthogonal, since the {Qj} are.

By Proposition 14.2.7, ∑
j

Pj ∼
∑
j

Q′
j ≤

∑
j

Qj .

(14.2.8) Show that the statement of Proposition 14.2.16 can fail if the
word “finite” is removed.

Answer. In M = M2(C), let Q = E11, P1 = E11, P2 = E22. Then Pn ⪯ Q
for all n, but P1 + P2 = I2 ̸⪯ Q.

The statement can be false even if Q is infinite. For instance with
M = B(ℓ2(N)), let Q = IM −E11, P1 = Q, P2 = E11. Then P1 ⪯ Q, P2 ⪯ Q,
but P1 + P2 = Ih ̸⪯ Q.
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(14.2.9) Let H be an infinite-dimensional separable Hilbert space. Let
P,Q ∈ B(H) be infinite projections. Show that P ∼ Q. Is
IH −Q ∼ IH −Q?

Answer. This follows directly from Corollary 14.2.18, but we offer here a
constructive argument in this simple case.

Since equivalence is transitive, it is enough to show that P ∼ IH.
Reasoning as in Exercise 14.2.29 we can construct an infinite monotone se-
quence of subprojections of P , P = P1 ≥ P2 ≥ · · · . As shown in Exer-
cise 14.2.29, the projections {Pk−Pk+1} are nonzero and pairwise orthogonal.
As (Pk − Pk+1)H ⊂ PH, we deduce that dimPH = ∞. Fix an orthonor-
mal basis {ξn} for H, and an orthonormal basis {ηn} for PH. Let V be the
bounded linear operator induced by V ηn = ξn, and V |(PH)⊥ = 0. Then,
given ξ ∈ H and writing ξ = ξ0 +

∑
n cnηn, with ξ0 ∈ (PH)⊥,

⟨V ∗ξn, ξ⟩ = ⟨ξn, V ξ⟩ =
∑
k

ck⟨ξn, V ηk⟩ = cn = ⟨ηn, ξ⟩.

Thus V ∗ξn = ηn for all n. Then V ∗V ηn = V ∗ξn = ηn, showing that V ∗V =
P , while V V ∗ξn = V ηn = ξn for all n, and then V V ∗ = IH.

The equality of the complements can fail, by taking for instance P = IH
and Q = IH −E11 in B(ℓ2(N)). Then IH − P = 0 and IH −Q = E11 are not
equivalent.

(14.2.10) Let M ⊂ B(H) be a von Neumann algebra and T ∈ M. Show
that [TH] ∼ [|T |H] = [T ∗H] in M.

Answer. The projections are the range projections of T , |T |, and T ∗ re-
spectively, so they are in M by Corollary 12.3.8. We know from Proposi-
tion 10.4.11 that if T = V |T | is the polar decomposition of T , then V ∗V =
[T ∗H] = [|T |H] and V V ∗ = [TH]. This proves the equivalence.

(14.2.11) Let M ⊂ B(H) be a von Neumann algebra, P ∈ M a projec-
tion, and ξ ∈ H. Show that [PMξ] = P [Mξ].

Answer. From [PMξ] ≤ P (since PMξ ⊂ PH) and [PMξ] ≤ [Mξ] (since
PM ⊂ M) we get that

[PMξ] ≤ P ∨ [Mξ] = P [Mξ],
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the latter equality because P ∈ M and [Mξ] ∈ M′ so they commute (a proper
justification comes from Proposition 12.1.17). For the reverse inequality, since
P [Mξ]H ⊂ PMξ, we have [PMξ](P [Mξ]) = P [Mξ]. This implies that
P [Mξ] ≤ [PMξ], and so the equality is established.

(14.2.12) Let M be a von Neumann algebra, and P ∈ M a projection.
Show that P is minimal if and only if Q ≤ P for a projection
Q ∈ M, implies that either Q = P or Q = 0.

Answer. If P is minimal, then PMP = C IM. Then the only projections
there are 0 and IM.

Conversely, suppose that the only subprojections of P are 0 and P . Any
projection Q ∈ PMP satisfies Q ≤ P (because P is the identity of PMP ,
and Q ≥ 0 with ∥Q∥ = 1). So by hypothesis the only projections in PMP
are 0 and IM. By Corollary 12.4.16,

PMP = span∥·∥ {0, IM} = C IM.

(14.2.13) Let M = Mn(C). Find all the minimal projections. Find all
the abelian projections. Show that M is finite.

Answer. The algebra PMP consists precisely of the matrices such that they
and their adjoint leave PCn invariant. The subspace PCn has, by definition,
dimension rankP . If dimPCn ≥ 2, PMP ≃ MrankP (C) is non-commutative.
Thus if P is minimal, then rankP = 1. And if rankP = 1, then dimPCn = 1,
so PMP is necessarily one-dimensional, which makes it commutative. The
argument shows both that the minimal and abelian projections are the rank-
one projections.

To show that In is finite, suppose that V ∗V = In. This means that V
is injective; and by Exercise 1.7.8, it is surjective. Then it is invertible, and
V −1 = V ∗. Then V V ∗ = In, and hence In is finite.

(14.2.14) Let {Pj} ⊂ M be a family of pairwise equivalent projections.
Fix a projection P ∈ M with P ∼ Pj for all j. Show that

c
(∨

j

Pj

)
= c(P ).
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Answer. Write Q =
∨
j Pj . From Pj ≤ Q we have c(P ) = c(Pj) ≤ c(Q).

But we also have, for any ξ ∈ H and any j, c(P )Pjξ = Pjξ. It follows that⋃
j PjH is invariant for c(P ). That is, c(Q) ≤ c(P ). Therefore c(Q) = c(P ).

(14.2.15) Let P,Q ∈ M be equivalent. Show that PMP ≃ QMQ.

Answer. By hypothesis there exists V ∈ M with V ∗V = P , V V ∗ = Q.
Define γ : PMP → QMQ by γ(T ) = V TV ∗. This map is clearly linear
and it maps into QMQ since V = QV (Exercise 10.4.12). We have γ(T ∗) =
V T ∗V ∗ = (V TV ∗)∗ = γ(T )∗. A key observation is that T ∈ PMP if and
only if T = PTP . And, given S, T ∈ PMP ,

γ(S)γ(T ) = V SV ∗V TV ∗ = V SPTV ∗ = V STV ∗ = γ(ST ),
so γ is a ∗-homomorphism. If T ∈ PMP and γ(T ) = 0, this means that
V TV ∗ = 0; multiplying by V ∗ on the left and by V on the right, we get
0 = V ∗V TV ∗V = PTP = T , so T = 0; meaning that γ is injective. Finally,
given S ∈ QMQ, we have S = QSQ = V V ∗SV V ∗ = γ(V ∗SV ). We will
have shown that γ is surjective if we show that V ∗SV ∈ PMP . And this
follows from V = V P (Exercise 10.4.12).

(14.2.16) Let P,Q ∈ M be equivalent projections. Show that if P is any
of minimal, abelian, infinite, finite, purely infinite, properly
infinite, then so is Q.

Answer.

(a) If P is minimal, then PMP = CP . By Exercise 14.2.15 QMQ is one-
dimensional, so QMQ = CQ since CQ lies inside it.

(b) If P is abelian, then QMQ ≃ PMP by Exercise 14.2.15 and so QMQ is
abelian.

(c) If P is infinite, there exists P0 ≤ P with P0 ∼ P and P − P0 ̸= 0. Let
V ∈ M with V ∗V = P and V V ∗ = Q. Put Q0 = V P0V

∗ ∈ M. We have
Q0 ≤ V V ∗ = Q, and Q − Q0 = V (P − P0)V ∗ ̸= 0, for if it were 0 we
could multiply by V ∗ on the left and by V on the right to get P −P0 = 0.
We have Q0 ∈ P0, since Q0 = V P0V

∗ and P0V
∗V P0 = P0PP0 = P0. So

Q0 ∼ P0 ∼ P ∼ Q, and Q is infinite.
(d) If P is finite then Q is finite, for if Q were infinite then P would be infinite

by the previous paragraph.
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(e) Suppose that P is purely infinite and Q0 ≤ Q with Q0 infinite. Writing
P = V ∗V and Q = V V ∗, we have P0 = V ∗Q0V ∼ Q0 and P0 ≤ P . Then
P0 is infinite (as P is purely infinite) and Q0 is infinite as proven above.
So Q is purely infinite.

(f) If P is properly infinite, this means that ZP is infinite for all nonzero
projections Z ∈ Z(M). Then ZQ ∼ ZP is infinite, and it follows that Q
is properly infinite.

(14.2.17) Let P,Q ∈ M be projections with Q ⪯ P . Show that if P is
finite, then Q is finite.

Answer. Suppose that Q is infinite. Then there exists Q0 ≤ Q with Q0 ̸= Q
and Q0 ∼ Q. By Proposition 14.2.7,

P = P −Q+Q ∼ P −Q+Q0,

and P − (P −Q+Q0) = Q−Q0 ̸= 0, so P is infinite.

(14.2.18) Let P,Q ∈ M be projections with Q ⪯ P . Show that if P is
abelian, then Q is abelian.

Answer. By Exercise 14.2.16 we may assume without loss of generality that
Q ≤ P . By hypothesis, PMP is abelian and Q = PQP ∈ PMP . Then

QMQ = Q(PMP )Q = (PMP )Q
is abelian, so Q is abelian.

(14.2.19) Let P,Z ∈ M be projections with Z central. Show that P is
finite if and only if ZP and (IM − Z)P are finite.

Answer. If P is finite, then ZP is finite by Exercise 14.2.17. Conversely,
suppose that ZP and (IM −Z)P are finite. Let Q ≤ P with Q ∼ P . As Z is
central, we have ZQ ∼ ZP and (IM −Z)Q ∼ (IM −Z)P . As the two right-
hand-side projections are finite and ZQ ≤ ZP and (IM −Z)Q ≤ (IM −Z)P ,
we get that ZQ = ZP and (IM − Z)Q = (IM − Z)P . Adding, Q = P and
hence P is finite.
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(14.2.20) Let M be a finite von Neumann algebra. Show that the only
isometries are the unitaries.

Answer. If V is an isometry, we have V ∗V = IM. Then V V ∗ ≤ IM and
V V ∗ ∼ V ∗V = IM. As IM is finite, V V ∗ = IM.

(14.2.21) Let Φ as in the proof of Proposition 14.2.21. Show that it is
faithful.

Answer. Let
X =

∑
j1,j2

Xj1,j2 ⊗ Ej1,j2 ∈ A ⊗ B(ℓ2(|J |))

and suppose that Φ(X∗X) = 0. This means that

0 = Φ
( ∑
j1,j2,j3,j4

X∗
j3,j4

Xj1,j2 ⊗ Ej4,j3Ej1,j2

)
= Φ

( ∑
j1,j2,j4

X∗
j1,j4

Xj1,j2 ⊗ Ej4,j3Ej1,j2

)
=
∑
j1

Φ
(∑
j2,j4

X∗
j1,j4

Xj1,j2 ⊗ Ej4,j2

)
=
∑
j1

1
n

∑
j2

X∗
j1,j2

Xj1,j2 .

As every term is non-negative, Xj1,j2 = 0 for all j1, j2, and thus X = 0.

(14.2.22) Let H be an infinite-dimensional separable Hilbert space. Fix
an orthonormal basis and consider the associated unilateral
shift S. Show that S is a partial isometry, and conclude that
B(H) is infinite.

Answer. If the basis is {ξn}, then the unilateral shift is the bounded linear
operator V induced by V ξn = ξn+1. So

V =
∑
n

En+1,n.
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This series converges sot, for given ξ =
∑
k ckξk we have∥∥∥ ∑

n>n0

En+1,nξ
∥∥∥2

=
∥∥∥ ∑
n>n0

∑
k

ck En+1,nξk

∥∥∥2
=
∥∥∥ ∑
n>n0

cnξn+1

∥∥∥2
=
∑
n>n0

|ck|2,

which can be made arbitrarily small by taking n0 sufficiently large. This gives
us

V ∗V =
∑
n,m

Em,m+1En+1,n =
∑
n

En,n = IH.

Meanwhile,

V V ∗ =
∑
n,m

En+1,nEm,n+1 =
∑
n

En+1,n+1 = IH − E11.

This shows that IH is infinite, and so B(H) is infinite.

(14.2.23) Show an example of a infinite projection that cannot be halved.

Answer. The example cannot occur in a factor, for there every infinite projec-
tion is properly infinite. Let M = C⊕B(H), with dim H = ∞. The projection
we consider is the identity IM = 1 ⊕ IH. Suppose that 1 ⊕ IH = P + Q for
projections P,Q ∈ M. We have P = α⊕ P0, Q = β ⊕Q0, with α, β ∈ {0, 1}
and P0, Q0 ∈ B(H) projections. Since α + β = 1, we may assume without
loss of generality that α = 1, β = 0. Suppose that V ∗V = P and V V ∗ = Q.
Since V = λ⊕ V0 with λ ∈ C and V0 ∈ B(H) a partial isometry, we have

1 ⊕ P0 = P = V ∗V = |λ|2 ⊕ V ∗
0 V0.

Then |λ| = 1. This forces V V ∗ = |λ|2 ⊕ V0V
∗

0 = 1 ⊕ V0V
∗

0 , which can never
be equal to Q since the scalar component of Q is 0. Thus P and Q cannot
be equivalent.

This shows that IM fails a weaker form halving, where one does not
require P ∼ IM. This kind of halving is strictly weaker than the halving
of properly infinite projections. For instance I2 ∈ M2(C) can be written as
I2 = E11 + E22, with E11 ∼ E22.

(14.2.24) Let M be a finite von Neumann algebra, and P,Q ∈ M pro-
jections with P ∼ Q. Show that IM − P ∼ IM −Q.

Answer. If IM −P is not equivalent to IM −Q, by Comparison there exists
a projection Z ∈ Z(M) with Z(IM − P ) ≺ Z(IM − Q) (if this fails, then
the case with the roles of P,Q exchanged works). So Z(IM − P ) ∼ ZR0 ≤
Z(IM −Q), with ZR0 a proper subprojection of Z(IM −Q). This gives (via
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Proposition 14.2.7)
Z = ZP + Z(IM − P ) ∼ ZQ+ ZR0 ≤ ZQ+ Z(IM −Q) = Z,

with ZQ+ZR0 a proper subprojection of Z. As M is finite this is a contra-
diction, and so IM − P ∼ IM −Q.

(14.2.25) Let M be a finite von Neumann algebra, and P,Q ∈ M pro-
jections with P ⪯ Q. Show that IM −Q ⪯ IM − P .

Answer. By hypothesis there exists Q0 ≤ Q with Q0 ∼ P . By Exer-
cise 14.2.26, IM −Q0 ∼ IM − P . Then

IM −Q ≤ IM −Q0 ∼ IM − P.

(14.2.26) Let M be a von Neumann algebra, and P,Q ∈ M finite pro-
jections with P ∼ Q. Show that IM − P ∼ IM −Q.

Answer. We know that P ∧ Q is finite by Proposition 14.2.15. Applying
Exercise 14.2.24 to P,Q in the finite algebra (P ∨ Q)M(P ∨ Q), we get
P ∨ Q − P ∼ P ∧ Q − Q (in (P ∨ Q)M(P ∨ Q), hence also in M). Then,
using Proposition 14.2.7,
IM−P =

(
IM−P∨Q

)
+
(
P∨Q−P

)
∼
(
IM−P∨Q

)
+
(
P∨Q−Q

)
= IM−Q.

(14.2.27) Let P ∈ M be a finite projection, and Q ∈ M a projection.
Show that there exists a number s ∈ N∪ {0} such that s is the
maximum such that there exist pairwise orthogonal projections
{P1, . . . , Ps} ⊂ M with Pk ∼ Q for all k, and

∑s
k=1 Pk ⪯ P .

Answer. Suppose that no such s exists. This means that for any m ∈
N there exist pairwise orthogonal projections {Pm,1, . . . , Pm,m} ⊂ M with
Pm,k ∼ Q for all k and

∑
k Pm,k ⪯ P . Assume without loss of generality

that P1 = P1,1 ≤ P . Let P ′
2,1 ∼ P2,1 and P ′

2,2 ∼ P2,2 with P ′
2,1 + P ′

2,2 ≤ P .
As P1 ∼ Q ∼ P ′

2,1, by Exercise 14.2.25 (applied in the von Neumann algebra
PMP ) we have P − P1 ∼ P − P ′

2,1 ≥ P ′
2,2. Then Q ∼ P ′

2,2 ⪯ P − P1. So
there exists P2 ∈ M with P2 ∼ Q and P2P1 = 0. Now we can repeat the
argument with P1 + P2 ≤ P and P3,1 + P3,2 + P3,3 ⪯ P to obtain P3 ∼ Q
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and P1 + P2 + P3 ≤ P . Continuing inductively, we get a sequence {Pn},
pairwise orthogonal, Pn ∼ Q for all n, and

∑
n Pn ≤ P . But as the Pn are

all pairwise equivalent, the projection
∑
n Pn is infinite (it is equivalent to∑

n≥2 Pn, for instance), a contradiction since P is finite (Exercise 14.2.17).
The contradiction shows that there exists a maximum s as desired.

(14.2.28) Let M be a finite von Neumann algebra and T ∈ M with polar
decomposition T = V |T |. Show that V can be extended to a
unitary U with T = U |T |.

Answer. Because V ∗V ∼ V V ∗ and M is finite, by Exercise 14.2.24 there
exists a partial isometry W ∈ M with W ∗W = IM − V ∗V and WW ∗ =
IM − V V ∗. Let U = V +W . We have

V ∗W = V ∗ V V ∗(IM − V V ∗)W = 0.
Then U is a unitary, for U∗U = V ∗V + W ∗W = IM and UU∗ = V V ∗ +
WW ∗ = IM. We also have

U |T | = (V +W )|T | = (V +W )V ∗V |T | = V V ∗V |T | = V |T | = T.

(14.2.29) Let M be a finite-dimensional von Neumann algebra. Show
that M is finite, in two ways:

(a) by using the explicit form of a finite-dimensional von Neu-
mann algebra;

(b) by a direct argument.

Answer.

(a) We know, from Theorem 11.8.10, that M =
⊕k

j=1 Mnj (C). So IM =⊕k
j=1 Inj . Let V ∈ M with V ∗V = IM. We can write V =

⊕k
j=1 Vj , and

then V ∗
j Vj = Inj for all j. Seen as an element of Mnj (C), this equality

gives us that Vj is injective, and so it is surjective by Exercise 1.7.8.
Therefore Vj is invertible and V ∗

j = V −1
j . Thus VjV ∗

j = Inj . It follows
that V V ∗ = IM, and so IM is finite.

(b) Let P ≤ IM be a projection with P ∼ IM and P ̸= IM. So there
exists V ∈ M with V ∗V = IM and V V ∗ = P . Let P1 = V PV ∗. Then
P1 ≤ V V ∗ = P , and P1 ̸= P ; for if P1 = P this is V V V ∗V ∗ = V V ∗,
and applying V ∗ on the left and V on the right, we would have P =
IM. Iterating this construction we get a properly decreasing sequence of
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projections P1 ≥ P2 ≥ P3 · · · . We have, if k > j,
(Pk − Pk+1)(Pj − Pj+1) = PkPj + Pk+1Pj+1 − Pk+1Pj − PkPj+1

= Pk + Pk+1 − Pk+1 − Pk = 0.
That is, the projections {Pk − Pk+1} are nonzero and pairwise orthogo-
nal. In particular they are linearly independent, so dim M = ∞. The
contradiction shows that IM is finite.

(14.2.30) Let M be a von Neumann algebra. Show that the following
statements are equivalent:

(a) M is finite;
(b) for any projections P,Q ∈ M with P ∼ Q, there exists

U ∈ M unitary with Q = UPU∗.

Answer. Suppose first that M is finite and P ∼ Q. So there exists a partial
isometry V ∈ M with V ∗V = P and V V ∗ = Q. By Exercise 14.2.24 there
exists a partial isometry W ∈ M with W ∗W = IM −P and WW ∗ = IM −Q.
Let U = V +W . Since V ∗W = V ∗Q(IM −Q)W = 0 and VW ∗ = V P (IM −
P )W ∗ = 0,

U∗U = V ∗V +W ∗W = P + IM − P = IM

and
UU∗ = V V ∗ +WW ∗ = Q+ IM −Q = IM.

So U is a unitary, and
UPU∗ = V PV ∗ = V V ∗V V ∗ = Q.

Conversely, suppose that IM ∼ P . By hypothesis, this means that
there exists a unitary U ∈ M with P = UU∗ = IM. So IM is finite, and M
is finite.

(14.2.31) Let M be a factor, and P,Q ∈ M projections with Q finite
and P infinite. Show that Q ≺ P .

Answer. Because M is a factor, by Comparison we either have Q ⪯ P or
P ⪯ Q. The latter would imply that P is finite (Exercise 14.2.17); so Q ⪯ P .
We cannot have Q ∼ P , because that would make P finite or Q infinite; so
Q ≺ P .
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(14.2.32) Let P,Q ∈ M be projections with P properly infinite and
Q ⪯ P . Show that P ∨Q ∼ P .

Answer. Because P is properly infinite, by Halving (Proposition 14.2.14)
there exists a projection R ∈ M with R ≤ P and R ∼ P ∼ P −R. We have
(using Kaplansky’s Formula)

P ∨Q− P ∼ Q− P ∧Q ≤ Q ⪯ P ∼ P −R.

Then
P ∨Q =

(
P ∨Q− P ) − P

)
+ P ∼ P −R+R = P.

(14.2.33) Let P,Q ∈ M be properly infinite, with P + Q = IM and
P ∼ Q. Show that P ∼ IM.

Answer. Since P is properly infinite, by Halving there exists a projection R ∈
M with P ∼ R ∼ P −R. Then Q ∼ P ∼ R, and so using Proposition 14.2.7

IM = P +Q ∼ P −R+R = P.

(14.2.34) Let P1, P2, Q1, Q2 ∈ M be projections with P1 +P2 = Q1 +Q2,
P1P2 = 0 = Q1Q2, and P1 ∼ P2, Q1 ∼ Q2. Show that P1 ∼
Q1.

Answer. By working on (P1 + P2)M(P1 + P2) we may assume without loss
of generality that P1 + P2 = IM.

From Proposition 14.2.13 we have a projection Z ∈ Z(M) with ZP1
finite and (IM − Z)P1 properly infinite. So it is enough that we show that
cases P1 finite and P1 properly infinite separately.

Suppose first that P1 is finite. Then IM = P1 + P2 is finite by Propo-
sition 14.2.15. By Comparison there exists a projection Z ∈ Z(M) with
ZP1 ⪯ ZQ1 and (IM − Z)Q1 ⪯ (IM − Z)P1. We immediately have

ZP2 ∼ ZP1 ⪯ ZQ1 ∼ ZQ2.

Fix projection R1 ≤ Q1 with ZP1 ∼ ZQ0, and R2 ≤ Q2 with ZP2 ∼ ZR2.
Then

Z = ZP1 + ZP2 ∼ ZR1 + ZR2 ≤ ZQ1 + ZQ2 = Z.
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As Z is finite, this means that ZR1 + ZR2 = Z, Then
0 ≤ Z(Q1 −R1) + Z(Q2 −R2) = Z − (ZR1 + ZR2) = 0.

As Z(Q1 − R1) ≥ 0 and Z(Q2 − R2) ≥ 0, this forces ZR1 = ZQ1 and
ZR2 = ZQ2. But then ZP1 ∼ ZR1 = ZQ1 and similarly ZP2 ∼ ZQ2.
Recalling that the projection Z also satisfies (IM − Z)Q1 ⪯ (IM − Z)P1, we
can repeat the argument to get (IM − Z)P1 ∼ (IM − Z)Q1. Then P1 ∼ Q1
by Proposition 14.2.7.

Now suppose that P1 is properly infinite. Then Q1 is properly infinite;
indeed, if Q1 is not properly infinite there exists a projection Z ∈ Z(M)
with ZQ1 finite. This makes ZQ2 finite by Exercise 14.2.16 and therefore
Z = ZQ1 + ZQ2 is finite by Proposition 14.2.15. But this would make ZP1
finite, a contradiction unless Z = 0. By Exercise 14.2.33,

P1 ∼ IM ∼ Q1.

(14.2.35) Let M ⊂ B(H) be a von Neumann algebra, Q ∈ M a projec-
tion, and K a Hilbert space. Show that c(Q⊗E11) = c(Q)⊗IK
in M ⊗ B(K).

Answer. The projection c(Q) ⊗ IK is central, and
c(Q) ⊗ IK −Q⊗ E11 = (c(Q) −Q) ⊗ IK +Q⊗ (IH − E11) ≥ 0

since both terms are positive. That is, Q ⊗ E11 ≤ c(Q) ⊗ IK. Now let
P̃ ∈ Z(M) with Q⊗E11 ≤ P̃ . We know from Exercise 13.4.28 that Z(M ⊗
B(H)) = Z(M) ⊗ IH. So P̃ = P ⊗ IK for some P ∈ Z(M). We have

P ∗ ⊗ IK = (P ⊗ IK)∗ = P̃ ∗ = P̃ = P ⊗ IK.

Then, for η ∈ K with ∥η∥ = 1 and ξ ∈ H,
⟨P 2ξ, ξ⟩ = ⟨(P ⊗ IK)2(ξ ⊗ η), ξ ⊗ η⟩ = ⟨(P ⊗ IK)(ξ ⊗ η), ξ ⊗ η⟩ = ⟨Pξ, ξ⟩.

Using polarization we conclude that P 2 = P . We can similarly obtain that
P ∗ = P , so P is a central projection. Therefore we have the inequality

0 ≤ P ⊗ IK −Q⊗ E11 = (P −Q) ⊗ (IK − E11).
This can only occur if P ≥ Q (we can show this using ξ and η as above).
Then P ≥ c(Q), and so c(Q) ⊗ IK ≤ P ⊗ IK = P̃ . It follows that c(Q) ⊗ IK is
the last central projection above Q⊗E11, and thus c(Q⊗E11) = c(Q) ⊗ IK.
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(14.2.36) Let P ∈ M be a properly infinite projection, and n ∈ N ∪
{∞}. Show that there exist pairwise orthogonal projections
{Pk}nk=1 ⊂ M with Pk ∼ P for all k, and P =

∑
k Pk.

Answer. Suppose first that n ∈ N. We can write n =
∑
k∈F 2k for some

finite subset F ⊂ N. Write F = {k1, . . . , km} with kr < kr+1 for all r. Use
Halving to write P = Q0 + Q1 with Q0 ∼ Q1 ∼ Q. Now we apply Halving
k1 times to Q0 to get Q0 =

∑2k1

s=1 R0,j , with R0,s ∼ Q0 for all s. Now we
do the same, but starting with Q1 and F2 = {k2, . . . , km}. Repeating this
inductively we get 2k1 + · · · + 2km = n pairwise equivalent projections that
add to P .

When n = ∞, we subdivide as in the previous paragraph, but always
halving the second projection. This way we end up with countably many
{Qk}, pairwise orthogonal and Pk ∼ P for all k. Let P0 = P −

∑
k Pk. Since

P0 ≤ P ∼ P1, by Exercise 14.2.32 we have P1 + P0 ∼ P1. So we replace P1
with P1 + P0 and now P =

∑
k Pk, with all projections equivalent to P .

14.3. Classification of von Neumann Algebras

(14.3.1) Show that the matrix units defined in (14.5) do satisfy the
matrix unit relations EkjEab = δj,aEkb and E∗

kj = Ejk.

Answer. If j ̸= a, then
EkjEab = E∗

1kE1jQjQaE
∗
1aE1b = δj,aE

∗
1kE1jQjE

∗
1jE1b

= δj,aE
∗
1kE11E1b = δj,aE

∗
1kE1b = δj,aEkb.

And E∗
kj = E∗

1jE1k = Ejk.

(14.3.2) Let M be a type I von Neumann algebra, and H a Hilbert
space. Show that M ⊗ B(H) is type I, without using Theo-
rem 14.3.2.
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Answer. If M is type I, there exists an abelian projection Q ∈ M with
c(Q) = IM. Then Q ⊗ E11 is abelian in M ⊗ B(H), with central support
c(Q) ⊗ IH = IK⊗H (Exercise 14.2.35). If P̃ ∈ M ⊗ B(H) is any projection,
by Proposition 14.2.6 there exist nonzero projections Q0 ≤ Q ⊗ E11 and
P0 ≤ P with P0 ∼ Q0. As Q0 is abelian, so is P0 by Exercise 14.2.16. Hence
M ⊗ B(H) is type I.

(14.3.3) In the proof of (14.6), show that P0 and Q0 are in generic
position when acting on (P0 ∨Q0)H.

Answer. Suppose that ξ ∈ (P0 ∧ Q0)H. This implies that ξ = Pξ = Qξ
(since P0 ≤ p and Q0 ≤ q), so ξ = (P ∧ Q)ξ. But we also have ξ = P0ξ, so
ξ = P0(P ∧Q)ξ = 0.

If now ξ ∈ P0 ∧Q⊥
0 , then ξ = P0ξ = pξ. As Q⊥

0 = Q⊥ +P ∧Q+P⊥ ∧Q,
the equality Q0ξ = ξ leaves us with three possibilities. First, that Q⊥ξ = ξ.
Then (P ∧ Q⊥)ξ = ξ, and thus ξ = P0(P ∧ Q⊥)ξ = 0. Second possibility is
that ξ ∈ (P ∧ Q)H, and again we get ξ = 0 from P0(P ∧ Q) = 0. Finally, if
ξ ∈ (P⊥ ∧Q)H, we also get ξ = 0 from P (P⊥ ∧Q) = 0. So P0 ∧Q⊥

0 = 0.
The equality P⊥

0 ∧ Q0 = 0 is proven by exchanging the roles of P0
and Q0 in the previous paragraph. So it remains to consider the case where
ξ ∈ (P⊥

0 ∧ Q⊥
0 ). But we are working in a context where p0 ∨ q0 = 1, so

P⊥
0 ∧Q⊥

0 = (P0 ∨Q0)⊥ = i⊥H = 0.

(14.3.4) Let M ⊂ B(H) be a von Neumann algebra. Show that M is
type I if and only if there exists a projection P ∈ M, abelian,
with c(P ) = IM.

Answer. Suppose first that M is type I. Then abelian projections exist in M.
Via Zorn’s Lemma construct a family {Pj} ⊂ M of abelian projections with
pairwise orthogonal central supports. Let Q =

∑
j c(Pj) ∈ M. If IM−Q ̸= 0,

by hypothesis there exists P0 ∈ M, abelian, with P0 ≤ IM −Q; as this latter
projection is central, c(P0) ≤ IM − Q, contradicting the maximality. Then
Q = IM.

Let P =
∑
j Pj ∈ M (the projections are pairwise orthogonal since

their central supports are). Since
PjMPk = Pjc(Pj)Mc(Pk)Pk = Pjc(Pj)c(Pk)MPk = 0

if j ̸= k, we can write M =
∑
j PjMPj , abelian. So P is an abelian pro-

jection. Suppose that Z ∈ M is a central projection with P ≤ Z. As
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Pj ≤ P ≤ Z, we get c(Pj) ≤ Z. And then Z ≥
∑
j c(Pj) = IM. This shows

that c(P ) = IM as desired.
Conversely, suppose that there exists P ∈ M, abelian, with c(P ) = IM.

Given any nonzero Q ∈ M, since c(P ) = IM by Proposition 14.2.6 there exist
nonzero projections P0 ≤ P and Q0 ≤ Q with P0 ∼ Q0. From P0 ≤ P we
have that P0 is abelian; then Q0 is abelian by Exercise 14.2.16.

(14.3.5) Let M ⊂ B(H) be a von Neumann algebra. Show that M is
type II if and only if there exists a projection P ∈ M, finite,
with c(P ) = IM.

Answer. Suppose first that M is type II. Then finite projections exist in M.
Via Zorn’s Lemma construct a family {Pj} ⊂ M of finite projections with
pairwise orthogonal central supports. Let Q =

∑
j c(Pj) ∈ M. If IM−Q ̸= 0,

by hypothesis there exists P0 ∈ M, finite, with P0 ≤ IM − Q; as this latter
projection is central, c(P0) ≤ IM − Q, contradicting the maximality. Then
Q = IM.

Let P =
∑
j Pj ∈ M (the projections are pairwise orthogonal since their

central supports are). By Lemma 14.2.12, P is a finite projection. Suppose
that Z ∈ M is a central projection with P ≤ Z. As Pj ≤ P ≤ Z, we get
c(Pj) ≤ Z. And then Z ≥

∑
j c(Pj) = IM. This shows that c(P ) = IM as

desired.
Conversely, suppose that there exists P ∈ M, finite, with c(P ) = IM.

Given any nonzero Q ∈ M, since c(P ) = IM by Proposition 14.2.6 there exist
nonzero projections P0 ≤ P and Q0 ≤ Q with P0 ∼ Q0. From P0 ≤ P we have
that P0 is finite (Exercise 14.2.17); then Q0 is abelian by Exercise 14.2.16.

(14.3.6) Let M be a II1-factor. We will outline here a way to “manu-
ally” construct the normalized dimension function.

(a) Use Proposition 14.2.22 to construct a family {Pk,n} ⊂ M
of projections, with n ∈ N, k ∈ {1, . . . , 2n}, and

Pk,n ∼ Pj,n, P2k−1,n+1 + P2k,n = Pk,n

for all n and all k, j ≤ 2n, and
∑
k Pk,n = IM (note:

{Pk,n}2n
k=1 are pairwise orthogonal by Proposition 10.5.5).

(b) (Division Algorithm) Show that given n ∈ N and P ∈
P(M), there exist s(n) ∈ {0, . . . , 2n} and projections

Q1, . . . , Qs(n), R ∈ M,
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with R ≺ P1,n, Qk ∼ P1,n, and such that P = R +∑
k≤s(n) Qk.

(c) Show that if Q′
1, . . . , Q

′
s′(n), R

′ is another decomposition for
P as above, then s′(n) = s(n) and R′ ∼ R.

(d) Keep considering the same fixed P . Show that s(n + 1) ≥
2s(n) for all n.

(e) For the same projection P , let αn = 2−n s(n). Show that
the sequence {αn} converges to some number τ(P ) ∈ [0, 1].

(f) Show that for projections P,Q ∈ M, we have P ⪯ Q if and
only if τ(P ) ≤ τ(Q). Conclude that P ∼ Q if and only if
τ(P ) = τ(Q) and that P ≺ Q if and only if τ(P ) < τ(Q).

(g) Use Proposition 14.2.16 to show that if {Qn} ⊂ M is a
monotone sequence of projections with Qn

sot−−−→ Q, then
τ(Qn) → τ(Q).

(h) Show that τ is σ-additive.
(i) Show that τ(P(M)) = [0, 1].

Answer.

(a) We let P1,0 = IM. By Proposition 14.2.22 there exist equivalent projec-
tions P1,1, P1,2 ∈ M with P1,1 ∼ P1,2 and P1,0 = P1,1 + P1,2. Now we
proceed inductively by using Proposition 14.2.22 repeatedly.

(b) Since we are in a factor, all projections are comparable. We have P ⪯ IM.
Let s(n) be the largest index such that

∑s(n)
k=1 Pk,n ⪯ P (it is possible that

s(n) = 0 if P ≺ P1,n); this number exists by Exercise 14.2.17. Let Vn ∈ M
be a partial isometry with V ∗V =

∑s(n)
k=1 Pk,n and V V ∗ ≤ P . Define Qk =

V Pk,nV
∗. Then Qk ∼ Pk,n, and

∑s(n)
k=1 Qk ≤ P . Let R = P −

∑s(n)
k=1 Qk.

If P1,n ⪯ R, then there exists P0 ∈ M with P1,n ∼ P0 ≤ R, and so
by Proposition 14.2.7

∑s(n)+1
k=1 Pk,n ⪯ R +

∑s(n)
k=1 ⪯ P , contradicting the

definition of s(n). Hence R ≺ P1,n.
(c) By hypothesis, Q′

k ∼ P1,n ∼ Qk for all k. If s′(n) > s(n), we would have
s(n)+1∑
k=1

Pk,n ≤
s′(n)∑
k=1

Pk,n ⪯ P,

a contradiction. As the roles are equivalent, s′(n) = s(n). Now R′ ∼ R by
Exercise 14.2.24 applied in the II1-factor PMP , since

∑
kQk ∼

∑
kQ

′
k

by Proposition 14.2.7.
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(d) We have
2s(n)∑
k=1

Pk,n+1 =
s(n)∑
k=1

P2k−1,n + P2k,n =
s(n)∑
k=1

Pk,n ⪯ P.

Then s(n+ 1) ≥ 2s(n) by definition of s(n+ 1).
(e) We have, using the estimate s(n) ≤ s(n+ 1)/2,

αn = s(n)
2n ≤ s(n+ 1)

2n+1 = αn+1 ≤ 1.

So the sequence {αn} is monotone non-decreasing, and bounded above by
1. Hence τ(P ) = limn αn exists.

(f) Suppose that P ⪯ Q. Then, for each n ∈ N,
sP (n)∑
k=1

Pk,n ⪯ P ⪯ Q.

Hence sP (n) ≤ sQ(n). It follows that

αPn = sP (n)
2n ≤ sQ(n)

2n = αQn .

Taking limit, τ(P ) ≤ τ(Q). Exchanging roles we get that P ∼ Q implies
τ(P ) = τ(Q).

Now assume that τ(P ) = τ(Q). We have, writing αP0 = 0,

τ(P ) =
∞∑
n=1

(αPn − αPn−1) =
∞∑
n=1

sP (n) − sP (n− 1)
2n (AB.14.1)

With this idea in mind, we have (where R′
n ≤ P and R′

n ∼ Rn)

P ∼
sP (1)∑
k=1

Pk,1 +R′
1 =

sP (1)∑
k=1

Pk,1 +
sP (2)∑

k=2sP (1)+1

Pk,2 +R′
2

=
m∑
n=1

sP (n)∑
k=2sP (n−1)+1

Pk,n +R′
m,

where R′
m+1 ≤ R′

m and R′
m ≺ P1,n. Since {R′

m}m is a decreasing se-
quence, R′ = limsot R

′
m exists in M (by Proposition 12.1.10) and it is

a projection by Proposition 12.1.13. We have R′ ≤ R′
m ≺ P1,n for all

n. This means that we can put arbitrarily many copies of R′ below IM,
contradicting that IM is finite. Hence R′ = 0. Then

P ∼
∞∑
n=1

sP (n)∑
k=2sP (n−1)+1

Pk,n. (AB.14.2)
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From (AB.14.1) we get, since sP (0) = 0 = sQ(0), that sP (n) = sQ(n) for
all n. Then (AB.14.2) also applies to Q, and we get P ∼ Q. With this we
have shown that P ∼ Q if and only if τ(P ) = τ(Q).

We already know that P ⪯ Q implies τ(P ) ≤ τ(Q). Together with the
above, we obtain that P ≺ Q implies τ(P ) < τ(Q). And if τ(P ) < τ(Q)
we cannot have Q ⪯ P (because we know it implies τ(Q) ≤ τ(P ), so
P ≺ Q.

(g) We may assume without loss of generality that Qn ↘ 0 (by replacing
each Qn with Q − Qn or Qn − Q depending on whether the sequence is
increasing or decreasing; the new sequence is still monotone). Let us recall
again that, since we are in a factor, all projections are comparable. Fix
k ∈ N. Suppose that P1,k ⪯ Qn for all n. Proposition 14.2.16 gives us,
since IM −Qn ⪯ IM − P1,k by Exercise 14.2.25,∨

n

(IM −Qn) ⪯ IM − P1,k.

And now using again Exercise 14.2.25 and Proposition 10.5.9,

P1,k ⪯ IM −
∨
n

(IM −Qn) =
∧
n

Qn = 0.

As P1,k ̸= 0, this is a contradiction. So there exists n0 such that Qn0 ⪯
P1,k. As the sequence is monotone, Qn ⪯ P1,k for all n ≥ n0. This says
that τ(Qn) ≤ 2−k for all n ≥ n0. As this can be done for all k, we have
shown that limn τ(Qn) = 0.

(h) Let {Qs}s∈N ⊂ M be a sequence of pairwise orthogonal projections. Write
Q =

∨
sQs ∈ M. We have by definition that τ(IM) = 1 and τ(Pk,n) =

2−n for all k, n. Suppose first that Q1 +Q2 = IM. Let us write s1(n) and
s2(n) for the integer counters used to define τ(Q1) and τ(Q2), and {α1

n}
and {α2

n} the corresponding sequences approximating τ(Q1) and τ(Q2)
respectively. For each n we have

s1(n)∑
k=1

Pk,n ⪯ Q1 ≺
s1(n)+1∑
k=1

Pk,n. (AB.14.3)

So there exists Q′
1 ≤ Q1 with Q′

1 ∼
∑s1(n)
k=1 Pk,n. By Exercise 14.2.24,

IM −Q′
1 ∼

∑2n
k=s1(n)+1 Pk,n. Hence

Q2 = IM −Q1 ≤ IM −Q′
1 ∼

2n∑
k=s1(n)+1

Pk,n.
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This gives us τ(Q2) ≤ 2n−s1(n)
2n = 1−α1

n. Taking limit, τ(Q2) ≤ 1−τ(Q1).
We can also do, with the same idea but using the other side of (AB.14.3),

2n∑
k=s1(n)+2

Pk,n ⪯ IM −Q1 = Q2,

and this gives τ(Q2) ≥ 1−α1
n− 1

2n . Again taking limit, τ(Q2) ≥ 1−τ(Q1).
Therefore τ(Q2) = 1 − τ(Q1), showing that τ(Q1 +Q2) = τ(Q1) + τ(Q2).

If we write Q̃n =
∨∞
k=n+1 Qk, we have

τ(Q) = τ(Q1 + · · · +Qn + Q̃n) = τ(Q̃n) +
n∑
k=1

τ(Qk)

for all n. As Q̃n ↘ 0 (Exercise 12.1.22) and using (g) ,

τ(Q) = lim
n
τ(Q̃n) +

n∑
k=1

τ(Qk) =
∞∑
k=1

τ(Qk).

(i) We already have that k/2n ∈ τ(M) for all n ∈ N and k ∈ {1, . . . , 2n}. The
continuity (AB.14.3), applied to properly chosen subsequences of {Pk,n},
shows that τ(M) = [0, 1].

(14.3.7) Let N be a von Neumann algebra and K an infinite-dimensional
Hilbert space. Show that N ⊗ B(K) ≃ M2(N ) ⊗ B(K).

Answer. Using Exercises 13.1.5, 13.4.10 and 13.4.11,
N ⊗ B(K) ≃ N ⊗

(
M2(C) ⊗ B(K)

)
≃
(
N ⊗M2(C)

)
⊗ B(K)

≃ M2(N ) ⊗ B(K)
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14.4. Tensor Products of von Neumann Algebras

(14.4.1) Let S, T ∈ B(H) be selfadjoint. Show that ST = TS if and
only if SH ⊥R iTH.

Answer. If ST = TS and ξ ∈ H then ST is selfadjoint and then
Re ⟨Sξ, iT ξ⟩ = −Re i⟨TSξ, ξ⟩ = 0.

Conversely, if Re ⟨Sξ, iT ξ⟩ = 0 then
Im ⟨Sξ, Tξ⟩ = −Re i⟨Sξ, Tξ⟩ = Re ⟨Sξ, iT ξ⟩ = 0.

So ⟨Sξ, Tξ⟩ ∈ R. Then
⟨(ST − TS)ξ, ξ⟩ = ⟨Tξ, Sξ⟩ − ⟨Sξ, Tξ⟩ = ⟨Tξ, Sξ⟩ − ⟨Sξ, Tξ⟩

= ⟨Sξ, Tξ⟩ − ⟨Sξ, Tξ⟩ = 0.
As this can be done for all ξ ∈ H, and using Polarization, ST = TS.

14.5. The Trace

(14.5.1) Let M = Mn(L∞[0, 1]) and ψ ∈ L∞[0, 1]∗ = L1[0, 1]. Show
that the functional

Ψ(T ) =
n∑
k=1

ψ(Tkk)

is tracial.



628 CHAPTER 14

Answer. We just compute:

Ψ(TS) =
n∑
k=1

ψ
(
(TS)kk

)
=

n∑
k=1

n∑
h=1

ψ(TkhShk)

=
n∑
k=1

n∑
h=1

ψ(ShkTkh) =
n∑
h=1

ψ
(
(ST )hh

)
= Ψ(ST ).

(14.5.2) Let H be an infinite-dimensional Hilbert space. Show that
a projection P ∈ B(H) is monic if and only if dimPH =
dim(PH)⊥.

Answer. Suppose that dimPH = dim(PH)⊥. Considering orthonormal
bases for each of these two subspaces, the equal cardinality allows us to
construct a partial isometry V : PH → (IH − P )H. Then V ∗V = P , V V ∗ =
IH − P , so P ≃ IH − P and P + (IH − P ) = IH ∈ Z(B(H)).

Conversely, suppose that P is monic. Since Z(B(H)) = C IH, the only
central projections are 0 and IH. So there exist projections P1, . . . , Pn ∈ B(H)
with Pk ∼ P for all k and P1 + · · · + Pn = IH. If P were finite, then we
would get IH finite by Proposition 14.2.15, contradicting that dim H = ∞.
So P is infinite, and therefore so are all the Pk. We then have, applying
Proposition 1.6.33 to the cardinality of the respective orthonormal bases,

dim(PH)⊥ =
n∑
k=2

dimPH = dimPH.

(14.5.3) Show that a map Ψ : M → Z(M) is a conditional expectation
if and only if it is a linear and positive projection.

Answer. We know that a conditional expectation is a positive linear pro-
jection by Tomiyama’s Theorem (Proposition 13.2.68). Note that Kadison’s
Schwarz inequality (13.8) implies positivity.

Conversely, suppose that Ψ : M → Z(M) is a linear and positive
projection. Because Z(M) is abelian we have that Ψ is completely positive
by Proposition 13.2.22. Then Proposition 13.2.24 gives us

∥Ψ∥ = ∥Ψ(IM)∥ = ∥IM∥ = 1.
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And then Ψ is a conditional expectation by Tomiyama’s Theorem (Proposi-
tion 13.2.68).

(14.5.4) Let M be a finite von Neumann algebra and T its centre-valued
trace. Let P,Q ∈ M be projections. Show that P ⪯ Q if and
only if T (P ) ≤ T (Q).

Answer. If P ⪯ Q, there exists Q0 ≤ Q with Q0 ∼ P . Then
T (P ) = T (Q0) ≤ T (Q).

Conversely, suppose that T (P ) ≤ T (Q). By Comparison there exists a
nonzero central projection Z with ZQ ⪯ ZP and (IM − Z)P ⪯ (IM − Z)Q.
From T (P ) ≤ T (Q) we have

0 ≤ Z(T (Q) − T (P )) = T (ZQ) − T (ZP ).
And from ZQ ⪯ ZP we have T (ZQ) − T (ZP ) ≤ 0. Thus T (ZQ) = T (ZP ).
As ZQ ∼ P0 ≤ ZP , this implies that ZQ ∼ ZP by the faithfulness of T ;
indeed, T (ZP − P0) = T (ZP ) − T (ZQ) = 0, so P0 = ZP . And ZP ∼ ZQ
and (IM − Z)P ⪯ (IM − Z)Q together imply P ⪯ Q (Proposition 14.2.7).

(14.5.5) Let M be a finite von Neumann algebra and ψ,φ ∈ M∗ two
tracial normal states such that ψ|Z(M) = φ|Z(M). Show that
ψ = φ.

Answer. Let P ∈ M be a monic projection. Then there exist projections
P1, . . . , Pr ∈ M with Pk ∼ P for all k and Z =

∑
k Pk ∈ Z(M). We have

φ(P ) = r−1
r∑

k=1
φ(Pk) = r−1φ(Z)

= r−1ψ(Z) = r−1
r∑

k=1
φ(Pk)

= φ(P ).
If now P is an arbitrary projection in M, by Lemma 14.5.4 there exist pairwise
orthogonal monic projections {Pj} ⊂ M with P =

∑
j Pj . As both states

are normal,
φ(P ) =

∑
j

φ(Pj) =
∑
j

ψ(Pj) = ψ(P ).
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Given T ∈ Msa, by the Spectral Theorem it is a norm limit of linear com-
binations of projections, so ψ(T ) = φ(T ). Finally, any T ∈ M is a linear
combination of two selfadjoints, so ψ(T ) = φ(T ).

(14.5.6) Let M be a von Neumann algebra, T1, . . . , Tr ∈ M, and ε > 0.
Show that there exists γ ∈ DM and Z1, . . . , Zr ∈ Z(M) such
that

∥γ(Tk) − Zk∥ < ε, k = 1, . . . , r.

Answer. We need to use the idea at the end of the proof of Theorem 14.5.15.
We may assume without loss of generality that T1, . . . , Tr are selfadjoint, for
we may replace the list with a list of their real and imaginary parts. We argue
by induction. From the (14.20) we have the case r = 1. So we assume that
we have β ∈ DM and Z1, . . . , Zr−1 such that ∥β(Tk) − Zk∥ < ε. Applying
again the argument that leads to (14.20) to β(Tr), we obtain α ∈ DM and
Zr ∈ Z(M) such that ∥α(β(Tr)) −Zr∥ < ε. Now we put γ = α ◦β. Then for
all k,
∥γ(Tk) − Zk∥ = ∥α(β(Tk)) − Zk∥ = ∥α(β(Tk) − Zk)∥ ≤ ∥β(Tk) − Zk∥ < ε.

(14.5.7) Let M be a von Neumann algebra and T1, . . . , Tr ∈ M. Show
that there exist Z1, . . . , Zr ∈ Z(M) and {γn} ⊂ DM such that
limn γn(Tk) = Zk, k = 1, . . . , r.

Answer. Given n ∈ N, we apply Exercise 14.5.6 inductively to obtain βn ∈
DM and Z1,n, . . . , Zr,n ∈ Z(M) with

∥βn ◦ · · · ◦ β1(Tk) − Zk∥ < 2−n, k = 1, . . . , r.
Let

γn = βn ◦ βn−1 ◦ · · · ◦ β1 ∈ DM.

Then
∥γn+1(Tk) − Zk,n∥ = ∥βn+1(γn(Tk) − Zk,n)∥ ≤ ∥γn(Tk) − Zk,n∥ < 2−n.

So
∥γn+1(Tk) − γn(Tk)∥ ≤ ∥γn+1(Tk) − Zk,n∥ + ∥γn(Tk) − Zk,n∥ < 2−n+1.

It follows that

∥γn+s(Tk) − γn(Tk)∥ ≤
n+s−1∑
j=n

∥γj+1(Tk) − γj(Tk)∥ ≤
n+s−1∑
j=n

2−j+1 < 2−n+2.
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So {γn(Tk)} is Cauchy for each k = 1, . . . , r. This forces {Zk,n}n to be also
Cauchy. Then there exists Zk = limn Zk,n ∈ Z(M), and Zk = limn γn(Tk).

(14.5.8) Let M be a von Neumann algebra and S, T ∈ M. Show that
DM(S + T ) ∩ Z(M) ⊂ DM(S) ∩ Z(M) + DM(T ) ∩ Z(M).

Answer. Let Z ∈ DM(S + T ) ∩ Z(M) and fix ε > 0. This means that there
exists β ∈ DM such that ∥β(S+T ) −Z∥ < ε. By Exercise 14.5.7 there exists
γ ∈ DM and Z1 ∈ DM(β(S)) ∩ Z(M), Z2 ∈ DM(β(T )) ∩ Z(M) such that

∥γ(β(S)) − Z1∥ < ε, ∥γ(β(T )) − Z2∥ < ε.

As
∥γ(β(S + T )) − Z∥ = ∥γ(β(S + T ) − Z)∥ ≤ ∥β(S + T ) − Z∥ < ε,

we obtain
∥Z − (Z1 + Z2)∥ ≤ ∥Z − γ(β(S + T ))∥ + ∥γ(β(S)) − Z1∥ + ∥γ(β(T )) − Z2∥

≤ 3ε.
As this can be done for any ε and

DM(β(S)) ∩ Z(M) ⊂ DM(S) ∩ Z(M)
and

DM(β(T )) ∩ Z(M) ⊂ DM(T ) ∩ Z(M),
we have shown that

Z ∈ DM(S) ∩ Z(M) + DM(T ) ∩ Z(M).

(14.5.9) Let M be a von Neumann algebra, T ∈ M, Z ∈ Z(M). Show
that

DM(TZ) ∩ Z(M) ⊂ Z
(
DM(T ) ∩ Z(M)

)
.

Answer. Fix Y ∈ DM(TZ) ∩ Z(M) and ε > 0. Then there exists β ∈ DM
such that ∥β(TZ) − Y ∥ < ε. By Theorem 14.5.15 there exists γ ∈ DM and
Y1 ∈ DM(β(T )) ∩ Z(M) with ∥γ(β(T )) − Y1∥ < ε. Then

∥Z(γ(β(T )) − Y ∥ = ∥(γ(β(TZ)) − Y ∥ ≤ ∥β(TZ) − Y ∥ < ε.

Also,
∥Z(γ(β(T )) − ZY1∥ ≤ ∥γ(β(T )) − Y1∥ ∥Z∥ < ε ∥Z∥.
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Then
∥Y − ZY1∥ ≤ (1 + ∥Z∥)ε.

As Z is fixed and this can be done for all ε > 0, we have shown that Y ∈
Z
(
DM(T ) ∩ Z(M)

)
.

(14.5.10) Let M = B(H) with dim H = ∞ and T ∈ K(H)+. Show that
DM(T ) ∩ Z(M) = {0}.

Answer. Fix ε > 0. Using the Spectral Theorem (Theorem 10.6.12) we have
T =

∑∞
k=1 λkPk where P1, P2, . . . , are rank-one projections. Choosing n big

enough we can take T0 =
∑n
k=1 λkPk with ∥T−T0∥ < ε. Let {Ekj} be matrix

units in B(H) with Ekk = Pk for k = 1, . . . , n; use Pk to denote Ekk for all
k. Fix m > 1/ε. For j = 1, . . . ,m let let Uj be a unitary with

UjEkkU
∗
j = P(j−1)n+k.

Then

γ(T0) = 1
m

m∑
j=1

UjT0U
∗
j

= 1
m

m∑
j=1

n∑
k=1

λkUjPkU
∗
j

= 1
m

m∑
j=1

n∑
k=1

λkUjP(j−1)n+k

=
m∑
j=1

n∑
k=1

λk
m
UjP(j−1)n+k.

As the projections P(j−1)n+k are pairwise orthogonal for k = 1, . . . , n and
j = 1, . . . ,m, we get that

γ(T0) = 1
m

max{|λk| : k} ≤ ∥T∥
m

< ε ∥T∥.

Then
∥γ(T )∥ ≤ ∥γ(T − T0)∥ + ∥γ(T0)∥ < ε+ ε ∥T∥.

This can be done for all ε > 0, so 0 ∈ DM(T ) ∩ Z(M).
Conversely, for any γ ∈ DB(H) we have γ(T ) ∈ K(H) (linear combina-

tions of unitary conjugates of compact are compact). As K(H) is norm-closed,
DB(H)(T ) ⊂ K(H). This means that

DB(H)(T ) ∩ Z(B(H)) ⊂ K(H) ∩ Z(B(H)) = {0}.
Therefore DB(H)(T ) ∩ Z(B(H)) = {0}.
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(14.5.11) Let M = B(H) with dim H = ∞ and P ∈ B(H) an infinite
projection with IH − P infinite. Show that DM(T ) ∩ Z(M) =
[0, 1] IH.

Answer. By working on an orthonormal basis made out of orthonormal
bases for PH and kerP , we may assume without loss of generality that P
is diagonal. So we may think of P as an element of {0, 1}N with infinitely
many 1 and infinitely many 0. Via unitary conjugation we can implement
any permutation. Fix m,n ∈ N with m < n. Choose a unitary U such that
UPU∗ corresponds to

n−m times︷ ︸︸ ︷
0, . . . , 0 ,

m times︷ ︸︸ ︷
1, . . . , 1, . . .

where the pattern repeats afterwards. Let r =
(
n
m

)
and V1, . . . , Vr unitaries

that implement all distinct r permutations (this is the total number of per-
mutations of the first n entries if we ignore permutations that produce the
same arrangement of 0 and 1). Let

γ(T ) = 1
r

r∑
j=1

VjUPU
∗V ∗
j .

In each coordinate the amount of 1 is equal to the amount of configurations
of the remaining m−1 number 1 distributed in the remaining n−1 positions.
So there is a total of

(
m−1
n−1

)
entries equal to 1. This shows that

γ(T ) =
(
m−1
n−1

)(
m
n

) IH = m

n
IH.

So m
n IH ∈ DB(H)(P ) ∩ Z(B(H)) for all m,n ∈ N with m < n. As DB(H)(P )

is closed, t IH ∈ DB(H)(P ) ∩ Z(B(H)) for all t ∈ [0, 1].
The converse is trivial, for 0 ≤ P ≤ IH implies 0 ≤ γ(P ) ≤ IH for all

γ ∈ DB(H), so any Z ∈ DB(H)(P ) ∩ Z(B(H)) satisfies 0 ≤ Z ≤ IH. As Z is
necessarily a scalar, Z = t IH with t ∈ [0, 1].

(14.5.12) Given a weight ψ : M+ → [0,∞], show that Fψ is a face
in M, Nψ is a left ideal in M, Mψ is a ∗-subalgebra, and
Mψ = span Fψ.

Answer. Given S, T ∈ Fψ and t ∈ [0, 1], ψ(tS + (1 − t)T ) = tψ(S) + (1 −
t)ψ(T ) < ∞, so Fψ is convex. If T = tS1 + (1 − t)S2 ∈ Fψ, then

tψ(S1) ≤ tψ(S1) + (1 − t)ψ(S2) = ψ(T ) < ∞,

so S1 ∈ Fψ and similarly S2 ∈ Fψ. Hence Fψ is a face.
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Given T ∈ Nψ and S ∈ M, since 0 ≤ (S − T )∗(S − T ) = S∗S + T ∗T −
2ReS∗T we have the obvious inequality

(S + T )∗(S + T ) = S∗S + T ∗T + 2ReS∗T ≤ 2S∗S + 2T ∗T. (AB.14.4)
Then

ψ((S + T )∗(S + T )) = 2ψ(S∗S) + 2ψ(T ∗T ) < ∞
so Nψ is a subspace, and

ψ((ST )∗ST ) = ψ(T ∗S∗ST ) ≤ ∥S∥2ψ(T ∗T ) < ∞,

showing that Nψ is a left ideal. Since the adjoint reverses products it follows
that N ∗

ψ is a right ideal, and then Mψ = N ∗
ψ ∩ Nψ is an ideal since it is the

intersection of a left and and right ideal.
Given T ∈ Fψ we have T 1/2 ∈ Nψ ∩ N ∗

ψ, to T ∈ Mψ. As Mψ is a
subspace we get that span Fψ ⊂ Mψ. Conversely, an element of Mψ is a
linear combination of elements of the form S∗T with S, T ∈ Nψ. So it is
enough to show that S∗T ∈ span Fψ. By (AB.14.4) with both ±T , we get
that |S ± T |2 ∈ Fψ. Then

4ReS∗T = (S + T )∗(S + T ) − (S − T )∗(S − T ) ∈ span Fψ.
Replacing S with iS we get ImS∗S ∈ span Fψ, and so S∗T ∈ span Fψ.

14.6. Examples of Factors

(14.6.1) Let M ⊂ B(H), π : M → B(H) the identity representation,
G a group that acts on M via α. Show that if S ∈ M′, then
S ⊗ Iℓ2(G) ∈ π̃(M)′.

Answer. For T ∈ M and ξ ∈ H and g ∈ G,
(S ⊗ Iℓ2(G))π̃(T )(ξ ⊗ δg) = (S ⊗ Iℓ2(G)(α−1

g (T )ξ ⊗ δg)

= Sα−1
g (T )ξ ⊗ δg = α−1

g (T )Sξ ⊗ δg

= π̃(T )(Sξ ⊗ δg) = π̃(T )(S ⊗ Iℓ2(G))(ξ ⊗ δg).
By linearity and taking limits, (S ⊗ Iℓ2(G))π̃(T ) = π̃(T )(S ⊗ Iℓ2(G)). This
happens for all T ∈ M, so (S ⊗ Iℓ2(G)) ∈ π̃(M)′.
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(14.6.2) Let T̃ ∈ M ⋊αG and g, h, r, s ∈ G. Show that [UrT̃Us]g,h =
T̃r−1g,sh.

Answer. For any ξ, η ∈ H,
⟨
[
UrT̃Us

]
g,h
ξ, η⟩ = ⟨UrT̃Us(ξ ⊗ δh), η ⊗ δg⟩

= ⟨T̃ (ξ ⊗ δsh, η ⊗ δr−1g⟩

= ⟨T̃r−1g,shξ, η⟩.

Hence [T̃Us]g,h = T̃r−1g,sh.

(14.6.3) Let T̃ ∈ M ⋊αG and g, h ∈ G. Show that T̃g,h = E(U∗
g T̃Uh).

Answer. Using Exercise 14.6.2,
E(U∗

g T̃Uh) =
[
Ug−1 T̃Uh

]
e,e

= T̃g,h.

(14.6.4) Prove (14.22).

Answer. We have
⟨T̃g,hξ, η⟩ = ⟨T̃ (ξ ⊗ δh), η ⊗ δg⟩

= ⟨U∗
g T̃ (ξ ⊗ δh), η ⊗ δe⟩

= ⟨U∗
g T̃Ug U

∗
g (ξ ⊗ δh), η ⊗ δe⟩

= ⟨U∗
g T̃Ug (ξ ⊗ δg−1h), η ⊗ δe⟩

= ⟨(U∗
g T̃Ug)e,g−1hξ, η⟩.

This holds for all ξ, η ∈ H, so
T̃g,h =

(
(U∗

g T̃Ug
)
e,g−1h

.

(14.6.5) Use (14.23) to show that the conditional expectation E : M ⋊
αG → M is faithful.
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Answer. Suppose that E(T̃ ∗T̃ ) = 0. This means that [T̃ ∗T̃ ]e,e = 0. So, for
ξ ∈ H,

0 = ⟨[T̃ ∗T̃ ]e,eξ, ξ⟩ = ⟨T̃ ∗T̃ (ξ ⊗ δe), ξ ⊗ δe⟩ = ∥T̃ (ξ ⊗ δe)∥2.

Thus T (ξ ⊗ δe) = 0 for all ξ ∈ H. This gives us, for any ξ, η ∈ H,
⟨T̃g,eξ, η⟩ = ⟨T̃ (ξ ⊗ δe), η ⊗ δg⟩ = 0.

It follows that Tg,e = 0 for all g. By (14.23),
T̃g,h = α−1

h (T̃gh−1,e) = 0
for all g, h ∈ G. We can now write

⟨T̃ (ξ ⊗ δh), η ⊗ δg⟩ = ⟨T̃g,hξ, η⟩ = 0,
and therefore T̃ = 0 after using linear combinations and continuity.

(14.6.6) Let θ be an irrational number and α the translation action as
in Example 14.6.9. Show that α is free and ergodic.

Answer. Fix n ∈ Z and suppose that fg = αn(g)f for all g ∈ L∞(T). Fix z ∈
T. We can always construct g (as a polynomial, even) with g(z) ̸= αn(g)(z).
Then f(z) = 0. This can be done for all z, so f = 0 and the action is free.

Now suppose that αn(f) = f for all n. Fix ε > 0; as f is uniformly
continuous by the compactness of T, there exists δ with |f(z) − f(w)| < ε
whenever |z − w| < δ. Since θ is irrational, given z ∈ T we can find n such
that |z − e2πiθn| < δ. Then

|f(z) − f(1)| ≤ |f(z) − f(e2πiθn)| + |f(edirpiiθn) − f(1)|

< ε+ |αn(f)(1) − f(1)| = ε.

As this can be done for any ε > 0 we have shown that f(z) = f(1) and thus
f is constant. Therefore the action is ergodic.

(14.6.7) Show that the action of Q on L∞(R) by translation is free and
ergodic.

Answer. If fg = αq(g)f for all g ∈ L∞(R), this means that f(t)g(t) =
f(t)g(t + q) for all t. We can construct g with g(t) = 0 and g(t + q) = 0,
which shows that f(t) = 0. As this can be done for all t, f = 0. Properly,
the equality fg = αq(g)f is almost everywhere, so one needs a bit more care,
but basically the argument is the above up to a nullset. Hence the action is
free.
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If αq(f) = f for all q ∈ Q, this is f(t) = f(t + q) almost everywhere.
Given r ∈ R, choose {qn} ⊂ Q with qn → r. Using the notation from
Lemma 2.8.19, and working on a fixed interval [−m,m] so that f is integrable
there,

∥fr − f∥1 ≤ ∥fr − fqn∥1 + ∥fqn − f∥1 = ∥fr − fqn∥1 →c⃝ 2024 Mart́ın Argerami All Rights Reserved 0
by Lemma 2.8.19. Hence fr = f a.e. for each r ∈ R. For each Lebesgue point
r of f , by Theorem 2.11.9

f(r) = lim
ε→0

1
2ε

∫ r+ε

r−ε
f(t) dt = lim

ε→0

1
2ε

∫ ε

−ε
f(t− r) dt

= lim
ε→0

1
2ε

∫ ε

−ε
f(t) dt = f(0).

Properly 0 might not be a Lebesgue point for f , but we can translate the in-
tegrals to any Lebesgue point, and this is all of R up to a nullset. Finally, this
can be done for every interval [−m,m] so f is constant in these overlapping
intervals; hence f is constant, and the action is ergodic.

14.7. II1-Factors

(14.7.1) Where in the proof of Proposition 14.7.2 is the norm-closedness
of J used?

Answer. It is used in the fact that J is hereditary. The argument after Defi-
nition 11.5.19 requires J to be closed. This was discussed in Exercise 11.5.11.

(14.7.2) Give an alternate proof of Proposition 14.7.2 by using Dixmier’s
Property.

Answer. Let M be a II1-factor and J ⊂ M a nonzero norm-closed ideal.
Let T ∈ J be positive (recall that J is a C∗-algebra, so it is spanned by
its positive elements). As the trace τ is faithful, τ(T ) > 0. By Dixmier’s
Property,

τ(T ) ∈ {UTU∗ : U ∈ M unitary}.
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So there exists a sequence {Un} ⊂ M of unitaries with UnTU
∗
n → τ(T ) IM.

As T ∈ J and J is an ideal, UnTU∗
n ∈ J for all n. Then τ(T ) IM ∈ J = J ,

and therefore IM ∈ J , showing that J = M.

(14.7.3) Show that θ in (14.24) is a ∗-homomorphism.

Answer. When we write θ(T )θ(S), the 1, 1 entry is
γ−1(PTPSP+PT (IM −P )SP ) = γ−1(PT

(
P+IM −P

)
SP ) = γ−1(PTSP ).

The same phenomenon occurs on the other three entries, like the 2, 1 entry is
γ−1(PTPS(IM −P )V +PT (IM −P )S(IM −P )V ) = γ−1(PTS(IM −P )V ).
As for the adjoint,

θ(T )∗ =
[

γ−1(PTP γ−1(PT (IM − P )V )
γ−1(V ∗(IM − P )TP ) γ−1(V ∗(IM − P )T (IM − P )V )

]∗

=
[

γ−1((PTP )∗) γ−1([V ∗(IM − P )TP ]∗)
γ−1([PT (IM − P )V ]∗) γ−1(V ∗[(IM − P )T (IM − P )]∗V )

]
=
[

γ−1(PT ∗P ) γ−1(PT ∗(IM − P )V )
γ−1(V ∗(IM − P )T ∗P ) γ−1(V ∗(IM − P )T ∗(IM − P )V )

]
= θ(T ∗).

And for the injectivity, if θ(T ) = 0 we immediately get from the injec-
tivity of γ−1 that

PTP = 0, PT ∗(IM − P )V = 0, V ∗(IM − P )TP = 0,
and

V ∗(IM − P )T (IM − P )V = 0.
Multiplying the second equality by V ∗ on the right, the third one by V on
the left, and the fourth one by V on the left and V ∗ on the right, we obtain
PTP = 0, PT ∗(IM−P ) = 0, (IM−P )TP = 0, (IM−P )T (IM−P ) = 0.
And now adding the four equalities yields T = 0.

(14.7.4) Let M be a II1-factor, n ∈ N,
P ∈ P(Mn(M)), and Q ∈ Mn(PMn(M)P ).

Show that QMn2(M)Q = QMn(PMn(M)P )Q.

Answer. We clearly have QMn2(M)Q ⊃ QMn(PMn(M)P )Q, so we only
need to prove that inclusion QMn2(M)Q ⊂ QMn(PMn(M)P )Q. Let X ∈
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Mn2(M), seen as Mn(Mn(M)). The hypothesis is that Q is an n × n block
matrix [Qkj ] with Qkj ∈ PMn(M)P for all k, j. Then

(QXQ)k,j =
∑
r,s

Qk,rXr,sQs,j =
∑
r,s

PQk,rXr,sQs,jP

= P
(∑
r,s

Qk,rXr,sQs,j

)
P ∈ PMn(M)P.
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The Determinant

A.1. Preliminaries on Permutations

A.2. Preliminaries on Multilinear Maps

A.3. The Determinant

(A.3.1) Given j ∈ {1, . . . , n} and ν ∈ Sn−1, let σj,ν as in (A.3). Show
that σj,ν ∈ Sn.
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Answer. Let α : {2, . . . , n} → {1, . . . , n− 1} be given by α(k) = k − 1. Let
βj : {1, . . . , n− 1} → {1, . . . , n} \ {j} be

βj(k) =
{
k, k < j

k + 1, k ≥ j

Then σj,ν is given by σj,ν(1) = j and for k ≥ 2,
σj,ν(k) = βj ◦ ν ◦ α(k).

Being a composition of bijections, it is a bijection.

(A.3.2) Given j ∈ {1, . . . , n} and ν ∈ Sn−1, let σj,ν as in (A.3). Show
that sgn σj,ν = (−1)j−1 sgn ν.

Answer. The number sgn σj,ν is the parity of the cardinality of the set
Pσj,ν = {(r, s) : r < s, σj,ν(r) > σj,ν(s)}.

The formula for σj,ν will usually apply a “+1‘” to both ν(r − 1) and ν(s1);
and it if it only applies it to one of them, it will be the largest. Then

Pσj,ν = {(r, s) : 2 ≤ r < s, σj,ν(r) > σ(s)}

∪ {(1, s) : 1 < s, σj,ν(1) > σj,ν(s)}

= {(r, s) : 2 ≤ r < s, ν(r − 1) > ν(s− 1)}

∪ {(1, s) : 1 < s, j > σj,ν(s)}

= {(r, s) : 2 ≤ r < s, ν(r − 1) > ν(s− 1)} ∪ {1, . . . , j − 1}.

Thus sgn σj,ν = (−1)j−1 sgn ν.

(A.3.3) With the notation of (A.3), show that Sn = {σj,ν : j ∈
{1, . . . , n}, ν ∈ Sn−1}.

Answer. Given σ ∈ Sn, let j = σ(1), and put

ν(k) =
{
σ(k + 1), σ(k + 1) < j

σ(k + 1) − 1, σ(k + 1) > j

Then σj,ν = σ.
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Getting to Know Majorization

B.1. Preliminaries on Majorization

(B.1.1) Let x ∈ Rn with xj ≥ 0 for all j. Show that
Tr(x)
n

e ≺ x ≺ (Tr(x), 0, . . . , 0)

Answer. For x ≺ (Tr(x), 0, . . . , 0), both vectors have the same trace, and
since the entries of x are non-negative,

k∑
j=1

x↓
j ≤

n∑
j=1

x↓
j =

k∑
j=1

xj = Tr(x).

And for Tr(x)
n e ≺ x, again they have the same trace. If we had, for

some k,
k

n
Tr(x) =

k∑
j=1

Tr(x)
n

>

k∑
j=1

x↓
j ,

643
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then
n∑
j=1

x↓
j <

k

n
Tr(x) +

n∑
j=k+1

x↓
j ≤ k

n
Tr(x) + (n− k)x↓

k

≤ k

n
Tr(x) + (n− k) 1

k

n∑
j=1

x↓
j ≤ k

n
Tr(x) + (n− k) 1

n
Tr(x) = Tr(x),

a contradiction. Thus Tr(x)
n e ≺w x and, as they have the same trace, we get

majorization.

(B.1.2) Show that t1, . . . , tn are convex coefficients (that, is tj ≥ 0 for
all j and

∑
j tj = 1) if and only if t ≺ e1, where t = (t1, . . . , tn).

Answer. Suppose that tj ≥ 0 for all j and
∑
j tj = 1. Then

∑k
j=1 tj ≤ 1 =∑k

j=1(e1)j for all k, with equality for k = n. Thus t ≺ e1.
Conversely, if t ≺ e1, assuming without loss of generality that t = t↓,

we have tn ≥ (e1)n = 0, so tj ≥ 0 for all j. And
∑
j tj = Tr(t) = Tr(e1) = 1.

(B.1.3) Prove (B.1), that is x ≺w y and y ≺w x if and only if there
exists a permutation σ with y = Pσx.

Answer. For each k we have
k∑
j=1

x↓
j =

k∑
j=1

y↓
j ,

for all k = 1, . . . , n, since the double majorization gives us inequality both
ways. When k = 1 we get x↓

1 = y↓
1 . This equality together with the equality

for k = 2 give x↓
2 = y↓

2 . Continuing this way, we obtain x↓
j = y↓

j for all j. That
is, x and y have the exact same entries, possibly in different order. Hence
there exists σ ∈ Sn with x = Pσy.

(B.1.4) Let x, y ∈ Rn and α ∈ R. Show that if x ≺ y then αx ≺ αy.

Answer. Suppose that x ≺ y. When α ≥ 0, the equality and inequality
defining majorization are preserved, so αx ≺ αy. To deal with the case where
α < 0, it is enough to show that −x ≺ −y. The condition Tr(−x) = Tr(−y)
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is satisfied trivially by linearity. Note that (−x)↓
j = −x↑

n−j+1. Then
k∑
j=1

(−x)↓
j = −

k∑
j=1

x↑
n−j+1 = −

n∑
j=n−k+1

x↑
j ≤ −

n∑
j=n−k+1

y↑
j =

k∑
j=1

(−y)↓
j .

Hence (−x) ≺ (−y).

(B.1.5) Show that A ∈ DS(n) if and only if A has non-negative entries,
Ae = e, and A⊤e = e.

Answer. The equality Ae = e means that (Ae)k = ek = 1 for all k, and this
is

n∑
j=1

Akj = 1.

In other words, Ae = e describes exactly row stochasticity. Similarly, A⊤e = e
is

n∑
k=1

Akj = 1.

(B.1.6) Show that DS(n) is convex.

Answer. It is enough to show it for two. If A,B ∈ Mn(R) are doubly
stochastic and t ∈ [0, 1], then [tA+ (1 − t)B]kj = tAkj + (1 − t)Bkj ≥ 0, and

n∑
j=1

[tA+ (1 − t)B]kj = t

n∑
j=1

Akj + (1 − t)
n∑
j=1

Bkj = t+ 1 − t = 1.

Similarly,
n∑
k=1

[tA+ (1 − t)B]kj = t

n∑
k=1

Akj + (1 − t)
n∑
k=1

Bkj = t+ 1 − t = 1.

(B.1.7) Show that a T -transform is doubly stochastic.

Answer. Suppose that T = tI+(1− t)Pσ, with σ = (r s). When h ̸=∈ {r, s}
we have Teh − eh. Also,

Tes = tes + (1 − t)er, T er = ter + (1 − t)es.
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It follows that Tkj ∈ {0, 1, t, 1 − t}. And, if we reorder the canonical basis so
that es and er are the first two elements,

T =

 t 1 − t
1 − t t

In−2

 .
So T is doubly stochastic.

(B.1.8) Show that if A,B ∈ DS(n) then AB ∈ DS(n).

Answer. When all entries of A and B are non-negative, the formula for the
product of matrices guarantees that all entries of AB are non-negative. The
rest follows directly from Exercise B.1.5. For (AB)e = A(Be) = Ae = e, and
(AB)⊤e = B⊤A⊤e = B⊤e = e.

(B.1.9) Let A ∈ Mn(R) be doubly stochastic.

(a) Show that A has at least n nonzero entries.
(b) Show that A has precisely n nonzero entries if and only if

A is a permutation.

Answer. Because the entries of each row of A add to 1, this implies that
each row has at least one nonzero entry. So A has at least n nonzero entries.

Now suppose that A has precisely n nonzero entries. Because each row
has at least one nonzero entry, this means that each row (and column, by
analogy) has precisely one nonzero entries. This also shows that all nonzero
entries of A are 1. Now we proceed as follows. Let σ(j) be the row in which
column j has its entry equal to 1. The numbers σ(1), . . . , σ(n) have to be
all different, for otherwise there would be a column with two nonzero entries.
Thus σ ∈ Sn, and then A = Pσ is a permutation matrix.

(B.1.10) Show that (ii) and (i) in Proposition B.1.4 are equivalent.

Answer. (i) =⇒ (ii) Suppose that x ≺ y. We note that x↑
j = x↓

n−j+1. Then
k∑
j=1

x↑
j =

k∑
j=1

x↓
n−j+1 =

n∑
j=n−k+1

x↓
j = Tr(x) −

n−k∑
j=1

x↓
j .
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Thus
k∑
j=1

x↑
j = Tr(x) −

n−k∑
j=1

x↓
j ≥ Tr(x) −

n−k∑
j=1

y↓
j = Tr(y) −

n−k∑
j=1

y↓
j =

k∑
j=1

y↑
j

(ii) =⇒ (i) The case k = n gives us Tr(x) = Tr(y). And x ≺w y is a
given, so x ≺ y.

(B.1.11) Show directly that (i) =⇒ (iv) in Proposition B.1.4

Answer. This follows directly from Proposition B.3.4. But it is not hard to
write an ad-hoc proof. Since both sums involve all terms of x and y, we may
assume without loss of generality that x = x↓ and y = y↓. Fix t ∈ R. We
consider three cases:

• t ≤ xn. Then
n∑
j=1

|xj − t| =
n∑
j=1

xj − t =
n∑
j=1

yj − t ≤
n∑
j=1

|yj − t|.

• t ≥ x1. In this case,
n∑
j=1

|xj − t| =
n∑
j=1

t− xj =
n∑
j=1

t− yj ≤
n∑
j=1

|yj − t|.
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• xk ≥ t ≥ xk+1. We have
n∑
j=1

|xj − t| =
k∑
j=1

xj − t+
n∑

j=k+1
t− xj = (n− 2k)t+

k∑
j=1

xj −
n∑

j=k+1
xj

= (n− 2k)t+
k∑
j=1

xj −
(

Tr(x) −
k∑
j=1

xj

)

= (n− 2k)t− Tr(x) + 2
k∑
j=1

xj

≤ (n− 2k)t− Tr(y) + 2
k∑
j=1

yj

=
k∑
j=1

yj − t+
n∑

j=k+1
t− yj

≤
n∑
j=1

|yj − t|.

(B.1.12) Let x, y ∈ Rn. Show that the following statements are equiva-
lent:

(a) x ≺w y;
(b) Tr f(x) ≤ Tr f(y) for all f convex and non-decreasing;
(c)

n∑
j=1

(xj − t)+ ≤
n∑
j=1

(yj − t)+, t ∈ R. (B.1)

Answer. (a) =⇒ (b) Suppose that x ≺w y. By Proposition B.1.7 there exists
v with x ≺ v ≤ y. Then

Tr f(x) ≤ Tr f(v) ≤ Tr f(y),
the first inequality by the convexity and Proposition B.1.4, and the second
inequality by the monotonicity.

(b) =⇒ (c) We have that s 7−→ (s− t)+ is convex and non-decreasing.
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(c) =⇒ (a) If we take t = min{x,yj : j} then (B.1) becomes

Tr(x) = nt+
n∑
j=1

(xj − t) = nt+
n∑
j=1

(xj − t)+

≤ nt+
n∑
j=1

(yj − t)+ = nt+
n∑
j=1

yj − t = Tr(y).

If instead we take t = max{xj , yj : j}, the same idea gives us Tr(x) ≥ Tr(y).
Thus Tr(x) = Tr(y). If we take t = yk then

k∑
j=1

xj − kt =
k∑
j=1

(xj − t) ≤
k∑
j=1

(xj − t)+

≤
n∑
j=1

(xj − t)+ ≤
n∑
j=1

(yj − t)+ ≤
k∑
j=1

(yj − t) =
k∑
j=1

yj − kt.

So x ≺w y.

B.2. Some Combinatorics

(B.2.1) Prove Corollary B.2.3.

Answer. We will use Theorem B.2.1. We take B = G = {1, . . . , n}, and
R = {(k, j) : Akj ̸= 0}.

Each diagonal without zero entries is a matching. So (i) in Corollary B.2.3
says that there is no matching, and then Theorem B.2.1 gives us indices
k1, . . . , kr such that |Gk1,...,kr | < r. Write Gk1,...,kr = {j1, . . . , js}, with s < r.
This means that for j ∈ {1, . . . , n}\Gk1,...,kr we have Akt,j = 0. This is a zero
submatrix with r rows and n− s columns. Then r+ (n− s) > r+ (n− r) = n
and (ii) in Corollary B.2.3 holds.

This process can done in reverse. If A admits a zero submatrix with
r rows k1, . . . , kr and n − s columns such that s < r, taking the remaining
columns j1, . . . , js (which are the only possible nonzero for the given rows)
we get |Gk1,...,kr | < r, and by Theorem B.2.1 no matching is possible, which
means that every diagonal has a zero entry.
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B.3. Birkhoff’s Theorem and Convex Functions

(B.3.1) A matrix A ∈ Mn(C) is doubly substochastic if Akj ≥ 0 for
all k, j and

n∑
j=1

Akj ≤ 1, k = 1, . . . , n

and
n∑
k=1

Akj ≤ 1, j = 1, . . . , n.

Show that the set DSS(n) of all doubly substochastic n × n
matrices is convex, and its extreme points are those A ∈ Mn(C)
with at most an entry 1 in each row, and all other entries equal
to zero (in particular, the zero matrix is an extreme point of
DSS(n)).

Answer. If t ∈ [0, 1] and A,B ∈ DSS(n), then
n∑
j=1

tAkj + (1 − t)Bkj = t

n∑
j=1

Akj + (1 − t)
n∑
j=1

Bkj ≤ t+ 1 − t = 1.

Similarly,
n∑
k=1

tAkj + (1 − t)Bkj = t

n∑
k=1

Akj + (1 − t)
n∑
k=1

Bkj ≤ t+ 1 − t = 1,

so DSS(n) is convex. When A has some entry in (0, 1), then A is not extreme
in DS(n) by Remark B.3.2, so it cannot be extreme in DSS(n). When A
has at most an entry equal to 1 per row (and hence per column) and zeroes
elsewhere, if A = tB+ (1 − t)C with t ∈ [0, 1] and B,C ∈ DSS(n), we do the
following. If Ars = 1, then 1 = tBrs + (1 − t)Crs forces Brs = Crs = 1. This
immediately forces the rest of the rth row and the sth column of B,C to be
zero. When a full row k of A is zero, we have 0 = tBkj + (1 − t)Ckj and this
forces Bkj = Ckj = 0 for all j.

(B.3.2) Show that B is doubly substochastic if and only if there exists
A ∈ DS(n) with Bkj ≤ Akj for all k, j.
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Answer. If B ∈ DS(n) then we may take A = B. So we assume without loss
of generality that We proceed by induction. If n = 1 and B ∈ DSS(1)\DS(1),
we put A = 1. So now suppose that the statement is true for n, and let
B ∈ DSS(n + 1) \ DS(n + 1). If Brs = 1 for some r, s, then the rest
of the row and column are zero. Consider the submatrix B(r, s) obtained
by removing row r and column s. By the inductive hypothesis there exists
A′ ∈ DS(n) with B(r, s)kj ≤ Akj′ for all k, j = 1, . . . , n. Hence we form A
by making Ars = 1, the rest of the rth row and sth column equal to zero, and
the remaining n× n submatrix we put A′. Then A ∈ DS(n) and Bkj ≤ Akj
for all k, j.

Conversely, if Bkj ≤ Akj for all k, j,
∑
j

Bkj ≤
∑
j

Akj = 1, and

similarly for rows, so B ∈ DSS(n).

(B.3.3) Let x, y ∈ Cn with non-negative coordinates. Show that x ≺w

y if and only if x = By for some B ∈ DSS(n).

Answer. Assume first that x ≺w y. By Proposition B.1.7 there exists z with
x ≤ z ≺ y. Then Proposition B.1.4 gives us A ∈ DS(n) with z = Ay. Since
x ≤ z, for each k there exists αk ∈ [0, 1] with xk = αkzk. Let B ∈ Mn(C) be
given by Bkj = αkAkj . Then B ∈ DSS(n) and (By)k = αk(Ay)k = αkzk =
xk, so x = By.

Conversely, if x = By with B ∈ DSS(n), then for any r
r∑

k=1
xk =

r∑
k=1

r∑
j=1

Bkjyj =
r∑
j=1

( r∑
k=1

Bkj

)
yj ≤

r∑
j=1

yj ,

so x ≺w y.
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Lidskii’s Theorem

C.1. Antisymmetric Tensor Products and the Determinant

(C.1.1) Let H be a Hilbert space and {ξk} an orthonormal basis. Show
that

{ξj1 ∧ · · · ∧ ξjn : j1 < · · · < jn}
is an orthonormal basis for

∧
nH.

Answer. We have

⟨ξj1 ∧ · · · ∧ ξjn , ξh1 ∧ · · · ∧ ξhn⟩ = 1
n!

∑
σ,σ′∈Sn

sgn σ sgn σ′
n∏
t=1

⟨ξjσ(t) , ξhσ′(t)⟩

=
∑
σ∈Sn

sgn σ
n∏
t=1

⟨ξjt , ξhσ(t)⟩

The only way any of the products can be nonzero is that jt = hσ(t) for
t = 1, . . . , n. This forces ht = jt for all t = 1, . . . , n. So the product can be

653
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nonzero only when σ = id. Thus
{ξj1 ∧ · · · ∧ ξjn : j1 < · · · < jn}

is orthonormal. And it has dense span in
∧
n(H), so it is an orthonormal

basis.

(C.1.2) Let a ∈ ℓ1(N). Show that∑
j1<···<jk

aj1 · · · ajn ≤ 1
k!

( ∞∑
j=1

aj

)k
.

Answer. We have, as all the coefficients are non-negative,( ∞∑
j=1

aj

)k
=

∑
j1,...,jk

aj1 · · · ajk ≥ k!
∑

j1<···<jk

aj1 · · · ajk

(note that each product aj1 · · · ajk appears k! times in the full product).

(C.1.3) Let H = Cn and T ∈ B(H) = Mn(C). Show that dim
∧
nH =

1, and that
∧
nT is the operator of multiplication by detT .

Answer. With e1, . . . , en the canonical basis, we know from Exercise C.1.1
that

{ej1 ∧ · · · ∧ ejn : j1 < · · · < jn}
is an orthogonal basis for

∧
nH. The only possible choice j1 < · · · < jn for

indices in {1, . . . , n} is jk = k for all k. So the orthogonal basis is {e1∧· · ·∧en}
and

∧
nH is one-dimensional.
We have, expanding each Tek in terms of the entries of T with respect

to the canonical basis and using that the exterior products are zero when
there is any repetition so we need k1, . . . , kn distinct,

(
∧
nT )(e1 ∧ · · · ∧ en) = Te1 ∧ · · · ∧ Ten

=
n∑

k1=1
· · ·

n∑
kn=1

Tk1,1 · · ·Tkn,n ek1 ∧ · · · ∧ ekn

=
∑
σ∈Sn

Tσ(1),1 · · ·Tσ(n),n eσ(1) ∧ · · · ∧ eσ(n)

=
∑
σ∈Sn

sgn σ Tσ(1),1 · · ·Tσ(n),n e1 ∧ · · · ∧ en

= (detT ) e1 ∧ · · · ∧ en.
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(C.1.4) Let H be a Hilbert space and T ∈ B(H). Show that if rank T =
n, then

∧
n+k(T ) = 0 for all k ∈ N.

Answer. Given ξ1, . . . , ξn+k ∈ H, the set {Tξ1, . . . , T ξn+k} is linearly de-
pendent. We can take {η1, . . . , ηn} to be an orthonormal basis of TH, and so
there exists coefficients cj,s such that

Tξj =
n∑
s=1

cj,sηs.

Then ∧
n+kT (ξ1 ∧ · · · ∧ ξn+k) = Tξ1 ∧ · · · ∧ Tξn+k

=
∑

s1,...,sn+k

n+k∏
j=1

cj,sjηs1 ∧ · · · ∧ ηsn+k = 0,

for each product ηs1 ∧ · · · ∧ ηsn+k contains at least a repetition.

C.2. Lidskii’s Formula
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The Banach–Tarski Paradox

D.1. The Construction

D.2. The Axiomatic Issue
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Ultrafilters

E.1. First abstract approach: Gelfand–Naimark

E.2. Second abstract approach:
the Stone Čech compactification
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E.3. A more intuitive approach: Ultrafilters

(E.3.1) Let A0 ⊂ N. Show that U = {A ⊂ N : A ⊃ A0} is an
ultrafilter. Show also that U is free if and only if A0 is infinite.

Answer. We have

(a) N ∈ U because N ⊃ A0.
(b) Suppose that A ∈ U . Then A0 ⊂ A, so N \ A ⊂ N \ A0; then A0 ̸⊂ N \ A

and thus N \A ̸∈ U .
(c) Suppose that A,B ∈ U . Then A0 ⊂ A and A0 ⊂ B, which implies that

A0 ⊂ A ∩B; therefore A ∩B ∈ U .
(d) If A ∈ U and A ⊂ B, then A0 ⊂ A ⊂ B, so B ∈ U .

This shows that U is an ultrafilter. If A0 is finite, let n = 1 + maxA0; then
A0 ⊂ N \ {k : k ≥ n}, showing that {k : k ≥ n} ̸∈ U and so U is not free.
Conversely, if A0 is infinite then A0 ̸⊂ {1, . . . , n−1} and thus {k : k ≥ n} ∈ U
by Lemma E.3.1, and hence U is free.

(E.3.2) Show that φU , as defined in (E.1) and extended by linearity to
span{ek : k} is well-defined.

Answer. We need to show that if
n∑
k=1

βk1An =
m∑
j=1

γj1Bj , (AB.5.1)

then φU agrees on both. By extending with zero coefficients if needed we may
assume that

∑
k 1Ak =

∑
j 1Bj = 1. The key property is that Ak ∩Bj ∈ U if

and only if Ak ∈ U an Bj ∈ U , which happens by definition of ultrafilter. This
implies that φU (1Ak∩Bj ) = φU (1Ak)φU (1Bj ) for all k, j. From Lemma E.3.1
we know that φ(1Bj ) = 1 for precisely one j, so

φ(1Ak) =
n∑
k=1

φ(1Ak)φ(1Bj ).



E. A MORE INTUITIVE APPROACH: ULTRAFILTERS 661

This, together with φU (1) = 1 (because N ∈ U) and the fact from (AB.5.1)
that βk = γj if Ak ∩Bj ̸= ∅ gives

φ
( n∑
k=1

βk1An
)

=
n∑
k=1

βkφU (1An) =
n∑
k=1

βk

n∑
j=1

φU (1An)φ(1Bj )

=
n∑
j=1

γj

n∑
k=1

φU (1An)φ(1Bj ) =
n∑
j=1

γjφ(1Bj )

= φ
( m∑
j=1

γj1Bj
)

(E.3.3) Let x ∈ ℓ∞(N). Show that lim
n→ω

xn = φω(x).

Answer. Let α = limn→ω xn. Fix ε > 0 and let Aε = {n : xn ∈ Bε(α)}. By
hypothesis, Aε ∈ ω. Then, using that |φ(y)|2 ≤ φ(y∗y) by Cauchy–Schwarz
since φ is positive,∣∣∣φω( ∑

n ̸∈Aε

xn 1{n}

)∣∣∣2 ≤ φω

( ∑
n ̸∈Aε

|xn|2 1{n}

)
≤ ∥x∥2 φω(1{n ̸∈Aε}) = 0.

So, as φω(1Aε) = 1,

|α− φω(x)| =
∣∣∣α− φω

( ∞∑
n=1

xn 1{n}

)∣∣∣ =
∣∣∣α− φω

( ∑
n∈Aε

xn 1{n}

)∣∣∣
=
∣∣∣ ∑
n∈Aε

(α− xn) 1{n}

)∣∣∣ ≤ εφω(1Aε) = ε.

As this can be done for all ε > 0, we have shown that α = φω(x).

(E.3.4) Let n0 ∈ N and ω = {A ⊂ N : n0 ∈ A} the associated principal
ultrafilter. Show that φω(x) = xn0 .

Answer. We have φω(1{n0}) = 1. Then
φω(x) = φω(x)φω(1{n0}) = φω(x 1n0) = xn0 φ(1n0) = xn0 .
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(E.3.5) Let x ∈ ℓ∞(N) be given by x(n) = (−1)n. Show that there
exist free ultrafilters ω1 and ω2 such that φω1(x) = 1 and
φω2(x) = −1.

Answer. Let
ω1 = {A ⊂ N : 2N ⊂ A}, ω2 = {A ⊂ N : 2N + 1 ⊂ A}.

These are free ultrafilters by Exercise E.3.1. Let x ∈ ℓ∞(N) be given by
x(n) = (−1)n. We consider the states φω1 and φω2 . We have

φω1(x) = φω1(x)φω1(12N) = φω1(x 12N) = φω1(12N) = 1,
while

φω2(x) = φω2(x)φω2(12N+1) = φω2(x 12N+1) = φω2(12N+1) = −1.
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Unbounded Operators

(F.0.1) Prove Proposition F.0.3.

Answer. Suppose that T is closed and let {xn} ⊂ D(T ) be Cauchy for
∥ · ∥G. Then {(xn, Txn)} is Cauchy in G(T ); so there exists (x, Tx) =
limn(xn, Txn) ∈ G(T ). Then ∥x− xn∥G → 0 and D(T ) is complete.

Conversely, suppose that D(T ) is complete for ∥ · ∥G and let
{(xn, Txn)} ⊂ G(T )

be Cauchy. Then ∥xn − xm∥G = ∥xn − xm∥ + ∥Txn − Txm∥ is Cauchy in
D(T ). By the completeness, there exists x ∈ D(T ) with ∥x − xn∥G → 0. In
particular, xn → x and Txn → Tx, so (xn, Txn) → (x, Tx) in G(T ).

(F.0.2) Show that V , defined in Proposition F.0.5 is an isometry, and
VH⊥

0 = (VH0)⊥ for any subspace H0 ⊂ H × K.

Answer.
∥V (η, ξ)∥2 = ∥(ξ,−η)∥2 = ∥ξ∥2 + ∥η∥2 = ∥(η, ξ)∥2.

Also, if (ρ, γ) ∈ h⊥
0 and (ξ, η) ∈ H0, then

⟨V (ρ, γ), V (ξ, η)⟩ = ⟨(γ,−ρ), (η,−ξ)⟩ = ⟨γ, η⟩ + ⟨ρ, ξ⟩ = ⟨(ρ, γ), (ξ, η)⟩ = 0.

663
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Thus VH⊥
0 ⊂ (VH0)⊥. Conversely, if (ρ, γ) ∈ (VH0)⊥, this means that for

all (ξ, η) ∈ H0,
⟨V (ρ, γ), (ξ, η)⟩ = ⟨(ρ, γ), V (ξ, η)⟩ = 0.

Thus V (ρ, γ) ∈ H⊥
0 , and (ρ, γ) ∈ VH⊥

0 . Then (VH0)⊥ ⊂ VH⊥
0 .

(F.0.3) Show that the map T in Example F.0.1, that is T : X → Y
given by Tf = f , is unbounded.

Answer. Let gn(t) = tn, n ∈ N. Then ∥gn∥X = gn(1) = 1, while ∥gn∥Y =
g(3) = 3n. Hence,

∥Tgn∥Y

∥gn∥x
= 3n,

showing that T is unbounded.

(F.0.4) Let X = Y = C[0, 1], with the infinity norm. Let D = C1[0, 1]
and T : D → Y the operator Tf = f ′. Show that T is
unbounded and closed. If instead we consider the operator
Sf = f ′ but now D(S) = C∞[0, 1], show that this operator is
closable with closure T .

Answer. We know that T is unbounded by considering the usual example
of ∥xn∥∞ = 1, while ∥Txn∥infty = n. Suppose that (gn, g′

n) is a Cauchy
sequence in G(T ). This means that both {gn} and {g′

n} are uniformly Cauchy;
this guarantees that limn g

′
n = (limn gn)′. So there exists g ∈ C[0, 1] with

g = limn gn, and gn is differentiable with g′ = lim g′
n. Then (g, g′) ∈ G(T ),

showing that it is closed.
In the case of S, a Cauchy sequence in its graph will now be (hn, h′

n)
with some h ∈ C[0, 1] such that h = limn hn, h′ = limn h

′
n. This implies that

h ∈ C1[0, 1]. The closure of {(h, h′) : h ∈ C∞[0, 1]} in C[0, 1] × C[0, 1] is
{f, f ′) : f ∈ C1[0, 1]}. Indeed, we have

{(h, h′) : h ∈ C∞[0, 1]} ⊂ {f, f ′) : f ∈ C1[0, 1]}.
And if f ∈ C1[0, 1], let {hn} ⊂ C∞[0, 1] with hn → f ′ uniformly. Then

f(x) = f(0) +
∫ x

0
f ′ = lim

n
f(0) +

∫ x

0
hn.

Thus (f, f ′) = limn(f(0) +
∫ x

0 hn, hn) ∈ {(h, h′) : h ∈ C∞[0, 1]}.
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(F.0.5) Let X ,Y be normed spaces, D ⊂ X a subspace, and T : D → Y
linear. Show that the following statements are equivalent:

(a) T is closable;

(b) (0, y) ∈ G(T ) implies y = 0.

Answer. Suppose that T is closable. Then G(T ) is the graph of a linear
operator T . If (0, y) ∈ G(T ), then y = T (0) = 0.

Conversely, suppose that (0, 0) is the only element on G(T ) with first
coordinate zero. If (x, y), (x, z) ∈ G(T ), as this is a vector space we have
(0, y − z) ∈ G(T ). Then y = z. Hence G(T ) is the graph of a function T .
When x ∈ D we have (x, Tx) ∈ G(T ) ⊂ G(T ) = G(T ), so Tx = Tx. Given
x1, x1 ∈ X such that there exist y1, y2 ∈ Y with (x1, y1), (x2, y2) ∈ G(T ) =
G(T ), there exist sequences {x′

n}, {x′′
n} ⊂ D such that

x′
n →c⃝ 2024 Mart́ın Argerami All Rights Reserved x1, x′′

n →c⃝ 2024 Mart́ın Argerami All Rights Reserved x2, Tx′
n →c⃝ 2024 Mart́ın Argerami All Rights Reserved y1, Tx′′

n →c⃝ 2024 Mart́ın Argerami All Rights Reserved y2.

Then for any α ∈ C
(αx1 + x2, y1 + y2) = lim

n
(αx′

n + x′′
n, Tx

′
n + Tx′′

n) ∈ G(T ) = G(T ),

showing that T (αx1 + x2) = αTx1 + Tx2. That is T is linear and so T is
closable.

(F.0.6) Let X ,Y be normed spaces, D ⊂ X a subspace, and T : D → Y
linear. Show that T is closable if and only if G(T ) is the graph
of an operator.

Answer. Suppose that T is closable. Then G(T ) is closed. A Cauchy sequence
{(xn, Txn)} in G(T ) is also Cauchy in G(T ) which is closed, so G(T ) ⊂ G(T ).
By Exercise F.0.5 we have that G(T ) is the graph of an operator.

Conversely, if G(T ) is the graph of an operator T ′, we can take T = T ′.
As {(x, Tx) : x ∈ D(T )} ⊂ G(T ), we have that D(T ) ⊂ D(T ) and that
T |D(T ) = T .

(F.0.7) Let D(T ) ⊂ H be dense, and T : D(T ) → K linear. Show that
T ∗ is closed.

Answer. Let {ηn} ⊂ D(T ∗) such that (ηn, T ∗ηn) ⊂ G(T ∗) is Cauchy. This
means that there exist η ∈ K and ν ∈ H such that ηn → η and T ∗ηn → ν.
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We have, for any ξ ∈ H,
⟨ξ, ν⟩ = lim

n
ξ, T ∗ηn⟩ = lim

n
Tξ, ηn⟩ = ⟨Tξ, η⟩.

This shows that γη is bounded, for γη(ξ) = ⟨ξ, ν⟩, and that ν = T ∗η. So T ∗

is closed.

(F.0.8) Let X = L2[0, 1] with its dense subspace D = C[0, 1]. Define
T : D → D by Tf = f(0). Show that this operator is un-
bounded. Also, consider the functions fn = (1 − nt) 1[0, 1

n ] and
show that fn ∈ C[0, 1] for all n, ∥fn∥2 → 0, and Tfn = 1 for
all n, so G(T ); conclude that T is not closed and that it is not
even closable.

Answer. Let gn = (n− n3t) 1[0, 1
n2 ](t). Then Tgn = n, while

∥gn∥2 =
(∫ 1/n2

0
(n− n3t)2 dt

)1/2
= 1

3 .

So T is unbounded.
If fn = (1 − nt) 1[0, 1

n ](t), we have f(1/n) = 0 so f is continuous. Also

∥fn∥2
2 =

∫ 1/n

0
(1 − nt)2 dt = 1

3n,

so fn → 0. Meanwhile, Tfn = fn(0) = 1 for all n. Hence (fn, Tfn) → (0, 1);
this point cannot be in the graph of any linear operator, so T is not closed
and not closable.

(F.0.9) Give an example of a Banach space X , subspaces D,M ⊂ X ,
and an idempotent E : D → M which is unbounded.

Answer. Let X = c0, D = c00, and M = C e1. Let

Ex =
(∑
k=1

∞xk, 0, 0, . . .
)
.

Then ED = M , and if x =
∑n
k=1 ek then ∥x∥ = 1 and ∥Ex∥ = n; as this can

be done for all n, E is unbounded.
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(F.0.10) Let p ∈ [1,∞) and X = Y = ℓp(N), D = c00, T : D → X given
by

T
( n∑
k=1

ckek

)
=
( n∑
k=1

k ck

)
e1 +

n∑
k=2

ckek.

Decide if T is closable. Find T ∗.

Answer. We have Tek = ke1 for all k, so T is unbounded. We have (0, e1) =
limk(k−1ek, e1), so T is not closable.

As for the adjoint, if y ∈ ℓq(N) and γy(x) = ⟨Tx, y⟩ is bounded, there
exists c > 0 such that

c = c∥en∥p ≥ |⟨Ten, y⟩| =
∣∣∣∣∑
k

(Ten)kyk
∣∣∣∣

≥
∣∣∣∣y1 n

∣∣∣∣−
∣∣∣∣∑
k≥2

(en)k yk
∣∣∣∣ = n|y1| − |yn|

≥ n|y1| − ∥y∥q.
Thus y ∈ D(T ∗) if and only if y1 = 0. We have, for such y,

⟨Tx, y⟩ =
∑
k≥2

xkyk = ⟨x, y⟩,

so T ∗y = y.

(F.0.11) Let T be the map Tf = f(0) defined on D = C[0, 1] ⊂ L2[0, 1].
Show that D∗ ̸= {0}, but T ∗ = 0.

Answer.
γg(f) = ⟨Tf, g⟩ = ⟨f(0), g⟩ = f(0)

∫ 1

0
g.

The only way this can be bounded is if
∫ 1

0 g = 0. Hence

D∗ =
{
g ∈ L2[0, 1] :

∫ 1

0
g = 0

}
and T ∗ = 0.

(F.0.12) Let T is as in Example F.0.1. Show that D∗ = {0}.
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Answer. If g ∈ D∗ and f ∈ C[0, 1], then

γg(f) = ⟨Tf, g⟩ =
∫ 3

2
f g.

For any nonzero g ∈ C[2, 3], this linear functional is unbounded. Indeed,
fix t0 ∈ [2, 3] such that g(t0) ̸= 0. Then there exists a neighbourhood V
of t0 and δ > 0 such that |g(t)| ≥ δ for all t ∈ V . Let K = [a, b] ⊂ V
be compact, with nonempty interior, and such that t0 ∈ K. Use Urysohn’s
Lemma (Theorem 2.6.5) to get h ∈ C[0, 1] such that h|K = 1 and supph ⊂ V .
Let fn(t) = tn h(t) |g(t)|

g(t) (note that 1/g(t) is defined and continuous on V ).
Then ∥fn∥ = 1, while

γg(fn) =
∫ 3

2
f g =

∫
V

tn h(t) |g(t)| dt

≥ δ

∫ b

a

tn dt = δ(bn+1 − an+1)
n+ 1 ≥ δ(3n − 2n)

n+ 1 .

So γg(fn) → ∞, showing that γg is unbounded for all nonzero g. Thus
D∗ = {0}.

(F.0.13) Let H = K = ℓ2(N), D = c00, and T : D → K the linear
operator induced by Tepn = ep for each p ∈ N prime and
n ∈ N. Show that D(T ∗) = {0}.

Answer. Let y ∈ D(T ∗). We have that there exists c > 0 with
(T ∗y)pn = ⟨epn , T ∗y⟩ = ⟨Tepn , y⟩ = yp.

This means that if yp ̸= 0, then T ∗y has to have infinitely many entries equal
to yp; this prevents it from being in ℓ2(N). Thus D(T ∗) = {0}.

(F.0.14) Let D ⊂ H be dense and T : D → K linear. Show that the
following statements are equivalent:

(a) D(T ∗) = {0};

(b) G(T ) = H × K.

Answer. We get a direct proof from (F.3). Since G(T ∗) = V G(T )⊥, if
D(T ∗) = {0} then D(T ∗) = {(0, 0)} and it follows that G(T )⊥ = {(0, 0)};
hence G(T ) = H × K. Conversely, if G(T ) is dense then G(T )⊥ = {(0, 0)},
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and then G(T ∗) = {(0, 0)}; as (η, T ∗η) ∈ G(T ∗) for all η ∈ D(T ∗), we conclude
that D(T ∗) = {0}.

Below we show another proof without using (F.3), though the ideas are
not really different.

(a) =⇒ (b) If (ν, η) ∈ G(T )
⊥

and nonzero, this means that for all
ξ ∈ D(T ),

0 = ⟨ξ, ν⟩ + ⟨Tξ, η⟩.
This gives us

γη(ξ) = ⟨Tξ, η⟩ = −langleξ, ν⟩,
so γη is bounded since D(T ) is dense. Note that we cannot have η = 0, for
in that case we get ⟨ξ, ν⟩ = 0 for ξ in a dense set, and so ν = 0 contradicting
that (ν, η) was nonzero. Hence D(T ∗) ̸= {0}.

(b) =⇒ (a) Suppose that D(T ∗) ̸= {0}. Let η ∈ D(T ∗) be nonzero.
Then

⟨Tξ, η⟩ = ⟨ξ, T ∗η⟩, ξ ∈ D(T ).
We can read the above equality as saying that (−T ∗η, eta) ∈ G(T )⊥. So
G(T ) ̸= H × K.

(F.0.15) Let g ∈ L∞(R), and such that
∫
R |g|2 = ∞. Fix h0 ∈ L2(R).

Let T : D(T ) → L2(R) be given by
Tf = ⟨f, g⟩h0,

where
D(T ) =

{
f ∈ L2(R) :

∫
R

|fg| < ∞
}
.

Show that T is densely defined, and find T ∗.

Answer. Since g is bounded, for any measurable E ⊂ R with finite measure,∫
R

|f 1E | ≤ ∥f∥∞ m(E) < ∞.

So D(T ) contains all integrable simple functions and hence it’s dense in L2(R)
(this can be seen by combining Proposition 2.8.14 and Theorem 2.4.13).

To find D(T ∗), if h ∈ D(T ∗) and f ∈ D(T ), we have
⟨f, T ∗h⟩ = ⟨Tf, h⟩ = ⟨f, g⟩ ⟨h0, h⟩ = ⟨f, ⟨h, h0⟩ g⟩.

Thus
T ∗h = ⟨h, h0⟩ g.

Even though the way that adjoint was defined guarantees it, it might not be
obvious at first sight that T ∗ maps into L2(R). But from h ∈ D(T ∗) we know
that the linear functional γh : f 7−→ ⟨f, ⟨h, h0⟩ g⟩ is bounded. This implies,
via Proposition 5.6.8, that ⟨h, h0⟩ g ∈ L2(R).
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(F.0.16) For an unbounded operator T : D(T ) → Y, where D(T ) ⊂ X
is dense and X ,Y are normed spaces, write a definition for T ∗,
and explore how much of the results in the text can be made
to work. Reflexivity might be needed in some cases.

Answer. We can mimic exactly the criterion in (F.1). Indeed, let
D(T ∗) = {φ ∈ Y∗ : γφ is bounded},

where γφ(x) = φ(Tx). When D(T ) is dense γφ is defined everywhere, so we
can define T ∗φ = γφ ∈ X ∗. That is, for φ ∈ D(T ∗) and x ∈ X , we have
(T ∗φ)x = φ(Tx).

In analogy with (F.3) we have, when T is densely defined,
G(T ∗) = V G(T )o,

where V : X ∗ × Y∗ → Y∗ × X ∗ is the isometry V (φ,ψ) = (ψ,−φ). Indeed, if
(φ, T ∗φ) ∈ G(T ∗), then

V −1(φ, T ∗φ)(x, Tx) = (−T ∗φ,φ)(x, Tx) = −(T ∗φ)x+ φ(Tx) = 0
since φ ∈ D(T ∗) (the dual of the direct sum was considered in Proposi-
tion 5.6.5). This shows that V −1G(T ∗) ⊂ G(T )o. Conversely, if (ψ,φ) ∈
G(T )o, we have ψ(x) + φ(Tx) = 0 for all x ∈ X ; then φ ∈ D(T ∗) and
ψ = −T ∗φ. Thus G(T )o ⊂ V −1G(T ∗). Then G(T ∗) = V G(T )o.

Next we show that, when X ,Y are reflexive, T is closable if and only
if T ∗ is densely defined. Suppose that T is not closable. Then there exists
z ∈ Y such that (0, z) ∈ G(T ). This means that there exists a sequence
{xn} ⊂ D(T ) with xn → 0 and Txn → z. Then, for any φ ∈ D(T ∗),

φ(z) = lim
n
φ(Txn) = lim

n
(T ∗φ)xn = 0,

since T ∗φ ∈ X ∗. We cannot have D(T ∗) dense in Y∗, for in such case we would
get φ(z) = 0 for all φ ∈ Y∗, contradicting that z ̸= 0 (via Corollary 5.7.7).
Conversely, if D(T ∗) is not dense, there exists nonzero Φ ∈ D(T ∗)o ⊂ Y∗∗.
So (Φ, 0) ∈ G(T ∗)o; then (0,Φ) ∈ V −1G(T ∗)o, meaning that V −1G(T ∗)o is
not the graph of an operator. But

V −1G(T ∗)o = V −1(V G(T )o)o = G(T )oo,
since V preserves polars (this is straightforward to check). Here is where we
use the reflexivity of X and Y. We have that G(T )oo = JG(T )

w∗

, using that
G(T ) is a subspace and Exercise 7.3.5. Here J = JX × JY is the canonical
embedding X × Y ↪→ X ∗∗ × Y∗∗. By the reflexivity, the weak∗-closure agrees
with the weak closure, and being a subspace we end up with the norm closure.
Thus G(T )oo = G(T ), implying that T is not closable.
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(F.0.17) Continuing from Exercise F.0.16, show that if T is closable and
X ,Y are reflexive, then

T = T ∗∗.

This requires showing first that because T is closable then T ∗ is
densely defined, which hopefully was done in Exercise F.0.16.

Answer. For x ∈ D(T ) and ψ ∈ D(T ∗),
(T ∗∗JXx)ψ = (T ∗∗x̂)ψ = x̂(T ∗ψ) = (T ∗ψ)x = ψ(Tx) = (JYTx)ψ.

Hence, on D(T ), T = J−1
Y T ∗∗JX . As T ∗∗ is closed, so is J−1

Y T ∗∗JX ; this
means that J−1

Y T ∗∗JX is a closed operator that agrees with T on D(T ), and
so J−1

Y T ∗∗JX = T .

(F.0.18) Let X = Y = c0, and T : X → Y given by
Tx = (x1, 2x2, 3x3, . . .),

with D(T ) = c00. Decide if T is closed or not, and find T ∗.

Answer. We have
G(T ) = {(x, Tx) : x ∈ c00}.

Intuitively, we can extend the domain of T a bit, as there are full nonzero
sequences where T makes sense. For instance, T (1/k2) = (1/k). If Pn is the
projection onto the first n coordinates, we have Pnx ∈ D(T ) for all x ∈ c0.
And TPn(1/k2) = Pn(1/k) → (1/k). So ((1/k2), (1/k)) ∈ G(T ) and T is not
closed. It is still densely defined, though, so T ∗ exists.

The domain of T ∗ is
D(T ∗) = {z ∈ ℓ1(N) : ηz is bounded},

where ηz(x) = ⟨Tx, z⟩. Since

⟨Tx, z⟩ =
∑
n

nx(n)z(n)

needs to be bounded for all x ∈ c0, we need Tz ∈ ℓ1(N). Thus
D(T ∗) = {z ∈ ℓ1(N) : (nz(n))n ∈ ℓ1(N)}

is dense, as it contains all finitely supported sequences. As a formula, T ∗ is
the same as T , now with domain D(T ∗).
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(F.0.19) Let X ,Y be normed spaces and T : D(T ) → Y linear and
densely defined. Show that if D(T ∗) = Y∗ if and only if T is
bounded.

Answer. Assume first that D(T ∗) = Y∗. We have that for each φ ∈ Y∗ there
exists cφ > 0 such that

|φ(Tx)| ≤ cφ ∥x∥, φ ∈ Y∗, x ∈ D(T ).
We can read this inequality as saying that if ∥x∥ ≤ 1.

sup
x∈D(T )∩BX

1 (0)
|T̂ xφ| ≤ cφ.

By the Uniform Boundedness Principle (Theorem 6.3.16), applied on the
Banach space X ∗∗, there exists c > 0 such that ∥Tx∥ = ∥T̂ x∥ ≤ c. Thus T is
bounded.

Now, for the converse, if T is bounded then for all φ ∈ Y∗ we have
|φ(Tx)| ≤ ∥φ∥ ∥T∥ ∥x∥, so γφ is bounded and φ ∈ D(T ∗).
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